Home | History | Annotate | Download | only in protobuf_c
      1 // Amalgamated source file
      2 /*
      3 ** Defs are upb's internal representation of the constructs that can appear
      4 ** in a .proto file:
      5 **
      6 ** - upb::MessageDef (upb_msgdef): describes a "message" construct.
      7 ** - upb::FieldDef (upb_fielddef): describes a message field.
      8 ** - upb::FileDef (upb_filedef): describes a .proto file and its defs.
      9 ** - upb::EnumDef (upb_enumdef): describes an enum.
     10 ** - upb::OneofDef (upb_oneofdef): describes a oneof.
     11 ** - upb::Def (upb_def): base class of all the others.
     12 **
     13 ** TODO: definitions of services.
     14 **
     15 ** Like upb_refcounted objects, defs are mutable only until frozen, and are
     16 ** only thread-safe once frozen.
     17 **
     18 ** This is a mixed C/C++ interface that offers a full API to both languages.
     19 ** See the top-level README for more information.
     20 */
     21 
     22 #ifndef UPB_DEF_H_
     23 #define UPB_DEF_H_
     24 
     25 /*
     26 ** upb::RefCounted (upb_refcounted)
     27 **
     28 ** A refcounting scheme that supports circular refs.  It accomplishes this by
     29 ** partitioning the set of objects into groups such that no cycle spans groups;
     30 ** we can then reference-count the group as a whole and ignore refs within the
     31 ** group.  When objects are mutable, these groups are computed very
     32 ** conservatively; we group any objects that have ever had a link between them.
     33 ** When objects are frozen, we compute strongly-connected components which
     34 ** allows us to be precise and only group objects that are actually cyclic.
     35 **
     36 ** This is a mixed C/C++ interface that offers a full API to both languages.
     37 ** See the top-level README for more information.
     38 */
     39 
     40 #ifndef UPB_REFCOUNTED_H_
     41 #define UPB_REFCOUNTED_H_
     42 
     43 /*
     44 ** upb_table
     45 **
     46 ** This header is INTERNAL-ONLY!  Its interfaces are not public or stable!
     47 ** This file defines very fast int->upb_value (inttable) and string->upb_value
     48 ** (strtable) hash tables.
     49 **
     50 ** The table uses chained scatter with Brent's variation (inspired by the Lua
     51 ** implementation of hash tables).  The hash function for strings is Austin
     52 ** Appleby's "MurmurHash."
     53 **
     54 ** The inttable uses uintptr_t as its key, which guarantees it can be used to
     55 ** store pointers or integers of at least 32 bits (upb isn't really useful on
     56 ** systems where sizeof(void*) < 4).
     57 **
     58 ** The table must be homogenous (all values of the same type).  In debug
     59 ** mode, we check this on insert and lookup.
     60 */
     61 
     62 #ifndef UPB_TABLE_H_
     63 #define UPB_TABLE_H_
     64 
     65 #include <assert.h>
     66 #include <stdint.h>
     67 #include <string.h>
     68 /*
     69 ** This file contains shared definitions that are widely used across upb.
     70 **
     71 ** This is a mixed C/C++ interface that offers a full API to both languages.
     72 ** See the top-level README for more information.
     73 */
     74 
     75 #ifndef UPB_H_
     76 #define UPB_H_
     77 
     78 #include <assert.h>
     79 #include <stdarg.h>
     80 #include <stdbool.h>
     81 #include <stddef.h>
     82 
     83 #ifdef __cplusplus
     84 namespace upb {
     85 class Allocator;
     86 class Arena;
     87 class Environment;
     88 class ErrorSpace;
     89 class Status;
     90 template <int N> class InlinedArena;
     91 template <int N> class InlinedEnvironment;
     92 }
     93 #endif
     94 
     95 /* UPB_INLINE: inline if possible, emit standalone code if required. */
     96 #ifdef __cplusplus
     97 #define UPB_INLINE inline
     98 #elif defined (__GNUC__)
     99 #define UPB_INLINE static __inline__
    100 #else
    101 #define UPB_INLINE static
    102 #endif
    103 
    104 /* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler
    105  * doesn't provide these preprocessor symbols. */
    106 #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
    107 #define UPB_BIG_ENDIAN
    108 #endif
    109 
    110 /* Macros for function attributes on compilers that support them. */
    111 #ifdef __GNUC__
    112 #define UPB_FORCEINLINE __inline__ __attribute__((always_inline))
    113 #define UPB_NOINLINE __attribute__((noinline))
    114 #define UPB_NORETURN __attribute__((__noreturn__))
    115 #else  /* !defined(__GNUC__) */
    116 #define UPB_FORCEINLINE
    117 #define UPB_NOINLINE
    118 #define UPB_NORETURN
    119 #endif
    120 
    121 /* A few hacky workarounds for functions not in C89.
    122  * For internal use only!
    123  * TODO(haberman): fix these by including our own implementations, or finding
    124  * another workaround.
    125  */
    126 #ifdef __GNUC__
    127 #define _upb_snprintf __builtin_snprintf
    128 #define _upb_vsnprintf __builtin_vsnprintf
    129 #define _upb_va_copy(a, b) __va_copy(a, b)
    130 #elif __STDC_VERSION__ >= 199901L
    131 /* C99 versions. */
    132 #define _upb_snprintf snprintf
    133 #define _upb_vsnprintf vsnprintf
    134 #define _upb_va_copy(a, b) va_copy(a, b)
    135 #else
    136 #error Need implementations of [v]snprintf and va_copy
    137 #endif
    138 
    139 
    140 #if ((defined(__cplusplus) && __cplusplus >= 201103L) || \
    141       defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11)
    142 #define UPB_CXX11
    143 #endif
    144 
    145 /* UPB_DISALLOW_COPY_AND_ASSIGN()
    146  * UPB_DISALLOW_POD_OPS()
    147  *
    148  * Declare these in the "private" section of a C++ class to forbid copy/assign
    149  * or all POD ops (construct, destruct, copy, assign) on that class. */
    150 #ifdef UPB_CXX11
    151 #include <type_traits>
    152 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
    153   class_name(const class_name&) = delete; \
    154   void operator=(const class_name&) = delete;
    155 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
    156   class_name() = delete; \
    157   ~class_name() = delete; \
    158   UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
    159 #define UPB_ASSERT_STDLAYOUT(type) \
    160   static_assert(std::is_standard_layout<type>::value, \
    161                 #type " must be standard layout");
    162 #define UPB_FINAL final
    163 #else  /* !defined(UPB_CXX11) */
    164 #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
    165   class_name(const class_name&); \
    166   void operator=(const class_name&);
    167 #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
    168   class_name(); \
    169   ~class_name(); \
    170   UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
    171 #define UPB_ASSERT_STDLAYOUT(type)
    172 #define UPB_FINAL
    173 #endif
    174 
    175 /* UPB_DECLARE_TYPE()
    176  * UPB_DECLARE_DERIVED_TYPE()
    177  * UPB_DECLARE_DERIVED_TYPE2()
    178  *
    179  * Macros for declaring C and C++ types both, including inheritance.
    180  * The inheritance doesn't use real C++ inheritance, to stay compatible with C.
    181  *
    182  * These macros also provide upcasts:
    183  *  - in C: types-specific functions (ie. upb_foo_upcast(foo))
    184  *  - in C++: upb::upcast(foo) along with implicit conversions
    185  *
    186  * Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */
    187 
    188 #define UPB_C_UPCASTS(ty, base)                                      \
    189   UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \
    190   UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; }
    191 
    192 #define UPB_C_UPCASTS2(ty, base, base2)                                 \
    193   UPB_C_UPCASTS(ty, base)                                               \
    194   UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \
    195   UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; }
    196 
    197 #ifdef __cplusplus
    198 
    199 #define UPB_BEGIN_EXTERN_C extern "C" {
    200 #define UPB_END_EXTERN_C }
    201 #define UPB_PRIVATE_FOR_CPP private:
    202 #define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname;
    203 
    204 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase)  \
    205   UPB_DECLARE_TYPE(cppname, cname)                                \
    206   UPB_C_UPCASTS(cname, cbase)                                     \
    207   namespace upb {                                                 \
    208   template <>                                                     \
    209   class Pointer<cppname> : public PointerBase<cppname, cppbase> { \
    210    public:                                                        \
    211     explicit Pointer(cppname* ptr)                                \
    212         : PointerBase<cppname, cppbase>(ptr) {}                   \
    213   };                                                              \
    214   template <>                                                     \
    215   class Pointer<const cppname>                                    \
    216       : public PointerBase<const cppname, const cppbase> {        \
    217    public:                                                        \
    218     explicit Pointer(const cppname* ptr)                          \
    219         : PointerBase<const cppname, const cppbase>(ptr) {}       \
    220   };                                                              \
    221   }
    222 
    223 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase,  \
    224                                   cbase2)                                    \
    225   UPB_DECLARE_TYPE(cppname, cname)                                           \
    226   UPB_C_UPCASTS2(cname, cbase, cbase2)                                       \
    227   namespace upb {                                                            \
    228   template <>                                                                \
    229   class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \
    230    public:                                                                   \
    231     explicit Pointer(cppname* ptr)                                           \
    232         : PointerBase2<cppname, cppbase, cppbase2>(ptr) {}                   \
    233   };                                                                         \
    234   template <>                                                                \
    235   class Pointer<const cppname>                                               \
    236       : public PointerBase2<const cppname, const cppbase, const cppbase2> {  \
    237    public:                                                                   \
    238     explicit Pointer(const cppname* ptr)                                     \
    239         : PointerBase2<const cppname, const cppbase, const cppbase2>(ptr) {} \
    240   };                                                                         \
    241   }
    242 
    243 #else  /* !defined(__cplusplus) */
    244 
    245 #define UPB_BEGIN_EXTERN_C
    246 #define UPB_END_EXTERN_C
    247 #define UPB_PRIVATE_FOR_CPP
    248 #define UPB_DECLARE_TYPE(cppname, cname) \
    249   struct cname;                          \
    250   typedef struct cname cname;
    251 #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \
    252   UPB_DECLARE_TYPE(cppname, cname)                               \
    253   UPB_C_UPCASTS(cname, cbase)
    254 #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2,    \
    255                                   cname, cbase, cbase2)          \
    256   UPB_DECLARE_TYPE(cppname, cname)                               \
    257   UPB_C_UPCASTS2(cname, cbase, cbase2)
    258 
    259 #endif  /* defined(__cplusplus) */
    260 
    261 #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
    262 #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))
    263 
    264 #define UPB_UNUSED(var) (void)var
    265 
    266 /* For asserting something about a variable when the variable is not used for
    267  * anything else.  This prevents "unused variable" warnings when compiling in
    268  * debug mode. */
    269 #define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate)
    270 
    271 /* Generic function type. */
    272 typedef void upb_func();
    273 
    274 
    275 /* C++ Casts ******************************************************************/
    276 
    277 #ifdef __cplusplus
    278 
    279 namespace upb {
    280 
    281 template <class T> class Pointer;
    282 
    283 /* Casts to a subclass.  The caller must know that cast is correct; an
    284  * incorrect cast will throw an assertion failure in debug mode.
    285  *
    286  * Example:
    287  *   upb::Def* def = GetDef();
    288  *   // Assert-fails if this was not actually a MessageDef.
    289  *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
    290  *
    291  * Note that downcasts are only defined for some types (at the moment you can
    292  * only downcast from a upb::Def to a specific Def type). */
    293 template<class To, class From> To down_cast(From* f);
    294 
    295 /* Casts to a subclass.  If the class does not actually match the given To type,
    296  * returns NULL.
    297  *
    298  * Example:
    299  *   upb::Def* def = GetDef();
    300  *   // md will be NULL if this was not actually a MessageDef.
    301  *   upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def);
    302  *
    303  * Note that dynamic casts are only defined for some types (at the moment you
    304  * can only downcast from a upb::Def to a specific Def type).. */
    305 template<class To, class From> To dyn_cast(From* f);
    306 
    307 /* Casts to any base class, or the type itself (ie. can be a no-op).
    308  *
    309  * Example:
    310  *   upb::MessageDef* md = GetDef();
    311  *   // This will fail to compile if this wasn't actually a base class.
    312  *   upb::Def* def = upb::upcast(md);
    313  */
    314 template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); }
    315 
    316 /* Attempt upcast to specific base class.
    317  *
    318  * Example:
    319  *   upb::MessageDef* md = GetDef();
    320  *   upb::upcast_to<upb::Def>(md)->MethodOnDef();
    321  */
    322 template <class T, class F> inline T* upcast_to(F *f) {
    323   return static_cast<T*>(upcast(f));
    324 }
    325 
    326 /* PointerBase<T>: implementation detail of upb::upcast().
    327  * It is implicitly convertable to pointers to the Base class(es).
    328  */
    329 template <class T, class Base>
    330 class PointerBase {
    331  public:
    332   explicit PointerBase(T* ptr) : ptr_(ptr) {}
    333   operator T*() { return ptr_; }
    334   operator Base*() { return (Base*)ptr_; }
    335 
    336  private:
    337   T* ptr_;
    338 };
    339 
    340 template <class T, class Base, class Base2>
    341 class PointerBase2 : public PointerBase<T, Base> {
    342  public:
    343   explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {}
    344   operator Base2*() { return Pointer<Base>(*this); }
    345 };
    346 
    347 }
    348 
    349 #endif
    350 
    351 
    352 /* upb::ErrorSpace ************************************************************/
    353 
    354 /* A upb::ErrorSpace represents some domain of possible error values.  This lets
    355  * upb::Status attach specific error codes to operations, like POSIX/C errno,
    356  * Win32 error codes, etc.  Clients who want to know the very specific error
    357  * code can check the error space and then know the type of the integer code.
    358  *
    359  * NOTE: upb::ErrorSpace is currently not used and should be considered
    360  * experimental.  It is important primarily in cases where upb is performing
    361  * I/O, but upb doesn't currently have any components that do this. */
    362 
    363 UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace)
    364 
    365 #ifdef __cplusplus
    366 class upb::ErrorSpace {
    367 #else
    368 struct upb_errorspace {
    369 #endif
    370   const char *name;
    371 };
    372 
    373 
    374 /* upb::Status ****************************************************************/
    375 
    376 /* upb::Status represents a success or failure status and error message.
    377  * It owns no resources and allocates no memory, so it should work
    378  * even in OOM situations. */
    379 UPB_DECLARE_TYPE(upb::Status, upb_status)
    380 
    381 /* The maximum length of an error message before it will get truncated. */
    382 #define UPB_STATUS_MAX_MESSAGE 128
    383 
    384 UPB_BEGIN_EXTERN_C
    385 
    386 const char *upb_status_errmsg(const upb_status *status);
    387 bool upb_ok(const upb_status *status);
    388 upb_errorspace *upb_status_errspace(const upb_status *status);
    389 int upb_status_errcode(const upb_status *status);
    390 
    391 /* Any of the functions that write to a status object allow status to be NULL,
    392  * to support use cases where the function's caller does not care about the
    393  * status message. */
    394 void upb_status_clear(upb_status *status);
    395 void upb_status_seterrmsg(upb_status *status, const char *msg);
    396 void upb_status_seterrf(upb_status *status, const char *fmt, ...);
    397 void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args);
    398 void upb_status_copy(upb_status *to, const upb_status *from);
    399 
    400 UPB_END_EXTERN_C
    401 
    402 #ifdef __cplusplus
    403 
    404 class upb::Status {
    405  public:
    406   Status() { upb_status_clear(this); }
    407 
    408   /* Returns true if there is no error. */
    409   bool ok() const { return upb_ok(this); }
    410 
    411   /* Optional error space and code, useful if the caller wants to
    412    * programmatically check the specific kind of error. */
    413   ErrorSpace* error_space() { return upb_status_errspace(this); }
    414   int error_code() const { return upb_status_errcode(this); }
    415 
    416   /* The returned string is invalidated by any other call into the status. */
    417   const char *error_message() const { return upb_status_errmsg(this); }
    418 
    419   /* The error message will be truncated if it is longer than
    420    * UPB_STATUS_MAX_MESSAGE-4. */
    421   void SetErrorMessage(const char* msg) { upb_status_seterrmsg(this, msg); }
    422   void SetFormattedErrorMessage(const char* fmt, ...) {
    423     va_list args;
    424     va_start(args, fmt);
    425     upb_status_vseterrf(this, fmt, args);
    426     va_end(args);
    427   }
    428 
    429   /* Resets the status to a successful state with no message. */
    430   void Clear() { upb_status_clear(this); }
    431 
    432   void CopyFrom(const Status& other) { upb_status_copy(this, &other); }
    433 
    434  private:
    435   UPB_DISALLOW_COPY_AND_ASSIGN(Status)
    436 #else
    437 struct upb_status {
    438 #endif
    439   bool ok_;
    440 
    441   /* Specific status code defined by some error space (optional). */
    442   int code_;
    443   upb_errorspace *error_space_;
    444 
    445   /* TODO(haberman): add file/line of error? */
    446 
    447   /* Error message; NULL-terminated. */
    448   char msg[UPB_STATUS_MAX_MESSAGE];
    449 };
    450 
    451 #define UPB_STATUS_INIT {true, 0, NULL, {0}}
    452 
    453 
    454 /** Built-in error spaces. ****************************************************/
    455 
    456 /* Errors raised by upb that we want to be able to detect programmatically. */
    457 typedef enum {
    458   UPB_NOMEM   /* Can't reuse ENOMEM because it is POSIX, not ISO C. */
    459 } upb_errcode_t;
    460 
    461 extern upb_errorspace upb_upberr;
    462 
    463 void upb_upberr_setoom(upb_status *s);
    464 
    465 /* Since errno is defined by standard C, we define an error space for it in
    466  * core upb.  Other error spaces should be defined in other, platform-specific
    467  * modules. */
    468 
    469 extern upb_errorspace upb_errnoerr;
    470 
    471 
    472 /** upb::Allocator ************************************************************/
    473 
    474 /* A upb::Allocator is a possibly-stateful allocator object.
    475  *
    476  * It could either be an arena allocator (which doesn't require individual
    477  * free() calls) or a regular malloc() (which does).  The client must therefore
    478  * free memory unless it knows that the allocator is an arena allocator. */
    479 UPB_DECLARE_TYPE(upb::Allocator, upb_alloc)
    480 
    481 /* A malloc()/free() function.
    482  * If "size" is 0 then the function acts like free(), otherwise it acts like
    483  * realloc().  Only "oldsize" bytes from a previous allocation are preserved. */
    484 typedef void *upb_alloc_func(upb_alloc *alloc, void *ptr, size_t oldsize,
    485                              size_t size);
    486 
    487 #ifdef __cplusplus
    488 
    489 class upb::Allocator UPB_FINAL {
    490  public:
    491   Allocator() {}
    492 
    493  private:
    494   UPB_DISALLOW_COPY_AND_ASSIGN(Allocator)
    495 
    496  public:
    497 #else
    498 struct upb_alloc {
    499 #endif  /* __cplusplus */
    500   upb_alloc_func *func;
    501 };
    502 
    503 UPB_INLINE void *upb_malloc(upb_alloc *alloc, size_t size) {
    504   assert(size > 0);
    505   return alloc->func(alloc, NULL, 0, size);
    506 }
    507 
    508 UPB_INLINE void *upb_realloc(upb_alloc *alloc, void *ptr, size_t oldsize,
    509                              size_t size) {
    510   assert(size > 0);
    511   return alloc->func(alloc, ptr, oldsize, size);
    512 }
    513 
    514 UPB_INLINE void upb_free(upb_alloc *alloc, void *ptr) {
    515   alloc->func(alloc, ptr, 0, 0);
    516 }
    517 
    518 /* The global allocator used by upb.  Uses the standard malloc()/free(). */
    519 
    520 extern upb_alloc upb_alloc_global;
    521 
    522 /* Functions that hard-code the global malloc.
    523  *
    524  * We still get benefit because we can put custom logic into our global
    525  * allocator, like injecting out-of-memory faults in debug/testing builds. */
    526 
    527 UPB_INLINE void *upb_gmalloc(size_t size) {
    528   return upb_malloc(&upb_alloc_global, size);
    529 }
    530 
    531 UPB_INLINE void *upb_grealloc(void *ptr, size_t oldsize, size_t size) {
    532   return upb_realloc(&upb_alloc_global, ptr, oldsize, size);
    533 }
    534 
    535 UPB_INLINE void upb_gfree(void *ptr) {
    536   upb_free(&upb_alloc_global, ptr);
    537 }
    538 
    539 /* upb::Arena *****************************************************************/
    540 
    541 /* upb::Arena is a specific allocator implementation that uses arena allocation.
    542  * The user provides an allocator that will be used to allocate the underlying
    543  * arena blocks.  Arenas by nature do not require the individual allocations
    544  * to be freed.  However the Arena does allow users to register cleanup
    545  * functions that will run when the arena is destroyed.
    546  *
    547  * A upb::Arena is *not* thread-safe.
    548  *
    549  * You could write a thread-safe arena allocator that satisfies the
    550  * upb::Allocator interface, but it would not be as efficient for the
    551  * single-threaded case. */
    552 UPB_DECLARE_TYPE(upb::Arena, upb_arena)
    553 
    554 typedef void upb_cleanup_func(void *ud);
    555 
    556 #define UPB_ARENA_BLOCK_OVERHEAD (sizeof(size_t)*4)
    557 
    558 UPB_BEGIN_EXTERN_C
    559 
    560 void upb_arena_init(upb_arena *a);
    561 void upb_arena_init2(upb_arena *a, void *mem, size_t n, upb_alloc *alloc);
    562 void upb_arena_uninit(upb_arena *a);
    563 upb_alloc *upb_arena_alloc(upb_arena *a);
    564 bool upb_arena_addcleanup(upb_arena *a, upb_cleanup_func *func, void *ud);
    565 size_t upb_arena_bytesallocated(const upb_arena *a);
    566 void upb_arena_setnextblocksize(upb_arena *a, size_t size);
    567 void upb_arena_setmaxblocksize(upb_arena *a, size_t size);
    568 
    569 UPB_END_EXTERN_C
    570 
    571 #ifdef __cplusplus
    572 
    573 class upb::Arena {
    574  public:
    575   /* A simple arena with no initial memory block and the default allocator. */
    576   Arena() { upb_arena_init(this); }
    577 
    578   /* Constructs an arena with the given initial block which allocates blocks
    579    * with the given allocator.  The given allocator must outlive the Arena.
    580    *
    581    * If you pass NULL for the allocator it will default to the global allocator
    582    * upb_alloc_global, and NULL/0 for the initial block will cause there to be
    583    * no initial block. */
    584   Arena(void *mem, size_t len, Allocator* a) {
    585     upb_arena_init2(this, mem, len, a);
    586   }
    587 
    588   ~Arena() { upb_arena_uninit(this); }
    589 
    590   /* Sets the size of the next block the Arena will request (unless the
    591    * requested allocation is larger).  Each block will double in size until the
    592    * max limit is reached. */
    593   void SetNextBlockSize(size_t size) { upb_arena_setnextblocksize(this, size); }
    594 
    595   /* Sets the maximum block size.  No blocks larger than this will be requested
    596    * from the underlying allocator unless individual arena allocations are
    597    * larger. */
    598   void SetMaxBlockSize(size_t size) { upb_arena_setmaxblocksize(this, size); }
    599 
    600   /* Allows this arena to be used as a generic allocator.
    601    *
    602    * The arena does not need free() calls so when using Arena as an allocator
    603    * it is safe to skip them.  However they are no-ops so there is no harm in
    604    * calling free() either. */
    605   Allocator* allocator() { return upb_arena_alloc(this); }
    606 
    607   /* Add a cleanup function to run when the arena is destroyed.
    608    * Returns false on out-of-memory. */
    609   bool AddCleanup(upb_cleanup_func* func, void* ud) {
    610     return upb_arena_addcleanup(this, func, ud);
    611   }
    612 
    613   /* Total number of bytes that have been allocated.  It is undefined what
    614    * Realloc() does to this counter. */
    615   size_t BytesAllocated() const {
    616     return upb_arena_bytesallocated(this);
    617   }
    618 
    619  private:
    620   UPB_DISALLOW_COPY_AND_ASSIGN(Arena)
    621 
    622 #else
    623 struct upb_arena {
    624 #endif  /* __cplusplus */
    625   /* We implement the allocator interface.
    626    * This must be the first member of upb_arena! */
    627   upb_alloc alloc;
    628 
    629   /* Allocator to allocate arena blocks.  We are responsible for freeing these
    630    * when we are destroyed. */
    631   upb_alloc *block_alloc;
    632 
    633   size_t bytes_allocated;
    634   size_t next_block_size;
    635   size_t max_block_size;
    636 
    637   /* Linked list of blocks.  Points to an arena_block, defined in env.c */
    638   void *block_head;
    639 
    640   /* Cleanup entries.  Pointer to a cleanup_ent, defined in env.c */
    641   void *cleanup_head;
    642 
    643   /* For future expansion, since the size of this struct is exposed to users. */
    644   void *future1;
    645   void *future2;
    646 };
    647 
    648 
    649 /* upb::Environment ***********************************************************/
    650 
    651 /* A upb::Environment provides a means for injecting malloc and an
    652  * error-reporting callback into encoders/decoders.  This allows them to be
    653  * independent of nearly all assumptions about their actual environment.
    654  *
    655  * It is also a container for allocating the encoders/decoders themselves that
    656  * insulates clients from knowing their actual size.  This provides ABI
    657  * compatibility even if the size of the objects change.  And this allows the
    658  * structure definitions to be in the .c files instead of the .h files, making
    659  * the .h files smaller and more readable.
    660  *
    661  * We might want to consider renaming this to "Pipeline" if/when the concept of
    662  * a pipeline element becomes more formalized. */
    663 UPB_DECLARE_TYPE(upb::Environment, upb_env)
    664 
    665 /* A function that receives an error report from an encoder or decoder.  The
    666  * callback can return true to request that the error should be recovered, but
    667  * if the error is not recoverable this has no effect. */
    668 typedef bool upb_error_func(void *ud, const upb_status *status);
    669 
    670 UPB_BEGIN_EXTERN_C
    671 
    672 void upb_env_init(upb_env *e);
    673 void upb_env_init2(upb_env *e, void *mem, size_t n, upb_alloc *alloc);
    674 void upb_env_uninit(upb_env *e);
    675 
    676 void upb_env_initonly(upb_env *e);
    677 
    678 upb_arena *upb_env_arena(upb_env *e);
    679 bool upb_env_ok(const upb_env *e);
    680 void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud);
    681 
    682 /* Convenience wrappers around the methods of the contained arena. */
    683 void upb_env_reporterrorsto(upb_env *e, upb_status *s);
    684 bool upb_env_reporterror(upb_env *e, const upb_status *s);
    685 void *upb_env_malloc(upb_env *e, size_t size);
    686 void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size);
    687 void upb_env_free(upb_env *e, void *ptr);
    688 bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud);
    689 size_t upb_env_bytesallocated(const upb_env *e);
    690 
    691 UPB_END_EXTERN_C
    692 
    693 #ifdef __cplusplus
    694 
    695 class upb::Environment {
    696  public:
    697   /* The given Arena must outlive this environment. */
    698   Environment() { upb_env_initonly(this); }
    699 
    700   Environment(void *mem, size_t len, Allocator *a) : arena_(mem, len, a) {
    701     upb_env_initonly(this);
    702   }
    703 
    704   Arena* arena() { return upb_env_arena(this); }
    705 
    706   /* Set a custom error reporting function. */
    707   void SetErrorFunction(upb_error_func* func, void* ud) {
    708     upb_env_seterrorfunc(this, func, ud);
    709   }
    710 
    711   /* Set the error reporting function to simply copy the status to the given
    712    * status and abort. */
    713   void ReportErrorsTo(Status* status) { upb_env_reporterrorsto(this, status); }
    714 
    715   /* Returns true if all allocations and AddCleanup() calls have succeeded,
    716    * and no errors were reported with ReportError() (except ones that recovered
    717    * successfully). */
    718   bool ok() const { return upb_env_ok(this); }
    719 
    720   /* Reports an error to this environment's callback, returning true if
    721    * the caller should try to recover. */
    722   bool ReportError(const Status* status) {
    723     return upb_env_reporterror(this, status);
    724   }
    725 
    726  private:
    727   UPB_DISALLOW_COPY_AND_ASSIGN(Environment)
    728 
    729 #else
    730 struct upb_env {
    731 #endif  /* __cplusplus */
    732   upb_arena arena_;
    733   upb_error_func *error_func_;
    734   void *error_ud_;
    735   bool ok_;
    736 };
    737 
    738 
    739 /* upb::InlinedArena **********************************************************/
    740 /* upb::InlinedEnvironment ****************************************************/
    741 
    742 /* upb::InlinedArena and upb::InlinedEnvironment seed their arenas with a
    743  * predefined amount of memory.  No heap memory will be allocated until the
    744  * initial block is exceeded.
    745  *
    746  * These types only exist in C++ */
    747 
    748 #ifdef __cplusplus
    749 
    750 template <int N> class upb::InlinedArena : public upb::Arena {
    751  public:
    752   InlinedArena() : Arena(initial_block_, N, NULL) {}
    753   explicit InlinedArena(Allocator* a) : Arena(initial_block_, N, a) {}
    754 
    755  private:
    756   UPB_DISALLOW_COPY_AND_ASSIGN(InlinedArena)
    757 
    758   char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
    759 };
    760 
    761 template <int N> class upb::InlinedEnvironment : public upb::Environment {
    762  public:
    763   InlinedEnvironment() : Environment(initial_block_, N, NULL) {}
    764   explicit InlinedEnvironment(Allocator *a)
    765       : Environment(initial_block_, N, a) {}
    766 
    767  private:
    768   UPB_DISALLOW_COPY_AND_ASSIGN(InlinedEnvironment)
    769 
    770   char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD];
    771 };
    772 
    773 #endif  /* __cplusplus */
    774 
    775 
    776 
    777 #endif  /* UPB_H_ */
    778 
    779 #ifdef __cplusplus
    780 extern "C" {
    781 #endif
    782 
    783 
    784 /* upb_value ******************************************************************/
    785 
    786 /* A tagged union (stored untagged inside the table) so that we can check that
    787  * clients calling table accessors are correctly typed without having to have
    788  * an explosion of accessors. */
    789 typedef enum {
    790   UPB_CTYPE_INT32    = 1,
    791   UPB_CTYPE_INT64    = 2,
    792   UPB_CTYPE_UINT32   = 3,
    793   UPB_CTYPE_UINT64   = 4,
    794   UPB_CTYPE_BOOL     = 5,
    795   UPB_CTYPE_CSTR     = 6,
    796   UPB_CTYPE_PTR      = 7,
    797   UPB_CTYPE_CONSTPTR = 8,
    798   UPB_CTYPE_FPTR     = 9
    799 } upb_ctype_t;
    800 
    801 typedef struct {
    802   uint64_t val;
    803 #ifndef NDEBUG
    804   /* In debug mode we carry the value type around also so we can check accesses
    805    * to be sure the right member is being read. */
    806   upb_ctype_t ctype;
    807 #endif
    808 } upb_value;
    809 
    810 #ifdef NDEBUG
    811 #define SET_TYPE(dest, val)      UPB_UNUSED(val)
    812 #else
    813 #define SET_TYPE(dest, val) dest = val
    814 #endif
    815 
    816 /* Like strdup(), which isn't always available since it's not ANSI C. */
    817 char *upb_strdup(const char *s, upb_alloc *a);
    818 /* Variant that works with a length-delimited rather than NULL-delimited string,
    819  * as supported by strtable. */
    820 char *upb_strdup2(const char *s, size_t len, upb_alloc *a);
    821 
    822 UPB_INLINE char *upb_gstrdup(const char *s) {
    823   return upb_strdup(s, &upb_alloc_global);
    824 }
    825 
    826 UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val,
    827                                   upb_ctype_t ctype) {
    828   v->val = val;
    829   SET_TYPE(v->ctype, ctype);
    830 }
    831 
    832 UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) {
    833   upb_value ret;
    834   _upb_value_setval(&ret, val, ctype);
    835   return ret;
    836 }
    837 
    838 /* For each value ctype, define the following set of functions:
    839  *
    840  * // Get/set an int32 from a upb_value.
    841  * int32_t upb_value_getint32(upb_value val);
    842  * void upb_value_setint32(upb_value *val, int32_t cval);
    843  *
    844  * // Construct a new upb_value from an int32.
    845  * upb_value upb_value_int32(int32_t val); */
    846 #define FUNCS(name, membername, type_t, converter, proto_type) \
    847   UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
    848     val->val = (converter)cval; \
    849     SET_TYPE(val->ctype, proto_type); \
    850   } \
    851   UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
    852     upb_value ret; \
    853     upb_value_set ## name(&ret, val); \
    854     return ret; \
    855   } \
    856   UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
    857     assert(val.ctype == proto_type); \
    858     return (type_t)(converter)val.val; \
    859   }
    860 
    861 FUNCS(int32,    int32,        int32_t,      int32_t,    UPB_CTYPE_INT32)
    862 FUNCS(int64,    int64,        int64_t,      int64_t,    UPB_CTYPE_INT64)
    863 FUNCS(uint32,   uint32,       uint32_t,     uint32_t,   UPB_CTYPE_UINT32)
    864 FUNCS(uint64,   uint64,       uint64_t,     uint64_t,   UPB_CTYPE_UINT64)
    865 FUNCS(bool,     _bool,        bool,         bool,       UPB_CTYPE_BOOL)
    866 FUNCS(cstr,     cstr,         char*,        uintptr_t,  UPB_CTYPE_CSTR)
    867 FUNCS(ptr,      ptr,          void*,        uintptr_t,  UPB_CTYPE_PTR)
    868 FUNCS(constptr, constptr,     const void*,  uintptr_t,  UPB_CTYPE_CONSTPTR)
    869 FUNCS(fptr,     fptr,         upb_func*,    uintptr_t,  UPB_CTYPE_FPTR)
    870 
    871 #undef FUNCS
    872 #undef SET_TYPE
    873 
    874 
    875 /* upb_tabkey *****************************************************************/
    876 
    877 /* Either:
    878  *   1. an actual integer key, or
    879  *   2. a pointer to a string prefixed by its uint32_t length, owned by us.
    880  *
    881  * ...depending on whether this is a string table or an int table.  We would
    882  * make this a union of those two types, but C89 doesn't support statically
    883  * initializing a non-first union member. */
    884 typedef uintptr_t upb_tabkey;
    885 
    886 #define UPB_TABKEY_NUM(n) n
    887 #define UPB_TABKEY_NONE 0
    888 /* The preprocessor isn't quite powerful enough to turn the compile-time string
    889  * length into a byte-wise string representation, so code generation needs to
    890  * help it along.
    891  *
    892  * "len1" is the low byte and len4 is the high byte. */
    893 #ifdef UPB_BIG_ENDIAN
    894 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
    895     (uintptr_t)(len4 len3 len2 len1 strval)
    896 #else
    897 #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
    898     (uintptr_t)(len1 len2 len3 len4 strval)
    899 #endif
    900 
    901 UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) {
    902   char* mem = (char*)key;
    903   if (len) memcpy(len, mem, sizeof(*len));
    904   return mem + sizeof(*len);
    905 }
    906 
    907 
    908 /* upb_tabval *****************************************************************/
    909 
    910 #ifdef __cplusplus
    911 
    912 /* Status initialization not supported.
    913  *
    914  * This separate definition is necessary because in C++, UINTPTR_MAX isn't
    915  * reliably available. */
    916 typedef struct {
    917   uint64_t val;
    918 } upb_tabval;
    919 
    920 #else
    921 
    922 /* C -- supports static initialization, but to support static initialization of
    923  * both integers and points for both 32 and 64 bit targets, it takes a little
    924  * bit of doing. */
    925 
    926 #if UINTPTR_MAX == 0xffffffffffffffffULL
    927 #define UPB_PTR_IS_64BITS
    928 #elif UINTPTR_MAX != 0xffffffff
    929 #error Could not determine how many bits pointers are.
    930 #endif
    931 
    932 typedef union {
    933   /* For static initialization.
    934    *
    935    * Unfortunately this ugliness is necessary -- it is the only way that we can,
    936    * with -std=c89 -pedantic, statically initialize this to either a pointer or
    937    * an integer on 32-bit platforms. */
    938   struct {
    939 #ifdef UPB_PTR_IS_64BITS
    940     uintptr_t val;
    941 #else
    942     uintptr_t val1;
    943     uintptr_t val2;
    944 #endif
    945   } staticinit;
    946 
    947   /* The normal accessor that we use for everything at runtime. */
    948   uint64_t val;
    949 } upb_tabval;
    950 
    951 #ifdef UPB_PTR_IS_64BITS
    952 #define UPB_TABVALUE_INT_INIT(v) {{v}}
    953 #define UPB_TABVALUE_EMPTY_INIT  {{-1}}
    954 #else
    955 
    956 /* 32-bit pointers */
    957 
    958 #ifdef UPB_BIG_ENDIAN
    959 #define UPB_TABVALUE_INT_INIT(v) {{0, v}}
    960 #define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
    961 #else
    962 #define UPB_TABVALUE_INT_INIT(v) {{v, 0}}
    963 #define UPB_TABVALUE_EMPTY_INIT  {{-1, -1}}
    964 #endif
    965 
    966 #endif
    967 
    968 #define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v)
    969 
    970 #undef UPB_PTR_IS_64BITS
    971 
    972 #endif  /* __cplusplus */
    973 
    974 
    975 /* upb_table ******************************************************************/
    976 
    977 typedef struct _upb_tabent {
    978   upb_tabkey key;
    979   upb_tabval val;
    980 
    981   /* Internal chaining.  This is const so we can create static initializers for
    982    * tables.  We cast away const sometimes, but *only* when the containing
    983    * upb_table is known to be non-const.  This requires a bit of care, but
    984    * the subtlety is confined to table.c. */
    985   const struct _upb_tabent *next;
    986 } upb_tabent;
    987 
    988 typedef struct {
    989   size_t count;          /* Number of entries in the hash part. */
    990   size_t mask;           /* Mask to turn hash value -> bucket. */
    991   upb_ctype_t ctype;     /* Type of all values. */
    992   uint8_t size_lg2;      /* Size of the hashtable part is 2^size_lg2 entries. */
    993 
    994   /* Hash table entries.
    995    * Making this const isn't entirely accurate; what we really want is for it to
    996    * have the same const-ness as the table it's inside.  But there's no way to
    997    * declare that in C.  So we have to make it const so that we can statically
    998    * initialize const hash tables.  Then we cast away const when we have to.
    999    */
   1000   const upb_tabent *entries;
   1001 
   1002 #ifndef NDEBUG
   1003   /* This table's allocator.  We make the user pass it in to every relevant
   1004    * function and only use this to check it in debug mode.  We do this solely
   1005    * to keep upb_table as small as possible.  This might seem slightly paranoid
   1006    * but the plan is to use upb_table for all map fields and extension sets in
   1007    * a forthcoming message representation, so there could be a lot of these.
   1008    * If this turns out to be too annoying later, we can change it (since this
   1009    * is an internal-only header file). */
   1010   upb_alloc *alloc;
   1011 #endif
   1012 } upb_table;
   1013 
   1014 #ifdef NDEBUG
   1015 #  define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
   1016      {count, mask, ctype, size_lg2, entries}
   1017 #else
   1018 #  ifdef UPB_DEBUG_REFS
   1019 /* At the moment the only mutable tables we statically initialize are debug
   1020  * ref tables. */
   1021 #    define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
   1022        {count, mask, ctype, size_lg2, entries, &upb_alloc_debugrefs}
   1023 #  else
   1024 #    define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \
   1025        {count, mask, ctype, size_lg2, entries, NULL}
   1026 #  endif
   1027 #endif
   1028 
   1029 typedef struct {
   1030   upb_table t;
   1031 } upb_strtable;
   1032 
   1033 #define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
   1034   {UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries)}
   1035 
   1036 #define UPB_EMPTY_STRTABLE_INIT(ctype)                           \
   1037   UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL)
   1038 
   1039 typedef struct {
   1040   upb_table t;              /* For entries that don't fit in the array part. */
   1041   const upb_tabval *array;  /* Array part of the table. See const note above. */
   1042   size_t array_size;        /* Array part size. */
   1043   size_t array_count;       /* Array part number of elements. */
   1044 } upb_inttable;
   1045 
   1046 #define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
   1047   {UPB_TABLE_INIT(count, mask, ctype, size_lg2, ent), a, asize, acount}
   1048 
   1049 #define UPB_EMPTY_INTTABLE_INIT(ctype) \
   1050   UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)
   1051 
   1052 #define UPB_ARRAY_EMPTYENT -1
   1053 
   1054 UPB_INLINE size_t upb_table_size(const upb_table *t) {
   1055   if (t->size_lg2 == 0)
   1056     return 0;
   1057   else
   1058     return 1 << t->size_lg2;
   1059 }
   1060 
   1061 /* Internal-only functions, in .h file only out of necessity. */
   1062 UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
   1063   return e->key == 0;
   1064 }
   1065 
   1066 /* Used by some of the unit tests for generic hashing functionality. */
   1067 uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);
   1068 
   1069 UPB_INLINE uintptr_t upb_intkey(uintptr_t key) {
   1070   return key;
   1071 }
   1072 
   1073 UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
   1074   return (uint32_t)key;
   1075 }
   1076 
   1077 static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
   1078   return t->entries + (hash & t->mask);
   1079 }
   1080 
   1081 UPB_INLINE bool upb_arrhas(upb_tabval key) {
   1082   return key.val != (uint64_t)-1;
   1083 }
   1084 
   1085 /* Initialize and uninitialize a table, respectively.  If memory allocation
   1086  * failed, false is returned that the table is uninitialized. */
   1087 bool upb_inttable_init2(upb_inttable *table, upb_ctype_t ctype, upb_alloc *a);
   1088 bool upb_strtable_init2(upb_strtable *table, upb_ctype_t ctype, upb_alloc *a);
   1089 void upb_inttable_uninit2(upb_inttable *table, upb_alloc *a);
   1090 void upb_strtable_uninit2(upb_strtable *table, upb_alloc *a);
   1091 
   1092 UPB_INLINE bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype) {
   1093   return upb_inttable_init2(table, ctype, &upb_alloc_global);
   1094 }
   1095 
   1096 UPB_INLINE bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype) {
   1097   return upb_strtable_init2(table, ctype, &upb_alloc_global);
   1098 }
   1099 
   1100 UPB_INLINE void upb_inttable_uninit(upb_inttable *table) {
   1101   upb_inttable_uninit2(table, &upb_alloc_global);
   1102 }
   1103 
   1104 UPB_INLINE void upb_strtable_uninit(upb_strtable *table) {
   1105   upb_strtable_uninit2(table, &upb_alloc_global);
   1106 }
   1107 
   1108 /* Returns the number of values in the table. */
   1109 size_t upb_inttable_count(const upb_inttable *t);
   1110 UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
   1111   return t->t.count;
   1112 }
   1113 
   1114 /* Inserts the given key into the hashtable with the given value.  The key must
   1115  * not already exist in the hash table.  For string tables, the key must be
   1116  * NULL-terminated, and the table will make an internal copy of the key.
