Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #ifndef GrPathUtils_DEFINED
      9 #define GrPathUtils_DEFINED
     10 
     11 #include "SkGeometry.h"
     12 #include "SkRect.h"
     13 #include "SkPathPriv.h"
     14 #include "SkTArray.h"
     15 
     16 class SkMatrix;
     17 
     18 /**
     19  *  Utilities for evaluating paths.
     20  */
     21 namespace GrPathUtils {
     22     // Very small tolerances will be increased to a minimum threshold value, to avoid division
     23     // problems in subsequent math.
     24     SkScalar scaleToleranceToSrc(SkScalar devTol,
     25                                  const SkMatrix& viewM,
     26                                  const SkRect& pathBounds);
     27 
     28     int worstCasePointCount(const SkPath&,
     29                             int* subpaths,
     30                             SkScalar tol);
     31 
     32     uint32_t quadraticPointCount(const SkPoint points[], SkScalar tol);
     33 
     34     uint32_t generateQuadraticPoints(const SkPoint& p0,
     35                                      const SkPoint& p1,
     36                                      const SkPoint& p2,
     37                                      SkScalar tolSqd,
     38                                      SkPoint** points,
     39                                      uint32_t pointsLeft);
     40 
     41     uint32_t cubicPointCount(const SkPoint points[], SkScalar tol);
     42 
     43     uint32_t generateCubicPoints(const SkPoint& p0,
     44                                  const SkPoint& p1,
     45                                  const SkPoint& p2,
     46                                  const SkPoint& p3,
     47                                  SkScalar tolSqd,
     48                                  SkPoint** points,
     49                                  uint32_t pointsLeft);
     50 
     51     // A 2x3 matrix that goes from the 2d space coordinates to UV space where
     52     // u^2-v = 0 specifies the quad. The matrix is determined by the control
     53     // points of the quadratic.
     54     class QuadUVMatrix {
     55     public:
     56         QuadUVMatrix() {}
     57         // Initialize the matrix from the control pts
     58         QuadUVMatrix(const SkPoint controlPts[3]) { this->set(controlPts); }
     59         void set(const SkPoint controlPts[3]);
     60 
     61         /**
     62          * Applies the matrix to vertex positions to compute UV coords. This
     63          * has been templated so that the compiler can easliy unroll the loop
     64          * and reorder to avoid stalling for loads. The assumption is that a
     65          * path renderer will have a small fixed number of vertices that it
     66          * uploads for each quad.
     67          *
     68          * N is the number of vertices.
     69          * STRIDE is the size of each vertex.
     70          * UV_OFFSET is the offset of the UV values within each vertex.
     71          * vertices is a pointer to the first vertex.
     72          */
     73         template <int N, size_t STRIDE, size_t UV_OFFSET>
     74         void apply(const void* vertices) const {
     75             intptr_t xyPtr = reinterpret_cast<intptr_t>(vertices);
     76             intptr_t uvPtr = reinterpret_cast<intptr_t>(vertices) + UV_OFFSET;
     77             float sx = fM[0];
     78             float kx = fM[1];
     79             float tx = fM[2];
     80             float ky = fM[3];
     81             float sy = fM[4];
     82             float ty = fM[5];
     83             for (int i = 0; i < N; ++i) {
     84                 const SkPoint* xy = reinterpret_cast<const SkPoint*>(xyPtr);
     85                 SkPoint* uv = reinterpret_cast<SkPoint*>(uvPtr);
     86                 uv->fX = sx * xy->fX + kx * xy->fY + tx;
     87                 uv->fY = ky * xy->fX + sy * xy->fY + ty;
     88                 xyPtr += STRIDE;
     89                 uvPtr += STRIDE;
     90             }
     91         }
     92     private:
     93         float fM[6];
     94     };
     95 
     96     // Input is 3 control points and a weight for a bezier conic. Calculates the
     97     // three linear functionals (K,L,M) that represent the implicit equation of the
     98     // conic, k^2 - lm.
     99     //
    100     // Output: klm holds the linear functionals K,L,M as row vectors:
    101     //
    102     //     | ..K.. |   | x |      | k |
    103     //     | ..L.. | * | y |  ==  | l |
    104     //     | ..M.. |   | 1 |      | m |
    105     //
    106     void getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* klm);
    107 
    108     // Converts a cubic into a sequence of quads. If working in device space
    109     // use tolScale = 1, otherwise set based on stretchiness of the matrix. The
    110     // result is sets of 3 points in quads.
    111     void convertCubicToQuads(const SkPoint p[4],
    112                              SkScalar tolScale,
    113                              SkTArray<SkPoint, true>* quads);
    114 
    115     // When we approximate a cubic {a,b,c,d} with a quadratic we may have to
    116     // ensure that the new control point lies between the lines ab and cd. The
    117     // convex path renderer requires this. It starts with a path where all the
    118     // control points taken together form a convex polygon. It relies on this
    119     // property and the quadratic approximation of cubics step cannot alter it.
