Home | History | Annotate | Download | only in core
      1 /*
      2  * Copyright 2006 The Android Open Source Project
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkGeometry.h"
      9 #include "SkMatrix.h"
     10 #include "SkNx.h"
     11 #include "SkPoint3.h"
     12 #include "SkPointPriv.h"
     13 
     14 static SkVector to_vector(const Sk2s& x) {
     15     SkVector vector;
     16     x.store(&vector);
     17     return vector;
     18 }
     19 
     20 ////////////////////////////////////////////////////////////////////////
     21 
     22 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
     23     SkScalar ab = a - b;
     24     SkScalar bc = b - c;
     25     if (ab < 0) {
     26         bc = -bc;
     27     }
     28     return ab == 0 || bc < 0;
     29 }
     30 
     31 ////////////////////////////////////////////////////////////////////////
     32 
     33 static bool is_unit_interval(SkScalar x) {
     34     return x > 0 && x < SK_Scalar1;
     35 }
     36 
     37 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
     38     SkASSERT(ratio);
     39 
     40     if (numer < 0) {
     41         numer = -numer;
     42         denom = -denom;
     43     }
     44 
     45     if (denom == 0 || numer == 0 || numer >= denom) {
     46         return 0;
     47     }
     48 
     49     SkScalar r = numer / denom;
     50     if (SkScalarIsNaN(r)) {
     51         return 0;
     52     }
     53     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
     54     if (r == 0) { // catch underflow if numer <<<< denom
     55         return 0;
     56     }
     57     *ratio = r;
     58     return 1;
     59 }
     60 
     61 /** From Numerical Recipes in C.
     62 
     63     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
     64     x1 = Q / A
     65     x2 = C / Q
     66 */
     67 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
     68     SkASSERT(roots);
     69 
     70     if (A == 0) {
     71         return valid_unit_divide(-C, B, roots);
     72     }
     73 
     74     SkScalar* r = roots;
     75 
     76     SkScalar R = B*B - 4*A*C;
     77     if (R < 0 || !SkScalarIsFinite(R)) {  // complex roots
     78         // if R is infinite, it's possible that it may still produce
     79         // useful results if the operation was repeated in doubles
     80         // the flipside is determining if the more precise answer
     81         // isn't useful because surrounding machinery (e.g., subtracting
     82         // the axis offset from C) already discards the extra precision
     83         // more investigation and unit tests required...
     84         return 0;
     85     }
     86     R = SkScalarSqrt(R);
     87 
     88     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
     89     r += valid_unit_divide(Q, A, r);
     90     r += valid_unit_divide(C, Q, r);
     91     if (r - roots == 2) {
     92         if (roots[0] > roots[1])
     93             SkTSwap<SkScalar>(roots[0], roots[1]);
     94         else if (roots[0] == roots[1])  // nearly-equal?
     95             r -= 1; // skip the double root
     96     }
     97     return (int)(r - roots);
     98 }
     99 
    100 ///////////////////////////////////////////////////////////////////////////////
    101 ///////////////////////////////////////////////////////////////////////////////
    102 
    103 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
    104     SkASSERT(src);
    105     SkASSERT(t >= 0 && t <= SK_Scalar1);
    106 
    107     if (pt) {
    108         *pt = SkEvalQuadAt(src, t);
    109     }
    110     if (tangent) {
    111         *tangent = SkEvalQuadTangentAt(src, t);
    112     }
    113 }
    114 
    115 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
    116     return to_point(SkQuadCoeff(src).eval(t));
    117 }
    118 
    119 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
    120     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
    121     // zero tangent vector when t is 0 or 1, and the control point is equal
    122     // to the end point. In this case, use the quad end points to compute the tangent.