   1117  * Inttables must not insert a value of UINTPTR_MAX.
   1118  *
   1119  * If a table resize was required but memory allocation failed, false is
   1120  * returned and the table is unchanged. */
   1121 bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val,
   1122                           upb_alloc *a);
   1123 bool upb_strtable_insert3(upb_strtable *t, const char *key, size_t len,
   1124                           upb_value val, upb_alloc *a);
   1125 
   1126 UPB_INLINE bool upb_inttable_insert(upb_inttable *t, uintptr_t key,
   1127                                     upb_value val) {
   1128   return upb_inttable_insert2(t, key, val, &upb_alloc_global);
   1129 }
   1130 
   1131 UPB_INLINE bool upb_strtable_insert2(upb_strtable *t, const char *key,
   1132                                      size_t len, upb_value val) {
   1133   return upb_strtable_insert3(t, key, len, val, &upb_alloc_global);
   1134 }
   1135 
   1136 /* For NULL-terminated strings. */
   1137 UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
   1138                                     upb_value val) {
   1139   return upb_strtable_insert2(t, key, strlen(key), val);
   1140 }
   1141 
   1142 /* Looks up key in this table, returning "true" if the key was found.
   1143  * If v is non-NULL, copies the value for this key into *v. */
   1144 bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
   1145 bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
   1146                           upb_value *v);
   1147 
   1148 /* For NULL-terminated strings. */
   1149 UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
   1150                                     upb_value *v) {
   1151   return upb_strtable_lookup2(t, key, strlen(key), v);
   1152 }
   1153 
   1154 /* Removes an item from the table.  Returns true if the remove was successful,
   1155  * and stores the removed item in *val if non-NULL. */
   1156 bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
   1157 bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len,
   1158                           upb_value *val, upb_alloc *alloc);
   1159 
   1160 UPB_INLINE bool upb_strtable_remove2(upb_strtable *t, const char *key,
   1161                                      size_t len, upb_value *val) {
   1162   return upb_strtable_remove3(t, key, len, val, &upb_alloc_global);
   1163 }
   1164 
   1165 /* For NULL-terminated strings. */
   1166 UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
   1167                                     upb_value *v) {
   1168   return upb_strtable_remove2(t, key, strlen(key), v);
   1169 }
   1170 
   1171 /* Updates an existing entry in an inttable.  If the entry does not exist,
   1172  * returns false and does nothing.  Unlike insert/remove, this does not
   1173  * invalidate iterators. */
   1174 bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);
   1175 
   1176 /* Handy routines for treating an inttable like a stack.  May not be mixed with
   1177  * other insert/remove calls. */
   1178 bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a);
   1179 upb_value upb_inttable_pop(upb_inttable *t);
   1180 
   1181 UPB_INLINE bool upb_inttable_push(upb_inttable *t, upb_value val) {
   1182   return upb_inttable_push2(t, val, &upb_alloc_global);
   1183 }
   1184 
   1185 /* Convenience routines for inttables with pointer keys. */
   1186 bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val,
   1187                              upb_alloc *a);
   1188 bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
   1189 bool upb_inttable_lookupptr(
   1190     const upb_inttable *t, const void *key, upb_value *val);
   1191 
   1192 UPB_INLINE bool upb_inttable_insertptr(upb_inttable *t, const void *key,
   1193                                        upb_value val) {
   1194   return upb_inttable_insertptr2(t, key, val, &upb_alloc_global);
   1195 }
   1196 
   1197 /* Optimizes the table for the current set of entries, for both memory use and
   1198  * lookup time.  Client should call this after all entries have been inserted;
   1199  * inserting more entries is legal, but will likely require a table resize. */
   1200 void upb_inttable_compact2(upb_inttable *t, upb_alloc *a);
   1201 
   1202 UPB_INLINE void upb_inttable_compact(upb_inttable *t) {
   1203   upb_inttable_compact2(t, &upb_alloc_global);
   1204 }
   1205 
   1206 /* A special-case inlinable version of the lookup routine for 32-bit
   1207  * integers. */
   1208 UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
   1209                                       upb_value *v) {
   1210   *v = upb_value_int32(0);  /* Silence compiler warnings. */
   1211   if (key < t->array_size) {
   1212     upb_tabval arrval = t->array[key];
   1213     if (upb_arrhas(arrval)) {
   1214       _upb_value_setval(v, arrval.val, t->t.ctype);
   1215       return true;
   1216     } else {
   1217       return false;
   1218     }
   1219   } else {
   1220     const upb_tabent *e;
   1221     if (t->t.entries == NULL) return false;
   1222     for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
   1223       if ((uint32_t)e->key == key) {
   1224         _upb_value_setval(v, e->val.val, t->t.ctype);
   1225         return true;
   1226       }
   1227       if (e->next == NULL) return false;
   1228     }
   1229   }
   1230 }
   1231 
   1232 /* Exposed for testing only. */
   1233 bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a);
   1234 
   1235 /* Iterators ******************************************************************/
   1236 
   1237 /* Iterators for int and string tables.  We are subject to some kind of unusual
   1238  * design constraints:
   1239  *
   1240  * For high-level languages:
   1241  *  - we must be able to guarantee that we don't crash or corrupt memory even if
   1242  *    the program accesses an invalidated iterator.
   1243  *
   1244  * For C++11 range-based for:
   1245  *  - iterators must be copyable
   1246  *  - iterators must be comparable
   1247  *  - it must be possible to construct an "end" value.
   1248  *
   1249  * Iteration order is undefined.
   1250  *
   1251  * Modifying the table invalidates iterators.  upb_{str,int}table_done() is
   1252  * guaranteed to work even on an invalidated iterator, as long as the table it
   1253  * is iterating over has not been freed.  Calling next() or accessing data from
   1254  * an invalidated iterator yields unspecified elements from the table, but it is
   1255  * guaranteed not to crash and to return real table elements (except when done()
   1256  * is true). */
   1257 
   1258 
   1259 /* upb_strtable_iter **********************************************************/
   1260 
   1261 /*   upb_strtable_iter i;
   1262  *   upb_strtable_begin(&i, t);
   1263  *   for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
   1264  *     const char *key = upb_strtable_iter_key(&i);
   1265  *     const upb_value val = upb_strtable_iter_value(&i);
   1266  *     // ...
   1267  *   }
   1268  */
   1269 
   1270 typedef struct {
   1271   const upb_strtable *t;
   1272   size_t index;
   1273 } upb_strtable_iter;
   1274 
   1275 void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
   1276 void upb_strtable_next(upb_strtable_iter *i);
   1277 bool upb_strtable_done(const upb_strtable_iter *i);
   1278 const char *upb_strtable_iter_key(const upb_strtable_iter *i);
   1279 size_t upb_strtable_iter_keylength(const upb_strtable_iter *i);
   1280 upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
   1281 void upb_strtable_iter_setdone(upb_strtable_iter *i);
   1282 bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
   1283                                const upb_strtable_iter *i2);
   1284 
   1285 
   1286 /* upb_inttable_iter **********************************************************/
   1287 
   1288 /*   upb_inttable_iter i;
   1289  *   upb_inttable_begin(&i, t);
   1290  *   for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
   1291  *     uintptr_t key = upb_inttable_iter_key(&i);
   1292  *     upb_value val = upb_inttable_iter_value(&i);
   1293  *     // ...
   1294  *   }
   1295  */
   1296 
   1297 typedef struct {
   1298   const upb_inttable *t;
   1299   size_t index;
   1300   bool array_part;
   1301 } upb_inttable_iter;
   1302 
   1303 void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
   1304 void upb_inttable_next(upb_inttable_iter *i);
   1305 bool upb_inttable_done(const upb_inttable_iter *i);
   1306 uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
   1307 upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
   1308 void upb_inttable_iter_setdone(upb_inttable_iter *i);
   1309 bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
   1310                                const upb_inttable_iter *i2);
   1311 
   1312 
   1313 #ifdef __cplusplus
   1314 }  /* extern "C" */
   1315 #endif
   1316 
   1317 #endif  /* UPB_TABLE_H_ */
   1318 
   1319 /* Reference tracking will check ref()/unref() operations to make sure the
   1320  * ref ownership is correct.  Where possible it will also make tools like
   1321  * Valgrind attribute ref leaks to the code that took the leaked ref, not
   1322  * the code that originally created the object.
   1323  *
   1324  * Enabling this requires the application to define upb_lock()/upb_unlock()
   1325  * functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE).
   1326  * For this reason we don't enable it by default, even in debug builds.
   1327  */
   1328 
   1329 /* #define UPB_DEBUG_REFS */
   1330 
   1331 #ifdef __cplusplus
   1332 namespace upb {
   1333 class RefCounted;
   1334 template <class T> class reffed_ptr;
   1335 }
   1336 #endif
   1337 
   1338 UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted)
   1339 
   1340 struct upb_refcounted_vtbl;
   1341 
   1342 #ifdef __cplusplus
   1343 
   1344 class upb::RefCounted {
   1345  public:
   1346   /* Returns true if the given object is frozen. */
   1347   bool IsFrozen() const;
   1348 
   1349   /* Increases the ref count, the new ref is owned by "owner" which must not
   1350    * already own a ref (and should not itself be a refcounted object if the ref
   1351    * could possibly be circular; see below).
   1352    * Thread-safe iff "this" is frozen. */
   1353   void Ref(const void *owner) const;
   1354 
   1355   /* Release a ref that was acquired from upb_refcounted_ref() and collects any
   1356    * objects it can. */
   1357   void Unref(const void *owner) const;
   1358 
   1359   /* Moves an existing ref from "from" to "to", without changing the overall
   1360    * ref count.  DonateRef(foo, NULL, owner) is the same as Ref(foo, owner),
   1361    * but "to" may not be NULL. */
   1362   void DonateRef(const void *from, const void *to) const;
   1363 
   1364   /* Verifies that a ref to the given object is currently held by the given
   1365    * owner.  Only effective in UPB_DEBUG_REFS builds. */
   1366   void CheckRef(const void *owner) const;
   1367 
   1368  private:
   1369   UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted)
   1370 #else
   1371 struct upb_refcounted {
   1372 #endif
   1373   /* TODO(haberman): move the actual structure definition to structdefs.int.h.
   1374    * The only reason they are here is because inline functions need to see the
   1375    * definition of upb_handlers, which needs to see this definition.  But we
   1376    * can change the upb_handlers inline functions to deal in raw offsets
   1377    * instead.
   1378    */
   1379 
   1380   /* A single reference count shared by all objects in the group. */
   1381   uint32_t *group;
   1382 
   1383   /* A singly-linked list of all objects in the group. */
   1384   upb_refcounted *next;
   1385 
   1386   /* Table of function pointers for this type. */
   1387   const struct upb_refcounted_vtbl *vtbl;
   1388 
   1389   /* Maintained only when mutable, this tracks the number of refs (but not
   1390    * ref2's) to this object.  *group should be the sum of all individual_count
   1391    * in the group. */
   1392   uint32_t individual_count;
   1393 
   1394   bool is_frozen;
   1395 
   1396 #ifdef UPB_DEBUG_REFS
   1397   upb_inttable *refs;  /* Maps owner -> trackedref for incoming refs. */
   1398   upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */
   1399 #endif
   1400 };
   1401 
   1402 #ifdef UPB_DEBUG_REFS
   1403 extern upb_alloc upb_alloc_debugrefs;
   1404 #define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
   1405     {&static_refcount, NULL, vtbl, 0, true, refs, ref2s}
   1406 #else
   1407 #define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \
   1408     {&static_refcount, NULL, vtbl, 0, true}
   1409 #endif
   1410 
   1411 UPB_BEGIN_EXTERN_C
   1412 
   1413 /* It is better to use tracked refs when possible, for the extra debugging
   1414  * capability.  But if this is not possible (because you don't have easy access
   1415  * to a stable pointer value that is associated with the ref), you can pass
   1416  * UPB_UNTRACKED_REF instead.  */
   1417 extern const void *UPB_UNTRACKED_REF;
   1418 
   1419 /* Native C API. */
   1420 bool upb_refcounted_isfrozen(const upb_refcounted *r);
   1421 void upb_refcounted_ref(const upb_refcounted *r, const void *owner);
   1422 void upb_refcounted_unref(const upb_refcounted *r, const void *owner);
   1423 void upb_refcounted_donateref(
   1424     const upb_refcounted *r, const void *from, const void *to);
   1425 void upb_refcounted_checkref(const upb_refcounted *r, const void *owner);
   1426 
   1427 #define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \
   1428   UPB_INLINE bool type ## _isfrozen(const type *v) { \
   1429     return upb_refcounted_isfrozen(upcastfunc(v)); \
   1430   } \
   1431   UPB_INLINE void type ## _ref(const type *v, const void *owner) { \
   1432     upb_refcounted_ref(upcastfunc(v), owner); \
   1433   } \
   1434   UPB_INLINE void type ## _unref(const type *v, const void *owner) { \
   1435     upb_refcounted_unref(upcastfunc(v), owner); \
   1436   } \
   1437   UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \
   1438     upb_refcounted_donateref(upcastfunc(v), from, to); \
   1439   } \
   1440   UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \
   1441     upb_refcounted_checkref(upcastfunc(v), owner); \
   1442   }
   1443 
   1444 #define UPB_REFCOUNTED_CPPMETHODS \
   1445   bool IsFrozen() const { \
   1446     return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \
   1447   } \
   1448   void Ref(const void *owner) const { \
   1449     return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \
   1450   } \
   1451   void Unref(const void *owner) const { \
   1452     return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \
   1453   } \
   1454   void DonateRef(const void *from, const void *to) const { \
   1455     return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \
   1456   } \
   1457   void CheckRef(const void *owner) const { \
   1458     return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \
   1459   }
   1460 
   1461 /* Internal-to-upb Interface **************************************************/
   1462 
   1463 typedef void upb_refcounted_visit(const upb_refcounted *r,
   1464                                   const upb_refcounted *subobj,
   1465                                   void *closure);
   1466 
   1467 struct upb_refcounted_vtbl {
   1468   /* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2.
   1469    * Must be longjmp()-safe. */
   1470   void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c);
   1471 
   1472   /* Must free the object and release all references to other objects. */
   1473   void (*free)(upb_refcounted *r);
   1474 };
   1475 
   1476 /* Initializes the refcounted with a single ref for the given owner.  Returns
   1477  * false if memory could not be allocated. */
   1478 bool upb_refcounted_init(upb_refcounted *r,
   1479                          const struct upb_refcounted_vtbl *vtbl,
   1480                          const void *owner);
   1481 
   1482 /* Adds a ref from one refcounted object to another ("from" must not already
   1483  * own a ref).  These refs may be circular; cycles will be collected correctly
   1484  * (if conservatively).  These refs do not need to be freed in from's free()
   1485  * function. */
   1486 void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from);
   1487 
   1488 /* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any
   1489  * object it can.  This is only necessary when "from" no longer points to "r",
   1490  * and not from from's "free" function. */
   1491 void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from);
   1492 
   1493 #define upb_ref2(r, from) \
   1494     upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from)
   1495 #define upb_unref2(r, from) \
   1496     upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from)
   1497 
   1498 /* Freezes all mutable object reachable by ref2() refs from the given roots.
   1499  * This will split refcounting groups into precise SCC groups, so that
   1500  * refcounting of frozen objects can be more aggressive.  If memory allocation
   1501  * fails, or if more than 2**31 mutable objects are reachable from "roots", or
   1502  * if the maximum depth of the graph exceeds "maxdepth", false is returned and
   1503  * the objects are unchanged.
   1504  *
   1505  * After this operation succeeds, the objects are frozen/const, and may not be
   1506  * used through non-const pointers.  In particular, they may not be passed as
   1507  * the second parameter of upb_refcounted_{ref,unref}2().  On the upside, all
   1508  * operations on frozen refcounteds are threadsafe, and objects will be freed
   1509  * at the precise moment that they become unreachable.
   1510  *
   1511  * Caller must own refs on each object in the "roots" list. */
   1512 bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
   1513                            int maxdepth);
   1514 
   1515 /* Shared by all compiled-in refcounted objects. */
   1516 extern uint32_t static_refcount;
   1517 
   1518 UPB_END_EXTERN_C
   1519 
   1520 #ifdef __cplusplus
   1521 /* C++ Wrappers. */
   1522 namespace upb {
   1523 inline bool RefCounted::IsFrozen() const {
   1524   return upb_refcounted_isfrozen(this);
   1525 }
   1526 inline void RefCounted::Ref(const void *owner) const {
   1527   upb_refcounted_ref(this, owner);
   1528 }
   1529 inline void RefCounted::Unref(const void *owner) const {
   1530   upb_refcounted_unref(this, owner);
   1531 }
   1532 inline void RefCounted::DonateRef(const void *from, const void *to) const {
   1533   upb_refcounted_donateref(this, from, to);
   1534 }
   1535 inline void RefCounted::CheckRef(const void *owner) const {
   1536   upb_refcounted_checkref(this, owner);
   1537 }
   1538 }  /* namespace upb */
   1539 #endif
   1540 
   1541 
   1542 /* upb::reffed_ptr ************************************************************/
   1543 
   1544 #ifdef __cplusplus
   1545 
   1546 #include <algorithm>  /* For std::swap(). */
   1547 
   1548 /* Provides RAII semantics for upb refcounted objects.  Each reffed_ptr owns a
   1549  * ref on whatever object it points to (if any). */
   1550 template <class T> class upb::reffed_ptr {
   1551  public:
   1552   reffed_ptr() : ptr_(NULL) {}
   1553 
   1554   /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
   1555   template <class U>
   1556   reffed_ptr(U* val, const void* ref_donor = NULL)
   1557       : ptr_(upb::upcast(val)) {
   1558     if (ref_donor) {
   1559       assert(ptr_);
   1560       ptr_->DonateRef(ref_donor, this);
   1561     } else if (ptr_) {
   1562       ptr_->Ref(this);
   1563     }
   1564   }
   1565 
   1566   template <class U>
   1567   reffed_ptr(const reffed_ptr<U>& other)
   1568       : ptr_(upb::upcast(other.get())) {
   1569     if (ptr_) ptr_->Ref(this);
   1570   }
   1571 
   1572   reffed_ptr(const reffed_ptr& other)
   1573       : ptr_(upb::upcast(other.get())) {
   1574     if (ptr_) ptr_->Ref(this);
   1575   }
   1576 
   1577   ~reffed_ptr() { if (ptr_) ptr_->Unref(this); }
   1578 
   1579   template <class U>
   1580   reffed_ptr& operator=(const reffed_ptr<U>& other) {
   1581     reset(other.get());
   1582     return *this;
   1583   }
   1584 
   1585   reffed_ptr& operator=(const reffed_ptr& other) {
   1586     reset(other.get());
   1587     return *this;
   1588   }
   1589 
   1590   /* TODO(haberman): add C++11 move construction/assignment for greater
   1591    * efficiency. */
   1592 
   1593   void swap(reffed_ptr& other) {
   1594     if (ptr_ == other.ptr_) {
   1595       return;
   1596     }
   1597 
   1598     if (ptr_) ptr_->DonateRef(this, &other);
   1599     if (other.ptr_) other.ptr_->DonateRef(&other, this);
   1600     std::swap(ptr_, other.ptr_);
   1601   }
   1602 
   1603   T& operator*() const {
   1604     assert(ptr_);
   1605     return *ptr_;
   1606   }
   1607 
   1608   T* operator->() const {
   1609     assert(ptr_);
   1610     return ptr_;
   1611   }
   1612 
   1613   T* get() const { return ptr_; }
   1614 
   1615   /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */
   1616   template <class U>
   1617   void reset(U* ptr = NULL, const void* ref_donor = NULL) {
   1618     reffed_ptr(ptr, ref_donor).swap(*this);
   1619   }
   1620 
   1621   template <class U>
   1622   reffed_ptr<U> down_cast() {
   1623     return reffed_ptr<U>(upb::down_cast<U*>(get()));
   1624   }
   1625 
   1626   template <class U>
   1627   reffed_ptr<U> dyn_cast() {
   1628     return reffed_ptr<U>(upb::dyn_cast<U*>(get()));
   1629   }
   1630 
   1631   /* Plain release() is unsafe; if we were the only owner, it would leak the
   1632    * object.  Instead we provide this: */
   1633   T* ReleaseTo(const void* new_owner) {
   1634     T* ret = NULL;
   1635     ptr_->DonateRef(this, new_owner);
   1636     std::swap(ret, ptr_);
   1637     return ret;
   1638   }
   1639 
   1640  private:
   1641   T* ptr_;
   1642 };
   1643 
   1644 #endif  /* __cplusplus */
   1645 
   1646 #endif  /* UPB_REFCOUNT_H_ */
   1647 
   1648 #ifdef __cplusplus
   1649 #include <cstring>
   1650 #include <string>
   1651 #include <vector>
   1652 
   1653 namespace upb {
   1654 class Def;
   1655 class EnumDef;
   1656 class FieldDef;
   1657 class FileDef;
   1658 class MessageDef;
   1659 class OneofDef;
   1660 }
   1661 #endif
   1662 
   1663 UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted)
   1664 UPB_DECLARE_DERIVED_TYPE(upb::OneofDef, upb::RefCounted, upb_oneofdef,
   1665                          upb_refcounted)
   1666 UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef,
   1667                          upb_refcounted)
   1668 
   1669 /* The maximum message depth that the type graph can have.  This is a resource
   1670  * limit for the C stack since we sometimes need to recursively traverse the
   1671  * graph.  Cycles are ok; the traversal will stop when it detects a cycle, but
   1672  * we must hit the cycle before the maximum depth is reached.
   1673  *
   1674  * If having a single static limit is too inflexible, we can add another variant
   1675  * of Def::Freeze that allows specifying this as a parameter. */
   1676 #define UPB_MAX_MESSAGE_DEPTH 64
   1677 
   1678 
   1679 /* upb::Def: base class for top-level defs  ***********************************/
   1680 
   1681 /* All the different kind of defs that can be defined at the top-level and put
   1682  * in a SymbolTable or appear in a FileDef::defs() list.  This excludes some
   1683  * defs (like oneofs and files).  It only includes fields because they can be
   1684  * defined as extensions. */
   1685 typedef enum {
   1686   UPB_DEF_MSG,
   1687   UPB_DEF_FIELD,
   1688   UPB_DEF_ENUM,
   1689   UPB_DEF_SERVICE,   /* Not yet implemented. */
   1690   UPB_DEF_ANY = -1   /* Wildcard for upb_symtab_get*() */
   1691 } upb_deftype_t;
   1692 
   1693 #ifdef __cplusplus
   1694 
   1695 /* The base class of all defs.  Its base is upb::RefCounted (use upb::upcast()
   1696  * to convert). */
   1697 class upb::Def {
   1698  public:
   1699   typedef upb_deftype_t Type;
   1700 
   1701   Def* Dup(const void *owner) const;
   1702 
   1703   /* upb::RefCounted methods like Ref()/Unref(). */
   1704   UPB_REFCOUNTED_CPPMETHODS
   1705 
   1706   Type def_type() const;
   1707 
   1708   /* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */
   1709   const char *full_name() const;
   1710 
   1711   /* The final part of a def's name (eg. Message). */
   1712   const char *name() const;
   1713 
   1714   /* The def must be mutable.  Caller retains ownership of fullname.  Defs are
   1715    * not required to have a name; if a def has no name when it is frozen, it
   1716    * will remain an anonymous def.  On failure, returns false and details in "s"
   1717    * if non-NULL. */
   1718   bool set_full_name(const char* fullname, upb::Status* s);
   1719   bool set_full_name(const std::string &fullname, upb::Status* s);
   1720 
   1721   /* The file in which this def appears.  It is not necessary to add a def to a
   1722    * file (and consequently the accessor may return NULL).  Set this by calling
   1723    * file->Add(def). */
   1724   FileDef* file() const;
   1725 
   1726   /* Freezes the given defs; this validates all constraints and marks the defs
   1727    * as frozen (read-only).  "defs" may not contain any fielddefs, but fields
   1728    * of any msgdefs will be frozen.
   1729    *
   1730    * Symbolic references to sub-types and enum defaults must have already been
   1731    * resolved.  Any mutable defs reachable from any of "defs" must also be in
   1732    * the list; more formally, "defs" must be a transitive closure of mutable
   1733    * defs.
   1734    *
   1735    * After this operation succeeds, the finalized defs must only be accessed
   1736    * through a const pointer! */
   1737   static bool Freeze(Def* const* defs, size_t n, Status* status);
   1738   static bool Freeze(const std::vector<Def*>& defs, Status* status);
   1739 
   1740  private:
   1741   UPB_DISALLOW_POD_OPS(Def, upb::Def)
   1742 };
   1743 
   1744 #endif  /* __cplusplus */
   1745 
   1746 UPB_BEGIN_EXTERN_C
   1747 
   1748 /* Native C API. */
   1749 upb_def *upb_def_dup(const upb_def *def, const void *owner);
   1750 
   1751 /* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */
   1752 UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast)
   1753 
   1754 upb_deftype_t upb_def_type(const upb_def *d);
   1755 const char *upb_def_fullname(const upb_def *d);
   1756 const char *upb_def_name(const upb_def *d);
   1757 const upb_filedef *upb_def_file(const upb_def *d);
   1758 bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s);
   1759 bool upb_def_freeze(upb_def *const *defs, size_t n, upb_status *s);
   1760 
   1761 /* Temporary API: for internal use only. */
   1762 bool _upb_def_validate(upb_def *const*defs, size_t n, upb_status *s);
   1763 
   1764 UPB_END_EXTERN_C
   1765 
   1766 
   1767 /* upb::Def casts *************************************************************/
   1768 
   1769 #ifdef __cplusplus
   1770 #define UPB_CPP_CASTS(cname, cpptype)                                          \
   1771   namespace upb {                                                              \
   1772   template <>                                                                  \
   1773   inline cpptype *down_cast<cpptype *, Def>(Def * def) {                       \
   1774     return upb_downcast_##cname##_mutable(def);                                \
   1775   }                                                                            \
   1776   template <>                                                                  \
   1777   inline cpptype *dyn_cast<cpptype *, Def>(Def * def) {                        \
   1778     return upb_dyncast_##cname##_mutable(def);                                 \
   1779   }                                                                            \
   1780   template <>                                                                  \
   1781   inline const cpptype *down_cast<const cpptype *, const Def>(                 \
   1782       const Def *def) {                                                        \
   1783     return upb_downcast_##cname(def);                                          \
   1784   }                                                                            \
   1785   template <>                                                                  \
   1786   inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \
   1787     return upb_dyncast_##cname(def);                                           \
   1788   }                                                                            \
   1789   template <>                                                                  \
   1790   inline const cpptype *down_cast<const cpptype *, Def>(Def * def) {           \
   1791     return upb_downcast_##cname(def);                                          \
   1792   }                                                                            \
   1793   template <>                                                                  \
   1794   inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) {            \
   1795     return upb_dyncast_##cname(def);                                           \
   1796   }                                                                            \
   1797   }  /* namespace upb */
   1798 #else
   1799 #define UPB_CPP_CASTS(cname, cpptype)
   1800 #endif  /* __cplusplus */
   1801 
   1802 /* Dynamic casts, for determining if a def is of a particular type at runtime.
   1803  * Downcasts, for when some wants to assert that a def is of a particular type.
   1804  * These are only checked if we are building debug. */
   1805 #define UPB_DEF_CASTS(lower, upper, cpptype)                               \
   1806   UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) {  \
   1807     if (upb_def_type(def) != UPB_DEF_##upper) return NULL;                 \
   1808     return (upb_##lower *)def;                                             \
   1809   }                                                                        \
   1810   UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \
   1811     assert(upb_def_type(def) == UPB_DEF_##upper);                          \
   1812     return (const upb_##lower *)def;                                       \
   1813   }                                                                        \
   1814   UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) {    \
   1815     return (upb_##lower *)upb_dyncast_##lower(def);                        \
   1816   }                                                                        \
   1817   UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) {   \
   1818     return (upb_##lower *)upb_downcast_##lower(def);                       \
   1819   }                                                                        \
   1820   UPB_CPP_CASTS(lower, cpptype)
   1821 
   1822 #define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members)             \
   1823   UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods,            \
   1824                    members)                                                    \
   1825   UPB_DEF_CASTS(lower, upper, cppname)
   1826 
   1827 #define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \
   1828   UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \
   1829                             upb_ ## lower, upb_def, upb_refcounted) \
   1830   UPB_DEF_CASTS(lower, upper, cppname)
   1831 
   1832 UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD)
   1833 UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG)
   1834 UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM)
   1835 
   1836 #undef UPB_DECLARE_DEF_TYPE
   1837 #undef UPB_DEF_CASTS
   1838 #undef UPB_CPP_CASTS
   1839 
   1840 
   1841 /* upb::FieldDef **************************************************************/
   1842 
   1843 /* The types a field can have.  Note that this list is not identical to the
   1844  * types defined in descriptor.proto, which gives INT32 and SINT32 separate
   1845  * types (we distinguish the two with the "integer encoding" enum below). */
   1846 typedef enum {
   1847   UPB_TYPE_FLOAT    = 1,
   1848   UPB_TYPE_DOUBLE   = 2,
   1849   UPB_TYPE_BOOL     = 3,
   1850   UPB_TYPE_STRING   = 4,
   1851   UPB_TYPE_BYTES    = 5,
   1852   UPB_TYPE_MESSAGE  = 6,
   1853   UPB_TYPE_ENUM     = 7,  /* Enum values are int32. */
   1854   UPB_TYPE_INT32    = 8,
   1855   UPB_TYPE_UINT32   = 9,
   1856   UPB_TYPE_INT64    = 10,
   1857   UPB_TYPE_UINT64   = 11
   1858 } upb_fieldtype_t;
   1859 
   1860 /* The repeated-ness of each field; this matches descriptor.proto. */
   1861 typedef enum {
   1862   UPB_LABEL_OPTIONAL = 1,
   1863   UPB_LABEL_REQUIRED = 2,
   1864   UPB_LABEL_REPEATED = 3
   1865 } upb_label_t;
   1866 
   1867 /* How integers should be encoded in serializations that offer multiple
   1868  * integer encoding methods. */
   1869 typedef enum {
   1870   UPB_INTFMT_VARIABLE = 1,
   1871   UPB_INTFMT_FIXED = 2,
   1872   UPB_INTFMT_ZIGZAG = 3   /* Only for signed types (INT32/INT64). */
   1873 } upb_intfmt_t;
   1874 
   1875 /* Descriptor types, as defined in descriptor.proto. */
   1876 typedef enum {
   1877   UPB_DESCRIPTOR_TYPE_DOUBLE   = 1,
   1878   UPB_DESCRIPTOR_TYPE_FLOAT    = 2,
   1879   UPB_DESCRIPTOR_TYPE_INT64    = 3,
   1880   UPB_DESCRIPTOR_TYPE_UINT64   = 4,
   1881   UPB_DESCRIPTOR_TYPE_INT32    = 5,
   1882   UPB_DESCRIPTOR_TYPE_FIXED64  = 6,
   1883   UPB_DESCRIPTOR_TYPE_FIXED32  = 7,
   1884   UPB_DESCRIPTOR_TYPE_BOOL     = 8,
   1885   UPB_DESCRIPTOR_TYPE_STRING   = 9,
   1886   UPB_DESCRIPTOR_TYPE_GROUP    = 10,
   1887   UPB_DESCRIPTOR_TYPE_MESSAGE  = 11,
   1888   UPB_DESCRIPTOR_TYPE_BYTES    = 12,
   1889   UPB_DESCRIPTOR_TYPE_UINT32   = 13,
   1890   UPB_DESCRIPTOR_TYPE_ENUM     = 14,
   1891   UPB_DESCRIPTOR_TYPE_SFIXED32 = 15,
   1892   UPB_DESCRIPTOR_TYPE_SFIXED64 = 16,
   1893   UPB_DESCRIPTOR_TYPE_SINT32   = 17,
   1894   UPB_DESCRIPTOR_TYPE_SINT64   = 18
   1895 } upb_descriptortype_t;
   1896 
   1897 typedef enum {
   1898   UPB_SYNTAX_PROTO2 = 2,
   1899   UPB_SYNTAX_PROTO3 = 3
   1900 } upb_syntax_t;
   1901 
   1902 /* Maximum field number allowed for FieldDefs.  This is an inherent limit of the
   1903  * protobuf wire format. */
   1904 #define UPB_MAX_FIELDNUMBER ((1 << 29) - 1)
   1905 
   1906 #ifdef __cplusplus
   1907 
   1908 /* A upb_fielddef describes a single field in a message.  It is most often
   1909  * found as a part of a upb_msgdef, but can also stand alone to represent
   1910  * an extension.
   1911  *
   1912  * Its base class is upb::Def (use upb::upcast() to convert). */
   1913 class upb::FieldDef {
   1914  public:
   1915   typedef upb_fieldtype_t Type;
   1916   typedef upb_label_t Label;
   1917   typedef upb_intfmt_t IntegerFormat;
   1918   typedef upb_descriptortype_t DescriptorType;
   1919 
   1920   /* These return true if the given value is a valid member of the enumeration. */
   1921   static bool CheckType(int32_t val);
   1922   static bool CheckLabel(int32_t val);
   1923   static bool CheckDescriptorType(int32_t val);
   1924   static bool CheckIntegerFormat(int32_t val);
   1925 
   1926   /* These convert to the given enumeration; they require that the value is
   1927    * valid. */
   1928   static Type ConvertType(int32_t val);
   1929   static Label ConvertLabel(int32_t val);
   1930   static DescriptorType ConvertDescriptorType(int32_t val);
   1931   static IntegerFormat ConvertIntegerFormat(int32_t val);
   1932 
   1933   /* Returns NULL if memory allocation failed. */
   1934   static reffed_ptr<FieldDef> New();
   1935 
   1936   /* Duplicates the given field, returning NULL if memory allocation failed.
   1937    * When a fielddef is duplicated, the subdef (if any) is made symbolic if it
   1938    * wasn't already.  If the subdef is set but has no name (which is possible
   1939    * since msgdefs are not required to have a name) the new fielddef's subdef
   1940    * will be unset. */
   1941   FieldDef* Dup(const void* owner) const;
   1942 
   1943   /* upb::RefCounted methods like Ref()/Unref(). */
   1944   UPB_REFCOUNTED_CPPMETHODS
   1945 
   1946   /* Functionality from upb::Def. */
   1947   const char* full_name() const;
   1948 
   1949   bool type_is_set() const;  /* set_[descriptor_]type() has been called? */
   1950   Type type() const;         /* Requires that type_is_set() == true. */
   1951   Label label() const;       /* Defaults to UPB_LABEL_OPTIONAL. */
   1952   const char* name() const;  /* NULL if uninitialized. */
   1953   uint32_t number() const;   /* Returns 0 if uninitialized. */
   1954   bool is_extension() const;
   1955 
   1956   /* Copies the JSON name for this field into the given buffer.  Returns the
   1957    * actual size of the JSON name, including the NULL terminator.  If the
   1958    * return value is 0, the JSON name is unset.  If the return value is
   1959    * greater than len, the JSON name was truncated.  The buffer is always
   1960    * NULL-terminated if len > 0.
   1961    *
   1962    * The JSON name always defaults to a camelCased version of the regular
   1963    * name.  However if the regular name is unset, the JSON name will be unset
   1964    * also.
   1965    */
   1966   size_t GetJsonName(char* buf, size_t len) const;
   1967 
   1968   /* Convenience version of the above function which copies the JSON name
   1969    * into the given string, returning false if the name is not set. */
   1970   template <class T>
   1971   bool GetJsonName(T* str) {
   1972     str->resize(GetJsonName(NULL, 0));
   1973     GetJsonName(&(*str)[0], str->size());
   1974     return str->size() > 0;
   1975   }
   1976 
   1977   /* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false,
   1978    * indicates whether this field should have lazy parsing handlers that yield
   1979    * the unparsed string for the submessage.
   1980    *
   1981    * TODO(haberman): I think we want to move this into a FieldOptions container
   1982    * when we add support for custom options (the FieldOptions struct will
   1983    * contain both regular FieldOptions like "lazy" *and* custom options). */
   1984   bool lazy() const;
   1985 
   1986   /* For non-string, non-submessage fields, this indicates whether binary
   1987    * protobufs are encoded in packed or non-packed format.
   1988    *
   1989    * TODO(haberman): see note above about putting options like this into a
   1990    * FieldOptions container. */
   1991   bool packed() const;
   1992 
   1993   /* An integer that can be used as an index into an array of fields for
   1994    * whatever message this field belongs to.  Guaranteed to be less than
   1995    * f->containing_type()->field_count().  May only be accessed once the def has
   1996    * been finalized. */
   1997   uint32_t index() const;
   1998 
   1999   /* The MessageDef to which this field belongs.
   2000    *
   2001    * If this field has been added to a MessageDef, that message can be retrieved
   2002    * directly (this is always the case for frozen FieldDefs).
   2003    *
   2004    * If the field has not yet been added to a MessageDef, you can set the name
   2005    * of the containing type symbolically instead.  This is mostly useful for
   2006    * extensions, where the extension is declared separately from the message. */
   2007   const MessageDef* containing_type() const;
   2008   const char* containing_type_name();
   2009 
   2010   /* The OneofDef to which this field belongs, or NULL if this field is not part
   2011    * of a oneof. */
   2012   const OneofDef* containing_oneof() const;
   2013 
   2014   /* The field's type according to the enum in descriptor.proto.  This is not
   2015    * the same as UPB_TYPE_*, because it distinguishes between (for example)
   2016    * INT32 and SINT32, whereas our "type" enum does not.  This return of
   2017    * descriptor_type() is a function of type(), integer_format(), and
   2018    * is_tag_delimited().  Likewise set_descriptor_type() sets all three
   2019    * appropriately. */
   2020   DescriptorType descriptor_type() const;
   2021 
   2022   /* Convenient field type tests. */
   2023   bool IsSubMessage() const;
   2024   bool IsString() const;
   2025   bool IsSequence() const;
   2026   bool IsPrimitive() const;
   2027   bool IsMap() const;
   2028 
   2029   /* Whether this field must be able to explicitly represent presence:
   2030    *
   2031    * * This is always false for repeated fields (an empty repeated field is
   2032    *   equivalent to a repeated field with zero entries).
   2033    *
   2034    * * This is always true for submessages.
   2035    *
   2036    * * For other fields, it depends on the message (see
   2037    *   MessageDef::SetPrimitivesHavePresence())
   2038    */
   2039   bool HasPresence() const;
   2040 
   2041   /* How integers are encoded.  Only meaningful for integer types.
   2042    * Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */
   2043   IntegerFormat integer_format() const;
   2044 
   2045   /* Whether a submessage field is tag-delimited or not (if false, then
   2046    * length-delimited).  May only be set when type() == UPB_TYPE_MESSAGE. */
   2047   bool is_tag_delimited() const;
   2048 
   2049   /* Returns the non-string default value for this fielddef, which may either
   2050    * be something the client set explicitly or the "default default" (0 for
   2051    * numbers, empty for strings).  The field's type indicates the type of the
   2052    * returned value, except for enum fields that are still mutable.
   2053    *
   2054    * Requires that the given function matches the field's current type. */
   2055   int64_t default_int64() const;
   2056   int32_t default_int32() const;
   2057   uint64_t default_uint64() const;
   2058   uint32_t default_uint32() const;
   2059   bool default_bool() const;
   2060   float default_float() const;
   2061   double default_double() const;
   2062 
   2063   /* The resulting string is always NULL-terminated.  If non-NULL, the length
   2064    * will be stored in *len. */
   2065   const char *default_string(size_t* len) const;
   2066 
   2067   /* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either
   2068    * string or int32, and both of these methods will always return true.
   2069    *
   2070    * For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated.
   2071    * Enum defaults are unusual. They can be specified either as string or int32,
   2072    * but to be valid the enum must have that value as a member.  And if no
   2073    * default is specified, the "default default" comes from the EnumDef.
   2074    *
   2075    * We allow reading the default as either an int32 or a string, but only if
   2076    * we have a meaningful value to report.  We have a meaningful value if it was
   2077    * set explicitly, or if we could get the "default default" from the EnumDef.