    120     // This variation enforces this constraint. The cubic must be simple and dir
    121     // must specify the orientation of the contour containing the cubic.
    122     void convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
    123                                                 SkScalar tolScale,
    124                                                 SkPathPriv::FirstDirection dir,
    125                                                 SkTArray<SkPoint, true>* quads);
    126 
    127     enum class ExcludedTerm {
    128         kNonInvertible,
    129         kQuadraticTerm,
    130         kLinearTerm
    131     };
    132 
    133     // Computes the inverse-transpose of the cubic's power basis matrix, after removing a specific
    134     // row of coefficients.
    135     //
    136     // E.g. if the cubic is defined in power basis form as follows:
    137     //
    138     //                                         | x3   y3   0 |
    139     //     C(t,s) = [t^3  t^2*s  t*s^2  s^3] * | x2   y2   0 |
    140     //                                         | x1   y1   0 |
    141     //                                         | x0   y0   1 |
    142     //
    143     // And the excluded term is "kQuadraticTerm", then the resulting inverse-transpose will be:
    144     //
    145     //     | x3   y3   0 | -1 T
    146     //     | x1   y1   0 |
    147     //     | x0   y0   1 |
    148     //
    149     // (The term to exclude is chosen based on maximizing the resulting matrix determinant.)
    150     //
    151     // This can be used to find the KLM linear functionals:
    152     //
    153     //     | ..K.. |   | ..kcoeffs.. |
    154     //     | ..L.. | = | ..lcoeffs.. | * inverse_transpose_power_basis_matrix
    155     //     | ..M.. |   | ..mcoeffs.. |
    156     //
    157     // NOTE: the same term that was excluded here must also be removed from the corresponding column
    158     // of the klmcoeffs matrix.
    159     //
    160     // Returns which row of coefficients was removed, or kNonInvertible if the cubic was degenerate.
    161     ExcludedTerm calcCubicInverseTransposePowerBasisMatrix(const SkPoint p[4], SkMatrix* out);
    162 
    163     // Computes the KLM linear functionals for the cubic implicit form. The "right" side of the
    164     // curve (when facing in the direction of increasing parameter values) will be the area that
    165     // satisfies:
    166     //
    167     //     k^3 < l*m
    168     //
    169     // Output:
    170     //
    171     // klm: Holds the linear functionals K,L,M as row vectors:
    172     //
    173     //          | ..K.. |   | x |      | k |
    174     //          | ..L.. | * | y |  ==  | l |
    175     //          | ..M.. |   | 1 |      | m |
    176     //
    177     // NOTE: the KLM lines are calculated in the same space as the input control points. If you
    178     // transform the points the lines will also need to be transformed. This can be done by mapping
    179     // the lines with the inverse-transpose of the matrix used to map the points.
    180     //
    181     // t[],s[]: These are set to the two homogeneous parameter values at which points the lines L&M
    182     // intersect with K (See SkClassifyCubic).
    183     //
    184     // Returns the cubic's classification.
    185     SkCubicType getCubicKLM(const SkPoint src[4], SkMatrix* klm, double t[2], double s[2]);
    186 
    187     // Chops the cubic bezier passed in by src, at the double point (intersection point)
    188     // if the curve is a cubic loop. If it is a loop, there will be two parametric values for
    189     // the double point: t1 and t2. We chop the cubic at these values if they are between 0 and 1.
    190     // Return value:
    191     // Value of 3: t1 and t2 are both between (0,1), and dst will contain the three cubics,
    192     //             dst[0..3], dst[3..6], and dst[6..9] if dst is not nullptr
    193     // Value of 2: Only one of t1 and t2 are between (0,1), and dst will contain the two cubics,
    194     //             dst[0..3] and dst[3..6] if dst is not nullptr
    195     // Value of 1: Neither t1 nor t2 are between (0,1), and dst will contain the one original cubic,
    196     //             src[0..3]
    197     //
    198     // Output:
    199     //
    200     // klm: Holds the linear functionals K,L,M as row vectors. (See getCubicKLM().)
    201     //
    202     // loopIndex: This value will tell the caller which of the chopped sections (if any) are the
    203     //            actual loop. A value of -1 means there is no loop section. The caller can then use
    204     //            this value to decide how/if they want to flip the orientation of this section.
    205     //            The flip should be done by negating the k and l values as follows:
    206     //
    207     //            KLM.postScale(-1, -1)
    208     int chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkMatrix* klm,
    209                                     int* loopIndex);
    210 
    211     // When tessellating curved paths into linear segments, this defines the maximum distance
    212     // in screen space which a segment may deviate from the mathmatically correct value.
    213     // Above this value, the segment will be subdivided.
    214     // This value was chosen to approximate the supersampling accuracy of the raster path (16
    215     // samples, or one quarter pixel).
    216     static const SkScalar kDefaultTolerance = SkDoubleToScalar(0.25);
    217 
    218     // We guarantee that no quad or cubic will ever produce more than this many points
    219     static const int kMaxPointsPerCurve = 1 << 10;
    220 };
    221 #endif
    222