    123     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
    124         return src[2] - src[0];
    125     }
    126     SkASSERT(src);
    127     SkASSERT(t >= 0 && t <= SK_Scalar1);
    128 
    129     Sk2s P0 = from_point(src[0]);
    130     Sk2s P1 = from_point(src[1]);
    131     Sk2s P2 = from_point(src[2]);
    132 
    133     Sk2s B = P1 - P0;
    134     Sk2s A = P2 - P1 - B;
    135     Sk2s T = A * Sk2s(t) + B;
    136 
    137     return to_vector(T + T);
    138 }
    139 
    140 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
    141     return v0 + (v1 - v0) * t;
    142 }
    143 
    144 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
    145     SkASSERT(t > 0 && t < SK_Scalar1);
    146 
    147     Sk2s p0 = from_point(src[0]);
    148     Sk2s p1 = from_point(src[1]);
    149     Sk2s p2 = from_point(src[2]);
    150     Sk2s tt(t);
    151 
    152     Sk2s p01 = interp(p0, p1, tt);
    153     Sk2s p12 = interp(p1, p2, tt);
    154 
    155     dst[0] = to_point(p0);
    156     dst[1] = to_point(p01);
    157     dst[2] = to_point(interp(p01, p12, tt));
    158     dst[3] = to_point(p12);
    159     dst[4] = to_point(p2);
    160 }
    161 
    162 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
    163     SkChopQuadAt(src, dst, 0.5f);
    164 }
    165 
    166 /** Quad'(t) = At + B, where
    167     A = 2(a - 2b + c)
    168     B = 2(b - a)
    169     Solve for t, only if it fits between 0 < t < 1
    170 */
    171 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
    172     /*  At + B == 0
    173         t = -B / A
    174     */
    175     return valid_unit_divide(a - b, a - b - b + c, tValue);
    176 }
    177 
    178 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
    179     coords[2] = coords[6] = coords[4];
    180 }
    181 
    182 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    183  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    184  */
    185 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
    186     SkASSERT(src);
    187     SkASSERT(dst);
    188 
    189     SkScalar a = src[0].fY;
    190     SkScalar b = src[1].fY;
    191     SkScalar c = src[2].fY;
    192 
    193     if (is_not_monotonic(a, b, c)) {
    194         SkScalar    tValue;
    195         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    196             SkChopQuadAt(src, dst, tValue);
    197             flatten_double_quad_extrema(&dst[0].fY);
    198             return 1;
    199         }
    200         // if we get here, we need to force dst to be monotonic, even though
    201         // we couldn't compute a unit_divide value (probably underflow).
    202         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    203     }
    204     dst[0].set(src[0].fX, a);
    205     dst[1].set(src[1].fX, b);
    206     dst[2].set(src[2].fX, c);
    207     return 0;
    208 }
    209 
    210 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
    211     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
    212  */
    213 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
    214     SkASSERT(src);
    215     SkASSERT(dst);
    216 
    217     SkScalar a = src[0].fX;
    218     SkScalar b = src[1].fX;
    219     SkScalar c = src[2].fX;
    220 
    221     if (is_not_monotonic(a, b, c)) {
    222         SkScalar tValue;
    223         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
    224             SkChopQuadAt(src, dst, tValue);
    225             flatten_double_quad_extrema(&dst[0].fX);
    226             return 1;
    227         }
    228         // if we get here, we need to force dst to be monotonic, even though
    229         // we couldn't compute a unit_divide value (probably underflow).