   2078    * Also if you explicitly set the name and we find the number in the EnumDef */
   2079   bool EnumHasStringDefault() const;
   2080   bool EnumHasInt32Default() const;
   2081 
   2082   /* Submessage and enum fields must reference a "subdef", which is the
   2083    * upb::MessageDef or upb::EnumDef that defines their type.  Note that when
   2084    * the FieldDef is mutable it may not have a subdef *yet*, but this function
   2085    * still returns true to indicate that the field's type requires a subdef. */
   2086   bool HasSubDef() const;
   2087 
   2088   /* Returns the enum or submessage def for this field, if any.  The field's
   2089    * type must match (ie. you may only call enum_subdef() for fields where
   2090    * type() == UPB_TYPE_ENUM).  Returns NULL if the subdef has not been set or
   2091    * is currently set symbolically. */
   2092   const EnumDef* enum_subdef() const;
   2093   const MessageDef* message_subdef() const;
   2094 
   2095   /* Returns the generic subdef for this field.  Requires that HasSubDef() (ie.
   2096    * only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */
   2097   const Def* subdef() const;
   2098 
   2099   /* Returns the symbolic name of the subdef.  If the subdef is currently set
   2100    * unresolved (ie. set symbolically) returns the symbolic name.  If it has
   2101    * been resolved to a specific subdef, returns the name from that subdef. */
   2102   const char* subdef_name() const;
   2103 
   2104   /* Setters (non-const methods), only valid for mutable FieldDefs! ***********/
   2105 
   2106   bool set_full_name(const char* fullname, upb::Status* s);
   2107   bool set_full_name(const std::string& fullname, upb::Status* s);
   2108 
   2109   /* This may only be called if containing_type() == NULL (ie. the field has not
   2110    * been added to a message yet). */
   2111   bool set_containing_type_name(const char *name, Status* status);
   2112   bool set_containing_type_name(const std::string& name, Status* status);
   2113 
   2114   /* Defaults to false.  When we freeze, we ensure that this can only be true
   2115    * for length-delimited message fields.  Prior to freezing this can be true or
   2116    * false with no restrictions. */
   2117   void set_lazy(bool lazy);
   2118 
   2119   /* Defaults to true.  Sets whether this field is encoded in packed format. */
   2120   void set_packed(bool packed);
   2121 
   2122   /* "type" or "descriptor_type" MUST be set explicitly before the fielddef is
   2123    * finalized.  These setters require that the enum value is valid; if the
   2124    * value did not come directly from an enum constant, the caller should
   2125    * validate it first with the functions above (CheckFieldType(), etc). */
   2126   void set_type(Type type);
   2127   void set_label(Label label);
   2128   void set_descriptor_type(DescriptorType type);
   2129   void set_is_extension(bool is_extension);
   2130 
   2131   /* "number" and "name" must be set before the FieldDef is added to a
   2132    * MessageDef, and may not be set after that.
   2133    *
   2134    * "name" is the same as full_name()/set_full_name(), but since fielddefs
   2135    * most often use simple, non-qualified names, we provide this accessor
   2136    * also.  Generally only extensions will want to think of this name as
   2137    * fully-qualified. */
   2138   bool set_number(uint32_t number, upb::Status* s);
   2139   bool set_name(const char* name, upb::Status* s);
   2140   bool set_name(const std::string& name, upb::Status* s);
   2141 
   2142   /* Sets the JSON name to the given string. */
   2143   /* TODO(haberman): implement.  Right now only default json_name (camelCase)
   2144    * is supported. */
   2145   bool set_json_name(const char* json_name, upb::Status* s);
   2146   bool set_json_name(const std::string& name, upb::Status* s);
   2147 
   2148   /* Clears the JSON name. This will make it revert to its default, which is
   2149    * a camelCased version of the regular field name. */
   2150   void clear_json_name();
   2151 
   2152   void set_integer_format(IntegerFormat format);
   2153   bool set_tag_delimited(bool tag_delimited, upb::Status* s);
   2154 
   2155   /* Sets default value for the field.  The call must exactly match the type
   2156    * of the field.  Enum fields may use either setint32 or setstring to set
   2157    * the default numerically or symbolically, respectively, but symbolic
   2158    * defaults must be resolved before finalizing (see ResolveEnumDefault()).
   2159    *
   2160    * Changing the type of a field will reset its default. */
   2161   void set_default_int64(int64_t val);
   2162   void set_default_int32(int32_t val);
   2163   void set_default_uint64(uint64_t val);
   2164   void set_default_uint32(uint32_t val);
   2165   void set_default_bool(bool val);
   2166   void set_default_float(float val);
   2167   void set_default_double(double val);
   2168   bool set_default_string(const void *str, size_t len, Status *s);
   2169   bool set_default_string(const std::string &str, Status *s);
   2170   void set_default_cstr(const char *str, Status *s);
   2171 
   2172   /* Before a fielddef is frozen, its subdef may be set either directly (with a
   2173    * upb::Def*) or symbolically.  Symbolic refs must be resolved before the
   2174    * containing msgdef can be frozen (see upb_resolve() above).  upb always
   2175    * guarantees that any def reachable from a live def will also be kept alive.
   2176    *
   2177    * Both methods require that upb_hassubdef(f) (so the type must be set prior
   2178    * to calling these methods).  Returns false if this is not the case, or if
   2179    * the given subdef is not of the correct type.  The subdef is reset if the
   2180    * field's type is changed.  The subdef can be set to NULL to clear it. */
   2181   bool set_subdef(const Def* subdef, Status* s);
   2182   bool set_enum_subdef(const EnumDef* subdef, Status* s);
   2183   bool set_message_subdef(const MessageDef* subdef, Status* s);
   2184   bool set_subdef_name(const char* name, Status* s);
   2185   bool set_subdef_name(const std::string &name, Status* s);
   2186 
   2187  private:
   2188   UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef)
   2189 };
   2190 
   2191 # endif  /* defined(__cplusplus) */
   2192 
   2193 UPB_BEGIN_EXTERN_C
   2194 
   2195 /* Native C API. */
   2196 upb_fielddef *upb_fielddef_new(const void *owner);
   2197 upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner);
   2198 
   2199 /* Include upb_refcounted methods like upb_fielddef_ref(). */
   2200 UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2)
   2201 
   2202 /* Methods from upb_def. */
   2203 const char *upb_fielddef_fullname(const upb_fielddef *f);
   2204 bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname,
   2205                               upb_status *s);
   2206 
   2207 bool upb_fielddef_typeisset(const upb_fielddef *f);
   2208 upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f);
   2209 upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f);
   2210 upb_label_t upb_fielddef_label(const upb_fielddef *f);
   2211 uint32_t upb_fielddef_number(const upb_fielddef *f);
   2212 const char *upb_fielddef_name(const upb_fielddef *f);
   2213 bool upb_fielddef_isextension(const upb_fielddef *f);
   2214 bool upb_fielddef_lazy(const upb_fielddef *f);
   2215 bool upb_fielddef_packed(const upb_fielddef *f);
   2216 size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len);
   2217 const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f);
   2218 const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f);
   2219 upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f);
   2220 const char *upb_fielddef_containingtypename(upb_fielddef *f);
   2221 upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f);
   2222 uint32_t upb_fielddef_index(const upb_fielddef *f);
   2223 bool upb_fielddef_istagdelim(const upb_fielddef *f);
   2224 bool upb_fielddef_issubmsg(const upb_fielddef *f);
   2225 bool upb_fielddef_isstring(const upb_fielddef *f);
   2226 bool upb_fielddef_isseq(const upb_fielddef *f);
   2227 bool upb_fielddef_isprimitive(const upb_fielddef *f);
   2228 bool upb_fielddef_ismap(const upb_fielddef *f);
   2229 bool upb_fielddef_haspresence(const upb_fielddef *f);
   2230 int64_t upb_fielddef_defaultint64(const upb_fielddef *f);
   2231 int32_t upb_fielddef_defaultint32(const upb_fielddef *f);
   2232 uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f);
   2233 uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f);
   2234 bool upb_fielddef_defaultbool(const upb_fielddef *f);
   2235 float upb_fielddef_defaultfloat(const upb_fielddef *f);
   2236 double upb_fielddef_defaultdouble(const upb_fielddef *f);
   2237 const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len);
   2238 bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f);
   2239 bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f);
   2240 bool upb_fielddef_hassubdef(const upb_fielddef *f);
   2241 const upb_def *upb_fielddef_subdef(const upb_fielddef *f);
   2242 const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f);
   2243 const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f);
   2244 const char *upb_fielddef_subdefname(const upb_fielddef *f);
   2245 
   2246 void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type);
   2247 void upb_fielddef_setdescriptortype(upb_fielddef *f, int type);
   2248 void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label);
   2249 bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s);
   2250 bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s);
   2251 bool upb_fielddef_setjsonname(upb_fielddef *f, const char *name, upb_status *s);
   2252 bool upb_fielddef_clearjsonname(upb_fielddef *f);
   2253 bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
   2254                                         upb_status *s);
   2255 void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension);
   2256 void upb_fielddef_setlazy(upb_fielddef *f, bool lazy);
   2257 void upb_fielddef_setpacked(upb_fielddef *f, bool packed);
   2258 void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt);
   2259 void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim);
   2260 void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val);
   2261 void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val);
   2262 void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val);
   2263 void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val);
   2264 void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val);
   2265 void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val);
   2266 void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val);
   2267 bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
   2268                                 upb_status *s);
   2269 void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
   2270                                  upb_status *s);
   2271 bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
   2272                             upb_status *s);
   2273 bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
   2274                                upb_status *s);
   2275 bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
   2276                                 upb_status *s);
   2277 bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
   2278                                 upb_status *s);
   2279 
   2280 bool upb_fielddef_checklabel(int32_t label);
   2281 bool upb_fielddef_checktype(int32_t type);
   2282 bool upb_fielddef_checkdescriptortype(int32_t type);
   2283 bool upb_fielddef_checkintfmt(int32_t fmt);
   2284 
   2285 UPB_END_EXTERN_C
   2286 
   2287 
   2288 /* upb::MessageDef ************************************************************/
   2289 
   2290 typedef upb_inttable_iter upb_msg_field_iter;
   2291 typedef upb_strtable_iter upb_msg_oneof_iter;
   2292 
   2293 /* Well-known field tag numbers for map-entry messages. */
   2294 #define UPB_MAPENTRY_KEY   1
   2295 #define UPB_MAPENTRY_VALUE 2
   2296 
   2297 #ifdef __cplusplus
   2298 
   2299 /* Structure that describes a single .proto message type.
   2300  *
   2301  * Its base class is upb::Def (use upb::upcast() to convert). */
   2302 class upb::MessageDef {
   2303  public:
   2304   /* Returns NULL if memory allocation failed. */
   2305   static reffed_ptr<MessageDef> New();
   2306 
   2307   /* upb::RefCounted methods like Ref()/Unref(). */
   2308   UPB_REFCOUNTED_CPPMETHODS
   2309 
   2310   /* Functionality from upb::Def. */
   2311   const char* full_name() const;
   2312   const char* name() const;
   2313   bool set_full_name(const char* fullname, Status* s);
   2314   bool set_full_name(const std::string& fullname, Status* s);
   2315 
   2316   /* Call to freeze this MessageDef.
   2317    * WARNING: this will fail if this message has any unfrozen submessages!
   2318    * Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */
   2319   bool Freeze(Status* s);
   2320 
   2321   /* The number of fields that belong to the MessageDef. */
   2322   int field_count() const;
   2323 
   2324   /* The number of oneofs that belong to the MessageDef. */
   2325   int oneof_count() const;
   2326 
   2327   /* Adds a field (upb_fielddef object) to a msgdef.  Requires that the msgdef
   2328    * and the fielddefs are mutable.  The fielddef's name and number must be
   2329    * set, and the message may not already contain any field with this name or
   2330    * number, and this fielddef may not be part of another message.  In error
   2331    * cases false is returned and the msgdef is unchanged.
   2332    *
   2333    * If the given field is part of a oneof, this call succeeds if and only if
   2334    * that oneof is already part of this msgdef. (Note that adding a oneof to a
   2335    * msgdef automatically adds all of its fields to the msgdef at the time that
   2336    * the oneof is added, so it is usually more idiomatic to add the oneof's
   2337    * fields first then add the oneof to the msgdef. This case is supported for
   2338    * convenience.)
   2339    *
   2340    * If |f| is already part of this MessageDef, this method performs no action
   2341    * and returns true (success). Thus, this method is idempotent. */
   2342   bool AddField(FieldDef* f, Status* s);
   2343   bool AddField(const reffed_ptr<FieldDef>& f, Status* s);
   2344 
   2345   /* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef,
   2346    * oneof, and any fielddefs are mutable, that the fielddefs contained in the
   2347    * oneof do not have any name or number conflicts with existing fields in the
   2348    * msgdef, and that the oneof's name is unique among all oneofs in the msgdef.
   2349    * If the oneof is added successfully, all of its fields will be added
   2350    * directly to the msgdef as well. In error cases, false is returned and the
   2351    * msgdef is unchanged. */
   2352   bool AddOneof(OneofDef* o, Status* s);
   2353   bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s);
   2354 
   2355   upb_syntax_t syntax() const;
   2356 
   2357   /* Returns false if we don't support this syntax value. */
   2358   bool set_syntax(upb_syntax_t syntax);
   2359 
   2360   /* Set this to false to indicate that primitive fields should not have
   2361    * explicit presence information associated with them.  This will affect all
   2362    * fields added to this message.  Defaults to true. */
   2363   void SetPrimitivesHavePresence(bool have_presence);
   2364 
   2365   /* These return NULL if the field is not found. */
   2366   FieldDef* FindFieldByNumber(uint32_t number);
   2367   FieldDef* FindFieldByName(const char *name, size_t len);
   2368   const FieldDef* FindFieldByNumber(uint32_t number) const;
   2369   const FieldDef* FindFieldByName(const char* name, size_t len) const;
   2370 
   2371 
   2372   FieldDef* FindFieldByName(const char *name) {
   2373     return FindFieldByName(name, strlen(name));
   2374   }
   2375   const FieldDef* FindFieldByName(const char *name) const {
   2376     return FindFieldByName(name, strlen(name));
   2377   }
   2378 
   2379   template <class T>
   2380   FieldDef* FindFieldByName(const T& str) {
   2381     return FindFieldByName(str.c_str(), str.size());
   2382   }
   2383   template <class T>
   2384   const FieldDef* FindFieldByName(const T& str) const {
   2385     return FindFieldByName(str.c_str(), str.size());
   2386   }
   2387 
   2388   OneofDef* FindOneofByName(const char* name, size_t len);
   2389   const OneofDef* FindOneofByName(const char* name, size_t len) const;
   2390 
   2391   OneofDef* FindOneofByName(const char* name) {
   2392     return FindOneofByName(name, strlen(name));
   2393   }
   2394   const OneofDef* FindOneofByName(const char* name) const {
   2395     return FindOneofByName(name, strlen(name));
   2396   }
   2397 
   2398   template<class T>
   2399   OneofDef* FindOneofByName(const T& str) {
   2400     return FindOneofByName(str.c_str(), str.size());
   2401   }
   2402   template<class T>
   2403   const OneofDef* FindOneofByName(const T& str) const {
   2404     return FindOneofByName(str.c_str(), str.size());
   2405   }
   2406 
   2407   /* Returns a new msgdef that is a copy of the given msgdef (and a copy of all
   2408    * the fields) but with any references to submessages broken and replaced
   2409    * with just the name of the submessage.  Returns NULL if memory allocation
   2410    * failed.
   2411    *
   2412    * TODO(haberman): which is more useful, keeping fields resolved or
   2413    * unresolving them?  If there's no obvious answer, Should this functionality
   2414    * just be moved into symtab.c? */
   2415   MessageDef* Dup(const void* owner) const;
   2416 
   2417   /* Is this message a map entry? */
   2418   void setmapentry(bool map_entry);
   2419   bool mapentry() const;
   2420 
   2421   /* Iteration over fields.  The order is undefined. */
   2422   class field_iterator
   2423       : public std::iterator<std::forward_iterator_tag, FieldDef*> {
   2424    public:
   2425     explicit field_iterator(MessageDef* md);
   2426     static field_iterator end(MessageDef* md);
   2427 
   2428     void operator++();
   2429     FieldDef* operator*() const;
   2430     bool operator!=(const field_iterator& other) const;
   2431     bool operator==(const field_iterator& other) const;
   2432 
   2433    private:
   2434     upb_msg_field_iter iter_;
   2435   };
   2436 
   2437   class const_field_iterator
   2438       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   2439    public:
   2440     explicit const_field_iterator(const MessageDef* md);
   2441     static const_field_iterator end(const MessageDef* md);
   2442 
   2443     void operator++();
   2444     const FieldDef* operator*() const;
   2445     bool operator!=(const const_field_iterator& other) const;
   2446     bool operator==(const const_field_iterator& other) const;
   2447 
   2448    private:
   2449     upb_msg_field_iter iter_;
   2450   };
   2451 
   2452   /* Iteration over oneofs. The order is undefined. */
   2453   class oneof_iterator
   2454       : public std::iterator<std::forward_iterator_tag, FieldDef*> {
   2455    public:
   2456     explicit oneof_iterator(MessageDef* md);
   2457     static oneof_iterator end(MessageDef* md);
   2458 
   2459     void operator++();
   2460     OneofDef* operator*() const;
   2461     bool operator!=(const oneof_iterator& other) const;
   2462     bool operator==(const oneof_iterator& other) const;
   2463 
   2464    private:
   2465     upb_msg_oneof_iter iter_;
   2466   };
   2467 
   2468   class const_oneof_iterator
   2469       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   2470    public:
   2471     explicit const_oneof_iterator(const MessageDef* md);
   2472     static const_oneof_iterator end(const MessageDef* md);
   2473 
   2474     void operator++();
   2475     const OneofDef* operator*() const;
   2476     bool operator!=(const const_oneof_iterator& other) const;
   2477     bool operator==(const const_oneof_iterator& other) const;
   2478 
   2479    private:
   2480     upb_msg_oneof_iter iter_;
   2481   };
   2482 
   2483   class FieldAccessor {
   2484    public:
   2485     explicit FieldAccessor(MessageDef* msg) : msg_(msg) {}
   2486     field_iterator begin() { return msg_->field_begin(); }
   2487     field_iterator end() { return msg_->field_end(); }
   2488    private:
   2489     MessageDef* msg_;
   2490   };
   2491 
   2492   class ConstFieldAccessor {
   2493    public:
   2494     explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {}
   2495     const_field_iterator begin() { return msg_->field_begin(); }
   2496     const_field_iterator end() { return msg_->field_end(); }
   2497    private:
   2498     const MessageDef* msg_;
   2499   };
   2500 
   2501   class OneofAccessor {
   2502    public:
   2503     explicit OneofAccessor(MessageDef* msg) : msg_(msg) {}
   2504     oneof_iterator begin() { return msg_->oneof_begin(); }
   2505     oneof_iterator end() { return msg_->oneof_end(); }
   2506    private:
   2507     MessageDef* msg_;
   2508   };
   2509 
   2510   class ConstOneofAccessor {
   2511    public:
   2512     explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {}
   2513     const_oneof_iterator begin() { return msg_->oneof_begin(); }
   2514     const_oneof_iterator end() { return msg_->oneof_end(); }
   2515    private:
   2516     const MessageDef* msg_;
   2517   };
   2518 
   2519   field_iterator field_begin();
   2520   field_iterator field_end();
   2521   const_field_iterator field_begin() const;
   2522   const_field_iterator field_end() const;
   2523 
   2524   oneof_iterator oneof_begin();
   2525   oneof_iterator oneof_end();
   2526   const_oneof_iterator oneof_begin() const;
   2527   const_oneof_iterator oneof_end() const;
   2528 
   2529   FieldAccessor fields() { return FieldAccessor(this); }
   2530   ConstFieldAccessor fields() const { return ConstFieldAccessor(this); }
   2531   OneofAccessor oneofs() { return OneofAccessor(this); }
   2532   ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); }
   2533 
   2534  private:
   2535   UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef)
   2536 };
   2537 
   2538 #endif  /* __cplusplus */
   2539 
   2540 UPB_BEGIN_EXTERN_C
   2541 
   2542 /* Returns NULL if memory allocation failed. */
   2543 upb_msgdef *upb_msgdef_new(const void *owner);
   2544 
   2545 /* Include upb_refcounted methods like upb_msgdef_ref(). */
   2546 UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2)
   2547 
   2548 bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status);
   2549 
   2550 upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner);
   2551 const char *upb_msgdef_fullname(const upb_msgdef *m);
   2552 const char *upb_msgdef_name(const upb_msgdef *m);
   2553 int upb_msgdef_numoneofs(const upb_msgdef *m);
   2554 upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m);
   2555 
   2556 bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
   2557                          upb_status *s);
   2558 bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor,
   2559                          upb_status *s);
   2560 bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s);
   2561 void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry);
   2562 bool upb_msgdef_mapentry(const upb_msgdef *m);
   2563 bool upb_msgdef_setsyntax(upb_msgdef *m, upb_syntax_t syntax);
   2564 
   2565 /* Field lookup in a couple of different variations:
   2566  *   - itof = int to field
   2567  *   - ntof = name to field
   2568  *   - ntofz = name to field, null-terminated string. */
   2569 const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i);
   2570 const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
   2571                                     size_t len);
   2572 int upb_msgdef_numfields(const upb_msgdef *m);
   2573 
   2574 UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m,
   2575                                                 const char *name) {
   2576   return upb_msgdef_ntof(m, name, strlen(name));
   2577 }
   2578 
   2579 UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) {
   2580   return (upb_fielddef*)upb_msgdef_itof(m, i);
   2581 }
   2582 
   2583 UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m,
   2584                                                  const char *name, size_t len) {
   2585   return (upb_fielddef *)upb_msgdef_ntof(m, name, len);
   2586 }
   2587 
   2588 /* Oneof lookup:
   2589  *   - ntoo = name to oneof
   2590  *   - ntooz = name to oneof, null-terminated string. */
   2591 const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
   2592                                     size_t len);
   2593 int upb_msgdef_numoneofs(const upb_msgdef *m);
   2594 
   2595 UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m,
   2596                                                const char *name) {
   2597   return upb_msgdef_ntoo(m, name, strlen(name));
   2598 }
   2599 
   2600 UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m,
   2601                                                  const char *name, size_t len) {
   2602   return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len);
   2603 }
   2604 
   2605 /* Lookup of either field or oneof by name.  Returns whether either was found.
   2606  * If the return is true, then the found def will be set, and the non-found
   2607  * one set to NULL. */
   2608 bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len,
   2609                            const upb_fielddef **f, const upb_oneofdef **o);
   2610 
   2611 UPB_INLINE bool upb_msgdef_lookupnamez(const upb_msgdef *m, const char *name,
   2612                                        const upb_fielddef **f,
   2613                                        const upb_oneofdef **o) {
   2614   return upb_msgdef_lookupname(m, name, strlen(name), f, o);
   2615 }
   2616 
   2617 /* Iteration over fields and oneofs.  For example:
   2618  *
   2619  * upb_msg_field_iter i;
   2620  * for(upb_msg_field_begin(&i, m);
   2621  *     !upb_msg_field_done(&i);
   2622  *     upb_msg_field_next(&i)) {
   2623  *   upb_fielddef *f = upb_msg_iter_field(&i);
   2624  *   // ...
   2625  * }
   2626  *
   2627  * For C we don't have separate iterators for const and non-const.
   2628  * It is the caller's responsibility to cast the upb_fielddef* to
   2629  * const if the upb_msgdef* is const. */
   2630 void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m);
   2631 void upb_msg_field_next(upb_msg_field_iter *iter);
   2632 bool upb_msg_field_done(const upb_msg_field_iter *iter);
   2633 upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter);
   2634 void upb_msg_field_iter_setdone(upb_msg_field_iter *iter);
   2635 
   2636 /* Similar to above, we also support iterating through the oneofs in a
   2637  * msgdef. */
   2638 void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m);
   2639 void upb_msg_oneof_next(upb_msg_oneof_iter *iter);
   2640 bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter);
   2641 upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter);
   2642 void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter);
   2643 
   2644 UPB_END_EXTERN_C
   2645 
   2646 
   2647 /* upb::EnumDef ***************************************************************/
   2648 
   2649 typedef upb_strtable_iter upb_enum_iter;
   2650 
   2651 #ifdef __cplusplus
   2652 
   2653 /* Class that represents an enum.  Its base class is upb::Def (convert with
   2654  * upb::upcast()). */
   2655 class upb::EnumDef {
   2656  public:
   2657   /* Returns NULL if memory allocation failed. */
   2658   static reffed_ptr<EnumDef> New();
   2659 
   2660   /* upb::RefCounted methods like Ref()/Unref(). */
   2661   UPB_REFCOUNTED_CPPMETHODS
   2662 
   2663   /* Functionality from upb::Def. */
   2664   const char* full_name() const;
   2665   const char* name() const;
   2666   bool set_full_name(const char* fullname, Status* s);
   2667   bool set_full_name(const std::string& fullname, Status* s);
   2668 
   2669   /* Call to freeze this EnumDef. */
   2670   bool Freeze(Status* s);
   2671 
   2672   /* The value that is used as the default when no field default is specified.
   2673    * If not set explicitly, the first value that was added will be used.
   2674    * The default value must be a member of the enum.
   2675    * Requires that value_count() > 0. */
   2676   int32_t default_value() const;
   2677 
   2678   /* Sets the default value.  If this value is not valid, returns false and an
   2679    * error message in status. */
   2680   bool set_default_value(int32_t val, Status* status);
   2681 
   2682   /* Returns the number of values currently defined in the enum.  Note that
   2683    * multiple names can refer to the same number, so this may be greater than
   2684    * the total number of unique numbers. */
   2685   int value_count() const;
   2686 
   2687   /* Adds a single name/number pair to the enum.  Fails if this name has
   2688    * already been used by another value. */
   2689   bool AddValue(const char* name, int32_t num, Status* status);
   2690   bool AddValue(const std::string& name, int32_t num, Status* status);
   2691 
   2692   /* Lookups from name to integer, returning true if found. */
   2693   bool FindValueByName(const char* name, int32_t* num) const;
   2694 
   2695   /* Finds the name corresponding to the given number, or NULL if none was
   2696    * found.  If more than one name corresponds to this number, returns the
   2697    * first one that was added. */
   2698   const char* FindValueByNumber(int32_t num) const;
   2699 
   2700   /* Returns a new EnumDef with all the same values.  The new EnumDef will be
   2701    * owned by the given owner. */
   2702   EnumDef* Dup(const void* owner) const;
   2703 
   2704   /* Iteration over name/value pairs.  The order is undefined.
   2705    * Adding an enum val invalidates any iterators.
   2706    *
   2707    * TODO: make compatible with range-for, with elements as pairs? */
   2708   class Iterator {
   2709    public:
   2710     explicit Iterator(const EnumDef*);
   2711 
   2712     int32_t number();
   2713     const char *name();
   2714     bool Done();
   2715     void Next();
   2716 
   2717    private:
   2718     upb_enum_iter iter_;
   2719   };
   2720 
   2721  private:
   2722   UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef)
   2723 };
   2724 
   2725 #endif  /* __cplusplus */
   2726 
   2727 UPB_BEGIN_EXTERN_C
   2728 
   2729 /* Native C API. */
   2730 upb_enumdef *upb_enumdef_new(const void *owner);
   2731 upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner);
   2732 
   2733 /* Include upb_refcounted methods like upb_enumdef_ref(). */
   2734 UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2)
   2735 
   2736 bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status);
   2737 
   2738 /* From upb_def. */
   2739 const char *upb_enumdef_fullname(const upb_enumdef *e);
   2740 const char *upb_enumdef_name(const upb_enumdef *e);
   2741 bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
   2742                              upb_status *s);
   2743 
   2744 int32_t upb_enumdef_default(const upb_enumdef *e);
   2745 bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s);
   2746 int upb_enumdef_numvals(const upb_enumdef *e);
   2747 bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
   2748                         upb_status *status);
   2749 
   2750 /* Enum lookups:
   2751  * - ntoi:  look up a name with specified length.
   2752  * - ntoiz: look up a name provided as a null-terminated string.
   2753  * - iton:  look up an integer, returning the name as a null-terminated
   2754  *          string. */
   2755 bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len,
   2756                       int32_t *num);
   2757 UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e,
   2758                                   const char *name, int32_t *num) {
   2759   return upb_enumdef_ntoi(e, name, strlen(name), num);
   2760 }
   2761 const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num);
   2762 
   2763 /*  upb_enum_iter i;
   2764  *  for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
   2765  *    // ...
   2766  *  }
   2767  */
   2768 void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e);
   2769 void upb_enum_next(upb_enum_iter *iter);
   2770 bool upb_enum_done(upb_enum_iter *iter);
   2771 const char *upb_enum_iter_name(upb_enum_iter *iter);
   2772 int32_t upb_enum_iter_number(upb_enum_iter *iter);
   2773 
   2774 UPB_END_EXTERN_C
   2775 
   2776 /* upb::OneofDef **************************************************************/
   2777 
   2778 typedef upb_inttable_iter upb_oneof_iter;
   2779 
   2780 #ifdef __cplusplus
   2781 
   2782 /* Class that represents a oneof. */
   2783 class upb::OneofDef {
   2784  public:
   2785   /* Returns NULL if memory allocation failed. */
   2786   static reffed_ptr<OneofDef> New();
   2787 
   2788   /* upb::RefCounted methods like Ref()/Unref(). */
   2789   UPB_REFCOUNTED_CPPMETHODS
   2790 
   2791   /* Returns the MessageDef that owns this OneofDef. */
   2792   const MessageDef* containing_type() const;
   2793 
   2794   /* Returns the name of this oneof. This is the name used to look up the oneof
   2795    * by name once added to a message def. */
   2796   const char* name() const;
   2797   bool set_name(const char* name, Status* s);
   2798   bool set_name(const std::string& name, Status* s);
   2799 
   2800   /* Returns the number of fields currently defined in the oneof. */
   2801   int field_count() const;
   2802 
   2803   /* Adds a field to the oneof. The field must not have been added to any other
   2804    * oneof or msgdef. If the oneof is not yet part of a msgdef, then when the
   2805    * oneof is eventually added to a msgdef, all fields added to the oneof will
   2806    * also be added to the msgdef at that time. If the oneof is already part of a
   2807    * msgdef, the field must either be a part of that msgdef already, or must not
   2808    * be a part of any msgdef; in the latter case, the field is added to the
   2809    * msgdef as a part of this operation.
   2810    *
   2811    * The field may only have an OPTIONAL label, never REQUIRED or REPEATED.
   2812    *
   2813    * If |f| is already part of this MessageDef, this method performs no action
   2814    * and returns true (success). Thus, this method is idempotent. */
   2815   bool AddField(FieldDef* field, Status* s);
   2816   bool AddField(const reffed_ptr<FieldDef>& field, Status* s);
   2817 
   2818   /* Looks up by name. */
   2819   const FieldDef* FindFieldByName(const char* name, size_t len) const;
   2820   FieldDef* FindFieldByName(const char* name, size_t len);
   2821   const FieldDef* FindFieldByName(const char* name) const {
   2822     return FindFieldByName(name, strlen(name));
   2823   }
   2824   FieldDef* FindFieldByName(const char* name) {
   2825     return FindFieldByName(name, strlen(name));
   2826   }
   2827 
   2828   template <class T>
   2829   FieldDef* FindFieldByName(const T& str) {
   2830     return FindFieldByName(str.c_str(), str.size());
   2831   }
   2832   template <class T>
   2833   const FieldDef* FindFieldByName(const T& str) const {
   2834     return FindFieldByName(str.c_str(), str.size());
   2835   }
   2836 
   2837   /* Looks up by tag number. */
   2838   const FieldDef* FindFieldByNumber(uint32_t num) const;
   2839 
   2840   /* Returns a new OneofDef with all the same fields. The OneofDef will be owned
   2841    * by the given owner. */
   2842   OneofDef* Dup(const void* owner) const;
   2843 
   2844   /* Iteration over fields.  The order is undefined. */
   2845   class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> {
   2846    public:
   2847     explicit iterator(OneofDef* md);
   2848     static iterator end(OneofDef* md);
   2849 
   2850     void operator++();
   2851     FieldDef* operator*() const;
   2852     bool operator!=(const iterator& other) const;
   2853     bool operator==(const iterator& other) const;
   2854 
   2855    private:
   2856     upb_oneof_iter iter_;
   2857   };
   2858 
   2859   class const_iterator
   2860       : public std::iterator<std::forward_iterator_tag, const FieldDef*> {
   2861    public:
   2862     explicit const_iterator(const OneofDef* md);
   2863     static const_iterator end(const OneofDef* md);
   2864 
   2865     void operator++();
   2866     const FieldDef* operator*() const;
   2867     bool operator!=(const const_iterator& other) const;
   2868     bool operator==(const const_iterator& other) const;
   2869 
   2870    private:
   2871     upb_oneof_iter iter_;
   2872   };
   2873 
   2874   iterator begin();
   2875   iterator end();
   2876   const_iterator begin() const;
   2877   const_iterator end() const;
   2878 
   2879  private:
   2880   UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef)
   2881 };
   2882 
   2883 #endif  /* __cplusplus */
   2884 
   2885 UPB_BEGIN_EXTERN_C
   2886 
   2887 /* Native C API. */
   2888 upb_oneofdef *upb_oneofdef_new(const void *owner);
   2889 upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner);
   2890 
   2891 /* Include upb_refcounted methods like upb_oneofdef_ref(). */
   2892 UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast)
   2893 
   2894 const char *upb_oneofdef_name(const upb_oneofdef *o);
   2895 bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s);
   2896 
   2897 const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o);
   2898 int upb_oneofdef_numfields(const upb_oneofdef *o);
   2899 bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f,
   2900                            const void *ref_donor,
   2901                            upb_status *s);
   2902 
   2903 /* Oneof lookups:
   2904  * - ntof:  look up a field by name.
   2905  * - ntofz: look up a field by name (as a null-terminated string).
   2906  * - itof:  look up a field by number. */
   2907 const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
   2908                                       const char *name, size_t length);
   2909 UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o,
   2910                                                   const char *name) {
   2911   return upb_oneofdef_ntof(o, name, strlen(name));
   2912 }
   2913 const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num);
   2914 
   2915 /*  upb_oneof_iter i;
   2916  *  for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) {
   2917  *    // ...
   2918  *  }
   2919  */
   2920 void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o);
   2921 void upb_oneof_next(upb_oneof_iter *iter);
   2922 bool upb_oneof_done(upb_oneof_iter *iter);
   2923 upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter);
   2924 void upb_oneof_iter_setdone(upb_oneof_iter *iter);
   2925 
   2926 UPB_END_EXTERN_C
   2927 
   2928 
   2929 /* upb::FileDef ***************************************************************/
   2930 
   2931 #ifdef __cplusplus
   2932 
   2933 /* Class that represents a .proto file with some things defined in it.
   2934  *
   2935  * Many users won't care about FileDefs, but they are necessary if you want to
   2936  * read the values of file-level options. */
   2937 class upb::FileDef {
   2938  public:
   2939   /* Returns NULL if memory allocation failed. */
   2940   static reffed_ptr<FileDef> New();
   2941 
   2942   /* upb::RefCounted methods like Ref()/Unref(). */
   2943   UPB_REFCOUNTED_CPPMETHODS
   2944 
   2945   /* Get/set name of the file (eg. "foo/bar.proto"). */
   2946   const char* name() const;
   2947   bool set_name(const char* name, Status* s);
   2948   bool set_name(const std::string& name, Status* s);
   2949 
   2950   /* Package name for definitions inside the file (eg. "foo.bar"). */
   2951   const char* package() const;
   2952   bool set_package(const char* package, Status* s);
   2953 
   2954   /* Syntax for the file.  Defaults to proto2. */
   2955   upb_syntax_t syntax() const;
   2956   void set_syntax(upb_syntax_t syntax);
   2957 
   2958   /* Get the list of defs from the file.  These are returned in the order that
   2959    * they were added to the FileDef. */
   2960   int def_count() const;
   2961   const Def* def(int index) const;
   2962   Def* def(int index);
   2963 
   2964   /* Get the list of dependencies from the file.  These are returned in the
   2965    * order that they were added to the FileDef. */
   2966   int dependency_count() const;
   2967   const FileDef* dependency(int index) const;
   2968 
   2969   /* Adds defs to this file.  The def must not already belong to another
   2970    * file.
   2971    *
   2972    * Note: this does *not* ensure that this def's name is unique in this file!
   2973    * Use a SymbolTable if you want to check this property.  Especially since
   2974    * properly checking uniqueness would require a check across *all* files
   2975    * (including dependencies). */
   2976   bool AddDef(Def* def, Status* s);
   2977   bool AddMessage(MessageDef* m, Status* s);
   2978   bool AddEnum(EnumDef* e, Status* s);
   2979   bool AddExtension(FieldDef* f, Status* s);
   2980 
   2981   /* Adds a dependency of this file. */
   2982   bool AddDependency(const FileDef* file);
   2983 
   2984   /* Freezes this FileDef and all messages/enums under it.  All subdefs must be
   2985    * resolved and all messages/enums must validate.  Returns true if this
   2986    * succeeded.
   2987    *
   2988    * TODO(haberman): should we care whether the file's dependencies are frozen
   2989    * already? */
   2990   bool Freeze(Status* s);
   2991 
   2992  private:
   2993   UPB_DISALLOW_POD_OPS(FileDef, upb::FileDef)
   2994 };
   2995 
   2996 #endif
   2997 
   2998 UPB_BEGIN_EXTERN_C
   2999 
   3000 upb_filedef *upb_filedef_new(const void *owner);
   3001 
   3002 /* Include upb_refcounted methods like upb_msgdef_ref(). */
   3003 UPB_REFCOUNTED_CMETHODS(upb_filedef, upb_filedef_upcast)
   3004 
   3005 const char *upb_filedef_name(const upb_filedef *f);
   3006 const char *upb_filedef_package(const upb_filedef *f);
   3007 upb_syntax_t upb_filedef_syntax(const upb_filedef *f);
   3008 size_t upb_filedef_defcount(const upb_filedef *f);
   3009 size_t upb_filedef_depcount(const upb_filedef *f);
   3010 const upb_def *upb_filedef_def(const upb_filedef *f, size_t i);
   3011 const upb_filedef *upb_filedef_dep(const upb_filedef *f, size_t i);
   3012 
   3013 bool upb_filedef_freeze(upb_filedef *f, upb_status *s);
   3014 bool upb_filedef_setname(upb_filedef *f, const char *name, upb_status *s);
   3015 bool upb_filedef_setpackage(upb_filedef *f, const char *package, upb_status *s);
   3016 bool upb_filedef_setsyntax(upb_filedef *f, upb_syntax_t syntax, upb_status *s);
   3017 
   3018 bool upb_filedef_adddef(upb_filedef *f, upb_def *def, const void *ref_donor,
   3019                         upb_status *s);
   3020 bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep);
   3021 
   3022 UPB_INLINE bool upb_filedef_addmsg(upb_filedef *f, upb_msgdef *m,
   3023                                    const void *ref_donor, upb_status *s) {
   3024   return upb_filedef_adddef(f, upb_msgdef_upcast_mutable(m), ref_donor, s);
   3025 }
   3026 
   3027 UPB_INLINE bool upb_filedef_addenum(upb_filedef *f, upb_enumdef *e,
   3028                                     const void *ref_donor, upb_status *s) {
   3029   return upb_filedef_adddef(f, upb_enumdef_upcast_mutable(e), ref_donor, s);
   3030 }
   3031 
   3032 UPB_INLINE bool upb_filedef_addext(upb_filedef *file, upb_fielddef *f,
   3033                                    const void *ref_donor, upb_status *s) {
   3034   return upb_filedef_adddef(file, upb_fielddef_upcast_mutable(f), ref_donor, s);
   3035 }
   3036 UPB_INLINE upb_def *upb_filedef_mutabledef(upb_filedef *f, int i) {
   3037   return (upb_def*)upb_filedef_def(f, i);
   3038 }
   3039 
   3040 UPB_END_EXTERN_C
   3041 
   3042 #ifdef __cplusplus
   3043 
   3044 UPB_INLINE const char* upb_safecstr(const std::string& str) {
   3045   assert(str.size() == std::strlen(str.c_str()));
   3046   return str.c_str();
   3047 }
   3048 
   3049 /* Inline C++ wrappers. */
   3050 namespace upb {
   3051 
   3052 inline Def* Def::Dup(const void* owner) const {
   3053   return upb_def_dup(this, owner);
   3054 }
   3055 inline Def::Type Def::def_type() const { return upb_def_type(this); }
   3056 inline const char* Def::full_name() const { return upb_def_fullname(this); }
   3057 inline const char* Def::name() const { return upb_def_name(this); }
   3058 inline bool Def::set_full_name(const char* fullname, Status* s) {
   3059   return upb_def_setfullname(this, fullname, s);
   3060 }
   3061 inline bool Def::set_full_name(const std::string& fullname, Status* s) {
   3062   return upb_def_setfullname(this, upb_safecstr(fullname), s);
   3063 }
   3064 inline bool Def::Freeze(Def* const* defs, size_t n, Status* status) {
   3065   return upb_def_freeze(defs, n, status);
   3066 }
   3067 inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) {
   3068   return upb_def_freeze((Def* const*)&defs[0], defs.size(), status);
   3069 }
   3070 
   3071 inline bool FieldDef::CheckType(int32_t val) {
   3072   return upb_fielddef_checktype(val);
   3073 }
   3074 inline bool FieldDef::CheckLabel(int32_t val) {
   3075   return upb_fielddef_checklabel(val);
   3076 }
   3077 inline bool FieldDef::CheckDescriptorType(int32_t val) {
   3078   return upb_fielddef_checkdescriptortype(val);
   3079 }
   3080 inline bool FieldDef::CheckIntegerFormat(int32_t val) {
   3081   return upb_fielddef_checkintfmt(val);
   3082 }
   3083 inline FieldDef::Type FieldDef::ConvertType(int32_t val) {
   3084   assert(CheckType(val));
   3085   return static_cast<FieldDef::Type>(val);
   3086 }
   3087 inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) {
   3088   assert(CheckLabel(val));
   3089   return static_cast<FieldDef::Label>(val);
   3090 }
   3091 inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) {
   3092   assert(CheckDescriptorType(val));
   3093   return static_cast<FieldDef::DescriptorType>(val);
   3094 }
   3095 inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) {
   3096   assert(CheckIntegerFormat(val));
   3097   return static_cast<FieldDef::IntegerFormat>(val);
   3098 }
   3099 
   3100 inline reffed_ptr<FieldDef> FieldDef::New() {
   3101   upb_fielddef *f = upb_fielddef_new(&f);
   3102   return reffed_ptr<FieldDef>(f, &f);
   3103 }
   3104 inline FieldDef* FieldDef::Dup(const void* owner) const {
   3105   return upb_fielddef_dup(this, owner);
   3106 }
   3107 inline const char* FieldDef::full_name() const {
   3108   return upb_fielddef_fullname(this);
   3109 }
   3110 inline bool FieldDef::set_full_name(const char* fullname, Status* s) {
   3111   return upb_fielddef_setfullname(this, fullname, s);
   3112 }
   3113 inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) {
   3114   return upb_fielddef_setfullname(this, upb_safecstr(fullname), s);
   3115 }
   3116 inline bool FieldDef::type_is_set() const {
   3117   return upb_fielddef_typeisset(this);
   3118 }
   3119 inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); }
   3120 inline FieldDef::DescriptorType FieldDef::descriptor_type() const {
   3121   return upb_fielddef_descriptortype(this);
   3122 }
   3123 inline FieldDef::Label FieldDef::label() const {
   3124   return upb_fielddef_label(this);
   3125 }
   3126 inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); }
   3127 inline const char* FieldDef::name() const { return upb_fielddef_name(this); }
   3128 inline bool FieldDef::is_extension() const {
   3129   return upb_fielddef_isextension(this);
   3130 }
   3131 inline size_t FieldDef::GetJsonName(char* buf, size_t len) const {
   3132   return upb_fielddef_getjsonname(this, buf, len);
   3133 }
   3134 inline bool FieldDef::lazy() const {
   3135   return upb_fielddef_lazy(this);
   3136 }
   3137 inline void FieldDef::set_lazy(bool lazy) {
   3138   upb_fielddef_setlazy(this, lazy);
   3139 }
   3140 inline bool FieldDef::packed() const {
   3141   return upb_fielddef_packed(this);
   3142 }
   3143 inline uint32_t FieldDef::index() const {
   3144   return upb_fielddef_index(this);
   3145 }
   3146 inline void FieldDef::set_packed(bool packed) {
   3147   upb_fielddef_setpacked(this, packed);
   3148 }
   3149 inline const MessageDef* FieldDef::containing_type() const {
   3150   return upb_fielddef_containingtype(this);
   3151 }
   3152 inline const OneofDef* FieldDef::containing_oneof() const {
   3153   return upb_fielddef_containingoneof(this);
   3154 }
   3155 inline const char* FieldDef::containing_type_name() {
   3156   return upb_fielddef_containingtypename(this);
   3157 }
   3158 inline bool FieldDef::set_number(uint32_t number, Status* s) {
   3159   return upb_fielddef_setnumber(this, number, s);
   3160 }
   3161 inline bool FieldDef::set_name(const char *name, Status* s) {
   3162   return upb_fielddef_setname(this, name, s);
   3163 }
   3164 inline bool FieldDef::set_name(const std::string& name, Status* s) {
   3165   return upb_fielddef_setname(this, upb_safecstr(name), s);
   3166 }
   3167 inline bool FieldDef::set_json_name(const char *name, Status* s) {
   3168   return upb_fielddef_setjsonname(this, name, s);
   3169 }
   3170 inline bool FieldDef::set_json_name(const std::string& name, Status* s) {
   3171   return upb_fielddef_setjsonname(this, upb_safecstr(name), s);
   3172 }
   3173 inline void FieldDef::clear_json_name() {
   3174   upb_fielddef_clearjsonname(this);
   3175 }
   3176 inline bool FieldDef::set_containing_type_name(const char *name, Status* s) {
   3177   return upb_fielddef_setcontainingtypename(this, name, s);
   3178 }
   3179 inline bool FieldDef::set_containing_type_name(const std::string &name,
   3180                                                Status *s) {
   3181   return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s);
   3182 }
   3183 inline void FieldDef::set_type(upb_fieldtype_t type) {
   3184   upb_fielddef_settype(this, type);
   3185 }
   3186 inline void FieldDef::set_is_extension(bool is_extension) {
   3187   upb_fielddef_setisextension(this, is_extension);
   3188 }
   3189 inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) {
   3190   upb_fielddef_setdescriptortype(this, type);
   3191 }
   3192 inline void FieldDef::set_label(upb_label_t label) {
   3193   upb_fielddef_setlabel(this, label);
   3194 }
   3195 inline bool FieldDef::IsSubMessage() const {
   3196   return upb_fielddef_issubmsg(this);
   3197 }
   3198 inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); }
   3199 inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); }
   3200 inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); }
   3201 inline int64_t FieldDef::default_int64() const {
   3202   return upb_fielddef_defaultint64(this);
   3203 }
   3204 inline int32_t FieldDef::default_int32() const {
   3205   return upb_fielddef_defaultint32(this);
   3206 }
   3207 inline uint64_t FieldDef::default_uint64() const {
   3208   return upb_fielddef_defaultuint64(this);
   3209 }
   3210 inline uint32_t FieldDef::default_uint32() const {
   3211   return upb_fielddef_defaultuint32(this);
   3212 }
   3213 inline bool FieldDef::default_bool() const {
   3214   return upb_fielddef_defaultbool(this);
   3215 }
   3216 inline float FieldDef::default_float() const {
   3217   return upb_fielddef_defaultfloat(this);
   3218 }
   3219 inline double FieldDef::default_double() const {
   3220   return upb_fielddef_defaultdouble(this);
   3221 }
   3222 inline const char* FieldDef::default_string(size_t* len) const {
   3223   return upb_fielddef_defaultstr(this, len);
   3224 }
   3225 inline void FieldDef::set_default_int64(int64_t value) {
   3226   upb_fielddef_setdefaultint64(this, value);
   3227 }
   3228 inline void FieldDef::set_default_int32(int32_t value) {
   3229   upb_fielddef_setdefaultint32(this, value);
   3230 }
   3231 inline void FieldDef::set_default_uint64(uint64_t value) {
   3232   upb_fielddef_setdefaultuint64(this, value);
   3233 }
   3234 inline void FieldDef::set_default_uint32(uint32_t value) {
   3235   upb_fielddef_setdefaultuint32(this, value);
   3236 }
   3237 inline void FieldDef::set_default_bool(bool value) {
   3238   upb_fielddef_setdefaultbool(this, value);
   3239 }
   3240 inline void FieldDef::set_default_float(float value) {
   3241   upb_fielddef_setdefaultfloat(this, value);
   3242 }
   3243 inline void FieldDef::set_default_double(double value) {
   3244   upb_fielddef_setdefaultdouble(this, value);
   3245 }
   3246 inline bool FieldDef::set_default_string(const void *str, size_t len,
   3247                                          Status *s) {
   3248   return upb_fielddef_setdefaultstr(this, str, len, s);
   3249 }
   3250 inline bool FieldDef::set_default_string(const std::string& str, Status* s) {
   3251   return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s);
   3252 }
   3253 inline void FieldDef::set_default_cstr(const char* str, Status* s) {
   3254   return upb_fielddef_setdefaultcstr(this, str, s);
   3255 }
   3256 inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); }
   3257 inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); }
   3258 inline const MessageDef *FieldDef::message_subdef() const {
   3259   return upb_fielddef_msgsubdef(this);
   3260 }
   3261 inline const EnumDef *FieldDef::enum_subdef() const {
   3262   return upb_fielddef_enumsubdef(this);
   3263 }
   3264 inline const char* FieldDef::subdef_name() const {
   3265   return upb_fielddef_subdefname(this);
   3266 }
   3267 inline bool FieldDef::set_subdef(const Def* subdef, Status* s) {
   3268   return upb_fielddef_setsubdef(this, subdef, s);
   3269 }
   3270 inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) {
   3271   return upb_fielddef_setenumsubdef(this, subdef, s);
   3272 }
   3273 inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) {
   3274   return upb_fielddef_setmsgsubdef(this, subdef, s);
   3275 }
   3276 inline bool FieldDef::set_subdef_name(const char* name, Status* s) {
   3277   return upb_fielddef_setsubdefname(this, name, s);
   3278 }
   3279 inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) {
   3280   return upb_fielddef_setsubdefname(this, upb_safecstr(name), s);
   3281 }
   3282 
   3283 inline reffed_ptr<MessageDef> MessageDef::New() {
   3284   upb_msgdef *m = upb_msgdef_new(&m);
   3285   return reffed_ptr<MessageDef>(m, &m);
   3286 }
   3287 inline const char *MessageDef::full_name() const {
   3288   return upb_msgdef_fullname(this);
   3289 }
   3290 inline const char *MessageDef::name() const {
   3291   return upb_msgdef_name(this);
   3292 }
   3293 inline upb_syntax_t MessageDef::syntax() const {
   3294   return upb_msgdef_syntax(this);
   3295 }
   3296 inline bool MessageDef::set_full_name(const char* fullname, Status* s) {
   3297   return upb_msgdef_setfullname(this, fullname, s);
   3298 }
   3299 inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) {
   3300   return upb_msgdef_setfullname(this, upb_safecstr(fullname), s);
   3301 }
   3302 inline bool MessageDef::set_syntax(upb_syntax_t syntax) {
   3303   return upb_msgdef_setsyntax(this, syntax);
   3304 }
   3305 inline bool MessageDef::Freeze(Status* status) {
   3306   return upb_msgdef_freeze(this, status);
   3307 }
   3308 inline int MessageDef::field_count() const {
   3309   return upb_msgdef_numfields(this);
   3310 }
   3311 inline int MessageDef::oneof_count() const {
   3312   return upb_msgdef_numoneofs(this);
   3313 }
   3314 inline bool MessageDef::AddField(upb_fielddef* f, Status* s) {
   3315   return upb_msgdef_addfield(this, f, NULL, s);
   3316 }
   3317 inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) {
   3318   return upb_msgdef_addfield(this, f.get(), NULL, s);
   3319 }
   3320 inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) {
   3321   return upb_msgdef_addoneof(this, o, NULL, s);
   3322 }
   3323 inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) {
   3324   return upb_msgdef_addoneof(this, o.get(), NULL, s);
   3325 }
   3326 inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) {
   3327   return upb_msgdef_itof_mutable(this, number);
   3328 }
   3329 inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) {
   3330   return upb_msgdef_ntof_mutable(this, name, len);
   3331 }
   3332 inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const {
   3333   return upb_msgdef_itof(this, number);
   3334 }
   3335 inline const FieldDef *MessageDef::FindFieldByName(const char *name,
   3336                                                    size_t len) const {
   3337   return upb_msgdef_ntof(this, name, len);
   3338 }
   3339 inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) {
   3340   return upb_msgdef_ntoo_mutable(this, name, len);
   3341 }
   3342 inline const OneofDef* MessageDef::FindOneofByName(const char* name,
   3343                                                    size_t len) const {
   3344   return upb_msgdef_ntoo(this, name, len);
   3345 }
   3346 inline MessageDef* MessageDef::Dup(const void *owner) const {
   3347   return upb_msgdef_dup(this, owner);
   3348 }
   3349 inline void MessageDef::setmapentry(bool map_entry) {
   3350   upb_msgdef_setmapentry(this, map_entry);
   3351 }
   3352 inline bool MessageDef::mapentry() const {
   3353   return upb_msgdef_mapentry(this);
   3354 }
   3355 inline MessageDef::field_iterator MessageDef::field_begin() {
   3356   return field_iterator(this);
   3357 }
   3358 inline MessageDef::field_iterator MessageDef::field_end() {
   3359   return field_iterator::end(this);
   3360 }
   3361 inline MessageDef::const_field_iterator MessageDef::field_begin() const {
   3362   return const_field_iterator(this);
   3363 }
   3364 inline MessageDef::const_field_iterator MessageDef::field_end() const {
   3365   return const_field_iterator::end(this);
   3366 }
   3367 
   3368 inline MessageDef::oneof_iterator MessageDef::oneof_begin() {
   3369   return oneof_iterator(this);
   3370 }
   3371 inline MessageDef::oneof_iterator MessageDef::oneof_end() {
   3372   return oneof_iterator::end(this);
   3373 }
   3374 inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const {
   3375   return const_oneof_iterator(this);
   3376 }
   3377 inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const {
   3378   return const_oneof_iterator::end(this);
   3379 }
   3380 
   3381 inline MessageDef::field_iterator::field_iterator(MessageDef* md) {
   3382   upb_msg_field_begin(&iter_, md);
   3383 }
   3384 inline MessageDef::field_iterator MessageDef::field_iterator::end(
   3385     MessageDef* md) {
   3386   MessageDef::field_iterator iter(md);
   3387   upb_msg_field_iter_setdone(&iter.iter_);
   3388   return iter;
   3389 }
   3390 inline FieldDef* MessageDef::field_iterator::operator*() const {
   3391   return upb_msg_iter_field(&iter_);
   3392 }
   3393 inline void MessageDef::field_iterator::operator++() {
   3394   return upb_msg_field_next(&iter_);
   3395 }
   3396 inline bool MessageDef::field_iterator::operator==(
   3397     const field_iterator &other) const {
   3398   return upb_inttable_iter_isequal(&iter_, &other.iter_);
   3399 }
   3400 inline bool MessageDef::field_iterator::operator!=(
   3401     const field_iterator &other) const {
   3402   return !(*this == other);
   3403 }
   3404 
   3405 inline MessageDef::const_field_iterator::const_field_iterator(
   3406     const MessageDef* md) {
   3407   upb_msg_field_begin(&iter_, md);
   3408 }
   3409 inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end(
   3410     const MessageDef *md) {
   3411   MessageDef::const_field_iterator iter(md);
   3412   upb_msg_field_iter_setdone(&iter.iter_);
   3413   return iter;
   3414 }
   3415 inline const FieldDef* MessageDef::const_field_iterator::operator*() const {
   3416   return upb_msg_iter_field(&iter_);
   3417 }
   3418 inline void MessageDef::const_field_iterator::operator++() {
   3419   return upb_msg_field_next(&iter_);
   3420 }
   3421 inline bool MessageDef::const_field_iterator::operator==(
   3422     const const_field_iterator &other) const {
   3423   return upb_inttable_iter_isequal(&iter_, &other.iter_);
   3424 }
   3425 inline bool MessageDef::const_field_iterator::operator!=(
   3426     const const_field_iterator &other) const {
   3427   return !(*this == other);
   3428 }
   3429 
   3430 inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) {
   3431   upb_msg_oneof_begin(&iter_, md);
   3432 }
   3433 inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end(
   3434     MessageDef* md) {
   3435   MessageDef::oneof_iterator iter(md);
   3436   upb_msg_oneof_iter_setdone(&iter.iter_);
   3437   return iter;
   3438 }
   3439 inline OneofDef* MessageDef::oneof_iterator::operator*() const {
   3440   return upb_msg_iter_oneof(&iter_);
   3441 }
   3442 inline void MessageDef::oneof_iterator::operator++() {
   3443   return upb_msg_oneof_next(&iter_);
   3444 }
   3445 inline bool MessageDef::oneof_iterator::operator==(
   3446     const oneof_iterator &other) const {
   3447   return upb_strtable_iter_isequal(&iter_, &other.iter_);
   3448 }
   3449 inline bool MessageDef::oneof_iterator::operator!=(
   3450     const oneof_iterator &other) const {
   3451   return !(*this == other);
   3452 }
   3453 
   3454 inline MessageDef::const_oneof_iterator::const_oneof_iterator(
   3455     const MessageDef* md) {
   3456   upb_msg_oneof_begin(&iter_, md);
   3457 }
   3458 inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end(
   3459     const MessageDef *md) {
   3460   MessageDef::const_oneof_iterator iter(md);
   3461   upb_msg_oneof_iter_setdone(&iter.iter_);
   3462   return iter;
   3463 }
   3464 inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const {
   3465   return upb_msg_iter_oneof(&iter_);
   3466 }
   3467 inline void MessageDef::const_oneof_iterator::operator++() {
   3468   return upb_msg_oneof_next(&iter_);
   3469 }
   3470 inline bool MessageDef::const_oneof_iterator::operator==(
   3471     const const_oneof_iterator &other) const {
   3472   return upb_strtable_iter_isequal(&iter_, &other.iter_);
   3473 }
   3474 inline bool MessageDef::const_oneof_iterator::operator!=(
   3475     const const_oneof_iterator &other) const {
   3476   return !(*this == other);
   3477 }
   3478 
   3479 inline reffed_ptr<EnumDef> EnumDef::New() {
   3480   upb_enumdef *e = upb_enumdef_new(&e);
   3481   return reffed_ptr<EnumDef>(e, &e);
   3482 }
   3483 inline const char* EnumDef::full_name() const {
   3484   return upb_enumdef_fullname(this);
   3485 }
   3486 inline const char* EnumDef::name() const {
   3487   return upb_enumdef_name(this);
   3488 }
   3489 inline bool EnumDef::set_full_name(const char* fullname, Status* s) {
   3490   return upb_enumdef_setfullname(this, fullname, s);
   3491 }
   3492 inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) {
   3493   return upb_enumdef_setfullname(this, upb_safecstr(fullname), s);
   3494 }
   3495 inline bool EnumDef::Freeze(Status* status) {
   3496   return upb_enumdef_freeze(this, status);
   3497 }
   3498 inline int32_t EnumDef::default_value() const {
   3499   return upb_enumdef_default(this);
   3500 }
   3501 inline bool EnumDef::set_default_value(int32_t val, Status* status) {
   3502   return upb_enumdef_setdefault(this, val, status);
   3503 }
   3504 inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); }
   3505 inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) {
   3506   return upb_enumdef_addval(this, name, num, status);
   3507 }
   3508 inline bool EnumDef::AddValue(const std::string& name, int32_t num,
   3509                               Status* status) {
   3510   return upb_enumdef_addval(this, upb_safecstr(name), num, status);
   3511 }
   3512 inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const {
   3513   return upb_enumdef_ntoiz(this, name, num);
   3514 }
   3515 inline const char* EnumDef::FindValueByNumber(int32_t num) const {
   3516   return upb_enumdef_iton(this, num);
   3517 }
   3518 inline EnumDef* EnumDef::Dup(const void* owner) const {
   3519   return upb_enumdef_dup(this, owner);
   3520 }
   3521 
   3522 inline EnumDef::Iterator::Iterator(const EnumDef* e) {
   3523   upb_enum_begin(&iter_, e);
   3524 }
   3525 inline int32_t EnumDef::Iterator::number() {
   3526   return upb_enum_iter_number(&iter_);
   3527 }
   3528 inline const char* EnumDef::Iterator::name() {
   3529   return upb_enum_iter_name(&iter_);
   3530 }
   3531 inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); }
   3532 inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); }
   3533 
   3534 inline reffed_ptr<OneofDef> OneofDef::New() {
   3535   upb_oneofdef *o = upb_oneofdef_new(&o);
   3536   return reffed_ptr<OneofDef>(o, &o);
   3537 }
   3538 
   3539 inline const MessageDef* OneofDef::containing_type() const {
   3540   return upb_oneofdef_containingtype(this);
   3541 }
   3542 inline const char* OneofDef::name() const {
   3543   return upb_oneofdef_name(this);
   3544 }
   3545 inline bool OneofDef::set_name(const char* name, Status* s) {
   3546   return upb_oneofdef_setname(this, name, s);
   3547 }
   3548 inline bool OneofDef::set_name(const std::string& name, Status* s) {
   3549   return upb_oneofdef_setname(this, upb_safecstr(name), s);
   3550 }
   3551 inline int OneofDef::field_count() const {
   3552   return upb_oneofdef_numfields(this);
   3553 }
   3554 inline bool OneofDef::AddField(FieldDef* field, Status* s) {
   3555   return upb_oneofdef_addfield(this, field, NULL, s);
   3556 }
   3557 inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) {
   3558   return upb_oneofdef_addfield(this, field.get(), NULL, s);
   3559 }
   3560 inline const FieldDef* OneofDef::FindFieldByName(const char* name,
   3561                                                  size_t len) const {
   3562   return upb_oneofdef_ntof(this, name, len);
   3563 }
   3564 inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const {
   3565   return upb_oneofdef_itof(this, num);
   3566 }
   3567 inline OneofDef::iterator OneofDef::begin() { return iterator(this); }
   3568 inline OneofDef::iterator OneofDef::end() { return iterator::end(this); }
   3569 inline OneofDef::const_iterator OneofDef::begin() const {
   3570   return const_iterator(this);
   3571 }
   3572 inline OneofDef::const_iterator OneofDef::end() const {
   3573   return const_iterator::end(this);
   3574 }
   3575 
   3576 inline OneofDef::iterator::iterator(OneofDef* o) {
   3577   upb_oneof_begin(&iter_, o);
   3578 }
   3579 inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) {
   3580   OneofDef::iterator iter(o);
   3581   upb_oneof_iter_setdone(&iter.iter_);
   3582   return iter;
   3583 }
   3584 inline FieldDef* OneofDef::iterator::operator*() const {
   3585   return upb_oneof_iter_field(&iter_);
   3586 }
   3587 inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); }
   3588 inline bool OneofDef::iterator::operator==(const iterator &other) const {
   3589   return upb_inttable_iter_isequal(&iter_, &other.iter_);
   3590 }
   3591 inline bool OneofDef::iterator::operator!=(const iterator &other) const {
   3592   return !(*this == other);
   3593 }
   3594 
   3595 inline OneofDef::const_iterator::const_iterator(const OneofDef* md) {
   3596   upb_oneof_begin(&iter_, md);
   3597 }
   3598 inline OneofDef::const_iterator OneofDef::const_iterator::end(
   3599     const OneofDef *md) {
   3600   OneofDef::const_iterator iter(md);
   3601   upb_oneof_iter_setdone(&iter.iter_);
   3602   return iter;
   3603 }
   3604 inline const FieldDef* OneofDef::const_iterator::operator*() const {
   3605   return upb_msg_iter_field(&iter_);
   3606 }
   3607 inline void OneofDef::const_iterator::operator++() {
   3608   return upb_oneof_next(&iter_);
   3609 }
   3610 inline bool OneofDef::const_iterator::operator==(
   3611     const const_iterator &other) const {
   3612   return upb_inttable_iter_isequal(&iter_, &other.iter_);
   3613 }
   3614 inline bool OneofDef::const_iterator::operator!=(
   3615     const const_iterator &other) const {
   3616   return !(*this == other);
   3617 }
   3618 
   3619 inline reffed_ptr<FileDef> FileDef::New() {
   3620   upb_filedef *f = upb_filedef_new(&f);
   3621   return reffed_ptr<FileDef>(f, &f);
   3622 }
   3623 
   3624 inline const char* FileDef::name() const {
   3625   return upb_filedef_name(this);
   3626 }
   3627 inline bool FileDef::set_name(const char* name, Status* s) {
   3628   return upb_filedef_setname(this, name, s);
   3629 }
   3630 inline bool FileDef::set_name(const std::string& name, Status* s) {
   3631   return upb_filedef_setname(this, upb_safecstr(name), s);
   3632 }
   3633 inline const char* FileDef::package() const {
   3634   return upb_filedef_package(this);
   3635 }
   3636 inline bool FileDef::set_package(const char* package, Status* s) {
   3637   return upb_filedef_setpackage(this, package, s);
   3638 }
   3639 inline int FileDef::def_count() const {
   3640   return upb_filedef_defcount(this);
   3641 }
   3642 inline const Def* FileDef::def(int index) const {
   3643   return upb_filedef_def(this, index);
   3644 }
   3645 inline Def* FileDef::def(int index) {
   3646   return const_cast<Def*>(upb_filedef_def(this, index));
   3647 }
   3648 inline int FileDef::dependency_count() const {
   3649   return upb_filedef_depcount(this);
   3650 }
   3651 inline const FileDef* FileDef::dependency(int index) const {
   3652   return upb_filedef_dep(this, index);
   3653 }
   3654 inline bool FileDef::AddDef(Def* def, Status* s) {
   3655   return upb_filedef_adddef(this, def, NULL, s);
   3656 }
   3657 inline bool FileDef::AddMessage(MessageDef* m, Status* s) {
   3658   return upb_filedef_addmsg(this, m, NULL, s);
   3659 }
   3660 inline bool FileDef::AddEnum(EnumDef* e, Status* s) {
   3661   return upb_filedef_addenum(this, e, NULL, s);
   3662 }
   3663 inline bool FileDef::AddExtension(FieldDef* f, Status* s) {
   3664   return upb_filedef_addext(this, f, NULL, s);
   3665 }
   3666 inline bool FileDef::AddDependency(const FileDef* file) {
   3667   return upb_filedef_adddep(this, file);
   3668 }
   3669 
   3670 }  /* namespace upb */
   3671 #endif
   3672 
   3673 #endif /* UPB_DEF_H_ */
   3674 /*
   3675 ** This file contains definitions of structs that should be considered private
   3676 ** and NOT stable across versions of upb.
   3677 **
   3678 ** The only reason they are declared here and not in .c files is to allow upb
   3679 ** and the application (if desired) to embed statically-initialized instances
   3680 ** of structures like defs.
   3681 **
   3682 ** If you include this file, all guarantees of ABI compatibility go out the
   3683 ** window!  Any code that includes this file needs to recompile against the
   3684 ** exact same version of upb that they are linking against.
   3685 **
   3686 ** You also need to recompile if you change the value of the UPB_DEBUG_REFS
   3687 ** flag.
   3688 */
   3689 
   3690 
   3691 #ifndef UPB_STATICINIT_H_
   3692 #define UPB_STATICINIT_H_
   3693 
   3694 #ifdef __cplusplus
   3695 /* Because of how we do our typedefs, this header can't be included from C++. */
   3696 #error This file cannot be included from C++
   3697 #endif
   3698 
   3699 /* upb_refcounted *************************************************************/
   3700 
   3701 
   3702 /* upb_def ********************************************************************/
   3703 
   3704 struct upb_def {
   3705   upb_refcounted base;
   3706 
   3707   const char *fullname;
   3708   const upb_filedef* file;
   3709   char type;  /* A upb_deftype_t (char to save space) */
   3710 
   3711   /* Used as a flag during the def's mutable stage.  Must be false unless
   3712    * it is currently being used by a function on the stack.  This allows
   3713    * us to easily determine which defs were passed into the function's
   3714    * current invocation. */
   3715   bool came_from_user;
   3716 };
   3717 
   3718 #define UPB_DEF_INIT(name, type, vtbl, refs, ref2s) \
   3719     { UPB_REFCOUNT_INIT(vtbl, refs, ref2s), name, NULL, type, false }
   3720 
   3721 
   3722 /* upb_fielddef ***************************************************************/
   3723 
   3724 struct upb_fielddef {
   3725   upb_def base;
   3726 
   3727   union {
   3728     int64_t sint;
   3729     uint64_t uint;
   3730     double dbl;
   3731     float flt;
   3732     void *bytes;
   3733   } defaultval;
   3734   union {
   3735     const upb_msgdef *def;  /* If !msg_is_symbolic. */
   3736     char *name;             /* If msg_is_symbolic. */
   3737   } msg;
   3738   union {
   3739     const upb_def *def;  /* If !subdef_is_symbolic. */
   3740     char *name;          /* If subdef_is_symbolic. */
   3741   } sub;  /* The msgdef or enumdef for this field, if upb_hassubdef(f). */
   3742   bool subdef_is_symbolic;
   3743   bool msg_is_symbolic;
   3744   const upb_oneofdef *oneof;
   3745   bool default_is_string;
   3746   bool type_is_set_;     /* False until type is explicitly set. */
   3747   bool is_extension_;
   3748   bool lazy_;
   3749   bool packed_;
   3750   upb_intfmt_t intfmt;
   3751   bool tagdelim;
   3752   upb_fieldtype_t type_;
   3753   upb_label_t label_;
   3754   uint32_t number_;
   3755   uint32_t selector_base;  /* Used to index into a upb::Handlers table. */
   3756   uint32_t index_;
   3757 };
   3758 
   3759 extern const struct upb_refcounted_vtbl upb_fielddef_vtbl;
   3760 
   3761 #define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy,   \
   3762                           packed, name, num, msgdef, subdef, selector_base,    \
   3763                           index, defaultval, refs, ref2s)                      \
   3764   {                                                                            \
   3765     UPB_DEF_INIT(name, UPB_DEF_FIELD, &upb_fielddef_vtbl, refs, ref2s),        \
   3766         defaultval, {msgdef}, {subdef}, NULL, false, false,                    \
   3767         type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \
   3768         lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \
   3769   }
   3770 
   3771 
   3772 /* upb_msgdef *****************************************************************/
   3773 
   3774 struct upb_msgdef {
   3775   upb_def base;
   3776 
   3777   size_t selector_count;
   3778   uint32_t submsg_field_count;
   3779 
   3780   /* Tables for looking up fields by number and name. */
   3781   upb_inttable itof;  /* int to field */
   3782   upb_strtable ntof;  /* name to field/oneof */
   3783 
   3784   /* Is this a map-entry message? */
   3785   bool map_entry;
   3786 
   3787   /* Whether this message has proto2 or proto3 semantics. */
   3788   upb_syntax_t syntax;
   3789 
   3790   /* TODO(haberman): proper extension ranges (there can be multiple). */
   3791 };
   3792 
   3793 extern const struct upb_refcounted_vtbl upb_msgdef_vtbl;
   3794 
   3795 /* TODO: also support static initialization of the oneofs table. This will be
   3796  * needed if we compile in descriptors that contain oneofs. */
   3797 #define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \
   3798                         map_entry, syntax, refs, ref2s)                       \
   3799   {                                                                           \
   3800     UPB_DEF_INIT(name, UPB_DEF_MSG, &upb_fielddef_vtbl, refs, ref2s),         \
   3801         selector_count, submsg_field_count, itof, ntof, map_entry, syntax     \
   3802   }
   3803 
   3804 
   3805 /* upb_enumdef ****************************************************************/
   3806 
   3807 struct upb_enumdef {
   3808   upb_def base;
   3809 
   3810   upb_strtable ntoi;
   3811   upb_inttable iton;
   3812   int32_t defaultval;
   3813 };
   3814 
   3815 extern const struct upb_refcounted_vtbl upb_enumdef_vtbl;
   3816 
   3817 #define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \
   3818   { UPB_DEF_INIT(name, UPB_DEF_ENUM, &upb_enumdef_vtbl, refs, ref2s), ntoi,    \
   3819     iton, defaultval }
   3820 
   3821 
   3822 /* upb_oneofdef ***************************************************************/
   3823 
   3824 struct upb_oneofdef {
   3825   upb_refcounted base;
   3826 
   3827   const char *name;
   3828   upb_strtable ntof;
   3829   upb_inttable itof;
   3830   const upb_msgdef *parent;
   3831 };
   3832 
   3833 extern const struct upb_refcounted_vtbl upb_oneofdef_vtbl;
   3834 
   3835 #define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \
   3836   { UPB_REFCOUNT_INIT(&upb_oneofdef_vtbl, refs, ref2s), name, ntof, itof }
   3837 
   3838 
   3839 /* upb_symtab *****************************************************************/
   3840 
   3841 struct upb_symtab {
   3842   upb_refcounted base;
   3843 
   3844   upb_strtable symtab;
   3845 };
   3846 
   3847 struct upb_filedef {
   3848   upb_refcounted base;
   3849 
   3850   const char *name;
   3851   const char *package;
   3852   upb_syntax_t syntax;
   3853 
   3854   upb_inttable defs;
   3855   upb_inttable deps;
   3856 };
   3857 
   3858 extern const struct upb_refcounted_vtbl upb_filedef_vtbl;
   3859 
   3860 #endif  /* UPB_STATICINIT_H_ */
   3861 /*
   3862 ** upb::Handlers (upb_handlers)
   3863 **
   3864 ** A upb_handlers is like a virtual table for a upb_msgdef.  Each field of the
   3865 ** message can have associated functions that will be called when we are
   3866 ** parsing or visiting a stream of data.  This is similar to how handlers work
   3867 ** in SAX (the Simple API for XML).
   3868 **
   3869 ** The handlers have no idea where the data is coming from, so a single set of
   3870 ** handlers could be used with two completely different data sources (for
   3871 ** example, a parser and a visitor over in-memory objects).  This decoupling is
   3872 ** the most important feature of upb, because it allows parsers and serializers
   3873 ** to be highly reusable.
   3874 **
   3875 ** This is a mixed C/C++ interface that offers a full API to both languages.
   3876 ** See the top-level README for more information.
   3877 */
   3878 
   3879 #ifndef UPB_HANDLERS_H
   3880 #define UPB_HANDLERS_H
   3881 
   3882 
   3883 #ifdef __cplusplus
   3884 namespace upb {
   3885 class BufferHandle;
   3886 class BytesHandler;
   3887 class HandlerAttributes;
   3888 class Handlers;
   3889 template <class T> class Handler;
   3890 template <class T> struct CanonicalType;
   3891 }  /* namespace upb */
   3892 #endif
   3893 
   3894 UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle)
   3895 UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler)
   3896 UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr)
   3897 UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted,
   3898                          upb_handlers, upb_refcounted)
   3899 
   3900 /* The maximum depth that the handler graph can have.  This is a resource limit
   3901  * for the C stack since we sometimes need to recursively traverse the graph.
   3902  * Cycles are ok; the traversal will stop when it detects a cycle, but we must
   3903  * hit the cycle before the maximum depth is reached.
   3904  *
   3905  * If having a single static limit is too inflexible, we can add another variant
   3906  * of Handlers::Freeze that allows specifying this as a parameter. */
   3907 #define UPB_MAX_HANDLER_DEPTH 64
   3908 
   3909 /* All the different types of handlers that can be registered.
   3910  * Only needed for the advanced functions in upb::Handlers. */
   3911 typedef enum {
   3912   UPB_HANDLER_INT32,
   3913   UPB_HANDLER_INT64,
   3914   UPB_HANDLER_UINT32,
   3915   UPB_HANDLER_UINT64,
   3916   UPB_HANDLER_FLOAT,
   3917   UPB_HANDLER_DOUBLE,
   3918   UPB_HANDLER_BOOL,
   3919   UPB_HANDLER_STARTSTR,
   3920   UPB_HANDLER_STRING,
   3921   UPB_HANDLER_ENDSTR,
   3922   UPB_HANDLER_STARTSUBMSG,
   3923   UPB_HANDLER_ENDSUBMSG,
   3924   UPB_HANDLER_STARTSEQ,
   3925   UPB_HANDLER_ENDSEQ
   3926 } upb_handlertype_t;
   3927 
   3928 #define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
   3929 
   3930 #define UPB_BREAK NULL
   3931 
   3932 /* A convenient definition for when no closure is needed. */
   3933 extern char _upb_noclosure;
   3934 #define UPB_NO_CLOSURE &_upb_noclosure
   3935 
   3936 /* A selector refers to a specific field handler in the Handlers object
   3937  * (for example: the STARTSUBMSG handler for field "field15"). */
   3938 typedef int32_t upb_selector_t;
   3939 
   3940 UPB_BEGIN_EXTERN_C
   3941 
   3942 /* Forward-declares for C inline accessors.  We need to declare these here
   3943  * so we can "friend" them in the class declarations in C++. */
   3944 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
   3945                                              upb_selector_t s);
   3946 UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr);
   3947 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
   3948                                                    upb_selector_t s);
   3949 
   3950 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h);
   3951 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
   3952                                      const void *type);
   3953 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
   3954                                      size_t ofs);
   3955 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h);
   3956 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h);
   3957 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h);
   3958 
   3959 UPB_END_EXTERN_C
   3960 
   3961 
   3962 /* Static selectors for upb::Handlers. */
   3963 #define UPB_STARTMSG_SELECTOR 0
   3964 #define UPB_ENDMSG_SELECTOR 1
   3965 #define UPB_STATIC_SELECTOR_COUNT 2
   3966 
   3967 /* Static selectors for upb::BytesHandler. */
   3968 #define UPB_STARTSTR_SELECTOR 0
   3969 #define UPB_STRING_SELECTOR 1
   3970 #define UPB_ENDSTR_SELECTOR 2
   3971 
   3972 typedef void upb_handlerfree(void *d);
   3973 
   3974 #ifdef __cplusplus
   3975 
   3976 /* A set of attributes that accompanies a handler's function pointer. */
   3977 class upb::HandlerAttributes {
   3978  public:
   3979   HandlerAttributes();
   3980   ~HandlerAttributes();
   3981 
   3982   /* Sets the handler data that will be passed as the second parameter of the
   3983    * handler.  To free this pointer when the handlers are freed, call
   3984    * Handlers::AddCleanup(). */
   3985   bool SetHandlerData(const void *handler_data);
   3986   const void* handler_data() const;
   3987 
   3988   /* Use this to specify the type of the closure.  This will be checked against
   3989    * all other closure types for handler that use the same closure.
   3990    * Registration will fail if this does not match all other non-NULL closure
   3991    * types. */
   3992   bool SetClosureType(const void *closure_type);
   3993   const void* closure_type() const;
   3994 
   3995   /* Use this to specify the type of the returned closure.  Only used for
   3996    * Start*{String,SubMessage,Sequence} handlers.  This must match the closure
   3997    * type of any handlers that use it (for example, the StringBuf handler must
   3998    * match the closure returned from StartString). */
   3999   bool SetReturnClosureType(const void *return_closure_type);
   4000   const void* return_closure_type() const;
   4001 
   4002   /* Set to indicate that the handler always returns "ok" (either "true" or a
   4003    * non-NULL closure).  This is a hint that can allow code generators to
   4004    * generate more efficient code. */
   4005   bool SetAlwaysOk(bool always_ok);
   4006   bool always_ok() const;
   4007 
   4008  private:
   4009   friend UPB_INLINE const void * ::upb_handlerattr_handlerdata(
   4010       const upb_handlerattr *attr);
   4011 #else
   4012 struct upb_handlerattr {
   4013 #endif
   4014   const void *handler_data_;
   4015   const void *closure_type_;
   4016   const void *return_closure_type_;
   4017   bool alwaysok_;
   4018 };
   4019 
   4020 #define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false}
   4021 
   4022 typedef struct {
   4023   upb_func *func;
   4024 
   4025   /* It is wasteful to include the entire attributes here:
   4026    *
   4027    * * Some of the information is redundant (like storing the closure type
   4028    *   separately for each handler that must match).
   4029    * * Some of the info is only needed prior to freeze() (like closure types).
   4030    * * alignment padding wastes a lot of space for alwaysok_.
   4031    *
   4032    * If/when the size and locality of handlers is an issue, we can optimize this
   4033    * not to store the entire attr like this.  We do not expose the table's
   4034    * layout to allow this optimization in the future. */
   4035   upb_handlerattr attr;
   4036 } upb_handlers_tabent;
   4037 
   4038 #ifdef __cplusplus
   4039 
   4040 /* Extra information about a buffer that is passed to a StringBuf handler.
   4041  * TODO(haberman): allow the handle to be pinned so that it will outlive
   4042  * the handler invocation. */
   4043 class upb::BufferHandle {
   4044  public:
   4045   BufferHandle();
   4046   ~BufferHandle();
   4047 
   4048   /* The beginning of the buffer.  This may be different than the pointer
   4049    * passed to a StringBuf handler because the handler may receive data
   4050    * that is from the middle or end of a larger buffer. */
   4051   const char* buffer() const;
   4052 
   4053   /* The offset within the attached object where this buffer begins.  Only
   4054    * meaningful if there is an attached object. */
   4055   size_t object_offset() const;
   4056 
   4057   /* Note that object_offset is the offset of "buf" within the attached
   4058    * object. */
   4059   void SetBuffer(const char* buf, size_t object_offset);
   4060 
   4061   /* The BufferHandle can have an "attached object", which can be used to
   4062    * tunnel through a pointer to the buffer's underlying representation. */
   4063   template <class T>
   4064   void SetAttachedObject(const T* obj);
   4065 
   4066   /* Returns NULL if the attached object is not of this type. */
   4067   template <class T>
   4068   const T* GetAttachedObject() const;
   4069 
   4070  private:
   4071   friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h);
   4072   friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h,
   4073                                                 const void *obj,
   4074                                                 const void *type);
   4075   friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h,
   4076                                                 const char *buf, size_t ofs);
   4077   friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h);
   4078   friend UPB_INLINE const void* ::upb_bufhandle_objtype(
   4079       const upb_bufhandle *h);
   4080   friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h);
   4081 #else
   4082 struct upb_bufhandle {
   4083 #endif
   4084   const char *buf_;
   4085   const void *obj_;
   4086   const void *objtype_;
   4087   size_t objofs_;
   4088 };
   4089 
   4090 #ifdef __cplusplus
   4091 
   4092 /* A upb::Handlers object represents the set of handlers associated with a
   4093  * message in the graph of messages.  You can think of it as a big virtual
   4094  * table with functions corresponding to all the events that can fire while
   4095  * parsing or visiting a message of a specific type.
   4096  *
   4097  * Any handlers that are not set behave as if they had successfully consumed
   4098  * the value.  Any unset Start* handlers will propagate their closure to the
   4099  * inner frame.
   4100  *
   4101  * The easiest way to create the *Handler objects needed by the Set* methods is
   4102  * with the UpbBind() and UpbMakeHandler() macros; see below. */
   4103 class upb::Handlers {
   4104  public:
   4105   typedef upb_selector_t Selector;
   4106   typedef upb_handlertype_t Type;
   4107 
   4108   typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
   4109   typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
   4110   typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
   4111   typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
   4112   typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
   4113   typedef Handler<size_t (*)(void *, const void *, const char *, size_t,
   4114                              const BufferHandle *)> StringHandler;
   4115 
   4116   template <class T> struct ValueHandler {
   4117     typedef Handler<bool(*)(void *, const void *, T)> H;
   4118   };
   4119 
   4120   typedef ValueHandler<int32_t>::H     Int32Handler;
   4121   typedef ValueHandler<int64_t>::H     Int64Handler;
   4122   typedef ValueHandler<uint32_t>::H    UInt32Handler;
   4123   typedef ValueHandler<uint64_t>::H    UInt64Handler;
   4124   typedef ValueHandler<float>::H       FloatHandler;
   4125   typedef ValueHandler<double>::H      DoubleHandler;
   4126   typedef ValueHandler<bool>::H        BoolHandler;
   4127 
   4128   /* Any function pointer can be converted to this and converted back to its
   4129    * correct type. */
   4130   typedef void GenericFunction();
   4131 
   4132   typedef void HandlersCallback(const void *closure, upb_handlers *h);
   4133 
   4134   /* Returns a new handlers object for the given frozen msgdef.
   4135    * Returns NULL if memory allocation failed. */
   4136   static reffed_ptr<Handlers> New(const MessageDef *m);
   4137 
   4138   /* Convenience function for registering a graph of handlers that mirrors the
   4139    * graph of msgdefs for some message.  For "m" and all its children a new set
   4140    * of handlers will be created and the given callback will be invoked,
   4141    * allowing the client to register handlers for this message.  Note that any
   4142    * subhandlers set by the callback will be overwritten. */
   4143   static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m,
   4144                                               HandlersCallback *callback,
   4145                                               const void *closure);
   4146 
   4147   /* Functionality from upb::RefCounted. */
   4148   UPB_REFCOUNTED_CPPMETHODS
   4149 
   4150   /* All handler registration functions return bool to indicate success or
   4151    * failure; details about failures are stored in this status object.  If a
   4152    * failure does occur, it must be cleared before the Handlers are frozen,
   4153    * otherwise the freeze() operation will fail.  The functions may *only* be
   4154    * used while the Handlers are mutable. */
   4155   const Status* status();
   4156   void ClearError();
   4157 
   4158   /* Call to freeze these Handlers.  Requires that any SubHandlers are already
   4159    * frozen.  For cycles, you must use the static version below and freeze the
   4160    * whole graph at once. */
   4161   bool Freeze(Status* s);
   4162 
   4163   /* Freezes the given set of handlers.  You may not freeze a handler without
   4164    * also freezing any handlers they point to. */
   4165   static bool Freeze(Handlers*const* handlers, int n, Status* s);
   4166   static bool Freeze(const std::vector<Handlers*>& handlers, Status* s);
   4167 
   4168   /* Returns the msgdef associated with this handlers object. */
   4169   const MessageDef* message_def() const;
   4170 
   4171   /* Adds the given pointer and function to the list of cleanup functions that
   4172    * will be run when these handlers are freed.  If this pointer has previously
   4173    * been registered, the function returns false and does nothing. */
   4174   bool AddCleanup(void *ptr, upb_handlerfree *cleanup);
   4175 
   4176   /* Sets the startmsg handler for the message, which is defined as follows:
   4177    *
   4178    *   bool startmsg(MyType* closure) {
   4179    *     // Called when the message begins.  Returns true if processing should
   4180    *     // continue.
   4181    *     return true;
   4182    *   }
   4183    */
   4184   bool SetStartMessageHandler(const StartMessageHandler& handler);
   4185 
   4186   /* Sets the endmsg handler for the message, which is defined as follows:
   4187    *
   4188    *   bool endmsg(MyType* closure, upb_status *status) {
   4189    *     // Called when processing of this message ends, whether in success or
   4190    *     // failure.  "status" indicates the final status of processing, and
   4191    *     // can also be modified in-place to update the final status.
   4192    *   }
   4193    */
   4194   bool SetEndMessageHandler(const EndMessageHandler& handler);
   4195 
   4196   /* Sets the value handler for the given field, which is defined as follows
   4197    * (this is for an int32 field; other field types will pass their native
   4198    * C/C++ type for "val"):
   4199    *
   4200    *   bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
   4201    *     // Called when the field's value is encountered.  "d" contains
   4202    *     // whatever data was bound to this field when it was registered.
   4203    *     // Returns true if processing should continue.
   4204    *     return true;
   4205    *   }
   4206    *
   4207    *   handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
   4208    *
   4209    * The value type must exactly match f->type().
   4210    * For example, a handler that takes an int32_t parameter may only be used for
   4211    * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
   4212    *
   4213    * Returns false if the handler failed to register; in this case the cleanup
   4214    * handler (if any) will be called immediately.
   4215    */
   4216   bool SetInt32Handler (const FieldDef* f,  const Int32Handler& h);
   4217   bool SetInt64Handler (const FieldDef* f,  const Int64Handler& h);
   4218   bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
   4219   bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
   4220   bool SetFloatHandler (const FieldDef* f,  const FloatHandler& h);
   4221   bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
   4222   bool SetBoolHandler  (const FieldDef* f,   const BoolHandler& h);
   4223 
   4224   /* Like the previous, but templated on the type on the value (ie. int32).
   4225    * This is mostly useful to call from other templates.  To call this you must
   4226    * specify the template parameter explicitly, ie:
   4227    *   h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */
   4228   template <class T>
   4229   bool SetValueHandler(
   4230       const FieldDef *f,
   4231       const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);
   4232 
   4233   /* Sets handlers for a string field, which are defined as follows:
   4234    *
   4235    *   MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
   4236    *                          size_t size_hint) {
   4237    *     // Called when a string value begins.  The return value indicates the
   4238    *     // closure for the string.  "size_hint" indicates the size of the
   4239    *     // string if it is known, however if the string is length-delimited
   4240    *     // and the end-of-string is not available size_hint will be zero.
   4241    *     // This case is indistinguishable from the case where the size is
   4242    *     // known to be zero.
   4243    *     //
   4244    *     // TODO(haberman): is it important to distinguish these cases?
   4245    *     // If we had ssize_t as a type we could make -1 "unknown", but
   4246    *     // ssize_t is POSIX (not ANSI) and therefore less portable.
   4247    *     // In practice I suspect it won't be important to distinguish.
   4248    *     return closure;
   4249    *   }
   4250    *
   4251    *   size_t str(MyClosure* closure, const MyHandlerData* d,
   4252    *              const char *str, size_t len) {
   4253    *     // Called for each buffer of string data; the multiple physical buffers
   4254    *     // are all part of the same logical string.  The return value indicates
   4255    *     // how many bytes were consumed.  If this number is less than "len",
   4256    *     // this will also indicate that processing should be halted for now,
   4257    *     // like returning false or UPB_BREAK from any other callback.  If
   4258    *     // number is greater than "len", the excess bytes will be skipped over
   4259    *     // and not passed to the callback.
   4260    *     return len;
   4261    *   }
   4262    *
   4263    *   bool endstr(MyClosure* c, const MyHandlerData* d) {
   4264    *     // Called when a string value ends.  Return value indicates whether
   4265    *     // processing should continue.
   4266    *     return true;
   4267    *   }
   4268    */
   4269   bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
   4270   bool SetStringHandler(const FieldDef* f, const StringHandler& h);
   4271   bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);
   4272 
   4273   /* Sets the startseq handler, which is defined as follows:
   4274    *
   4275    *   MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
   4276    *     // Called when a sequence (repeated field) begins.  The returned
   4277    *     // pointer indicates the closure for the sequence (or UPB_BREAK
   4278    *     // to interrupt processing).
   4279    *     return closure;
   4280    *   }
   4281    *
   4282    *   h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
   4283    *
   4284    * Returns "false" if "f" does not belong to this message or is not a
   4285    * repeated field.
   4286    */
   4287   bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);
   4288 
   4289   /* Sets the startsubmsg handler for the given field, which is defined as
   4290    * follows:
   4291    *
   4292    *   MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
   4293    *     // Called when a submessage begins.  The returned pointer indicates the
   4294    *     // closure for the sequence (or UPB_BREAK to interrupt processing).
   4295    *     return closure;
   4296    *   }
   4297    *
   4298    *   h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
   4299    *                                           new MyHandlerData(...)));
   4300    *
   4301    * Returns "false" if "f" does not belong to this message or is not a
   4302    * submessage/group field.
   4303    */
   4304   bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);
   4305 
   4306   /* Sets the endsubmsg handler for the given field, which is defined as
   4307    * follows:
   4308    *
   4309    *   bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
   4310    *     // Called when a submessage ends.  Returns true to continue processing.
   4311    *     return true;
   4312    *   }
   4313    *
   4314    * Returns "false" if "f" does not belong to this message or is not a
   4315    * submessage/group field.
   4316    */
   4317   bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);
   4318 
   4319   /* Starts the endsubseq handler for the given field, which is defined as
   4320    * follows:
   4321    *
   4322    *   bool endseq(MyClosure* c, const MyHandlerData* d) {
   4323    *     // Called when a sequence ends.  Returns true continue processing.
   4324    *     return true;
   4325    *   }
   4326    *
   4327    * Returns "false" if "f" does not belong to this message or is not a
   4328    * repeated field.
   4329    */
   4330   bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);
   4331 
   4332   /* Sets or gets the object that specifies handlers for the given field, which
   4333    * must be a submessage or group.  Returns NULL if no handlers are set. */
   4334   bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
   4335   const Handlers* GetSubHandlers(const FieldDef* f) const;
   4336 
   4337   /* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
   4338    * field. */
   4339   const Handlers* GetSubHandlers(Selector startsubmsg) const;
   4340 
   4341   /* A selector refers to a specific field handler in the Handlers object
   4342    * (for example: the STARTSUBMSG handler for field "field15").
   4343    * On success, returns true and stores the selector in "s".
   4344    * If the FieldDef or Type are invalid, returns false.
   4345    * The returned selector is ONLY valid for Handlers whose MessageDef
   4346    * contains this FieldDef. */
   4347   static bool GetSelector(const FieldDef* f, Type type, Selector* s);
   4348 
   4349   /* Given a START selector of any kind, returns the corresponding END selector. */
   4350   static Selector GetEndSelector(Selector start_selector);
   4351 
   4352   /* Returns the function pointer for this handler.  It is the client's
   4353    * responsibility to cast to the correct function type before calling it. */
   4354   GenericFunction* GetHandler(Selector selector);
   4355 
   4356   /* Sets the given attributes to the attributes for this selector. */
   4357   bool GetAttributes(Selector selector, HandlerAttributes* attr);
   4358 
   4359   /* Returns the handler data that was registered with this handler. */
   4360   const void* GetHandlerData(Selector selector);
   4361 
   4362   /* Could add any of the following functions as-needed, with some minor
   4363    * implementation changes:
   4364    *
   4365    * const FieldDef* GetFieldDef(Selector selector);
   4366    * static bool IsSequence(Selector selector); */
   4367 
   4368  private:
   4369   UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers)
   4370 
   4371   friend UPB_INLINE GenericFunction *::upb_handlers_gethandler(
   4372       const upb_handlers *h, upb_selector_t s);
   4373   friend UPB_INLINE const void *::upb_handlers_gethandlerdata(
   4374       const upb_handlers *h, upb_selector_t s);
   4375 #else
   4376 struct upb_handlers {
   4377 #endif
   4378   upb_refcounted base;
   4379 
   4380   const upb_msgdef *msg;
   4381   const upb_handlers **sub;
   4382   const void *top_closure_type;
   4383   upb_inttable cleanup_;
   4384   upb_status status_;  /* Used only when mutable. */
   4385   upb_handlers_tabent table[1];  /* Dynamically-sized field handler array. */
   4386 };
   4387 
   4388 #ifdef __cplusplus
   4389 
   4390 namespace upb {
   4391 
   4392 /* Convenience macros for creating a Handler object that is wrapped with a
   4393  * type-safe wrapper function that converts the "void*" parameters/returns
   4394  * of the underlying C API into nice C++ function.
   4395  *
   4396  * Sample usage:
   4397  *   void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) {
   4398  *     // do stuff ...
   4399  *   }
   4400  *
   4401  *   // Handler that doesn't need any data bound to it.
   4402  *   void OnValue2(MyClosure* c, int32_t val) {
   4403  *     // do stuff ...
   4404  *   }
   4405  *
   4406  *   // Handler that returns bool so it can return failure if necessary.
   4407  *   bool OnValue3(MyClosure* c, int32_t val) {
   4408  *     // do stuff ...
   4409  *     return ok;
   4410  *   }
   4411  *
   4412  *   // Member function handler.
   4413  *   class MyClosure {
   4414  *    public:
   4415  *     void OnValue(int32_t val) {
   4416  *       // do stuff ...
   4417  *     }
   4418  *   };
   4419  *
   4420  *   // Takes ownership of the MyHandlerData.
   4421  *   handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...)));
   4422  *   handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2));
   4423  *   handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3));
   4424  *   handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue));
   4425  */
   4426 
   4427 #ifdef UPB_CXX11
   4428 
   4429 /* In C++11, the "template" disambiguator can appear even outside templates,
   4430  * so all calls can safely use this pair of macros. */
   4431 
   4432 #define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>()
   4433 
   4434 /* We have to be careful to only evaluate "d" once. */
   4435 #define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
   4436 
   4437 #else
   4438 
   4439 /* Prior to C++11, the "template" disambiguator may only appear inside a
   4440  * template, so the regular macro must not use "template" */
   4441 
   4442 #define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>()
   4443 
   4444 #define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d))
   4445 
   4446 #endif  /* UPB_CXX11 */
   4447 
   4448 /* This macro must be used in C++98 for calls from inside a template.  But we
   4449  * define this variant in all cases; code that wants to be compatible with both
   4450  * C++98 and C++11 should always use this macro when calling from a template. */
   4451 #define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>()
   4452 
   4453 /* We have to be careful to only evaluate "d" once. */
   4454 #define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
   4455 
   4456 /* Handler: a struct that contains the (handler, data, deleter) tuple that is
   4457  * used to register all handlers.  Users can Make() these directly but it's
   4458  * more convenient to use the UpbMakeHandler/UpbBind macros above. */
   4459 template <class T> class Handler {
   4460  public:
   4461   /* The underlying, handler function signature that upb uses internally. */
   4462   typedef T FuncPtr;
   4463 
   4464   /* Intentionally implicit. */
   4465   template <class F> Handler(F func);
   4466   ~Handler();
   4467 
   4468  private:
   4469   void AddCleanup(Handlers* h) const {
   4470     if (cleanup_func_) {
   4471       bool ok = h->AddCleanup(cleanup_data_, cleanup_func_);
   4472       UPB_ASSERT_VAR(ok, ok);
   4473     }
   4474   }
   4475 
   4476   UPB_DISALLOW_COPY_AND_ASSIGN(Handler)
   4477   friend class Handlers;
   4478   FuncPtr handler_;
   4479   mutable HandlerAttributes attr_;
   4480   mutable bool registered_;
   4481   void *cleanup_data_;
   4482   upb_handlerfree *cleanup_func_;
   4483 };
   4484 
   4485 }  /* namespace upb */
   4486 
   4487 #endif  /* __cplusplus */
   4488 
   4489 UPB_BEGIN_EXTERN_C
   4490 
   4491 /* Native C API. */
   4492 
   4493 /* Handler function typedefs. */
   4494 typedef bool upb_startmsg_handlerfunc(void *c, const void*);
   4495 typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status);
   4496 typedef void* upb_startfield_handlerfunc(void *c, const void *hd);
   4497 typedef bool upb_endfield_handlerfunc(void *c, const void *hd);
   4498 typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val);
   4499 typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val);
   4500 typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val);
   4501 typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val);
   4502 typedef bool upb_float_handlerfunc(void *c, const void *hd, float val);
   4503 typedef bool upb_double_handlerfunc(void *c, const void *hd, double val);
   4504 typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val);
   4505 typedef void *upb_startstr_handlerfunc(void *c, const void *hd,
   4506                                        size_t size_hint);
   4507 typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf,
   4508                                       size_t n, const upb_bufhandle* handle);
   4509 
   4510 /* upb_bufhandle */
   4511 size_t upb_bufhandle_objofs(const upb_bufhandle *h);
   4512 
   4513 /* upb_handlerattr */
   4514 void upb_handlerattr_init(upb_handlerattr *attr);
   4515 void upb_handlerattr_uninit(upb_handlerattr *attr);
   4516 
   4517 bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd);
   4518 bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type);
   4519 const void *upb_handlerattr_closuretype(const upb_handlerattr *attr);
   4520 bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
   4521                                           const void *type);
   4522 const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr);
   4523 bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok);
   4524 bool upb_handlerattr_alwaysok(const upb_handlerattr *attr);
   4525 
   4526 UPB_INLINE const void *upb_handlerattr_handlerdata(
   4527     const upb_handlerattr *attr) {
   4528   return attr->handler_data_;
   4529 }
   4530 
   4531 /* upb_handlers */
   4532 typedef void upb_handlers_callback(const void *closure, upb_handlers *h);
   4533 upb_handlers *upb_handlers_new(const upb_msgdef *m,
   4534                                const void *owner);
   4535 const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
   4536                                            const void *owner,
   4537                                            upb_handlers_callback *callback,
   4538                                            const void *closure);
   4539 
   4540 /* Include refcounted methods like upb_handlers_ref(). */
   4541 UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast)
   4542 
   4543 const upb_status *upb_handlers_status(upb_handlers *h);
   4544 void upb_handlers_clearerr(upb_handlers *h);
   4545 const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
   4546 bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree);
   4547 
   4548 bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
   4549                               upb_handlerattr *attr);
   4550 bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
   4551                             upb_handlerattr *attr);
   4552 bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
   4553                            upb_int32_handlerfunc *func, upb_handlerattr *attr);
   4554 bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
   4555                            upb_int64_handlerfunc *func, upb_handlerattr *attr);
   4556 bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
   4557                             upb_uint32_handlerfunc *func,
   4558                             upb_handlerattr *attr);
   4559 bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
   4560                             upb_uint64_handlerfunc *func,
   4561                             upb_handlerattr *attr);
   4562 bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
   4563                            upb_float_handlerfunc *func, upb_handlerattr *attr);
   4564 bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
   4565                             upb_double_handlerfunc *func,
   4566                             upb_handlerattr *attr);
   4567 bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
   4568                           upb_bool_handlerfunc *func,
   4569                           upb_handlerattr *attr);
   4570 bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
   4571                               upb_startstr_handlerfunc *func,
   4572                               upb_handlerattr *attr);
   4573 bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
   4574                             upb_string_handlerfunc *func,
   4575                             upb_handlerattr *attr);
   4576 bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
   4577                             upb_endfield_handlerfunc *func,
   4578                             upb_handlerattr *attr);
   4579 bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
   4580                               upb_startfield_handlerfunc *func,
   4581                               upb_handlerattr *attr);
   4582 bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
   4583                                  upb_startfield_handlerfunc *func,
   4584                                  upb_handlerattr *attr);
   4585 bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
   4586                                upb_endfield_handlerfunc *func,
   4587                                upb_handlerattr *attr);
   4588 bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
   4589                             upb_endfield_handlerfunc *func,
   4590                             upb_handlerattr *attr);
   4591 
   4592 bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
   4593                                  const upb_handlers *sub);
   4594 const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
   4595                                                 const upb_fielddef *f);
   4596 const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
   4597                                                     upb_selector_t sel);
   4598 
   4599 UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
   4600                                              upb_selector_t s) {
   4601   return (upb_func *)h->table[s].func;
   4602 }
   4603 
   4604 bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s,
   4605                           upb_handlerattr *attr);
   4606 
   4607 UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
   4608                                                    upb_selector_t s) {
   4609   return upb_handlerattr_handlerdata(&h->table[s].attr);
   4610 }
   4611 
   4612 #ifdef __cplusplus
   4613 
   4614 /* Handler types for single fields.
   4615  * Right now we only have one for TYPE_BYTES but ones for other types
   4616  * should follow.
   4617  *
   4618  * These follow the same handlers protocol for fields of a message. */
   4619 class upb::BytesHandler {
   4620  public:
   4621   BytesHandler();
   4622   ~BytesHandler();
   4623 #else
   4624 struct upb_byteshandler {
   4625 #endif
   4626   upb_handlers_tabent table[3];
   4627 };
   4628 
   4629 void upb_byteshandler_init(upb_byteshandler *h);
   4630 
   4631 /* Caller must ensure that "d" outlives the handlers.
   4632  * TODO(haberman): should this have a "freeze" operation?  It's not necessary
   4633  * for memory management, but could be useful to force immutability and provide
   4634  * a convenient moment to verify that all registration succeeded. */
   4635 bool upb_byteshandler_setstartstr(upb_byteshandler *h,
   4636                                   upb_startstr_handlerfunc *func, void *d);
   4637 bool upb_byteshandler_setstring(upb_byteshandler *h,
   4638                                 upb_string_handlerfunc *func, void *d);
   4639 bool upb_byteshandler_setendstr(upb_byteshandler *h,
   4640                                 upb_endfield_handlerfunc *func, void *d);
   4641 
   4642 /* "Static" methods */
   4643 bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
   4644 upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
   4645 bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
   4646                               upb_selector_t *s);
   4647 UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
   4648   return start + 1;
   4649 }
   4650 
   4651 /* Internal-only. */
   4652 uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
   4653 uint32_t upb_handlers_selectorcount(const upb_fielddef *f);
   4654 
   4655 UPB_END_EXTERN_C
   4656 
   4657 /*
   4658 ** Inline definitions for handlers.h, which are particularly long and a bit
   4659 ** tricky.
   4660 */
   4661 
   4662 #ifndef UPB_HANDLERS_INL_H_
   4663 #define UPB_HANDLERS_INL_H_
   4664 
   4665 #include <limits.h>
   4666 
   4667 /* C inline methods. */
   4668 
   4669 /* upb_bufhandle */
   4670 UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
   4671   h->obj_ = NULL;
   4672   h->objtype_ = NULL;
   4673   h->buf_ = NULL;
   4674   h->objofs_ = 0;
   4675 }
   4676 UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
   4677   UPB_UNUSED(h);
   4678 }
   4679 UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
   4680                                      const void *type) {
   4681   h->obj_ = obj;
   4682   h->objtype_ = type;
   4683 }
   4684 UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
   4685                                      size_t ofs) {
   4686   h->buf_ = buf;
   4687   h->objofs_ = ofs;
   4688 }
   4689 UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
   4690   return h->obj_;
   4691 }
   4692 UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
   4693   return h->objtype_;
   4694 }
   4695 UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
   4696   return h->buf_;
   4697 }
   4698 
   4699 
   4700 #ifdef __cplusplus
   4701 
   4702 /* Type detection and typedefs for integer types.
   4703  * For platforms where there are multiple 32-bit or 64-bit types, we need to be
   4704  * able to enumerate them so we can properly create overloads for all variants.
   4705  *
   4706  * If any platform existed where there were three integer types with the same
   4707  * size, this would have to become more complicated.  For example, short, int,
   4708  * and long could all be 32-bits.  Even more diabolically, short, int, long,
   4709  * and long long could all be 64 bits and still be standard-compliant.
   4710  * However, few platforms are this strange, and it's unlikely that upb will be
   4711  * used on the strangest ones. */
   4712 
   4713 /* Can't count on stdint.h limits like INT32_MAX, because in C++ these are
   4714  * only defined when __STDC_LIMIT_MACROS are defined before the *first* include
   4715  * of stdint.h.  We can't guarantee that someone else didn't include these first
   4716  * without defining __STDC_LIMIT_MACROS. */
   4717 #define UPB_INT32_MAX 0x7fffffffLL
   4718 #define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
   4719 #define UPB_INT64_MAX 0x7fffffffffffffffLL
   4720 #define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
   4721 
   4722 #if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
   4723 #define UPB_INT_IS_32BITS 1
   4724 #endif
   4725 
   4726 #if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
   4727 #define UPB_LONG_IS_32BITS 1
   4728 #endif
   4729 
   4730 #if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
   4731 #define UPB_LONG_IS_64BITS 1
   4732 #endif
   4733 
   4734 #if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
   4735 #define UPB_LLONG_IS_64BITS 1
   4736 #endif
   4737 
   4738 /* We use macros instead of typedefs so we can undefine them later and avoid
   4739  * leaking them outside this header file. */
   4740 #if UPB_INT_IS_32BITS
   4741 #define UPB_INT32_T int
   4742 #define UPB_UINT32_T unsigned int
   4743 
   4744 #if UPB_LONG_IS_32BITS
   4745 #define UPB_TWO_32BIT_TYPES 1
   4746 #define UPB_INT32ALT_T long
   4747 #define UPB_UINT32ALT_T unsigned long
   4748 #endif  /* UPB_LONG_IS_32BITS */
   4749 
   4750 #elif UPB_LONG_IS_32BITS  /* && !UPB_INT_IS_32BITS */
   4751 #define UPB_INT32_T long
   4752 #define UPB_UINT32_T unsigned long
   4753 #endif  /* UPB_INT_IS_32BITS */
   4754 
   4755 
   4756 #if UPB_LONG_IS_64BITS
   4757 #define UPB_INT64_T long
   4758 #define UPB_UINT64_T unsigned long
   4759 
   4760 #if UPB_LLONG_IS_64BITS
   4761 #define UPB_TWO_64BIT_TYPES 1
   4762 #define UPB_INT64ALT_T long long
   4763 #define UPB_UINT64ALT_T unsigned long long
   4764 #endif  /* UPB_LLONG_IS_64BITS */
   4765 
   4766 #elif UPB_LLONG_IS_64BITS  /* && !UPB_LONG_IS_64BITS */
   4767 #define UPB_INT64_T long long
   4768 #define UPB_UINT64_T unsigned long long
   4769 #endif  /* UPB_LONG_IS_64BITS */
   4770 
   4771 #undef UPB_INT32_MAX
   4772 #undef UPB_INT32_MIN
   4773 #undef UPB_INT64_MAX
   4774 #undef UPB_INT64_MIN
   4775 #undef UPB_INT_IS_32BITS
   4776 #undef UPB_LONG_IS_32BITS
   4777 #undef UPB_LONG_IS_64BITS
   4778 #undef UPB_LLONG_IS_64BITS
   4779 
   4780 
   4781 namespace upb {
   4782 
   4783 typedef void CleanupFunc(void *ptr);
   4784 
   4785 /* Template to remove "const" from "const T*" and just return "T*".
   4786  *
   4787  * We define a nonsense default because otherwise it will fail to instantiate as
   4788  * a function parameter type even in cases where we don't expect any caller to
   4789  * actually match the overload. */
   4790 class CouldntRemoveConst {};
   4791 template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
   4792 template <class T> struct remove_constptr<const T *> { typedef T *type; };
   4793 
   4794 /* Template that we use below to remove a template specialization from
   4795  * consideration if it matches a specific type. */
   4796 template <class T, class U> struct disable_if_same { typedef void Type; };
   4797 template <class T> struct disable_if_same<T, T> {};
   4798 
   4799 template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }
   4800 
   4801 template <class T1, class T2>
   4802 struct FirstUnlessVoidOrBool {
   4803   typedef T1 value;
   4804 };
   4805 
   4806 template <class T2>
   4807 struct FirstUnlessVoidOrBool<void, T2> {
   4808   typedef T2 value;
   4809 };
   4810 
   4811 template <class T2>
   4812 struct FirstUnlessVoidOrBool<bool, T2> {
   4813   typedef T2 value;
   4814 };
   4815 
   4816 template<class T, class U>
   4817 struct is_same {
   4818   static bool value;
   4819 };
   4820 
   4821 template<class T>
   4822 struct is_same<T, T> {
   4823   static bool value;
   4824 };
   4825 
   4826 template<class T, class U>
   4827 bool is_same<T, U>::value = false;
   4828 
   4829 template<class T>
   4830 bool is_same<T, T>::value = true;
   4831 
   4832 /* FuncInfo *******************************************************************/
   4833 
   4834 /* Info about the user's original, pre-wrapped function. */
   4835 template <class C, class R = void>
   4836 struct FuncInfo {
   4837   /* The type of the closure that the function takes (its first param). */
   4838   typedef C Closure;
   4839 
   4840   /* The return type. */
   4841   typedef R Return;
   4842 };
   4843 
   4844 /* Func ***********************************************************************/
   4845 
   4846 /* Func1, Func2, Func3: Template classes representing a function and its
   4847  * signature.
   4848  *
   4849  * Since the function is a template parameter, calling the function can be
   4850  * inlined at compile-time and does not require a function pointer at runtime.
   4851  * These functions are not bound to a handler data so have no data or cleanup
   4852  * handler. */
   4853 struct UnboundFunc {
   4854   CleanupFunc *GetCleanup() { return NULL; }
   4855   void *GetData() { return NULL; }
   4856 };
   4857 
   4858 template <class R, class P1, R F(P1), class I>
   4859 struct Func1 : public UnboundFunc {
   4860   typedef R Return;
   4861   typedef I FuncInfo;
   4862   static R Call(P1 p1) { return F(p1); }
   4863 };
   4864 
   4865 template <class R, class P1, class P2, R F(P1, P2), class I>
   4866 struct Func2 : public UnboundFunc {
   4867   typedef R Return;
   4868   typedef I FuncInfo;
   4869   static R Call(P1 p1, P2 p2) { return F(p1, p2); }
   4870 };
   4871 
   4872 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
   4873 struct Func3 : public UnboundFunc {
   4874   typedef R Return;
   4875   typedef I FuncInfo;
   4876   static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
   4877 };
   4878 
   4879 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
   4880           class I>
   4881 struct Func4 : public UnboundFunc {
   4882   typedef R Return;
   4883   typedef I FuncInfo;
   4884   static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
   4885 };
   4886 
   4887 template <class R, class P1, class P2, class P3, class P4, class P5,
   4888           R F(P1, P2, P3, P4, P5), class I>
   4889 struct Func5 : public UnboundFunc {
   4890   typedef R Return;
   4891   typedef I FuncInfo;
   4892   static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
   4893     return F(p1, p2, p3, p4, p5);
   4894   }
   4895 };
   4896 
   4897 /* BoundFunc ******************************************************************/
   4898 
   4899 /* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
   4900  * shall be bound to the function's second parameter.
   4901  *
   4902  * Note that the second parameter is a const pointer, but our stored bound value
   4903  * is non-const so we can free it when the handlers are destroyed. */
   4904 template <class T>
   4905 struct BoundFunc {
   4906   typedef typename remove_constptr<T>::type MutableP2;
   4907   explicit BoundFunc(MutableP2 data_) : data(data_) {}
   4908   CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
   4909   MutableP2 GetData() { return data; }
   4910   MutableP2 data;
   4911 };
   4912 
   4913 template <class R, class P1, class P2, R F(P1, P2), class I>
   4914 struct BoundFunc2 : public BoundFunc<P2> {
   4915   typedef BoundFunc<P2> Base;
   4916   typedef I FuncInfo;
   4917   explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
   4918 };
   4919 
   4920 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
   4921 struct BoundFunc3 : public BoundFunc<P2> {
   4922   typedef BoundFunc<P2> Base;
   4923   typedef I FuncInfo;
   4924   explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
   4925 };
   4926 
   4927 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
   4928           class I>
   4929 struct BoundFunc4 : public BoundFunc<P2> {
   4930   typedef BoundFunc<P2> Base;
   4931   typedef I FuncInfo;
   4932   explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
   4933 };
   4934 
   4935 template <class R, class P1, class P2, class P3, class P4, class P5,
   4936           R F(P1, P2, P3, P4, P5), class I>
   4937 struct BoundFunc5 : public BoundFunc<P2> {
   4938   typedef BoundFunc<P2> Base;
   4939   typedef I FuncInfo;
   4940   explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
   4941 };
   4942 
   4943 /* FuncSig ********************************************************************/
   4944 
   4945 /* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
   4946  * *signature*, but without a specific function attached.
   4947  *
   4948  * These classes contain member functions that can be invoked with a
   4949  * specific function to return a Func/BoundFunc class. */
   4950 template <class R, class P1>
   4951 struct FuncSig1 {
   4952   template <R F(P1)>
   4953   Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
   4954     return Func1<R, P1, F, FuncInfo<P1, R> >();
   4955   }
   4956 };
   4957 
   4958 template <class R, class P1, class P2>
   4959 struct FuncSig2 {
   4960   template <R F(P1, P2)>
   4961   Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
   4962     return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
   4963   }
   4964 
   4965   template <R F(P1, P2)>
   4966   BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
   4967       typename remove_constptr<P2>::type param2) {
   4968     return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
   4969   }
   4970 };
   4971 
   4972 template <class R, class P1, class P2, class P3>
   4973 struct FuncSig3 {
   4974   template <R F(P1, P2, P3)>
   4975   Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
   4976     return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
   4977   }
   4978 
   4979   template <R F(P1, P2, P3)>
   4980   BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
   4981       typename remove_constptr<P2>::type param2) {
   4982     return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
   4983   }
   4984 };
   4985 
   4986 template <class R, class P1, class P2, class P3, class P4>
   4987 struct FuncSig4 {
   4988   template <R F(P1, P2, P3, P4)>
   4989   Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
   4990     return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
   4991   }
   4992 
   4993   template <R F(P1, P2, P3, P4)>
   4994   BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
   4995       typename remove_constptr<P2>::type param2) {
   4996     return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
   4997   }
   4998 };
   4999 
   5000 template <class R, class P1, class P2, class P3, class P4, class P5>
   5001 struct FuncSig5 {
   5002   template <R F(P1, P2, P3, P4, P5)>
   5003   Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
   5004     return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
   5005   }
   5006 
   5007   template <R F(P1, P2, P3, P4, P5)>
   5008   BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
   5009       typename remove_constptr<P2>::type param2) {
   5010     return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
   5011   }
   5012 };
   5013 
   5014 /* Overloaded template function that can construct the appropriate FuncSig*
   5015  * class given a function pointer by deducing the template parameters. */
   5016 template <class R, class P1>
   5017 inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
   5018   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5019   return FuncSig1<R, P1>();
   5020 }
   5021 
   5022 template <class R, class P1, class P2>
   5023 inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
   5024   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5025   return FuncSig2<R, P1, P2>();
   5026 }
   5027 
   5028 template <class R, class P1, class P2, class P3>
   5029 inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
   5030   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5031   return FuncSig3<R, P1, P2, P3>();
   5032 }
   5033 
   5034 template <class R, class P1, class P2, class P3, class P4>
   5035 inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
   5036   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5037   return FuncSig4<R, P1, P2, P3, P4>();
   5038 }
   5039 
   5040 template <class R, class P1, class P2, class P3, class P4, class P5>
   5041 inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
   5042   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5043   return FuncSig5<R, P1, P2, P3, P4, P5>();
   5044 }
   5045 
   5046 /* MethodSig ******************************************************************/
   5047 
   5048 /* CallMethod*: a function template that calls a given method. */
   5049 template <class R, class C, R (C::*F)()>
   5050 R CallMethod0(C *obj) {
   5051   return ((*obj).*F)();
   5052 }
   5053 
   5054 template <class R, class C, class P1, R (C::*F)(P1)>
   5055 R CallMethod1(C *obj, P1 arg1) {
   5056   return ((*obj).*F)(arg1);
   5057 }
   5058 
   5059 template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
   5060 R CallMethod2(C *obj, P1 arg1, P2 arg2) {
   5061   return ((*obj).*F)(arg1, arg2);
   5062 }
   5063 
   5064 template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
   5065 R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
   5066   return ((*obj).*F)(arg1, arg2, arg3);
   5067 }
   5068 
   5069 template <class R, class C, class P1, class P2, class P3, class P4,
   5070           R (C::*F)(P1, P2, P3, P4)>
   5071 R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
   5072   return ((*obj).*F)(arg1, arg2, arg3, arg4);
   5073 }
   5074 
   5075 /* MethodSig: like FuncSig, but for member functions.
   5076  *
   5077  * GetFunc() returns a normal FuncN object, so after calling GetFunc() no
   5078  * more logic is required to special-case methods. */
   5079 template <class R, class C>
   5080 struct MethodSig0 {
   5081   template <R (C::*F)()>
   5082   Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
   5083     return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
   5084   }
   5085 };
   5086 
   5087 template <class R, class C, class P1>
   5088 struct MethodSig1 {
   5089   template <R (C::*F)(P1)>
   5090   Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
   5091     return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
   5092   }
   5093 
   5094   template <R (C::*F)(P1)>
   5095   BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
   5096       typename remove_constptr<P1>::type param1) {
   5097     return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
   5098         param1);
   5099   }
   5100 };
   5101 
   5102 template <class R, class C, class P1, class P2>
   5103 struct MethodSig2 {
   5104   template <R (C::*F)(P1, P2)>
   5105   Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
   5106   GetFunc() {
   5107     return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
   5108                  FuncInfo<C *, R> >();
   5109   }
   5110 
   5111   template <R (C::*F)(P1, P2)>
   5112   BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
   5113   GetFunc(typename remove_constptr<P1>::type param1) {
   5114     return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
   5115                       FuncInfo<C *, R> >(param1);
   5116   }
   5117 };
   5118 
   5119 template <class R, class C, class P1, class P2, class P3>
   5120 struct MethodSig3 {
   5121   template <R (C::*F)(P1, P2, P3)>
   5122   Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
   5123   GetFunc() {
   5124     return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
   5125                  FuncInfo<C *, R> >();
   5126   }
   5127 
   5128   template <R (C::*F)(P1, P2, P3)>
   5129   BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
   5130              FuncInfo<C *, R> >
   5131   GetFunc(typename remove_constptr<P1>::type param1) {
   5132     return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
   5133                       FuncInfo<C *, R> >(param1);
   5134   }
   5135 };
   5136 
   5137 template <class R, class C, class P1, class P2, class P3, class P4>
   5138 struct MethodSig4 {
   5139   template <R (C::*F)(P1, P2, P3, P4)>
   5140   Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
   5141         FuncInfo<C *, R> >
   5142   GetFunc() {
   5143     return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
   5144                  FuncInfo<C *, R> >();
   5145   }
   5146 
   5147   template <R (C::*F)(P1, P2, P3, P4)>
   5148   BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
   5149              FuncInfo<C *, R> >
   5150   GetFunc(typename remove_constptr<P1>::type param1) {
   5151     return BoundFunc5<R, C *, P1, P2, P3, P4,
   5152                       CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
   5153         param1);
   5154   }
   5155 };
   5156 
   5157 template <class R, class C>
   5158 inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
   5159   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5160   return MethodSig0<R, C>();
   5161 }
   5162 
   5163 template <class R, class C, class P1>
   5164 inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
   5165   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5166   return MethodSig1<R, C, P1>();
   5167 }
   5168 
   5169 template <class R, class C, class P1, class P2>
   5170 inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
   5171   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5172   return MethodSig2<R, C, P1, P2>();
   5173 }
   5174 
   5175 template <class R, class C, class P1, class P2, class P3>
   5176 inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
   5177   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5178   return MethodSig3<R, C, P1, P2, P3>();
   5179 }
   5180 
   5181 template <class R, class C, class P1, class P2, class P3, class P4>
   5182 inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
   5183   UPB_UNUSED(f);  /* Only used for template parameter deduction. */
   5184   return MethodSig4<R, C, P1, P2, P3, P4>();
   5185 }
   5186 
   5187 /* MaybeWrapReturn ************************************************************/
   5188 
   5189 /* Template class that attempts to wrap the return value of the function so it
   5190  * matches the expected type.  There are two main adjustments it may make:
   5191  *
   5192  *   1. If the function returns void, make it return the expected type and with
   5193  *      a value that always indicates success.
   5194  *   2. If the function returns bool, make it return the expected type with a
   5195  *      value that indicates success or failure.
   5196  *
   5197  * The "expected type" for return is:
   5198  *   1. void* for start handlers.  If the closure parameter has a different type
   5199  *      we will cast it to void* for the return in the success case.
   5200  *   2. size_t for string buffer handlers.
   5201  *   3. bool for everything else. */
   5202 
   5203 /* Template parameters are FuncN type and desired return type. */
   5204 template <class F, class R, class Enable = void>
   5205 struct MaybeWrapReturn;
   5206 
   5207 /* If the return type matches, return the given function unwrapped. */
   5208 template <class F>
   5209 struct MaybeWrapReturn<F, typename F::Return> {
   5210   typedef F Func;
   5211 };
   5212 
   5213 /* Function wrapper that munges the return value from void to (bool)true. */
   5214 template <class P1, class P2, void F(P1, P2)>
   5215 bool ReturnTrue2(P1 p1, P2 p2) {
   5216   F(p1, p2);
   5217   return true;
   5218 }
   5219 
   5220 template <class P1, class P2, class P3, void F(P1, P2, P3)>
   5221 bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
   5222   F(p1, p2, p3);
   5223   return true;
   5224 }
   5225 
   5226 /* Function wrapper that munges the return value from void to (void*)arg1  */
   5227 template <class P1, class P2, void F(P1, P2)>
   5228 void *ReturnClosure2(P1 p1, P2 p2) {
   5229   F(p1, p2);
   5230   return p1;
   5231 }
   5232 
   5233 template <class P1, class P2, class P3, void F(P1, P2, P3)>
   5234 void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
   5235   F(p1, p2, p3);
   5236   return p1;
   5237 }
   5238 
   5239 /* Function wrapper that munges the return value from R to void*. */
   5240 template <class R, class P1, class P2, R F(P1, P2)>
   5241 void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
   5242   return F(p1, p2);
   5243 }
   5244 
   5245 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
   5246 void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
   5247   return F(p1, p2, p3);
   5248 }
   5249 
   5250 /* Function wrapper that munges the return value from bool to void*. */
   5251 template <class P1, class P2, bool F(P1, P2)>
   5252 void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
   5253   return F(p1, p2) ? p1 : UPB_BREAK;
   5254 }
   5255 
   5256 template <class P1, class P2, class P3, bool F(P1, P2, P3)>
   5257 void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
   5258   return F(p1, p2, p3) ? p1 : UPB_BREAK;
   5259 }
   5260 
   5261 /* For the string callback, which takes five params, returns the size param. */
   5262 template <class P1, class P2,
   5263           void F(P1, P2, const char *, size_t, const BufferHandle *)>
   5264 size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
   5265                        const BufferHandle *p5) {
   5266   F(p1, p2, p3, p4, p5);
   5267   return p4;
   5268 }
   5269 
   5270 /* For the string callback, which takes five params, returns the size param or
   5271  * zero. */
   5272 template <class P1, class P2,
   5273           bool F(P1, P2, const char *, size_t, const BufferHandle *)>
   5274 size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
   5275                   const BufferHandle *p5) {
   5276   return F(p1, p2, p3, p4, p5) ? p4 : 0;
   5277 }
   5278 
   5279 /* If we have a function returning void but want a function returning bool, wrap
   5280  * it in a function that returns true. */
   5281 template <class P1, class P2, void F(P1, P2), class I>
   5282 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
   5283   typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
   5284 };
   5285 
   5286 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
   5287 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
   5288   typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
   5289 };
   5290 
   5291 /* If our function returns void but we want one returning void*, wrap it in a
   5292  * function that returns the first argument. */
   5293 template <class P1, class P2, void F(P1, P2), class I>
   5294 struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
   5295   typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
   5296 };
   5297 
   5298 template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
   5299 struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
   5300   typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
   5301 };
   5302 
   5303 /* If our function returns R* but we want one returning void*, wrap it in a
   5304  * function that casts to void*. */
   5305 template <class R, class P1, class P2, R *F(P1, P2), class I>
   5306 struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
   5307                        typename disable_if_same<R *, void *>::Type> {
   5308   typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
   5309 };
   5310 
   5311 template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
   5312 struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
   5313                        typename disable_if_same<R *, void *>::Type> {
   5314   typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
   5315       Func;
   5316 };
   5317 
   5318 /* If our function returns bool but we want one returning void*, wrap it in a
   5319  * function that returns either the first param or UPB_BREAK. */
   5320 template <class P1, class P2, bool F(P1, P2), class I>
   5321 struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
   5322   typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
   5323 };
   5324 
   5325 template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
   5326 struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
   5327   typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
   5328       Func;
   5329 };
   5330 
   5331 /* If our function returns void but we want one returning size_t, wrap it in a
   5332  * function that returns the size argument. */
   5333 template <class P1, class P2,
   5334           void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
   5335 struct MaybeWrapReturn<
   5336     Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
   5337           size_t> {
   5338   typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
   5339                 ReturnStringLen<P1, P2, F>, I> Func;
   5340 };
   5341 
   5342 /* If our function returns bool but we want one returning size_t, wrap it in a
   5343  * function that returns either 0 or the buf size. */
   5344 template <class P1, class P2,
   5345           bool F(P1, P2, const char *, size_t, const BufferHandle *), class I>
   5346 struct MaybeWrapReturn<
   5347     Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
   5348     size_t> {
   5349   typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
   5350                 ReturnNOr0<P1, P2, F>, I> Func;
   5351 };
   5352 
   5353 /* ConvertParams **************************************************************/
   5354 
   5355 /* Template class that converts the function parameters if necessary, and
   5356  * ignores the HandlerData parameter if appropriate.
   5357  *
   5358  * Template parameter is the are FuncN function type. */
   5359 template <class F, class T>
   5360 struct ConvertParams;
   5361 
   5362 /* Function that discards the handler data parameter. */
   5363 template <class R, class P1, R F(P1)>
   5364 R IgnoreHandlerData2(void *p1, const void *hd) {
   5365   UPB_UNUSED(hd);
   5366   return F(static_cast<P1>(p1));
   5367 }
   5368 
   5369 template <class R, class P1, class P2Wrapper, class P2Wrapped,
   5370           R F(P1, P2Wrapped)>
   5371 R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
   5372   UPB_UNUSED(hd);
   5373   return F(static_cast<P1>(p1), p2);
   5374 }
   5375 
   5376 template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
   5377 R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
   5378   UPB_UNUSED(hd);
   5379   return F(static_cast<P1>(p1), p2, p3);
   5380 }
   5381 
   5382 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
   5383 R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
   5384   UPB_UNUSED(hd);
   5385   return F(static_cast<P1>(p1), p2, p3, p4);
   5386 }
   5387 
   5388 template <class R, class P1, R F(P1, const char*, size_t)>
   5389 R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
   5390                                 size_t p3, const BufferHandle *handle) {
   5391   UPB_UNUSED(hd);
   5392   UPB_UNUSED(handle);
   5393   return F(static_cast<P1>(p1), p2, p3);
   5394 }
   5395 
   5396 /* Function that casts the handler data parameter. */
   5397 template <class R, class P1, class P2, R F(P1, P2)>
   5398 R CastHandlerData2(void *c, const void *hd) {
   5399   return F(static_cast<P1>(c), static_cast<P2>(hd));
   5400 }
   5401 
   5402 template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
   5403           R F(P1, P2, P3Wrapped)>
   5404 R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
   5405   return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
   5406 }
   5407 
   5408 template <class R, class P1, class P2, class P3, class P4, class P5,
   5409           R F(P1, P2, P3, P4, P5)>
   5410 R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
   5411   return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
   5412 }
   5413 
   5414 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
   5415 R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
   5416                               size_t p4, const BufferHandle *handle) {
   5417   UPB_UNUSED(handle);
   5418   return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
   5419 }
   5420 
   5421 /* For unbound functions, ignore the handler data. */
   5422 template <class R, class P1, R F(P1), class I, class T>
   5423 struct ConvertParams<Func1<R, P1, F, I>, T> {
   5424   typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
   5425 };
   5426 
   5427 template <class R, class P1, class P2, R F(P1, P2), class I,
   5428           class R2, class P1_2, class P2_2, class P3_2>
   5429 struct ConvertParams<Func2<R, P1, P2, F, I>,
   5430                      R2 (*)(P1_2, P2_2, P3_2)> {
   5431   typedef Func3<R, void *, const void *, P3_2,
   5432                 IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
   5433 };
   5434 
   5435 /* For StringBuffer only; this ignores both the handler data and the
   5436  * BufferHandle. */
   5437 template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
   5438 struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
   5439   typedef Func5<R, void *, const void *, const char *, size_t,
   5440                 const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
   5441                 I> Func;
   5442 };
   5443 
   5444 template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
   5445           class I, class T>
   5446 struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
   5447   typedef Func5<R, void *, const void *, P2, P3, P4,
   5448                 IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
   5449 };
   5450 
   5451 /* For bound functions, cast the handler data. */
   5452 template <class R, class P1, class P2, R F(P1, P2), class I, class T>
   5453 struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
   5454   typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
   5455       Func;
   5456 };
   5457 
   5458 template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
   5459           class R2, class P1_2, class P2_2, class P3_2>
   5460 struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
   5461                      R2 (*)(P1_2, P2_2, P3_2)> {
   5462   typedef Func3<R, void *, const void *, P3_2,
   5463                 CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
   5464 };
   5465 
   5466 /* For StringBuffer only; this ignores the BufferHandle. */
   5467 template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
   5468           class I, class T>
   5469 struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
   5470   typedef Func5<R, void *, const void *, const char *, size_t,
   5471                 const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
   5472                 I> Func;
   5473 };
   5474 
   5475 template <class R, class P1, class P2, class P3, class P4, class P5,
   5476           R F(P1, P2, P3, P4, P5), class I, class T>
   5477 struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
   5478   typedef Func5<R, void *, const void *, P3, P4, P5,
   5479                 CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
   5480 };
   5481 
   5482 /* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
   5483  * variant C type. */
   5484 #define TYPE_METHODS(utype, ltype, ctype, vtype)                               \
   5485   template <> struct CanonicalType<vtype> {                                    \
   5486     typedef ctype Type;                                                        \
   5487   };                                                                           \
   5488   template <>                                                                  \
   5489   inline bool Handlers::SetValueHandler<vtype>(                                \
   5490       const FieldDef *f,                                                       \
   5491       const Handlers::utype ## Handler& handler) {                             \
   5492     assert(!handler.registered_);                                              \
   5493     handler.AddCleanup(this);                                                  \
   5494     handler.registered_ = true;                                                \
   5495     return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
   5496   }                                                                            \
   5497 
   5498 TYPE_METHODS(Double, double, double,   double)
   5499 TYPE_METHODS(Float,  float,  float,    float)
   5500 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T)
   5501 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T)
   5502 TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64_T)
   5503 TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32_T)
   5504 TYPE_METHODS(Bool,   bool,   bool,     bool)
   5505 
   5506 #ifdef UPB_TWO_32BIT_TYPES
   5507 TYPE_METHODS(Int32,  int32,  int32_t,  UPB_INT32ALT_T)
   5508 TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T)
   5509 #endif
   5510 
   5511 #ifdef UPB_TWO_64BIT_TYPES
   5512 TYPE_METHODS(Int64,  int64,  int64_t,  UPB_INT64ALT_T)
   5513 TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T)
   5514 #endif
   5515 #undef TYPE_METHODS
   5516 
   5517 template <> struct CanonicalType<Status*> {
   5518   typedef Status* Type;
   5519 };
   5520 
   5521 /* Type methods that are only one-per-canonical-type and not
   5522  * one-per-cvariant. */
   5523 
   5524 #define TYPE_METHODS(utype, ctype) \
   5525     inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
   5526                                               const utype##Handler &h) { \
   5527       return SetValueHandler<ctype>(f, h); \
   5528     } \
   5529 
   5530 TYPE_METHODS(Double, double)
   5531 TYPE_METHODS(Float,  float)
   5532 TYPE_METHODS(UInt64, uint64_t)
   5533 TYPE_METHODS(UInt32, uint32_t)
   5534 TYPE_METHODS(Int64,  int64_t)
   5535 TYPE_METHODS(Int32,  int32_t)
   5536 TYPE_METHODS(Bool,   bool)
   5537 #undef TYPE_METHODS
   5538 
   5539 template <class F> struct ReturnOf;
   5540 
   5541 template <class R, class P1, class P2>
   5542 struct ReturnOf<R (*)(P1, P2)> {
   5543   typedef R Return;
   5544 };
   5545 
   5546 template <class R, class P1, class P2, class P3>
   5547 struct ReturnOf<R (*)(P1, P2, P3)> {
   5548   typedef R Return;
   5549 };
   5550 
   5551 template <class R, class P1, class P2, class P3, class P4>
   5552 struct ReturnOf<R (*)(P1, P2, P3, P4)> {
   5553   typedef R Return;
   5554 };
   5555 
   5556 template <class R, class P1, class P2, class P3, class P4, class P5>
   5557 struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
   5558   typedef R Return;
   5559 };
   5560 
   5561 template<class T> const void *UniquePtrForType() {
   5562   static const char ch = 0;
   5563   return &ch;
   5564 }
   5565 
   5566 template <class T>
   5567 template <class F>
   5568 inline Handler<T>::Handler(F func)
   5569     : registered_(false),
   5570       cleanup_data_(func.GetData()),
   5571       cleanup_func_(func.GetCleanup()) {
   5572   upb_handlerattr_sethandlerdata(&attr_, func.GetData());
   5573   typedef typename ReturnOf<T>::Return Return;
   5574   typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
   5575   typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
   5576       ReturnWrappedFunc;
   5577   handler_ = ReturnWrappedFunc().Call;
   5578 
   5579   /* Set attributes based on what templates can statically tell us about the
   5580    * user's function. */
   5581 
   5582   /* If the original function returns void, then we know that we wrapped it to
   5583    * always return ok. */
   5584   bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
   5585   attr_.SetAlwaysOk(always_ok);
   5586 
   5587   /* Closure parameter and return type. */
   5588   attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());
   5589 
   5590   /* We use the closure type (from the first parameter) if the return type is
   5591    * void or bool, since these are the two cases we wrap to return the closure's
   5592    * type anyway.
   5593    *
   5594    * This is all nonsense for non START* handlers, but it doesn't matter because
   5595    * in that case the value will be ignored. */
   5596   typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return,
   5597                                          typename F::FuncInfo::Closure>::value
   5598       EffectiveReturn;
   5599   attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
   5600 }
   5601 
   5602 template <class T>
   5603 inline Handler<T>::~Handler() {
   5604   assert(registered_);
   5605 }
   5606 
   5607 inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
   5608 inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
   5609 inline bool HandlerAttributes::SetHandlerData(const void *hd) {
   5610   return upb_handlerattr_sethandlerdata(this, hd);
   5611 }
   5612 inline const void* HandlerAttributes::handler_data() const {
   5613   return upb_handlerattr_handlerdata(this);
   5614 }
   5615 inline bool HandlerAttributes::SetClosureType(const void *type) {
   5616   return upb_handlerattr_setclosuretype(this, type);
   5617 }
   5618 inline const void* HandlerAttributes::closure_type() const {
   5619   return upb_handlerattr_closuretype(this);
   5620 }
   5621 inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
   5622   return upb_handlerattr_setreturnclosuretype(this, type);
   5623 }
   5624 inline const void* HandlerAttributes::return_closure_type() const {
   5625   return upb_handlerattr_returnclosuretype(this);
   5626 }
   5627 inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
   5628   return upb_handlerattr_setalwaysok(this, always_ok);
   5629 }
   5630 inline bool HandlerAttributes::always_ok() const {
   5631   return upb_handlerattr_alwaysok(this);
   5632 }
   5633 
   5634 inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
   5635 inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
   5636 inline const char* BufferHandle::buffer() const {
   5637   return upb_bufhandle_buf(this);
   5638 }
   5639 inline size_t BufferHandle::object_offset() const {
   5640   return upb_bufhandle_objofs(this);
   5641 }
   5642 inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
   5643   upb_bufhandle_setbuf(this, buf, ofs);
   5644 }
   5645 template <class T>
   5646 void BufferHandle::SetAttachedObject(const T* obj) {
   5647   upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
   5648 }
   5649 template <class T>
   5650 const T* BufferHandle::GetAttachedObject() const {
   5651   return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
   5652       ? static_cast<const T *>(upb_bufhandle_obj(this))
   5653                                : NULL;
   5654 }
   5655 
   5656 inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
   5657   upb_handlers *h = upb_handlers_new(m, &h);
   5658   return reffed_ptr<Handlers>(h, &h);
   5659 }
   5660 inline reffed_ptr<const Handlers> Handlers::NewFrozen(
   5661     const MessageDef *m, upb_handlers_callback *callback,
   5662     const void *closure) {
   5663   const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
   5664   return reffed_ptr<const Handlers>(h, &h);
   5665 }
   5666 inline const Status* Handlers::status() {
   5667   return upb_handlers_status(this);
   5668 }
   5669 inline void Handlers::ClearError() {
   5670   return upb_handlers_clearerr(this);
   5671 }
   5672 inline bool Handlers::Freeze(Status *s) {
   5673   upb::Handlers* h = this;
   5674   return upb_handlers_freeze(&h, 1, s);
   5675 }
   5676 inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
   5677   return upb_handlers_freeze(handlers, n, s);
   5678 }
   5679 inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
   5680   return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
   5681 }
   5682 inline const MessageDef *Handlers::message_def() const {
   5683   return upb_handlers_msgdef(this);
   5684 }
   5685 inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) {
   5686   return upb_handlers_addcleanup(this, p, func);
   5687 }
   5688 inline bool Handlers::SetStartMessageHandler(
   5689     const Handlers::StartMessageHandler &handler) {
   5690   assert(!handler.registered_);
   5691   handler.registered_ = true;
   5692   handler.AddCleanup(this);
   5693   return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
   5694 }
   5695 inline bool Handlers::SetEndMessageHandler(
   5696     const Handlers::EndMessageHandler &handler) {
   5697   assert(!handler.registered_);
   5698   handler.registered_ = true;
   5699   handler.AddCleanup(this);
   5700   return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
   5701 }
   5702 inline bool Handlers::SetStartStringHandler(const FieldDef *f,
   5703                                             const StartStringHandler &handler) {
   5704   assert(!handler.registered_);
   5705   handler.registered_ = true;
   5706   handler.AddCleanup(this);
   5707   return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
   5708 }
   5709 inline bool Handlers::SetEndStringHandler(const FieldDef *f,
   5710                                           const EndFieldHandler &handler) {
   5711   assert(!handler.registered_);
   5712   handler.registered_ = true;
   5713   handler.AddCleanup(this);
   5714   return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
   5715 }
   5716 inline bool Handlers::SetStringHandler(const FieldDef *f,
   5717                                        const StringHandler& handler) {
   5718   assert(!handler.registered_);
   5719   handler.registered_ = true;
   5720   handler.AddCleanup(this);
   5721   return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
   5722 }
   5723 inline bool Handlers::SetStartSequenceHandler(
   5724     const FieldDef *f, const StartFieldHandler &handler) {
   5725   assert(!handler.registered_);
   5726   handler.registered_ = true;
   5727   handler.AddCleanup(this);
   5728   return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
   5729 }
   5730 inline bool Handlers::SetStartSubMessageHandler(
   5731     const FieldDef *f, const StartFieldHandler &handler) {
   5732   assert(!handler.registered_);
   5733   handler.registered_ = true;
   5734   handler.AddCleanup(this);
   5735   return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
   5736 }
   5737 inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
   5738                                               const EndFieldHandler &handler) {
   5739   assert(!handler.registered_);
   5740   handler.registered_ = true;
   5741   handler.AddCleanup(this);
   5742   return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
   5743 }
   5744 inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
   5745                                             const EndFieldHandler &handler) {
   5746   assert(!handler.registered_);
   5747   handler.registered_ = true;
   5748   handler.AddCleanup(this);
   5749   return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
   5750 }
   5751 inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
   5752   return upb_handlers_setsubhandlers(this, f, sub);
   5753 }
   5754 inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
   5755   return upb_handlers_getsubhandlers(this, f);
   5756 }
   5757 inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
   5758   return upb_handlers_getsubhandlers_sel(this, sel);
   5759 }
   5760 inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
   5761                                   Handlers::Selector *s) {
   5762   return upb_handlers_getselector(f, type, s);
   5763 }
   5764 inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
   5765   return upb_handlers_getendselector(start);
   5766 }
   5767 inline Handlers::GenericFunction *Handlers::GetHandler(
   5768     Handlers::Selector selector) {
   5769   return upb_handlers_gethandler(this, selector);
   5770 }
   5771 inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
   5772   return upb_handlers_gethandlerdata(this, selector);
   5773 }
   5774 
   5775 inline BytesHandler::BytesHandler() {
   5776   upb_byteshandler_init(this);
   5777 }
   5778 
   5779 inline BytesHandler::~BytesHandler() {}
   5780 
   5781 }  /* namespace upb */
   5782 
   5783 #endif  /* __cplusplus */
   5784 
   5785 
   5786 #undef UPB_TWO_32BIT_TYPES
   5787 #undef UPB_TWO_64BIT_TYPES
   5788 #undef UPB_INT32_T
   5789 #undef UPB_UINT32_T
   5790 #undef UPB_INT32ALT_T
   5791 #undef UPB_UINT32ALT_T
   5792 #undef UPB_INT64_T
   5793 #undef UPB_UINT64_T
   5794 #undef UPB_INT64ALT_T
   5795 #undef UPB_UINT64ALT_T
   5796 
   5797 #endif  /* UPB_HANDLERS_INL_H_ */
   5798 
   5799 #endif  /* UPB_HANDLERS_H */
   5800 /*
   5801 ** upb::Sink (upb_sink)
   5802 ** upb::BytesSink (upb_bytessink)
   5803 **
   5804 ** A upb_sink is an object that binds a upb_handlers object to some runtime
   5805 ** state.  It is the object that can actually receive data via the upb_handlers
   5806 ** interface.
   5807 **
   5808 ** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
   5809 ** thread-safe.  You can create as many of them as you want, but each one may
   5810 ** only be used in a single thread at a time.
   5811 **
   5812 ** If we compare with class-based OOP, a you can think of a upb_def as an
   5813 ** abstract base class, a upb_handlers as a concrete derived class, and a
   5814 ** upb_sink as an object (class instance).
   5815 */
   5816 
   5817 #ifndef UPB_SINK_H
   5818 #define UPB_SINK_H
   5819 
   5820 
   5821 #ifdef __cplusplus
   5822 namespace upb {
   5823 class BufferSource;
   5824 class BytesSink;
   5825 class Sink;
   5826 }
   5827 #endif
   5828 
   5829 UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc)
   5830 UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink)
   5831 UPB_DECLARE_TYPE(upb::Sink, upb_sink)
   5832 
   5833 #ifdef __cplusplus
   5834 
   5835 /* A upb::Sink is an object that binds a upb::Handlers object to some runtime
   5836  * state.  It represents an endpoint to which data can be sent.
   5837  *
   5838  * TODO(haberman): right now all of these functions take selectors.  Should they
   5839  * take selectorbase instead?
   5840  *
   5841  * ie. instead of calling:
   5842  *   sink->StartString(FOO_FIELD_START_STRING, ...)
   5843  * a selector base would let you say:
   5844  *   sink->StartString(FOO_FIELD, ...)
   5845  *
   5846  * This would make call sites a little nicer and require emitting fewer selector
   5847  * definitions in .h files.
   5848  *
   5849  * But the current scheme has the benefit that you can retrieve a function
   5850  * pointer for any handler with handlers->GetHandler(selector), without having
   5851  * to have a separate GetHandler() function for each handler type.  The JIT
   5852  * compiler uses this.  To accommodate we'd have to expose a separate
   5853  * GetHandler() for every handler type.
   5854  *
   5855  * Also to ponder: selectors right now are independent of a specific Handlers
   5856  * instance.  In other words, they allocate a number to every possible handler
   5857  * that *could* be registered, without knowing anything about what handlers
   5858  * *are* registered.  That means that using selectors as table offsets prohibits
   5859  * us from compacting the handler table at Freeze() time.  If the table is very
   5860  * sparse, this could be wasteful.
   5861  *
   5862  * Having another selector-like thing that is specific to a Handlers instance
   5863  * would allow this compacting, but then it would be impossible to write code
   5864  * ahead-of-time that can be bound to any Handlers instance at runtime.  For
   5865  * example, a .proto file parser written as straight C will not know what
   5866  * Handlers it will be bound to, so when it calls sink->StartString() what
   5867  * selector will it pass?  It needs a selector like we have today, that is
   5868  * independent of any particular upb::Handlers.
   5869  *
   5870  * Is there a way then to allow Handlers table compaction? */
   5871 class upb::Sink {
   5872  public:
   5873   /* Constructor with no initialization; must be Reset() before use. */
   5874   Sink() {}
   5875 
   5876   /* Constructs a new sink for the given frozen handlers and closure.
   5877    *
   5878    * TODO: once the Handlers know the expected closure type, verify that T
   5879    * matches it. */
   5880   template <class T> Sink(const Handlers* handlers, T* closure);
   5881 
   5882   /* Resets the value of the sink. */
   5883   template <class T> void Reset(const Handlers* handlers, T* closure);
   5884 
   5885   /* Returns the top-level object that is bound to this sink.
   5886    *
   5887    * TODO: once the Handlers know the expected closure type, verify that T
   5888    * matches it. */
   5889   template <class T> T* GetObject() const;
   5890 
   5891   /* Functions for pushing data into the sink.
   5892    *
   5893    * These return false if processing should stop (either due to error or just
   5894    * to suspend).
   5895    *
   5896    * These may not be called from within one of the same sink's handlers (in
   5897    * other words, handlers are not re-entrant). */
   5898 
   5899   /* Should be called at the start and end of every message; both the top-level
   5900    * message and submessages.  This means that submessages should use the
   5901    * following sequence:
   5902    *   sink->StartSubMessage(startsubmsg_selector);
   5903    *   sink->StartMessage();
   5904    *   // ...
   5905    *   sink->EndMessage(&status);
   5906    *   sink->EndSubMessage(endsubmsg_selector); */
   5907   bool StartMessage();
   5908   bool EndMessage(Status* status);
   5909 
   5910   /* Putting of individual values.  These work for both repeated and
   5911    * non-repeated fields, but for repeated fields you must wrap them in
   5912    * calls to StartSequence()/EndSequence(). */
   5913   bool PutInt32(Handlers::Selector s, int32_t val);
   5914   bool PutInt64(Handlers::Selector s, int64_t val);
   5915   bool PutUInt32(Handlers::Selector s, uint32_t val);
   5916   bool PutUInt64(Handlers::Selector s, uint64_t val);
   5917   bool PutFloat(Handlers::Selector s, float val);
   5918   bool PutDouble(Handlers::Selector s, double val);
   5919   bool PutBool(Handlers::Selector s, bool val);
   5920 
   5921   /* Putting of string/bytes values.  Each string can consist of zero or more
   5922    * non-contiguous buffers of data.
   5923    *
   5924    * For StartString(), the function will write a sink for the string to "sub."
   5925    * The sub-sink must be used for any/all PutStringBuffer() calls. */
   5926   bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub);
   5927   size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len,
   5928                          const BufferHandle *handle);
   5929   bool EndString(Handlers::Selector s);
   5930 
   5931   /* For submessage fields.
   5932    *
   5933    * For StartSubMessage(), the function will write a sink for the string to
   5934    * "sub." The sub-sink must be used for any/all handlers called within the
   5935    * submessage. */
   5936   bool StartSubMessage(Handlers::Selector s, Sink* sub);
   5937   bool EndSubMessage(Handlers::Selector s);
   5938 
   5939   /* For repeated fields of any type, the sequence of values must be wrapped in
   5940    * these calls.
   5941    *
   5942    * For StartSequence(), the function will write a sink for the string to
   5943    * "sub." The sub-sink must be used for any/all handlers called within the
   5944    * sequence. */
   5945   bool StartSequence(Handlers::Selector s, Sink* sub);
   5946   bool EndSequence(Handlers::Selector s);
   5947 
   5948   /* Copy and assign specifically allowed.
   5949    * We don't even bother making these members private because so many
   5950    * functions need them and this is mainly just a dumb data container anyway.
   5951    */
   5952 #else
   5953 struct upb_sink {
   5954 #endif
   5955   const upb_handlers *handlers;
   5956   void *closure;
   5957 };
   5958 
   5959 #ifdef __cplusplus
   5960 class upb::BytesSink {
   5961  public:
   5962   BytesSink() {}
   5963 
   5964   /* Constructs a new sink for the given frozen handlers and closure.
   5965    *
   5966    * TODO(haberman): once the Handlers know the expected closure type, verify
   5967    * that T matches it. */
   5968   template <class T> BytesSink(const BytesHandler* handler, T* closure);
   5969 
   5970   /* Resets the value of the sink. */
   5971   template <class T> void Reset(const BytesHandler* handler, T* closure);
   5972 
   5973   bool Start(size_t size_hint, void **subc);
   5974   size_t PutBuffer(void *subc, const char *buf, size_t len,
   5975                    const BufferHandle *handle);
   5976   bool End();
   5977 #else
   5978 struct upb_bytessink {
   5979 #endif
   5980   const upb_byteshandler *handler;
   5981   void *closure;
   5982 };
   5983 
   5984 #ifdef __cplusplus
   5985 
   5986 /* A class for pushing a flat buffer of data to a BytesSink.
   5987  * You can construct an instance of this to get a resumable source,
   5988  * or just call the static PutBuffer() to do a non-resumable push all in one
   5989  * go. */
   5990 class upb::BufferSource {
   5991  public:
   5992   BufferSource();
   5993   BufferSource(const char* buf, size_t len, BytesSink* sink);
   5994 
   5995   /* Returns true if the entire buffer was pushed successfully.  Otherwise the
   5996    * next call to PutNext() will resume where the previous one left off.
   5997    * TODO(haberman): implement this. */
   5998   bool PutNext();
   5999 
   6000   /* A static version; with this version is it not possible to resume in the
   6001    * case of failure or a partially-consumed buffer. */
   6002   static bool PutBuffer(const char* buf, size_t len, BytesSink* sink);
   6003 
   6004   template <class T> static bool PutBuffer(const T& str, BytesSink* sink) {
   6005     return PutBuffer(str.c_str(), str.size(), sink);
   6006   }
   6007 #else
   6008 struct upb_bufsrc {
   6009   char dummy;
   6010 #endif
   6011 };
   6012 
   6013 UPB_BEGIN_EXTERN_C
   6014 
   6015 /* Inline definitions. */
   6016 
   6017 UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h,
   6018                                     void *closure) {
   6019   s->handler = h;
   6020   s->closure = closure;
   6021 }
   6022 
   6023 UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint,
   6024                                     void **subc) {
   6025   typedef upb_startstr_handlerfunc func;
   6026   func *start;
   6027   *subc = s->closure;
   6028   if (!s->handler) return true;
   6029   start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func;
   6030 
   6031   if (!start) return true;
   6032   *subc = start(s->closure, upb_handlerattr_handlerdata(
   6033                                 &s->handler->table[UPB_STARTSTR_SELECTOR].attr),
   6034                 size_hint);
   6035   return *subc != NULL;
   6036 }
   6037 
   6038 UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc,
   6039                                        const char *buf, size_t size,
   6040                                        const upb_bufhandle* handle) {
   6041   typedef upb_string_handlerfunc func;
   6042   func *putbuf;
   6043   if (!s->handler) return true;
   6044   putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func;
   6045 
   6046   if (!putbuf) return true;
   6047   return putbuf(subc, upb_handlerattr_handlerdata(
   6048                           &s->handler->table[UPB_STRING_SELECTOR].attr),
   6049                 buf, size, handle);
   6050 }
   6051 
   6052 UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) {
   6053   typedef upb_endfield_handlerfunc func;
   6054   func *end;
   6055   if (!s->handler) return true;
   6056   end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func;
   6057 
   6058   if (!end) return true;
   6059   return end(s->closure,
   6060              upb_handlerattr_handlerdata(
   6061                  &s->handler->table[UPB_ENDSTR_SELECTOR].attr));
   6062 }
   6063 
   6064 UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len,
   6065                                   upb_bytessink *sink) {
   6066   void *subc;
   6067   bool ret;
   6068   upb_bufhandle handle;
   6069   upb_bufhandle_init(&handle);
   6070   upb_bufhandle_setbuf(&handle, buf, 0);
   6071   ret = upb_bytessink_start(sink, len, &subc);
   6072   if (ret && len != 0) {
   6073     ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len);
   6074   }
   6075   if (ret) {
   6076     ret = upb_bytessink_end(sink);
   6077   }
   6078   upb_bufhandle_uninit(&handle);
   6079   return ret;
   6080 }
   6081 
   6082 #define PUTVAL(type, ctype)                                                    \
   6083   UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel,          \
   6084                                      ctype val) {                              \
   6085     typedef upb_##type##_handlerfunc functype;                                 \
   6086     functype *func;                                                            \
   6087     const void *hd;                                                            \
   6088     if (!s->handlers) return true;                                             \
   6089     func = (functype *)upb_handlers_gethandler(s->handlers, sel);              \
   6090     if (!func) return true;                                                    \
   6091     hd = upb_handlers_gethandlerdata(s->handlers, sel);                        \
   6092     return func(s->closure, hd, val);                                          \
   6093   }
   6094 
   6095 PUTVAL(int32,  int32_t)
   6096 PUTVAL(int64,  int64_t)
   6097 PUTVAL(uint32, uint32_t)
   6098 PUTVAL(uint64, uint64_t)
   6099 PUTVAL(float,  float)
   6100 PUTVAL(double, double)
   6101 PUTVAL(bool,   bool)
   6102 #undef PUTVAL
   6103 
   6104 UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) {
   6105   s->handlers = h;
   6106   s->closure = c;
   6107 }
   6108 
   6109 UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel,
   6110                                      const char *buf, size_t n,
   6111                                      const upb_bufhandle *handle) {
   6112   typedef upb_string_handlerfunc func;
   6113   func *handler;
   6114   const void *hd;
   6115   if (!s->handlers) return n;
   6116   handler = (func *)upb_handlers_gethandler(s->handlers, sel);
   6117 
   6118   if (!handler) return n;
   6119   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   6120   return handler(s->closure, hd, buf, n, handle);
   6121 }
   6122 
   6123 UPB_INLINE bool upb_sink_startmsg(upb_sink *s) {
   6124   typedef upb_startmsg_handlerfunc func;
   6125   func *startmsg;
   6126   const void *hd;
   6127   if (!s->handlers) return true;
   6128   startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR);
   6129 
   6130   if (!startmsg) return true;
   6131   hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR);
   6132   return startmsg(s->closure, hd);
   6133 }
   6134 
   6135 UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) {
   6136   typedef upb_endmsg_handlerfunc func;
   6137   func *endmsg;
   6138   const void *hd;
   6139   if (!s->handlers) return true;
   6140   endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR);
   6141 
   6142   if (!endmsg) return true;
   6143   hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR);
   6144   return endmsg(s->closure, hd, status);
   6145 }
   6146 
   6147 UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel,
   6148                                   upb_sink *sub) {
   6149   typedef upb_startfield_handlerfunc func;
   6150   func *startseq;
   6151   const void *hd;
   6152   sub->closure = s->closure;
   6153   sub->handlers = s->handlers;
   6154   if (!s->handlers) return true;
   6155   startseq = (func*)upb_handlers_gethandler(s->handlers, sel);
   6156 
   6157   if (!startseq) return true;
   6158   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   6159   sub->closure = startseq(s->closure, hd);
   6160   return sub->closure ? true : false;
   6161 }
   6162 
   6163 UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) {
   6164   typedef upb_endfield_handlerfunc func;
   6165   func *endseq;
   6166   const void *hd;
   6167   if (!s->handlers) return true;
   6168   endseq = (func*)upb_handlers_gethandler(s->handlers, sel);
   6169 
   6170   if (!endseq) return true;
   6171   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   6172   return endseq(s->closure, hd);
   6173 }
   6174 
   6175 UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel,
   6176                                   size_t size_hint, upb_sink *sub) {
   6177   typedef upb_startstr_handlerfunc func;
   6178   func *startstr;
   6179   const void *hd;
   6180   sub->closure = s->closure;
   6181   sub->handlers = s->handlers;
   6182   if (!s->handlers) return true;
   6183   startstr = (func*)upb_handlers_gethandler(s->handlers, sel);
   6184 
   6185   if (!startstr) return true;
   6186   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   6187   sub->closure = startstr(s->closure, hd, size_hint);
   6188   return sub->closure ? true : false;
   6189 }
   6190 
   6191 UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) {
   6192   typedef upb_endfield_handlerfunc func;
   6193   func *endstr;
   6194   const void *hd;
   6195   if (!s->handlers) return true;
   6196   endstr = (func*)upb_handlers_gethandler(s->handlers, sel);
   6197 
   6198   if (!endstr) return true;
   6199   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   6200   return endstr(s->closure, hd);
   6201 }
   6202 
   6203 UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel,
   6204                                      upb_sink *sub) {
   6205   typedef upb_startfield_handlerfunc func;
   6206   func *startsubmsg;
   6207   const void *hd;
   6208   sub->closure = s->closure;
   6209   if (!s->handlers) {
   6210     sub->handlers = NULL;
   6211     return true;
   6212   }
   6213   sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel);
   6214   startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
   6215 
   6216   if (!startsubmsg) return true;
   6217   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   6218   sub->closure = startsubmsg(s->closure, hd);
   6219   return sub->closure ? true : false;
   6220 }
   6221 
   6222 UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) {
   6223   typedef upb_endfield_handlerfunc func;
   6224   func *endsubmsg;
   6225   const void *hd;
   6226   if (!s->handlers) return true;
   6227   endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel);
   6228 
   6229   if (!endsubmsg) return s->closure;
   6230   hd = upb_handlers_gethandlerdata(s->handlers, sel);
   6231   return endsubmsg(s->closure, hd);
   6232 }
   6233 
   6234 UPB_END_EXTERN_C
   6235 
   6236 #ifdef __cplusplus
   6237 
   6238 namespace upb {
   6239 
   6240 template <class T> Sink::Sink(const Handlers* handlers, T* closure) {
   6241   upb_sink_reset(this, handlers, closure);
   6242 }
   6243 template <class T>
   6244 inline void Sink::Reset(const Handlers* handlers, T* closure) {
   6245   upb_sink_reset(this, handlers, closure);
   6246 }
   6247 inline bool Sink::StartMessage() {
   6248   return upb_sink_startmsg(this);
   6249 }
   6250 inline bool Sink::EndMessage(Status* status) {
   6251   return upb_sink_endmsg(this, status);
   6252 }
   6253 inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
   6254   return upb_sink_putint32(this, sel, val);
   6255 }
   6256 inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
   6257   return upb_sink_putint64(this, sel, val);
   6258 }
   6259 inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
   6260   return upb_sink_putuint32(this, sel, val);
   6261 }
   6262 inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
   6263   return upb_sink_putuint64(this, sel, val);
   6264 }
   6265 inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
   6266   return upb_sink_putfloat(this, sel, val);
   6267 }
   6268 inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
   6269   return upb_sink_putdouble(this, sel, val);
   6270 }
   6271 inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
   6272   return upb_sink_putbool(this, sel, val);
   6273 }
   6274 inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint,
   6275                               Sink *sub) {
   6276   return upb_sink_startstr(this, sel, size_hint, sub);
   6277 }
   6278 inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
   6279                                     size_t len, const BufferHandle* handle) {
   6280   return upb_sink_putstring(this, sel, buf, len, handle);
   6281 }
   6282 inline bool Sink::EndString(Handlers::Selector sel) {
   6283   return upb_sink_endstr(this, sel);
   6284 }
   6285 inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) {
   6286   return upb_sink_startsubmsg(this, sel, sub);
   6287 }
   6288 inline bool Sink::EndSubMessage(Handlers::Selector sel) {
   6289   return upb_sink_endsubmsg(this, sel);
   6290 }
   6291 inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) {
   6292   return upb_sink_startseq(this, sel, sub);
   6293 }
   6294 inline bool Sink::EndSequence(Handlers::Selector sel) {
   6295   return upb_sink_endseq(this, sel);
   6296 }
   6297 
   6298 template <class T>
   6299 BytesSink::BytesSink(const BytesHandler* handler, T* closure) {
   6300   Reset(handler, closure);
   6301 }
   6302 
   6303 template <class T>
   6304 void BytesSink::Reset(const BytesHandler *handler, T *closure) {
   6305   upb_bytessink_reset(this, handler, closure);
   6306 }
   6307 inline bool BytesSink::Start(size_t size_hint, void **subc) {
   6308   return upb_bytessink_start(this, size_hint, subc);
   6309 }
   6310 inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len,
   6311                                    const BufferHandle *handle) {
   6312   return upb_bytessink_putbuf(this, subc, buf, len, handle);
   6313 }
   6314 inline bool BytesSink::End() {
   6315   return upb_bytessink_end(this);
   6316 }
   6317 
   6318 inline bool BufferSource::PutBuffer(const char *buf, size_t len,
   6319                                     BytesSink *sink) {
   6320   return upb_bufsrc_putbuf(buf, len, sink);
   6321 }
   6322 
   6323 }  /* namespace upb */
   6324 #endif
   6325 
   6326 #endif
   6327 /*
   6328 ** For handlers that do very tiny, very simple operations, the function call
   6329 ** overhead of calling a handler can be significant.  This file allows the
   6330 ** user to define handlers that do something very simple like store the value
   6331 ** to memory and/or set a hasbit.  JIT compilers can then special-case these
   6332 ** handlers and emit specialized code for them instead of actually calling the
   6333 ** handler.
   6334 **
   6335 ** The functionality is very simple/limited right now but may expand to be able
   6336 ** to call another function.
   6337 */
   6338 
   6339 #ifndef UPB_SHIM_H
   6340 #define UPB_SHIM_H
   6341 
   6342 
   6343 typedef struct {
   6344   size_t offset;
   6345   int32_t hasbit;
   6346 } upb_shim_data;
   6347 
   6348 #ifdef __cplusplus
   6349 
   6350 namespace upb {
   6351 
   6352 struct Shim {
   6353   typedef upb_shim_data Data;
   6354 
   6355   /* Sets a handler for the given field that writes the value to the given
   6356    * offset and, if hasbit >= 0, sets a bit at the given bit offset.  Returns
   6357    * true if the handler was set successfully. */
   6358   static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit);
   6359 
   6360   /* If this handler is a shim, returns the corresponding upb::Shim::Data and
   6361    * stores the type in "type".  Otherwise returns NULL. */
   6362   static const Data* GetData(const Handlers* h, Handlers::Selector s,
   6363                              FieldDef::Type* type);
   6364 };
   6365 
   6366 }  /* namespace upb */
   6367 
   6368 #endif
   6369 
   6370 UPB_BEGIN_EXTERN_C
   6371 
   6372 /* C API. */
   6373 bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
   6374                   int32_t hasbit);
   6375 const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
   6376                                       upb_fieldtype_t *type);
   6377 
   6378 UPB_END_EXTERN_C
   6379 
   6380 #ifdef __cplusplus
   6381 /* C++ Wrappers. */
   6382 namespace upb {
   6383 inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs,
   6384                       int32_t hasbit) {
   6385   return upb_shim_set(h, f, ofs, hasbit);
   6386 }
   6387 inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s,
   6388                                        FieldDef::Type* type) {
   6389   return upb_shim_getdata(h, s, type);
   6390 }
   6391 }  /* namespace upb */
   6392 #endif
   6393 
   6394 #endif  /* UPB_SHIM_H */
   6395 /*
   6396 ** upb::SymbolTable (upb_symtab)
   6397 **
   6398 ** A symtab (symbol table) stores a name->def map of upb_defs.  Clients could
   6399 ** always create such tables themselves, but upb_symtab has logic for resolving
   6400 ** symbolic references, and in particular, for keeping a whole set of consistent
   6401 ** defs when replacing some subset of those defs.  This logic is nontrivial.
   6402 **
   6403 ** This is a mixed C/C++ interface that offers a full API to both languages.
   6404 ** See the top-level README for more information.
   6405 */
   6406 
   6407 #ifndef UPB_SYMTAB_H_
   6408 #define UPB_SYMTAB_H_
   6409 
   6410 
   6411 #ifdef __cplusplus
   6412 #include <vector>
   6413 namespace upb { class SymbolTable; }
   6414 #endif
   6415 
   6416 UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted,
   6417                          upb_symtab, upb_refcounted)
   6418 
   6419 typedef struct {
   6420  UPB_PRIVATE_FOR_CPP
   6421   upb_strtable_iter iter;
   6422   upb_deftype_t type;
   6423 } upb_symtab_iter;
   6424 
   6425 #ifdef __cplusplus
   6426 
   6427 /* Non-const methods in upb::SymbolTable are NOT thread-safe. */
   6428 class upb::SymbolTable {
   6429  public:
   6430   /* Returns a new symbol table with a single ref owned by "owner."
   6431    * Returns NULL if memory allocation failed. */
   6432   static reffed_ptr<SymbolTable> New();
   6433 
   6434   /* Include RefCounted base methods. */
   6435   UPB_REFCOUNTED_CPPMETHODS
   6436 
   6437   /* For all lookup functions, the returned pointer is not owned by the
   6438    * caller; it may be invalidated by any non-const call or unref of the
   6439    * SymbolTable!  To protect against this, take a ref if desired. */
   6440 
   6441   /* Freezes the symbol table: prevents further modification of it.
   6442    * After the Freeze() operation is successful, the SymbolTable must only be
   6443    * accessed via a const pointer.
   6444    *
   6445    * Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
   6446    * a necessary step in using a SymbolTable.  If you have no need for it to be
   6447    * immutable, there is no need to freeze it ever.  However sometimes it is
   6448    * useful, and SymbolTables that are statically compiled into the binary are
   6449    * always frozen by nature. */
   6450   void Freeze();
   6451 
   6452   /* Resolves the given symbol using the rules described in descriptor.proto,
   6453    * namely:
   6454    *
   6455    *    If the name starts with a '.', it is fully-qualified.  Otherwise,
   6456    *    C++-like scoping rules are used to find the type (i.e. first the nested
   6457    *    types within this message are searched, then within the parent, on up
   6458    *    to the root namespace).
   6459    *
   6460    * If not found, returns NULL. */
   6461   const Def* Resolve(const char* base, const char* sym) const;
   6462 
   6463   /* Finds an entry in the symbol table with this exact name.  If not found,
   6464    * returns NULL. */
   6465   const Def* Lookup(const char *sym) const;
   6466   const MessageDef* LookupMessage(const char *sym) const;
   6467   const EnumDef* LookupEnum(const char *sym) const;
   6468 
   6469   /* TODO: introduce a C++ iterator, but make it nice and templated so that if
   6470    * you ask for an iterator of MessageDef the iterated elements are strongly
   6471    * typed as MessageDef*. */
   6472 
   6473   /* Adds the given mutable defs to the symtab, resolving all symbols
   6474    * (including enum default values) and finalizing the defs.  Only one def per
   6475    * name may be in the list, but defs can replace existing defs in the symtab.
   6476    * All defs must have a name -- anonymous defs are not allowed.  Anonymous
   6477    * defs can still be frozen by calling upb_def_freeze() directly.
   6478    *
   6479    * Any existing defs that can reach defs that are being replaced will
   6480    * themselves be replaced also, so that the resulting set of defs is fully
   6481    * consistent.
   6482    *
   6483    * This logic implemented in this method is a convenience; ultimately it
   6484    * calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
   6485    * upb_freeze(), any of which the client could call themself.  However, since
   6486    * the logic for doing so is nontrivial, we provide it here.
   6487    *
   6488    * The entire operation either succeeds or fails.  If the operation fails,
   6489    * the symtab is unchanged, false is returned, and status indicates the
   6490    * error.  The caller passes a ref on all defs to the symtab (even if the
   6491    * operation fails).
   6492    *
   6493    * TODO(haberman): currently failure will leave the symtab unchanged, but may
   6494    * leave the defs themselves partially resolved.  Does this matter?  If so we
   6495    * could do a prepass that ensures that all symbols are resolvable and bail
   6496    * if not, so we don't mutate anything until we know the operation will
   6497    * succeed.
   6498    *
   6499    * TODO(haberman): since the defs must be mutable, refining a frozen def
   6500    * requires making mutable copies of the entire tree.  This is wasteful if
   6501    * only a few messages are changing.  We may want to add a way of adding a
   6502    * tree of frozen defs to the symtab (perhaps an alternate constructor where
   6503    * you pass the root of the tree?) */
   6504   bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status);
   6505 
   6506   bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
   6507     return Add((Def*const*)&defs[0], defs.size(), owner, status);
   6508   }
   6509 
   6510   /* Resolves all subdefs for messages in this file and attempts to freeze the
   6511    * file.  If this succeeds, adds all the symbols to this SymbolTable
   6512    * (replacing any existing ones with the same names). */
   6513   bool AddFile(FileDef* file, Status* s);
   6514 
   6515  private:
   6516   UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable)
   6517 };
   6518 
   6519 #endif  /* __cplusplus */
   6520 
   6521 UPB_BEGIN_EXTERN_C
   6522 
   6523 /* Native C API. */
   6524 
   6525 /* Include refcounted methods like upb_symtab_ref(). */
   6526 UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast)
   6527 
   6528 upb_symtab *upb_symtab_new(const void *owner);
   6529 void upb_symtab_freeze(upb_symtab *s);
   6530 const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
   6531                                   const char *sym);
   6532 const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
   6533 const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
   6534 const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
   6535 bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n,
   6536                     void *ref_donor, upb_status *status);
   6537 bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status);
   6538 
   6539 /* upb_symtab_iter i;
   6540  * for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
   6541  *     upb_symtab_next(&i)) {
   6542  *   const upb_def *def = upb_symtab_iter_def(&i);
   6543  *    // ...
   6544  * }
   6545  *
   6546  * For C we don't have separate iterators for const and non-const.
   6547  * It is the caller's responsibility to cast the upb_fielddef* to
   6548  * const if the upb_msgdef* is const. */
   6549 void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
   6550                       upb_deftype_t type);
   6551 void upb_symtab_next(upb_symtab_iter *iter);
   6552 bool upb_symtab_done(const upb_symtab_iter *iter);
   6553 const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
   6554 
   6555 UPB_END_EXTERN_C
   6556 
   6557 #ifdef __cplusplus
   6558 /* C++ inline wrappers. */
   6559 namespace upb {
   6560 inline reffed_ptr<SymbolTable> SymbolTable::New() {
   6561   upb_symtab *s = upb_symtab_new(&s);
   6562   return reffed_ptr<SymbolTable>(s, &s);
   6563 }
   6564 
   6565 inline void SymbolTable::Freeze() {
   6566   return upb_symtab_freeze(this);
   6567 }
   6568 inline const Def *SymbolTable::Resolve(const char *base,
   6569                                        const char *sym) const {
   6570   return upb_symtab_resolve(this, base, sym);
   6571 }
   6572 inline const Def* SymbolTable::Lookup(const char *sym) const {
   6573   return upb_symtab_lookup(this, sym);
   6574 }
   6575 inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
   6576   return upb_symtab_lookupmsg(this, sym);
   6577 }
   6578 inline bool SymbolTable::Add(
   6579     Def*const* defs, size_t n, void* ref_donor, Status* status) {
   6580   return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
   6581 }
   6582 inline bool SymbolTable::AddFile(FileDef* file, Status* s) {
   6583   return upb_symtab_addfile(this, file, s);
   6584 }
   6585 }  /* namespace upb */
   6586 #endif
   6587 
   6588 #endif  /* UPB_SYMTAB_H_ */
   6589 /*
   6590 ** upb::descriptor::Reader (upb_descreader)
   6591 **
   6592 ** Provides a way of building upb::Defs from data in descriptor.proto format.
   6593 */
   6594 
   6595 #ifndef UPB_DESCRIPTOR_H
   6596 #define UPB_DESCRIPTOR_H
   6597 
   6598 
   6599 #ifdef __cplusplus
   6600 namespace upb {
   6601 namespace descriptor {
   6602 class Reader;
   6603 }  /* namespace descriptor */
   6604 }  /* namespace upb */
   6605 #endif
   6606 
   6607 UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader)
   6608 
   6609 #ifdef __cplusplus
   6610 
   6611 /* Class that receives descriptor data according to the descriptor.proto schema
   6612  * and use it to build upb::Defs corresponding to that schema. */
   6613 class upb::descriptor::Reader {
   6614  public:
   6615   /* These handlers must have come from NewHandlers() and must outlive the
   6616    * Reader.
   6617    *
   6618    * TODO: generate the handlers statically (like we do with the
   6619    * descriptor.proto defs) so that there is no need to pass this parameter (or
   6620    * to build/memory-manage the handlers at runtime at all).  Unfortunately this
   6621    * is a bit tricky to implement for Handlers, but necessary to simplify this
   6622    * interface. */
   6623   static Reader* Create(Environment* env, const Handlers* handlers);
   6624 
   6625   /* The reader's input; this is where descriptor.proto data should be sent. */
   6626   Sink* input();
   6627 
   6628   /* Use to get the FileDefs that have been parsed. */
   6629   size_t file_count() const;
   6630   FileDef* file(size_t i) const;
   6631 
   6632   /* Builds and returns handlers for the reader, owned by "owner." */
   6633   static Handlers* NewHandlers(const void* owner);
   6634 
   6635  private:
   6636   UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader)
   6637 };
   6638 
   6639 #endif
   6640 
   6641 UPB_BEGIN_EXTERN_C
   6642 
   6643 /* C API. */
   6644 upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h);
   6645 upb_sink *upb_descreader_input(upb_descreader *r);
   6646 size_t upb_descreader_filecount(const upb_descreader *r);
   6647 upb_filedef *upb_descreader_file(const upb_descreader *r, size_t i);
   6648 const upb_handlers *upb_descreader_newhandlers(const void *owner);
   6649 
   6650 UPB_END_EXTERN_C
   6651 
   6652 #ifdef __cplusplus
   6653 /* C++ implementation details. ************************************************/
   6654 namespace upb {
   6655 namespace descriptor {
   6656 inline Reader* Reader::Create(Environment* e, const Handlers *h) {
   6657   return upb_descreader_create(e, h);
   6658 }
   6659 inline Sink* Reader::input() { return upb_descreader_input(this); }
   6660 inline size_t Reader::file_count() const {
   6661   return upb_descreader_filecount(this);
   6662 }
   6663 inline FileDef* Reader::file(size_t i) const {
   6664   return upb_descreader_file(this, i);
   6665 }
   6666 }  /* namespace descriptor */
   6667 }  /* namespace upb */
   6668 #endif
   6669 
   6670 #endif  /* UPB_DESCRIPTOR_H */
   6671 /* This file contains accessors for a set of compiled-in defs.
   6672  * Note that unlike Google's protobuf, it does *not* define
   6673  * generated classes or any other kind of data structure for
   6674  * actually storing protobufs.  It only contains *defs* which
   6675  * let you reflect over a protobuf *schema*.
   6676  */
   6677 /* This file was generated by upbc (the upb compiler) from the input
   6678  * file:
   6679  *
   6680  *     upb/descriptor/descriptor.proto
   6681  *
   6682  * Do not edit -- your changes will be discarded when the file is
   6683  * regenerated. */
   6684 
   6685 #ifndef UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
   6686 #define UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_
   6687 
   6688 
   6689 UPB_BEGIN_EXTERN_C
   6690 
   6691 /* Enums */
   6692 
   6693 typedef enum {
   6694   google_protobuf_FieldDescriptorProto_LABEL_OPTIONAL = 1,
   6695   google_protobuf_FieldDescriptorProto_LABEL_REQUIRED = 2,
   6696   google_protobuf_FieldDescriptorProto_LABEL_REPEATED = 3
   6697 } google_protobuf_FieldDescriptorProto_Label;
   6698 
   6699 typedef enum {
   6700   google_protobuf_FieldDescriptorProto_TYPE_DOUBLE = 1,
   6701   google_protobuf_FieldDescriptorProto_TYPE_FLOAT = 2,
   6702   google_protobuf_FieldDescriptorProto_TYPE_INT64 = 3,
   6703   google_protobuf_FieldDescriptorProto_TYPE_UINT64 = 4,
   6704   google_protobuf_FieldDescriptorProto_TYPE_INT32 = 5,
   6705   google_protobuf_FieldDescriptorProto_TYPE_FIXED64 = 6,
   6706   google_protobuf_FieldDescriptorProto_TYPE_FIXED32 = 7,
   6707   google_protobuf_FieldDescriptorProto_TYPE_BOOL = 8,
   6708   google_protobuf_FieldDescriptorProto_TYPE_STRING = 9,
   6709   google_protobuf_FieldDescriptorProto_TYPE_GROUP = 10,
   6710   google_protobuf_FieldDescriptorProto_TYPE_MESSAGE = 11,
   6711   google_protobuf_FieldDescriptorProto_TYPE_BYTES = 12,
   6712   google_protobuf_FieldDescriptorProto_TYPE_UINT32 = 13,
   6713   google_protobuf_FieldDescriptorProto_TYPE_ENUM = 14,
   6714   google_protobuf_FieldDescriptorProto_TYPE_SFIXED32 = 15,
   6715   google_protobuf_FieldDescriptorProto_TYPE_SFIXED64 = 16,
   6716   google_protobuf_FieldDescriptorProto_TYPE_SINT32 = 17,
   6717   google_protobuf_FieldDescriptorProto_TYPE_SINT64 = 18
   6718 } google_protobuf_FieldDescriptorProto_Type;
   6719 
   6720 typedef enum {
   6721   google_protobuf_FieldOptions_STRING = 0,
   6722   google_protobuf_FieldOptions_CORD = 1,
   6723   google_protobuf_FieldOptions_STRING_PIECE = 2
   6724 } google_protobuf_FieldOptions_CType;
   6725 
   6726 typedef enum {
   6727   google_protobuf_FieldOptions_JS_NORMAL = 0,
   6728   google_protobuf_FieldOptions_JS_STRING = 1,
   6729   google_protobuf_FieldOptions_JS_NUMBER = 2
   6730 } google_protobuf_FieldOptions_JSType;
   6731 
   6732 typedef enum {
   6733   google_protobuf_FileOptions_SPEED = 1,
   6734   google_protobuf_FileOptions_CODE_SIZE = 2,
   6735   google_protobuf_FileOptions_LITE_RUNTIME = 3
   6736 } google_protobuf_FileOptions_OptimizeMode;
   6737 
   6738 /* MessageDefs: call these functions to get a ref to a msgdef. */
   6739 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_get(const void *owner);
   6740 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(const void *owner);
   6741 const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(const void *owner);
   6742 const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto_get(const void *owner);
   6743 const upb_msgdef *upbdefs_google_protobuf_EnumOptions_get(const void *owner);
   6744 const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto_get(const void *owner);
   6745 const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions_get(const void *owner);
   6746 const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto_get(const void *owner);
   6747 const upb_msgdef *upbdefs_google_protobuf_FieldOptions_get(const void *owner);
   6748 const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto_get(const void *owner);
   6749 const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet_get(const void *owner);
   6750 const upb_msgdef *upbdefs_google_protobuf_FileOptions_get(const void *owner);
   6751 const upb_msgdef *upbdefs_google_protobuf_MessageOptions_get(const void *owner);
   6752 const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto_get(const void *owner);
   6753 const upb_msgdef *upbdefs_google_protobuf_MethodOptions_get(const void *owner);
   6754 const upb_msgdef *upbdefs_google_protobuf_OneofDescriptorProto_get(const void *owner);
   6755 const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto_get(const void *owner);
   6756 const upb_msgdef *upbdefs_google_protobuf_ServiceOptions_get(const void *owner);
   6757 const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_get(const void *owner);
   6758 const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location_get(const void *owner);
   6759 const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_get(const void *owner);
   6760 const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart_get(const void *owner);
   6761 
   6762 /* EnumDefs: call these functions to get a ref to an enumdef. */
   6763 const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label_get(const void *owner);
   6764 const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type_get(const void *owner);
   6765 const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType_get(const void *owner);
   6766 const upb_enumdef *upbdefs_google_protobuf_FieldOptions_JSType_get(const void *owner);
   6767 const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode_get(const void *owner);
   6768 
   6769 /* Functions to test whether this message is of a certain type. */
   6770 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_is(const upb_msgdef *m) {
   6771   return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto") == 0;
   6772 }
   6773 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(const upb_msgdef *m) {
   6774   return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ExtensionRange") == 0;
   6775 }
   6776 UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(const upb_msgdef *m) {
   6777   return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ReservedRange") == 0;
   6778 }
   6779 UPB_INLINE bool upbdefs_google_protobuf_EnumDescriptorProto_is(const upb_msgdef *m) {
   6780   return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumDescriptorProto") == 0;
   6781 }
   6782 UPB_INLINE bool upbdefs_google_protobuf_EnumOptions_is(const upb_msgdef *m) {
   6783   return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumOptions") == 0;
   6784 }
   6785 UPB_INLINE bool upbdefs_google_protobuf_EnumValueDescriptorProto_is(const upb_msgdef *m) {
   6786   return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueDescriptorProto") == 0;
   6787 }
   6788 UPB_INLINE bool upbdefs_google_protobuf_EnumValueOptions_is(const upb_msgdef *m) {
   6789   return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueOptions") == 0;
   6790 }
   6791 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_is(const upb_msgdef *m) {
   6792   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldDescriptorProto") == 0;
   6793 }
   6794 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_is(const upb_msgdef *m) {
   6795   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldOptions") == 0;
   6796 }
   6797 UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorProto_is(const upb_msgdef *m) {
   6798   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorProto") == 0;
   6799 }
   6800 UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorSet_is(const upb_msgdef *m) {
   6801   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorSet") == 0;
   6802 }
   6803 UPB_INLINE bool upbdefs_google_protobuf_FileOptions_is(const upb_msgdef *m) {
   6804   return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileOptions") == 0;
   6805 }
   6806 UPB_INLINE bool upbdefs_google_protobuf_MessageOptions_is(const upb_msgdef *m) {
   6807   return strcmp(upb_msgdef_fullname(m), "google.protobuf.MessageOptions") == 0;
   6808 }
   6809 UPB_INLINE bool upbdefs_google_protobuf_MethodDescriptorProto_is(const upb_msgdef *m) {
   6810   return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodDescriptorProto") == 0;
   6811 }
   6812 UPB_INLINE bool upbdefs_google_protobuf_MethodOptions_is(const upb_msgdef *m) {
   6813   return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodOptions") == 0;
   6814 }
   6815 UPB_INLINE bool upbdefs_google_protobuf_OneofDescriptorProto_is(const upb_msgdef *m) {
   6816   return strcmp(upb_msgdef_fullname(m), "google.protobuf.OneofDescriptorProto") == 0;
   6817 }
   6818 UPB_INLINE bool upbdefs_google_protobuf_ServiceDescriptorProto_is(const upb_msgdef *m) {
   6819   return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceDescriptorProto") == 0;
   6820 }
   6821 UPB_INLINE bool upbdefs_google_protobuf_ServiceOptions_is(const upb_msgdef *m) {
   6822   return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceOptions") == 0;
   6823 }
   6824 UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_is(const upb_msgdef *m) {
   6825   return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo") == 0;
   6826 }
   6827 UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_Location_is(const upb_msgdef *m) {
   6828   return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo.Location") == 0;
   6829 }
   6830 UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_is(const upb_msgdef *m) {
   6831   return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption") == 0;
   6832 }
   6833 UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_NamePart_is(const upb_msgdef *m) {
   6834   return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption.NamePart") == 0;
   6835 }
   6836 
   6837 /* Functions to test whether this enum is of a certain type. */
   6838 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Label_is(const upb_enumdef *e) {
   6839   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Label") == 0;
   6840 }
   6841 UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Type_is(const upb_enumdef *e) {
   6842   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Type") == 0;
   6843 }
   6844 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_CType_is(const upb_enumdef *e) {
   6845   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.CType") == 0;
   6846 }
   6847 UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_JSType_is(const upb_enumdef *e) {
   6848   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.JSType") == 0;
   6849 }
   6850 UPB_INLINE bool upbdefs_google_protobuf_FileOptions_OptimizeMode_is(const upb_enumdef *e) {
   6851   return strcmp(upb_enumdef_fullname(e), "google.protobuf.FileOptions.OptimizeMode") == 0;
   6852 }
   6853 
   6854 
   6855 /* Functions to get a fielddef from a msgdef reference. */
   6856 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 2); }
   6857 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 1); }
   6858 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 2); }
   6859 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 1); }
   6860 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
   6861 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
   6862 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
   6863 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_field(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
   6864 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
   6865 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_nested_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
   6866 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_oneof_decl(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
   6867 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
   6868 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
   6869 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
   6870 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
   6871 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
   6872 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
   6873 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_allow_alias(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 2); }
   6874 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 3); }
   6875 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 999); }
   6876 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
   6877 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
   6878 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
   6879 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 1); }
   6880 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 999); }
   6881 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_default_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
   6882 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_extendee(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
   6883 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_json_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
   6884 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_label(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
   6885 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
   6886 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
   6887 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_oneof_index(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
   6888 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
   6889 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
   6890 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
   6891 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_ctype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 1); }
   6892 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 3); }
   6893 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_jstype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 6); }
   6894 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_lazy(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 5); }
   6895 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_packed(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 2); }
   6896 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 999); }
   6897 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_weak(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 10); }
   6898 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
   6899 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
   6900 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); }
   6901 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_message_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
   6902 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
   6903 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); }
   6904 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
   6905 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_public_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); }
   6906 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_service(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
   6907 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_source_code_info(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); }
   6908 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_syntax(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 12); }
   6909 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_weak_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 11); }
   6910 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_f_file(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); return upb_msgdef_itof(m, 1); }
   6911 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_enable_arenas(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 31); }
   6912 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 16); }
   6913 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_csharp_namespace(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 37); }
   6914 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 23); }
   6915 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_go_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 11); }
   6916 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generate_equals_and_hash(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 20); }
   6917 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 17); }
   6918 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_multiple_files(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 10); }
   6919 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_outer_classname(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 8); }
   6920 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 1); }
   6921 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_string_check_utf8(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 27); }
   6922 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_javanano_use_deprecated_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 38); }
   6923 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_objc_class_prefix(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 36); }
   6924 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_optimize_for(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 9); }
   6925 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_py_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 18); }
   6926 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 999); }
   6927 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 3); }
   6928 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_map_entry(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 7); }
   6929 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_message_set_wire_format(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 1); }
   6930 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_no_standard_descriptor_accessor(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 2); }
   6931 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 999); }
   6932 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_client_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); }
   6933 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_input_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
   6934 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
   6935 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); }
   6936 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_output_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
   6937 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_server_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); }
   6938 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 33); }
   6939 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 999); }
   6940 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_OneofDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
   6941 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_method(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); }
   6942 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); }
   6943 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); }
   6944 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 33); }
   6945 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 999); }
   6946 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 3); }
   6947 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_detached_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 6); }
   6948 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_path(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 1); }
   6949 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_span(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 2); }
   6950 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_trailing_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 4); }
   6951 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_f_location(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); return upb_msgdef_itof(m, 1); }
   6952 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_is_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 2); }
   6953 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_name_part(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 1); }
   6954 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_aggregate_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 8); }
   6955 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_double_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 6); }
   6956 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_identifier_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 3); }
   6957 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 2); }
   6958 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_negative_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 5); }
   6959 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_positive_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 4); }
   6960 UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_string_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 7); }
   6961 
   6962 UPB_END_EXTERN_C
   6963 
   6964 #ifdef __cplusplus
   6965 
   6966 namespace upbdefs {
   6967 namespace google {
   6968 namespace protobuf {
   6969 
   6970 class DescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   6971  public:
   6972   DescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   6973       : reffed_ptr(m, ref_donor) {
   6974     assert(upbdefs_google_protobuf_DescriptorProto_is(m));
   6975   }
   6976 
   6977   static DescriptorProto get() {
   6978     const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_get(&m);
   6979     return DescriptorProto(m, &m);
   6980   }
   6981 
   6982   class ExtensionRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   6983    public:
   6984     ExtensionRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   6985         : reffed_ptr(m, ref_donor) {
   6986       assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m));
   6987     }
   6988 
   6989     static ExtensionRange get() {
   6990       const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(&m);
   6991       return ExtensionRange(m, &m);
   6992     }
   6993   };
   6994 
   6995   class ReservedRange : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   6996    public:
   6997     ReservedRange(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   6998         : reffed_ptr(m, ref_donor) {
   6999       assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m));
   7000     }
   7001 
   7002     static ReservedRange get() {
   7003       const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(&m);
   7004       return ReservedRange(m, &m);
   7005     }
   7006   };
   7007 };
   7008 
   7009 class EnumDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7010  public:
   7011   EnumDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7012       : reffed_ptr(m, ref_donor) {
   7013     assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m));
   7014   }
   7015 
   7016   static EnumDescriptorProto get() {
   7017     const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumDescriptorProto_get(&m);
   7018     return EnumDescriptorProto(m, &m);
   7019   }
   7020 };
   7021 
   7022 class EnumOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7023  public:
   7024   EnumOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7025       : reffed_ptr(m, ref_donor) {
   7026     assert(upbdefs_google_protobuf_EnumOptions_is(m));
   7027   }
   7028 
   7029   static EnumOptions get() {
   7030     const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumOptions_get(&m);
   7031     return EnumOptions(m, &m);
   7032   }
   7033 };
   7034 
   7035 class EnumValueDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7036  public:
   7037   EnumValueDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7038       : reffed_ptr(m, ref_donor) {
   7039     assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m));
   7040   }
   7041 
   7042   static EnumValueDescriptorProto get() {
   7043     const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueDescriptorProto_get(&m);
   7044     return EnumValueDescriptorProto(m, &m);
   7045   }
   7046 };
   7047 
   7048 class EnumValueOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7049  public:
   7050   EnumValueOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7051       : reffed_ptr(m, ref_donor) {
   7052     assert(upbdefs_google_protobuf_EnumValueOptions_is(m));
   7053   }
   7054 
   7055   static EnumValueOptions get() {
   7056     const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueOptions_get(&m);
   7057     return EnumValueOptions(m, &m);
   7058   }
   7059 };
   7060 
   7061 class FieldDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7062  public:
   7063   FieldDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7064       : reffed_ptr(m, ref_donor) {
   7065     assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m));
   7066   }
   7067 
   7068   static FieldDescriptorProto get() {
   7069     const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldDescriptorProto_get(&m);
   7070     return FieldDescriptorProto(m, &m);
   7071   }
   7072 
   7073   class Label : public ::upb::reffed_ptr<const ::upb::EnumDef> {
   7074    public:
   7075     Label(const ::upb::EnumDef* e, const void *ref_donor = NULL)
   7076         : reffed_ptr(e, ref_donor) {
   7077       assert(upbdefs_google_protobuf_FieldDescriptorProto_Label_is(e));
   7078     }
   7079     static Label get() {
   7080       const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Label_get(&e);
   7081       return Label(e, &e);
   7082     }
   7083   };
   7084 
   7085   class Type : public ::upb::reffed_ptr<const ::upb::EnumDef> {
   7086    public:
   7087     Type(const ::upb::EnumDef* e, const void *ref_donor = NULL)
   7088         : reffed_ptr(e, ref_donor) {
   7089       assert(upbdefs_google_protobuf_FieldDescriptorProto_Type_is(e));
   7090     }
   7091     static Type get() {
   7092       const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Type_get(&e);
   7093       return Type(e, &e);
   7094     }
   7095   };
   7096 };
   7097 
   7098 class FieldOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7099  public:
   7100   FieldOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7101       : reffed_ptr(m, ref_donor) {
   7102     assert(upbdefs_google_protobuf_FieldOptions_is(m));
   7103   }
   7104 
   7105   static FieldOptions get() {
   7106     const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldOptions_get(&m);
   7107     return FieldOptions(m, &m);
   7108   }
   7109 
   7110   class CType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
   7111    public:
   7112     CType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
   7113         : reffed_ptr(e, ref_donor) {
   7114       assert(upbdefs_google_protobuf_FieldOptions_CType_is(e));
   7115     }
   7116     static CType get() {
   7117       const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_CType_get(&e);
   7118       return CType(e, &e);
   7119     }
   7120   };
   7121 
   7122   class JSType : public ::upb::reffed_ptr<const ::upb::EnumDef> {
   7123    public:
   7124     JSType(const ::upb::EnumDef* e, const void *ref_donor = NULL)
   7125         : reffed_ptr(e, ref_donor) {
   7126       assert(upbdefs_google_protobuf_FieldOptions_JSType_is(e));
   7127     }
   7128     static JSType get() {
   7129       const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_JSType_get(&e);
   7130       return JSType(e, &e);
   7131     }
   7132   };
   7133 };
   7134 
   7135 class FileDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7136  public:
   7137   FileDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7138       : reffed_ptr(m, ref_donor) {
   7139     assert(upbdefs_google_protobuf_FileDescriptorProto_is(m));
   7140   }
   7141 
   7142   static FileDescriptorProto get() {
   7143     const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorProto_get(&m);
   7144     return FileDescriptorProto(m, &m);
   7145   }
   7146 };
   7147 
   7148 class FileDescriptorSet : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7149  public:
   7150   FileDescriptorSet(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7151       : reffed_ptr(m, ref_donor) {
   7152     assert(upbdefs_google_protobuf_FileDescriptorSet_is(m));
   7153   }
   7154 
   7155   static FileDescriptorSet get() {
   7156     const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorSet_get(&m);
   7157     return FileDescriptorSet(m, &m);
   7158   }
   7159 };
   7160 
   7161 class FileOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7162  public:
   7163   FileOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7164       : reffed_ptr(m, ref_donor) {
   7165     assert(upbdefs_google_protobuf_FileOptions_is(m));
   7166   }
   7167 
   7168   static FileOptions get() {
   7169     const ::upb::MessageDef* m = upbdefs_google_protobuf_FileOptions_get(&m);
   7170     return FileOptions(m, &m);
   7171   }
   7172 
   7173   class OptimizeMode : public ::upb::reffed_ptr<const ::upb::EnumDef> {
   7174    public:
   7175     OptimizeMode(const ::upb::EnumDef* e, const void *ref_donor = NULL)
   7176         : reffed_ptr(e, ref_donor) {
   7177       assert(upbdefs_google_protobuf_FileOptions_OptimizeMode_is(e));
   7178     }
   7179     static OptimizeMode get() {
   7180       const ::upb::EnumDef* e = upbdefs_google_protobuf_FileOptions_OptimizeMode_get(&e);
   7181       return OptimizeMode(e, &e);
   7182     }
   7183   };
   7184 };
   7185 
   7186 class MessageOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7187  public:
   7188   MessageOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7189       : reffed_ptr(m, ref_donor) {
   7190     assert(upbdefs_google_protobuf_MessageOptions_is(m));
   7191   }
   7192 
   7193   static MessageOptions get() {
   7194     const ::upb::MessageDef* m = upbdefs_google_protobuf_MessageOptions_get(&m);
   7195     return MessageOptions(m, &m);
   7196   }
   7197 };
   7198 
   7199 class MethodDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7200  public:
   7201   MethodDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7202       : reffed_ptr(m, ref_donor) {
   7203     assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m));
   7204   }
   7205 
   7206   static MethodDescriptorProto get() {
   7207     const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodDescriptorProto_get(&m);
   7208     return MethodDescriptorProto(m, &m);
   7209   }
   7210 };
   7211 
   7212 class MethodOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7213  public:
   7214   MethodOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7215       : reffed_ptr(m, ref_donor) {
   7216     assert(upbdefs_google_protobuf_MethodOptions_is(m));
   7217   }
   7218 
   7219   static MethodOptions get() {
   7220     const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodOptions_get(&m);
   7221     return MethodOptions(m, &m);
   7222   }
   7223 };
   7224 
   7225 class OneofDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7226  public:
   7227   OneofDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7228       : reffed_ptr(m, ref_donor) {
   7229     assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m));
   7230   }
   7231 
   7232   static OneofDescriptorProto get() {
   7233     const ::upb::MessageDef* m = upbdefs_google_protobuf_OneofDescriptorProto_get(&m);
   7234     return OneofDescriptorProto(m, &m);
   7235   }
   7236 };
   7237 
   7238 class ServiceDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7239  public:
   7240   ServiceDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7241       : reffed_ptr(m, ref_donor) {
   7242     assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m));
   7243   }
   7244 
   7245   static ServiceDescriptorProto get() {
   7246     const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceDescriptorProto_get(&m);
   7247     return ServiceDescriptorProto(m, &m);
   7248   }
   7249 };
   7250 
   7251 class ServiceOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7252  public:
   7253   ServiceOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7254       : reffed_ptr(m, ref_donor) {
   7255     assert(upbdefs_google_protobuf_ServiceOptions_is(m));
   7256   }
   7257 
   7258   static ServiceOptions get() {
   7259     const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceOptions_get(&m);
   7260     return ServiceOptions(m, &m);
   7261   }
   7262 };
   7263 
   7264 class SourceCodeInfo : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7265  public:
   7266   SourceCodeInfo(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7267       : reffed_ptr(m, ref_donor) {
   7268     assert(upbdefs_google_protobuf_SourceCodeInfo_is(m));
   7269   }
   7270 
   7271   static SourceCodeInfo get() {
   7272     const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_get(&m);
   7273     return SourceCodeInfo(m, &m);
   7274   }
   7275 
   7276   class Location : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7277    public:
   7278     Location(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7279         : reffed_ptr(m, ref_donor) {
   7280       assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m));
   7281     }
   7282 
   7283     static Location get() {
   7284       const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_Location_get(&m);
   7285       return Location(m, &m);
   7286     }
   7287   };
   7288 };
   7289 
   7290 class UninterpretedOption : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7291  public:
   7292   UninterpretedOption(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7293       : reffed_ptr(m, ref_donor) {
   7294     assert(upbdefs_google_protobuf_UninterpretedOption_is(m));
   7295   }
   7296 
   7297   static UninterpretedOption get() {
   7298     const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_get(&m);
   7299     return UninterpretedOption(m, &m);
   7300   }
   7301 
   7302   class NamePart : public ::upb::reffed_ptr<const ::upb::MessageDef> {
   7303    public:
   7304     NamePart(const ::upb::MessageDef* m, const void *ref_donor = NULL)
   7305         : reffed_ptr(m, ref_donor) {
   7306       assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m));
   7307     }
   7308 
   7309     static NamePart get() {
   7310       const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_NamePart_get(&m);
   7311       return NamePart(m, &m);
   7312     }
   7313   };
   7314 };
   7315 
   7316 }  /* namespace protobuf */
   7317 }  /* namespace google */
   7318 }  /* namespace upbdefs */
   7319 
   7320 #endif  /* __cplusplus */
   7321 
   7322 #endif  /* UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ */
   7323 /*
   7324 ** Internal-only definitions for the decoder.
   7325 */
   7326 
   7327 #ifndef UPB_DECODER_INT_H_
   7328 #define UPB_DECODER_INT_H_
   7329 
   7330 /*
   7331 ** upb::pb::Decoder
   7332 **
   7333 ** A high performance, streaming, resumable decoder for the binary protobuf
   7334 ** format.
   7335 **
   7336 ** This interface works the same regardless of what decoder backend is being
   7337 ** used.  A client of this class does not need to know whether decoding is using
   7338 ** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder.  By default,
   7339 ** it will always use the fastest available decoder.  However, you can call
   7340 ** set_allow_jit(false) to disable any JIT decoder that might be available.
   7341 ** This is primarily useful for testing purposes.
   7342 */
   7343 
   7344 #ifndef UPB_DECODER_H_
   7345 #define UPB_DECODER_H_
   7346 
   7347 
   7348 #ifdef __cplusplus
   7349 namespace upb {
   7350 namespace pb {
   7351 class CodeCache;
   7352 class Decoder;
   7353 class DecoderMethod;
   7354 class DecoderMethodOptions;
   7355 }  /* namespace pb */
   7356 }  /* namespace upb */
   7357 #endif
   7358 
   7359 UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache)
   7360 UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder)
   7361 UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts)
   7362 
   7363 UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted,
   7364                          upb_pbdecodermethod, upb_refcounted)
   7365 
   7366 /* The maximum number of bytes we are required to buffer internally between
   7367  * calls to the decoder.  The value is 14: a 5 byte unknown tag plus ten-byte
   7368  * varint, less one because we are buffering an incomplete value.
   7369  *
   7370  * Should only be used by unit tests. */
   7371 #define UPB_DECODER_MAX_RESIDUAL_BYTES 14
   7372 
   7373 #ifdef __cplusplus
   7374 
   7375 /* The parameters one uses to construct a DecoderMethod.
   7376  * TODO(haberman): move allowjit here?  Seems more convenient for users.
   7377  * TODO(haberman): move this to be heap allocated for ABI stability. */
   7378 class upb::pb::DecoderMethodOptions {
   7379  public:
   7380   /* Parameter represents the destination handlers that this method will push
   7381    * to. */
   7382   explicit DecoderMethodOptions(const Handlers* dest_handlers);
   7383 
   7384   /* Should the decoder push submessages to lazy handlers for fields that have
   7385    * them?  The caller should set this iff the lazy handlers expect data that is
   7386    * in protobuf binary format and the caller wishes to lazy parse it. */
   7387   void set_lazy(bool lazy);
   7388 #else
   7389 struct upb_pbdecodermethodopts {
   7390 #endif
   7391   const upb_handlers *handlers;
   7392   bool lazy;
   7393 };
   7394 
   7395 #ifdef __cplusplus
   7396 
   7397 /* Represents the code to parse a protobuf according to a destination
   7398  * Handlers. */
   7399 class upb::pb::DecoderMethod {
   7400  public:
   7401   /* Include base methods from upb::ReferenceCounted. */
   7402   UPB_REFCOUNTED_CPPMETHODS
   7403 
   7404   /* The destination handlers that are statically bound to this method.
   7405    * This method is only capable of outputting to a sink that uses these
   7406    * handlers. */
   7407   const Handlers* dest_handlers() const;
   7408 
   7409   /* The input handlers for this decoder method. */
   7410   const BytesHandler* input_handler() const;
   7411 
   7412   /* Whether this method is native. */
   7413   bool is_native() const;
   7414 
   7415   /* Convenience method for generating a DecoderMethod without explicitly
   7416    * creating a CodeCache. */
   7417   static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts);
   7418 
   7419  private:
   7420   UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod)
   7421 };
   7422 
   7423 #endif
   7424 
   7425 /* Preallocation hint: decoder won't allocate more bytes than this when first
   7426  * constructed.  This hint may be an overestimate for some build configurations.
   7427  * But if the decoder library is upgraded without recompiling the application,
   7428  * it may be an underestimate. */
   7429 #define UPB_PB_DECODER_SIZE 4416
   7430 
   7431 #ifdef __cplusplus
   7432 
   7433 /* A Decoder receives binary protobuf data on its input sink and pushes the
   7434  * decoded data to its output sink. */
   7435 class upb::pb::Decoder {
   7436  public:
   7437   /* Constructs a decoder instance for the given method, which must outlive this
   7438    * decoder.  Any errors during parsing will be set on the given status, which
   7439    * must also outlive this decoder.
   7440    *
   7441    * The sink must match the given method. */
   7442   static Decoder* Create(Environment* env, const DecoderMethod* method,
   7443                          Sink* output);
   7444 
   7445   /* Returns the DecoderMethod this decoder is parsing from. */
   7446   const DecoderMethod* method() const;
   7447 
   7448   /* The sink on which this decoder receives input. */
   7449   BytesSink* input();
   7450 
   7451   /* Returns number of bytes successfully parsed.
   7452    *
   7453    * This can be useful for determining the stream position where an error
   7454    * occurred.
   7455    *
   7456    * This value may not be up-to-date when called from inside a parsing
   7457    * callback. */
   7458   uint64_t BytesParsed() const;
   7459 
   7460   /* Gets/sets the parsing nexting limit.  If the total number of nested
   7461    * submessages and repeated fields hits this limit, parsing will fail.  This
   7462    * is a resource limit that controls the amount of memory used by the parsing
   7463    * stack.
   7464    *
   7465    * Setting the limit will fail if the parser is currently suspended at a depth
   7466    * greater than this, or if memory allocation of the stack fails. */
   7467   size_t max_nesting() const;
   7468   bool set_max_nesting(size_t max);
   7469 
   7470   void Reset();
   7471 
   7472   static const size_t kSize = UPB_PB_DECODER_SIZE;
   7473 
   7474  private:
   7475   UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder)
   7476 };
   7477 
   7478 #endif  /* __cplusplus */
   7479 
   7480 #ifdef __cplusplus
   7481 
   7482 /* A class for caching protobuf processing code, whether bytecode for the
   7483  * interpreted decoder or machine code for the JIT.
   7484  *
   7485  * This class is not thread-safe.
   7486  *
   7487  * TODO(haberman): move this to be heap allocated for ABI stability. */
   7488 class upb::pb::CodeCache {
   7489  public:
   7490   CodeCache();
   7491   ~CodeCache();
   7492 
   7493   /* Whether the cache is allowed to generate machine code.  Defaults to true.
   7494    * There is no real reason to turn it off except for testing or if you are
   7495    * having a specific problem with the JIT.
   7496    *
   7497    * Note that allow_jit = true does not *guarantee* that the code will be JIT
   7498    * compiled.  If this platform is not supported or the JIT was not compiled
   7499    * in, the code may still be interpreted. */
   7500   bool allow_jit() const;
   7501 
   7502   /* This may only be called when the object is first constructed, and prior to
   7503    * any code generation, otherwise returns false and does nothing. */
   7504   bool set_allow_jit(bool allow);
   7505 
   7506   /* Returns a DecoderMethod that can push data to the given handlers.
   7507    * If a suitable method already exists, it will be returned from the cache.
   7508    *
   7509    * Specifying the destination handlers here allows the DecoderMethod to be
   7510    * statically bound to the destination handlers if possible, which can allow
   7511    * more efficient decoding.  However the returned method may or may not
   7512    * actually be statically bound.  But in all cases, the returned method can
   7513    * push data to the given handlers. */
   7514   const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts);
   7515 
   7516   /* If/when someone needs to explicitly create a dynamically-bound
   7517    * DecoderMethod*, we can add a method to get it here. */
   7518 
   7519  private:
   7520   UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache)
   7521 #else
   7522 struct upb_pbcodecache {
   7523 #endif
   7524   bool allow_jit_;
   7525 
   7526   /* Array of mgroups. */
   7527   upb_inttable groups;
   7528 };
   7529 
   7530 UPB_BEGIN_EXTERN_C
   7531 
   7532 upb_pbdecoder *upb_pbdecoder_create(upb_env *e,
   7533                                     const upb_pbdecodermethod *method,
   7534                                     upb_sink *output);
   7535 const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d);
   7536 upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d);
   7537 uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d);
   7538 size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d);
   7539 bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max);
   7540 void upb_pbdecoder_reset(upb_pbdecoder *d);
   7541 
   7542 void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
   7543                                   const upb_handlers *h);
   7544 void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy);
   7545 
   7546 
   7547 /* Include refcounted methods like upb_pbdecodermethod_ref(). */
   7548 UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast)
   7549 
   7550 const upb_handlers *upb_pbdecodermethod_desthandlers(
   7551     const upb_pbdecodermethod *m);
   7552 const upb_byteshandler *upb_pbdecodermethod_inputhandler(
   7553     const upb_pbdecodermethod *m);
   7554 bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m);
   7555 const upb_pbdecodermethod *upb_pbdecodermethod_new(
   7556     const upb_pbdecodermethodopts *opts, const void *owner);
   7557 
   7558 void upb_pbcodecache_init(upb_pbcodecache *c);
   7559 void upb_pbcodecache_uninit(upb_pbcodecache *c);
   7560 bool upb_pbcodecache_allowjit(const upb_pbcodecache *c);
   7561 bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow);
   7562 const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
   7563     upb_pbcodecache *c, const upb_pbdecodermethodopts *opts);
   7564 
   7565 UPB_END_EXTERN_C
   7566 
   7567 #ifdef __cplusplus
   7568 
   7569 namespace upb {
   7570 
   7571 namespace pb {
   7572 
   7573 /* static */
   7574 inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m,
   7575                                 Sink* sink) {
   7576   return upb_pbdecoder_create(env, m, sink);
   7577 }
   7578 inline const DecoderMethod* Decoder::method() const {
   7579   return upb_pbdecoder_method(this);
   7580 }
   7581 inline BytesSink* Decoder::input() {
   7582   return upb_pbdecoder_input(this);
   7583 }
   7584 inline uint64_t Decoder::BytesParsed() const {
   7585   return upb_pbdecoder_bytesparsed(this);
   7586 }
   7587 inline size_t Decoder::max_nesting() const {
   7588   return upb_pbdecoder_maxnesting(this);
   7589 }
   7590 inline bool Decoder::set_max_nesting(size_t max) {
   7591   return upb_pbdecoder_setmaxnesting(this, max);
   7592 }
   7593 inline void Decoder::Reset() { upb_pbdecoder_reset(this); }
   7594 
   7595 inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) {
   7596   upb_pbdecodermethodopts_init(this, h);
   7597 }
   7598 inline void DecoderMethodOptions::set_lazy(bool lazy) {
   7599   upb_pbdecodermethodopts_setlazy(this, lazy);
   7600 }
   7601 
   7602 inline const Handlers* DecoderMethod::dest_handlers() const {
   7603   return upb_pbdecodermethod_desthandlers(this);
   7604 }
   7605 inline const BytesHandler* DecoderMethod::input_handler() const {
   7606   return upb_pbdecodermethod_inputhandler(this);
   7607 }
   7608 inline bool DecoderMethod::is_native() const {
   7609   return upb_pbdecodermethod_isnative(this);
   7610 }
   7611 /* static */
   7612 inline reffed_ptr<const DecoderMethod> DecoderMethod::New(
   7613     const DecoderMethodOptions &opts) {
   7614   const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m);
   7615   return reffed_ptr<const DecoderMethod>(m, &m);
   7616 }
   7617 
   7618 inline CodeCache::CodeCache() {
   7619   upb_pbcodecache_init(this);
   7620 }
   7621 inline CodeCache::~CodeCache() {
   7622   upb_pbcodecache_uninit(this);
   7623 }
   7624 inline bool CodeCache::allow_jit() const {
   7625   return upb_pbcodecache_allowjit(this);
   7626 }
   7627 inline bool CodeCache::set_allow_jit(bool allow) {
   7628   return upb_pbcodecache_setallowjit(this, allow);
   7629 }
   7630 inline const DecoderMethod *CodeCache::GetDecoderMethod(
   7631     const DecoderMethodOptions& opts) {
   7632   return upb_pbcodecache_getdecodermethod(this, &opts);
   7633 }
   7634 
   7635 }  /* namespace pb */
   7636 }  /* namespace upb */
   7637 
   7638 #endif  /* __cplusplus */
   7639 
   7640 #endif  /* UPB_DECODER_H_ */
   7641 
   7642 /* C++ names are not actually used since this type isn't exposed to users. */
   7643 #ifdef __cplusplus
   7644 namespace upb {
   7645 namespace pb {
   7646 class MessageGroup;
   7647 }  /* namespace pb */
   7648 }  /* namespace upb */
   7649 #endif
   7650 UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted,
   7651                          mgroup, upb_refcounted)
   7652 
   7653 /* Opcode definitions.  The canonical meaning of each opcode is its
   7654  * implementation in the interpreter (the JIT is written to match this).
   7655  *
   7656  * All instructions have the opcode in the low byte.
   7657  * Instruction format for most instructions is:
   7658  *
   7659  * +-------------------+--------+
   7660  * |     arg (24)      | op (8) |
   7661  * +-------------------+--------+
   7662  *
   7663  * Exceptions are indicated below.  A few opcodes are multi-word. */
   7664 typedef enum {
   7665   /* Opcodes 1-8, 13, 15-18 parse their respective descriptor types.
   7666    * Arg for all of these is the upb selector for this field. */
   7667 #define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type
   7668   T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
   7669   T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
   7670 #undef T
   7671   OP_STARTMSG       = 9,   /* No arg. */
   7672   OP_ENDMSG         = 10,  /* No arg. */
   7673   OP_STARTSEQ       = 11,
   7674   OP_ENDSEQ         = 12,
   7675   OP_STARTSUBMSG    = 14,
   7676   OP_ENDSUBMSG      = 19,
   7677   OP_STARTSTR       = 20,
   7678   OP_STRING         = 21,
   7679   OP_ENDSTR         = 22,
   7680 
   7681   OP_PUSHTAGDELIM   = 23,  /* No arg. */
   7682   OP_PUSHLENDELIM   = 24,  /* No arg. */
   7683   OP_POP            = 25,  /* No arg. */
   7684   OP_SETDELIM       = 26,  /* No arg. */
   7685   OP_SETBIGGROUPNUM = 27,  /* two words:
   7686                             *   | unused (24)     | opc (8) |
   7687                             *   |        groupnum (32)      | */
   7688   OP_CHECKDELIM     = 28,
   7689   OP_CALL           = 29,
   7690   OP_RET            = 30,
   7691   OP_BRANCH         = 31,
   7692 
   7693   /* Different opcodes depending on how many bytes expected. */
   7694   OP_TAG1           = 32,  /* | match tag (16) | jump target (8) | opc (8) | */
   7695   OP_TAG2           = 33,  /* | match tag (16) | jump target (8) | opc (8) | */
   7696   OP_TAGN           = 34,  /* three words: */
   7697                            /*   | unused (16) | jump target(8) | opc (8) | */
   7698                            /*   |           match tag 1 (32)             | */
   7699                            /*   |           match tag 2 (32)             | */
   7700 
   7701   OP_SETDISPATCH    = 35,  /* N words: */
   7702                            /*   | unused (24)         | opc | */
   7703                            /*   | upb_inttable* (32 or 64)  | */
   7704 
   7705   OP_DISPATCH       = 36,  /* No arg. */
   7706 
   7707   OP_HALT           = 37   /* No arg. */
   7708 } opcode;
   7709 
   7710 #define OP_MAX OP_HALT
   7711 
   7712 UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; }
   7713 
   7714 /* Method group; represents a set of decoder methods that had their code
   7715  * emitted together, and must therefore be freed together.  Immutable once
   7716  * created.  It is possible we may want to expose this to users at some point.
   7717  *
   7718  * Overall ownership of Decoder objects looks like this:
   7719  *
   7720  *                +----------+
   7721  *                |          | <---> DecoderMethod
   7722  *                | method   |
   7723  * CodeCache ---> |  group   | <---> DecoderMethod
   7724  *                |          |
   7725  *                | (mgroup) | <---> DecoderMethod
   7726  *                +----------+
   7727  */
   7728 struct mgroup {
   7729   upb_refcounted base;
   7730 
   7731   /* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod.  We own refs on the
   7732    * methods. */
   7733   upb_inttable methods;
   7734 
   7735   /* When we add the ability to link to previously existing mgroups, we'll
   7736    * need an array of mgroups we reference here, and own refs on them. */
   7737 
   7738   /* The bytecode for our methods, if any exists.  Owned by us. */
   7739   uint32_t *bytecode;
   7740   uint32_t *bytecode_end;
   7741 
   7742 #ifdef UPB_USE_JIT_X64
   7743   /* JIT-generated machine code, if any. */
   7744   upb_string_handlerfunc *jit_code;
   7745   /* The size of the jit_code (required to munmap()). */
   7746   size_t jit_size;
   7747   char *debug_info;
   7748   void *dl;
   7749 #endif
   7750 };
   7751 
   7752 /* The maximum that any submessages can be nested.  Matches proto2's limit.
   7753  * This specifies the size of the decoder's statically-sized array and therefore
   7754  * setting it high will cause the upb::pb::Decoder object to be larger.
   7755  *
   7756  * If necessary we can add a runtime-settable property to Decoder that allow
   7757  * this to be larger than the compile-time setting, but this would add
   7758  * complexity, particularly since we would have to decide how/if to give users
   7759  * the ability to set a custom memory allocation function. */
   7760 #define UPB_DECODER_MAX_NESTING 64
   7761 
   7762 /* Internal-only struct used by the decoder. */
   7763 typedef struct {
   7764   /* Space optimization note: we store two pointers here that the JIT
   7765    * doesn't need at all; the upb_handlers* inside the sink and
   7766    * the dispatch table pointer.  We can optimze so that the JIT uses
   7767    * smaller stack frames than the interpreter.  The only thing we need
   7768    * to guarantee is that the fallback routines can find end_ofs. */
   7769   upb_sink sink;
   7770 
   7771   /* The absolute stream offset of the end-of-frame delimiter.
   7772    * Non-delimited frames (groups and non-packed repeated fields) reuse the
   7773    * delimiter of their parent, even though the frame may not end there.
   7774    *
   7775    * NOTE: the JIT stores a slightly different value here for non-top frames.
   7776    * It stores the value relative to the end of the enclosed message.  But the
   7777    * top frame is still stored the same way, which is important for ensuring
   7778    * that calls from the JIT into C work correctly. */
   7779   uint64_t end_ofs;
   7780   const uint32_t *base;
   7781 
   7782   /* 0 indicates a length-delimited field.
   7783    * A positive number indicates a known group.
   7784    * A negative number indicates an unknown group. */
   7785   int32_t groupnum;
   7786   upb_inttable *dispatch;  /* Not used by the JIT. */
   7787 } upb_pbdecoder_frame;
   7788 
   7789 struct upb_pbdecodermethod {
   7790   upb_refcounted base;
   7791 
   7792   /* While compiling, the base is relative in "ofs", after compiling it is
   7793    * absolute in "ptr". */
   7794   union {
   7795     uint32_t ofs;     /* PC offset of method. */
   7796     void *ptr;        /* Pointer to bytecode or machine code for this method. */
   7797   } code_base;
   7798 
   7799   /* The decoder method group to which this method belongs.  We own a ref.
   7800    * Owning a ref on the entire group is more coarse-grained than is strictly
   7801    * necessary; all we truly require is that methods we directly reference
   7802    * outlive us, while the group could contain many other messages we don't
   7803    * require.  But the group represents the messages that were
   7804    * allocated+compiled together, so it makes the most sense to free them
   7805    * together also. */
   7806   const upb_refcounted *group;
   7807 
   7808   /* Whether this method is native code or bytecode. */
   7809   bool is_native_;
   7810 
   7811   /* The handler one calls to invoke this method. */
   7812   upb_byteshandler input_handler_;
   7813 
   7814   /* The destination handlers this method is bound to.  We own a ref. */
   7815   const upb_handlers *dest_handlers_;
   7816 
   7817   /* Dispatch table -- used by both bytecode decoder and JIT when encountering a
   7818    * field number that wasn't the one we were expecting to see.  See
   7819    * decoder.int.h for the layout of this table. */
   7820   upb_inttable dispatch;
   7821 };
   7822 
   7823 struct upb_pbdecoder {
   7824   upb_env *env;
   7825 
   7826   /* Our input sink. */
   7827   upb_bytessink input_;
   7828 
   7829   /* The decoder method we are parsing with (owned). */
   7830   const upb_pbdecodermethod *method_;
   7831 
   7832   size_t call_len;
   7833   const uint32_t *pc, *last;
   7834 
   7835   /* Current input buffer and its stream offset. */
   7836   const char *buf, *ptr, *end, *checkpoint;
   7837 
   7838   /* End of the delimited region, relative to ptr, NULL if not in this buf. */
   7839   const char *delim_end;
   7840 
   7841   /* End of the delimited region, relative to ptr, end if not in this buf. */
   7842   const char *data_end;
   7843 
   7844   /* Overall stream offset of "buf." */
   7845   uint64_t bufstart_ofs;
   7846 
   7847   /* Buffer for residual bytes not parsed from the previous buffer. */
   7848   char residual[UPB_DECODER_MAX_RESIDUAL_BYTES];
   7849   char *residual_end;
   7850 
   7851   /* Bytes of data that should be discarded from the input beore we start
   7852    * parsing again.  We set this when we internally determine that we can
   7853    * safely skip the next N bytes, but this region extends past the current
   7854    * user buffer. */
   7855   size_t skip;
   7856 
   7857   /* Stores the user buffer passed to our decode function. */
   7858   const char *buf_param;
   7859   size_t size_param;
   7860   const upb_bufhandle *handle;
   7861 
   7862   /* Our internal stack. */
   7863   upb_pbdecoder_frame *stack, *top, *limit;
   7864   const uint32_t **callstack;
   7865   size_t stack_size;
   7866 
   7867   upb_status *status;
   7868 
   7869 #ifdef UPB_USE_JIT_X64
   7870   /* Used momentarily by the generated code to store a value while a user
   7871    * function is called. */
   7872   uint32_t tmp_len;
   7873 
   7874   const void *saved_rsp;
   7875 #endif
   7876 };
   7877 
   7878 /* Decoder entry points; used as handlers. */
   7879 void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint);
   7880 void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint);
   7881 size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
   7882                             size_t size, const upb_bufhandle *handle);
   7883 bool upb_pbdecoder_end(void *closure, const void *handler_data);
   7884 
   7885 /* Decoder-internal functions that the JIT calls to handle fallback paths. */
   7886 int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
   7887                              size_t size, const upb_bufhandle *handle);
   7888 size_t upb_pbdecoder_suspend(upb_pbdecoder *d);
   7889 int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
   7890                                   uint8_t wire_type);
   7891 int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected);
   7892 int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64);
   7893 int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32);
   7894 int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64);
   7895 void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg);
   7896 
   7897 /* Error messages that are shared between the bytecode and JIT decoders. */
   7898 extern const char *kPbDecoderStackOverflow;
   7899 extern const char *kPbDecoderSubmessageTooLong;
   7900 
   7901 /* Access to decoderplan members needed by the decoder. */
   7902 const char *upb_pbdecoder_getopname(unsigned int op);
   7903 
   7904 /* JIT codegen entry point. */
   7905 void upb_pbdecoder_jit(mgroup *group);
   7906 void upb_pbdecoder_freejit(mgroup *group);
   7907 UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast)
   7908 
   7909 /* A special label that means "do field dispatch for this message and branch to
   7910  * wherever that takes you." */
   7911 #define LABEL_DISPATCH 0
   7912 
   7913 /* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or
   7914  * RET) for branching to when we find an appropriate ENDGROUP tag. */
   7915 #define DISPATCH_ENDMSG 0
   7916 
   7917 /* It's important to use this invalid wire type instead of 0 (which is a valid
   7918  * wire type). */
   7919 #define NO_WIRE_TYPE 0xff
   7920 
   7921 /* The dispatch table layout is:
   7922  *   [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ]
   7923  *
   7924  * If wt1 matches, jump to the 48-bit offset.  If wt2 matches, lookup
   7925  * (UPB_MAX_FIELDNUMBER + fieldnum) and jump there.
   7926  *
   7927  * We need two wire types because of packed/non-packed compatibility.  A
   7928  * primitive repeated field can use either wire type and be valid.  While we
   7929  * could key the table on fieldnum+wiretype, the table would be 8x sparser.
   7930  *
   7931  * Storing two wire types in the primary value allows us to quickly rule out
   7932  * the second wire type without needing to do a separate lookup (this case is
   7933  * less common than an unknown field). */
   7934 UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1,
   7935                                                uint8_t wt2) {
   7936   return (ofs << 16) | (wt2 << 8) | wt1;
   7937 }
   7938 
   7939 UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs,
   7940                                              uint8_t *wt1, uint8_t *wt2) {
   7941   *wt1 = (uint8_t)dispatch;
   7942   *wt2 = (uint8_t)(dispatch >> 8);
   7943   *ofs = dispatch >> 16;
   7944 }
   7945 
   7946 /* All of the functions in decoder.c that return int32_t return values according
   7947  * to the following scheme:
   7948  *   1. negative values indicate a return code from the following list.
   7949  *   2. positive values indicate that error or end of buffer was hit, and
   7950  *      that the decode function should immediately return the given value
   7951  *      (the decoder state has already been suspended and is ready to be
   7952  *      resumed). */
   7953 #define DECODE_OK -1
   7954 #define DECODE_MISMATCH -2  /* Used only from checktag_slow(). */
   7955 #define DECODE_ENDGROUP -3  /* Used only from checkunknown(). */
   7956 
   7957 #define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; }
   7958 
   7959 #endif  /* UPB_DECODER_INT_H_ */
   7960 /*
   7961 ** A number of routines for varint manipulation (we keep them all around to
   7962 ** have multiple approaches available for benchmarking).
   7963 */
   7964 
   7965 #ifndef UPB_VARINT_DECODER_H_
   7966 #define UPB_VARINT_DECODER_H_
   7967 
   7968 #include <assert.h>
   7969 #include <stdint.h>
   7970 #include <string.h>
   7971 
   7972 #ifdef __cplusplus
   7973 extern "C" {
   7974 #endif
   7975 
   7976 /* A list of types as they are encoded on-the-wire. */
   7977 typedef enum {
   7978   UPB_WIRE_TYPE_VARINT      = 0,
   7979   UPB_WIRE_TYPE_64BIT       = 1,
   7980   UPB_WIRE_TYPE_DELIMITED   = 2,
   7981   UPB_WIRE_TYPE_START_GROUP = 3,
   7982   UPB_WIRE_TYPE_END_GROUP   = 4,
   7983   UPB_WIRE_TYPE_32BIT       = 5
   7984 } upb_wiretype_t;
   7985 
   7986 #define UPB_MAX_WIRE_TYPE 5
   7987 
   7988 /* The maximum number of bytes that it takes to encode a 64-bit varint.
   7989  * Note that with a better encoding this could be 9 (TODO: write up a
   7990  * wiki document about this). */
   7991 #define UPB_PB_VARINT_MAX_LEN 10
   7992 
   7993 /* Array of the "native" (ie. non-packed-repeated) wire type for the given a
   7994  * descriptor type (upb_descriptortype_t). */
   7995 extern const uint8_t upb_pb_native_wire_types[];
   7996 
   7997 /* Zig-zag encoding/decoding **************************************************/
   7998 
   7999 UPB_INLINE int32_t upb_zzdec_32(uint32_t n) {
   8000   return (n >> 1) ^ -(int32_t)(n & 1);
   8001 }
   8002 UPB_INLINE int64_t upb_zzdec_64(uint64_t n) {
   8003   return (n >> 1) ^ -(int64_t)(n & 1);
   8004 }
   8005 UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
   8006 UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }
   8007 
   8008 /* Decoding *******************************************************************/
   8009 
   8010 /* All decoding functions return this struct by value. */
   8011 typedef struct {
   8012   const char *p;  /* NULL if the varint was unterminated. */
   8013   uint64_t val;
   8014 } upb_decoderet;
   8015 
   8016 UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) {
   8017   upb_decoderet ret;
   8018   ret.p = p;
   8019   ret.val = val;
   8020   return ret;
   8021 }
   8022 
   8023 /* Four functions for decoding a varint of at most eight bytes.  They are all
   8024  * functionally identical, but are implemented in different ways and likely have
   8025  * different performance profiles.  We keep them around for performance testing.
   8026  *
   8027  * Note that these functions may not read byte-by-byte, so they must not be used
   8028  * unless there are at least eight bytes left in the buffer! */
   8029 upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r);
   8030 upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r);
   8031 upb_decoderet upb_vdecode_max8_wright(upb_decoderet r);
   8032 upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r);
   8033 
   8034 /* Template for a function that checks the first two bytes with branching
   8035  * and dispatches 2-10 bytes with a separate function.  Note that this may read
   8036  * up to 10 bytes, so it must not be used unless there are at least ten bytes
   8037  * left in the buffer! */
   8038 #define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function)                  \
   8039 UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) {         \
   8040   uint8_t *p = (uint8_t*)_p;                                                   \
   8041   upb_decoderet r;                                                             \
   8042   if ((*p & 0x80) == 0) {                                                      \
   8043   /* Common case: one-byte varint. */                                          \
   8044     return upb_decoderet_make(_p + 1, *p & 0x7fU);                             \
   8045   }                                                                            \
   8046   r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7));    \
   8047   if ((*(p + 1) & 0x80) == 0) {                                                \
   8048     /* Two-byte varint. */                                                     \
   8049     return r;                                                                  \
   8050   }                                                                            \
   8051   /* Longer varint, fallback to out-of-line function. */                       \
   8052   return decode_max8_function(r);                                              \
   8053 }
   8054 
   8055 UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32)
   8056 UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64)
   8057 UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright)
   8058 UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino)
   8059 #undef UPB_VARINT_DECODER_CHECK2
   8060 
   8061 /* Our canonical functions for decoding varints, based on the currently
   8062  * favored best-performing implementations. */
   8063 UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) {
   8064   if (sizeof(long) == 8)
   8065     return upb_vdecode_check2_branch64(p);
   8066   else
   8067     return upb_vdecode_check2_branch32(p);
   8068 }
   8069 
   8070 UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) {
   8071   return upb_vdecode_max8_massimino(r);
   8072 }
   8073 
   8074 
   8075 /* Encoding *******************************************************************/
   8076 
   8077 UPB_INLINE int upb_value_size(uint64_t val) {
   8078 #ifdef __GNUC__
   8079   int high_bit = 63 - __builtin_clzll(val);  /* 0-based, undef if val == 0. */
   8080 #else
   8081   int high_bit = 0;
   8082   uint64_t tmp = val;
   8083   while(tmp >>= 1) high_bit++;
   8084 #endif
   8085   return val == 0 ? 1 : high_bit / 8 + 1;
   8086 }
   8087 
   8088 /* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN
   8089  * bytes long), returning how many bytes were used.
   8090  *
   8091  * TODO: benchmark and optimize if necessary. */
   8092 UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) {
   8093   size_t i;
   8094   if (val == 0) { buf[0] = 0; return 1; }
   8095   i = 0;
   8096   while (val) {
   8097     uint8_t byte = val & 0x7fU;
   8098     val >>= 7;
   8099     if (val) byte |= 0x80U;
   8100     buf[i++] = byte;
   8101   }
   8102   return i;
   8103 }
   8104 
   8105 UPB_INLINE size_t upb_varint_size(uint64_t val) {
   8106   char buf[UPB_PB_VARINT_MAX_LEN];
   8107   return upb_vencode64(val, buf);
   8108 }
   8109 
   8110 /* Encodes a 32-bit varint, *not* sign-extended. */
   8111 UPB_INLINE uint64_t upb_vencode32(uint32_t val) {
   8112   char buf[UPB_PB_VARINT_MAX_LEN];
   8113   size_t bytes = upb_vencode64(val, buf);
   8114   uint64_t ret = 0;
   8115   assert(bytes <= 5);
   8116   memcpy(&ret, buf, bytes);
   8117   assert(ret <= 0xffffffffffU);
   8118   return ret;
   8119 }
   8120 
   8121 #ifdef __cplusplus
   8122 }  /* extern "C" */
   8123 #endif
   8124 
   8125 #endif  /* UPB_VARINT_DECODER_H_ */
   8126 /*
   8127 ** upb::pb::Encoder (upb_pb_encoder)
   8128 **
   8129 ** Implements a set of upb_handlers that write protobuf data to the binary wire
   8130 ** format.
   8131 **
   8132 ** This encoder implementation does not have any access to any out-of-band or
   8133 ** precomputed lengths for submessages, so it must buffer submessages internally
   8134 ** before it can emit the first byte.
   8135 */
   8136 
   8137 #ifndef UPB_ENCODER_H_
   8138 #define UPB_ENCODER_H_
   8139 
   8140 
   8141 #ifdef __cplusplus
   8142 namespace upb {
   8143 namespace pb {
   8144 class Encoder;
   8145 }  /* namespace pb */
   8146 }  /* namespace upb */
   8147 #endif
   8148 
   8149 UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder)
   8150 
   8151 #define UPB_PBENCODER_MAX_NESTING 100
   8152 
   8153 /* upb::pb::Encoder ***********************************************************/
   8154 
   8155 /* Preallocation hint: decoder won't allocate more bytes than this when first
   8156  * constructed.  This hint may be an overestimate for some build configurations.
   8157  * But if the decoder library is upgraded without recompiling the application,
   8158  * it may be an underestimate. */
   8159 #define UPB_PB_ENCODER_SIZE 768
   8160 
   8161 #ifdef __cplusplus
   8162 
   8163 class upb::pb::Encoder {
   8164  public:
   8165   /* Creates a new encoder in the given environment.  The Handlers must have
   8166    * come from NewHandlers() below. */
   8167   static Encoder* Create(Environment* env, const Handlers* handlers,
   8168                          BytesSink* output);
   8169 
   8170   /* The input to the encoder. */
   8171   Sink* input();
   8172 
   8173   /* Creates a new set of handlers for this MessageDef. */
   8174   static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg);
   8175 
   8176   static const size_t kSize = UPB_PB_ENCODER_SIZE;
   8177 
   8178  private:
   8179   UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder)
   8180 };
   8181 
   8182 #endif
   8183 
   8184 UPB_BEGIN_EXTERN_C
   8185 
   8186 const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
   8187                                                const void *owner);
   8188 upb_sink *upb_pb_encoder_input(upb_pb_encoder *p);
   8189 upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h,
   8190                                       upb_bytessink* output);
   8191 
   8192 UPB_END_EXTERN_C
   8193 
   8194 #ifdef __cplusplus
   8195 
   8196 namespace upb {
   8197 namespace pb {
   8198 inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers,
   8199                                 BytesSink* output) {
   8200   return upb_pb_encoder_create(env, handlers, output);
   8201 }
   8202 inline Sink* Encoder::input() {
   8203   return upb_pb_encoder_input(this);
   8204 }
   8205 inline reffed_ptr<const Handlers> Encoder::NewHandlers(
   8206     const upb::MessageDef *md) {
   8207   const Handlers* h = upb_pb_encoder_newhandlers(md, &h);
   8208   return reffed_ptr<const Handlers>(h, &h);
   8209 }
   8210 }  /* namespace pb */
   8211 }  /* namespace upb */
   8212 
   8213 #endif
   8214 
   8215 #endif  /* UPB_ENCODER_H_ */
   8216 /*
   8217 ** upb's core components like upb_decoder and upb_msg are carefully designed to
   8218 ** avoid depending on each other for maximum orthogonality.  In other words,
   8219 ** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is
   8220 ** just one such structure.  A upb_msg can be serialized/deserialized into any
   8221 ** format, protobuf binary format is just one such format.
   8222 **
   8223 ** However, for convenience we provide functions here for doing common
   8224 ** operations like deserializing protobuf binary format into a upb_msg.  The
   8225 ** compromise is that this file drags in almost all of upb as a dependency,
   8226 ** which could be undesirable if you're trying to use a trimmed-down build of
   8227 ** upb.
   8228 **
   8229 ** While these routines are convenient, they do not reuse any encoding/decoding
   8230 ** state.  For example, if a decoder is JIT-based, it will be re-JITted every
   8231 ** time these functions are called.  For this reason, if you are parsing lots
   8232 ** of data and efficiency is an issue, these may not be the best functions to
   8233 ** use (though they are useful for prototyping, before optimizing).
   8234 */
   8235 
   8236 #ifndef UPB_GLUE_H
   8237 #define UPB_GLUE_H
   8238 
   8239 #include <stdbool.h>
   8240 
   8241 #ifdef __cplusplus
   8242 #include <vector>
   8243 
   8244 extern "C" {
   8245 #endif
   8246 
   8247 /* Loads a binary descriptor and returns a NULL-terminated array of unfrozen
   8248  * filedefs.  The caller owns the returned array, which must be freed with
   8249  * upb_gfree(). */
   8250 upb_filedef **upb_loaddescriptor(const char *buf, size_t n, const void *owner,
   8251                                  upb_status *status);
   8252 
   8253 #ifdef __cplusplus
   8254 }  /* extern "C" */
   8255 
   8256 namespace upb {
   8257 
   8258 inline bool LoadDescriptor(const char* buf, size_t n, Status* status,
   8259                            std::vector<reffed_ptr<FileDef> >* files) {
   8260   FileDef** parsed_files = upb_loaddescriptor(buf, n, &parsed_files, status);
   8261 
   8262   if (parsed_files) {
   8263     FileDef** p = parsed_files;
   8264     while (*p) {
   8265       files->push_back(reffed_ptr<FileDef>(*p, &parsed_files));
   8266       ++p;
   8267     }
   8268     free(parsed_files);
   8269     return true;
   8270   } else {
   8271     return false;
   8272   }
   8273 }
   8274 
   8275 /* Templated so it can accept both string and std::string. */
   8276 template <typename T>
   8277 bool LoadDescriptor(const T& desc, Status* status,
   8278                     std::vector<reffed_ptr<FileDef> >* files) {
   8279   return LoadDescriptor(desc.c_str(), desc.size(), status, files);
   8280 }
   8281 
   8282 }  /* namespace upb */
   8283 
   8284 #endif
   8285 
   8286 #endif  /* UPB_GLUE_H */
   8287 /*
   8288 ** upb::pb::TextPrinter (upb_textprinter)
   8289 **
   8290 ** Handlers for writing to protobuf text format.
   8291 */
   8292 
   8293 #ifndef UPB_TEXT_H_
   8294 #define UPB_TEXT_H_
   8295 
   8296 
   8297 #ifdef __cplusplus
   8298 namespace upb {
   8299 namespace pb {
   8300 class TextPrinter;
   8301 }  /* namespace pb */
   8302 }  /* namespace upb */
   8303 #endif
   8304 
   8305 UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter)
   8306 
   8307 #ifdef __cplusplus
   8308 
   8309 class upb::pb::TextPrinter {
   8310  public:
   8311   /* The given handlers must have come from NewHandlers().  It must outlive the
   8312    * TextPrinter. */
   8313   static TextPrinter *Create(Environment *env, const upb::Handlers *handlers,
   8314                              BytesSink *output);
   8315 
   8316   void SetSingleLineMode(bool single_line);
   8317 
   8318   Sink* input();
   8319 
   8320   /* If handler caching becomes a requirement we can add a code cache as in
   8321    * decoder.h */
   8322   static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md);
   8323 };
   8324 
   8325 #endif
   8326 
   8327 UPB_BEGIN_EXTERN_C
   8328 
   8329 /* C API. */
   8330 upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h,
   8331                                         upb_bytessink *output);
   8332 void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line);
   8333 upb_sink *upb_textprinter_input(upb_textprinter *p);
   8334 
   8335 const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
   8336                                                 const void *owner);
   8337 
   8338 UPB_END_EXTERN_C
   8339 
   8340 #ifdef __cplusplus
   8341 
   8342 namespace upb {
   8343 namespace pb {
   8344 inline TextPrinter *TextPrinter::Create(Environment *env,
   8345                                         const upb::Handlers *handlers,
   8346                                         BytesSink *output) {
   8347   return upb_textprinter_create(env, handlers, output);
   8348 }
   8349 inline void TextPrinter::SetSingleLineMode(bool single_line) {
   8350   upb_textprinter_setsingleline(this, single_line);
   8351 }
   8352 inline Sink* TextPrinter::input() {
   8353   return upb_textprinter_input(this);
   8354 }
   8355 inline reffed_ptr<const Handlers> TextPrinter::NewHandlers(
   8356     const MessageDef *md) {
   8357   const Handlers* h = upb_textprinter_newhandlers(md, &h);
   8358   return reffed_ptr<const Handlers>(h, &h);
   8359 }
   8360 }  /* namespace pb */
   8361 }  /* namespace upb */
   8362 
   8363 #endif
   8364 
   8365 #endif  /* UPB_TEXT_H_ */
   8366 /*
   8367 ** upb::json::Parser (upb_json_parser)
   8368 **
   8369 ** Parses JSON according to a specific schema.
   8370 ** Support for parsing arbitrary JSON (schema-less) will be added later.
   8371 */
   8372 
   8373 #ifndef UPB_JSON_PARSER_H_
   8374 #define UPB_JSON_PARSER_H_
   8375 
   8376 
   8377 #ifdef __cplusplus
   8378 namespace upb {
   8379 namespace json {
   8380 class Parser;
   8381 class ParserMethod;
   8382 }  /* namespace json */
   8383 }  /* namespace upb */
   8384 #endif
   8385 
   8386 UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser)
   8387 UPB_DECLARE_DERIVED_TYPE(upb::json::ParserMethod, upb::RefCounted,
   8388                          upb_json_parsermethod, upb_refcounted)
   8389 
   8390 /* upb::json::Parser **********************************************************/
   8391 
   8392 /* Preallocation hint: parser won't allocate more bytes than this when first
   8393  * constructed.  This hint may be an overestimate for some build configurations.
   8394  * But if the parser library is upgraded without recompiling the application,
   8395  * it may be an underestimate. */
   8396 #define UPB_JSON_PARSER_SIZE 4112
   8397 
   8398 #ifdef __cplusplus
   8399 
   8400 /* Parses an incoming BytesStream, pushing the results to the destination
   8401  * sink. */
   8402 class upb::json::Parser {
   8403  public:
   8404   static Parser* Create(Environment* env, const ParserMethod* method,
   8405                         Sink* output);
   8406 
   8407   BytesSink* input();
   8408 
   8409  private:
   8410   UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser)
   8411 };
   8412 
   8413 class upb::json::ParserMethod {
   8414  public:
   8415   /* Include base methods from upb::ReferenceCounted. */
   8416   UPB_REFCOUNTED_CPPMETHODS
   8417 
   8418   /* Returns handlers for parsing according to the specified schema. */
   8419   static reffed_ptr<const ParserMethod> New(const upb::MessageDef* md);
   8420 
   8421   /* The destination handlers that are statically bound to this method.
   8422    * This method is only capable of outputting to a sink that uses these
   8423    * handlers. */
   8424   const Handlers* dest_handlers() const;
   8425 
   8426   /* The input handlers for this decoder method. */
   8427   const BytesHandler* input_handler() const;
   8428 
   8429  private:
   8430   UPB_DISALLOW_POD_OPS(ParserMethod, upb::json::ParserMethod)
   8431 };
   8432 
   8433 #endif
   8434 
   8435 UPB_BEGIN_EXTERN_C
   8436 
   8437 upb_json_parser* upb_json_parser_create(upb_env* e,
   8438                                         const upb_json_parsermethod* m,
   8439                                         upb_sink* output);
   8440 upb_bytessink *upb_json_parser_input(upb_json_parser *p);
   8441 
   8442 upb_json_parsermethod* upb_json_parsermethod_new(const upb_msgdef* md,
   8443                                                  const void* owner);
   8444 const upb_handlers *upb_json_parsermethod_desthandlers(
   8445     const upb_json_parsermethod *m);
   8446 const upb_byteshandler *upb_json_parsermethod_inputhandler(
   8447     const upb_json_parsermethod *m);
   8448 
   8449 /* Include refcounted methods like upb_json_parsermethod_ref(). */
   8450 UPB_REFCOUNTED_CMETHODS(upb_json_parsermethod, upb_json_parsermethod_upcast)
   8451 
   8452 UPB_END_EXTERN_C
   8453 
   8454 #ifdef __cplusplus
   8455 
   8456 namespace upb {
   8457 namespace json {
   8458 inline Parser* Parser::Create(Environment* env, const ParserMethod* method,
   8459                               Sink* output) {
   8460   return upb_json_parser_create(env, method, output);
   8461 }
   8462 inline BytesSink* Parser::input() {
   8463   return upb_json_parser_input(this);
   8464 }
   8465 
   8466 inline const Handlers* ParserMethod::dest_handlers() const {
   8467   return upb_json_parsermethod_desthandlers(this);
   8468 }
   8469 inline const BytesHandler* ParserMethod::input_handler() const {
   8470   return upb_json_parsermethod_inputhandler(this);
   8471 }
   8472 /* static */
   8473 inline reffed_ptr<const ParserMethod> ParserMethod::New(
   8474     const MessageDef* md) {
   8475   const upb_json_parsermethod *m = upb_json_parsermethod_new(md, &m);
   8476   return reffed_ptr<const ParserMethod>(m, &m);
   8477 }
   8478 
   8479 }  /* namespace json */
   8480 }  /* namespace upb */
   8481 
   8482 #endif
   8483 
   8484 
   8485 #endif  /* UPB_JSON_PARSER_H_ */
   8486 /*
   8487 ** upb::json::Printer
   8488 **
   8489 ** Handlers that emit JSON according to a specific protobuf schema.
   8490 */
   8491 
   8492 #ifndef UPB_JSON_TYPED_PRINTER_H_
   8493 #define UPB_JSON_TYPED_PRINTER_H_
   8494 
   8495 
   8496 #ifdef __cplusplus
   8497 namespace upb {
   8498 namespace json {
   8499 class Printer;
   8500 }  /* namespace json */
   8501 }  /* namespace upb */
   8502 #endif
   8503 
   8504 UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer)
   8505 
   8506 
   8507 /* upb::json::Printer *********************************************************/
   8508 
   8509 #define UPB_JSON_PRINTER_SIZE 176
   8510 
   8511 #ifdef __cplusplus
   8512 
   8513 /* Prints an incoming stream of data to a BytesSink in JSON format. */
   8514 class upb::json::Printer {
   8515  public:
   8516   static Printer* Create(Environment* env, const upb::Handlers* handlers,
   8517                          BytesSink* output);
   8518 
   8519   /* The input to the printer. */
   8520   Sink* input();
   8521 
   8522   /* Returns handlers for printing according to the specified schema.
   8523    * If preserve_proto_fieldnames is true, the output JSON will use the
   8524    * original .proto field names (ie. {"my_field":3}) instead of using
   8525    * camelCased names, which is the default: (eg. {"myField":3}). */
   8526   static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md,
   8527                                                 bool preserve_proto_fieldnames);
   8528 
   8529   static const size_t kSize = UPB_JSON_PRINTER_SIZE;
   8530 
   8531  private:
   8532   UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer)
   8533 };
   8534 
   8535 #endif
   8536 
   8537 UPB_BEGIN_EXTERN_C
   8538 
   8539 /* Native C API. */
   8540 upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h,
   8541                                           upb_bytessink *output);
   8542 upb_sink *upb_json_printer_input(upb_json_printer *p);
   8543 const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
   8544                                                  bool preserve_fieldnames,
   8545                                                  const void *owner);
   8546 
   8547 UPB_END_EXTERN_C
   8548 
   8549 #ifdef __cplusplus
   8550 
   8551 namespace upb {
   8552 namespace json {
   8553 inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers,
   8554                                 BytesSink* output) {
   8555   return upb_json_printer_create(env, handlers, output);
   8556 }
   8557 inline Sink* Printer::input() { return upb_json_printer_input(this); }
   8558 inline reffed_ptr<const Handlers> Printer::NewHandlers(
   8559     const upb::MessageDef *md, bool preserve_proto_fieldnames) {
   8560   const Handlers* h = upb_json_printer_newhandlers(
   8561       md, preserve_proto_fieldnames, &h);
   8562   return reffed_ptr<const Handlers>(h, &h);
   8563 }
   8564 }  /* namespace json */
   8565 }  /* namespace upb */
   8566 
   8567 #endif
   8568 
   8569 #endif  /* UPB_JSON_TYPED_PRINTER_H_ */
   8570