    230         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
    231     }
    232     dst[0].set(a, src[0].fY);
    233     dst[1].set(b, src[1].fY);
    234     dst[2].set(c, src[2].fY);
    235     return 0;
    236 }
    237 
    238 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
    239 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
    240 //  F''(t)  = 2 (a - 2b + c)
    241 //
    242 //  A = 2 (b - a)
    243 //  B = 2 (a - 2b + c)
    244 //
    245 //  Maximum curvature for a quadratic means solving
    246 //  Fx' Fx'' + Fy' Fy'' = 0
    247 //
    248 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
    249 //
    250 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
    251     SkScalar    Ax = src[1].fX - src[0].fX;
    252     SkScalar    Ay = src[1].fY - src[0].fY;
    253     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
    254     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
    255     SkScalar    t = 0;  // 0 means don't chop
    256 
    257     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
    258     return t;
    259 }
    260 
    261 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
    262     SkScalar t = SkFindQuadMaxCurvature(src);
    263     if (t == 0) {
    264         memcpy(dst, src, 3 * sizeof(SkPoint));
    265         return 1;
    266     } else {
    267         SkChopQuadAt(src, dst, t);
    268         return 2;
    269     }
    270 }
    271 
    272 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
    273     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
    274     Sk2s s0 = from_point(src[0]);
    275     Sk2s s1 = from_point(src[1]);
    276     Sk2s s2 = from_point(src[2]);
    277 
    278     dst[0] = src[0];
    279     dst[1] = to_point(s0 + (s1 - s0) * scale);
    280     dst[2] = to_point(s2 + (s1 - s2) * scale);
    281     dst[3] = src[2];
    282 }
    283 
    284 //////////////////////////////////////////////////////////////////////////////
    285 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
    286 //////////////////////////////////////////////////////////////////////////////
    287 
    288 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
    289     SkQuadCoeff coeff;
    290     Sk2s P0 = from_point(src[0]);
    291     Sk2s P1 = from_point(src[1]);
    292     Sk2s P2 = from_point(src[2]);
    293     Sk2s P3 = from_point(src[3]);
    294 
    295     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
    296     coeff.fB = times_2(P2 - times_2(P1) + P0);
    297     coeff.fC = P1 - P0;
    298     return to_vector(coeff.eval(t));
    299 }
    300 
    301 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
    302     Sk2s P0 = from_point(src[0]);
    303     Sk2s P1 = from_point(src[1]);
    304     Sk2s P2 = from_point(src[2]);
    305     Sk2s P3 = from_point(src[3]);
    306     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
    307     Sk2s B = P2 - times_2(P1) + P0;
    308 
    309     return to_vector(A * Sk2s(t) + B);
    310 }
    311 
    312 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
    313                    SkVector* tangent, SkVector* curvature) {
    314     SkASSERT(src);
    315     SkASSERT(t >= 0 && t <= SK_Scalar1);
    316 
    317     if (loc) {
    318         *loc = to_point(SkCubicCoeff(src).eval(t));
    319     }
    320     if (tangent) {
    321         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
    322         // adjacent control point is equal to the end point. In this case, use the
    323         // next control point or the end points to compute the tangent.
    324         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
    325             if (t == 0) {
    326                 *tangent = src[2] - src[0];
    327             } else {
    328                 *tangent = src[3] - src[1];
    329             }
    330             if (!tangent->fX && !tangent->fY) {
    331                 *tangent = src[3] - src[0];
    332             }
    333         } else {
    334             *tangent = eval_cubic_derivative(src, t);
    335         }
    336     }
    337     if (curvature) {
    338         *curvature = eval_cubic_2ndDerivative(src, t);
    339     }
    340 }
    341 
    342 /** Cubic'(t) = At^2 + Bt + C, where
    343     A = 3(-a + 3(b - c) + d)
    344     B = 6(a - 2b + c)
    345     C = 3(b - a)
    346     Solve for t, keeping only those that fit betwee 0 < t < 1
    347 */
    348 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
    349                        SkScalar tValues[2]) {
    350     // we divide A,B,C by 3 to simplify
    351     SkScalar A = d - a + 3*(b - c);
    352     SkScalar B = 2*(a - b - b + c);
    353     SkScalar C = b - a;
    354 
    355     return SkFindUnitQuadRoots(A, B, C, tValues);
    356 }
    357 
    358 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
    359     SkASSERT(t > 0 && t < SK_Scalar1);
    360 
    361     Sk2s    p0 = from_point(src[0]);
    362     Sk2s    p1 = from_point(src[1]);
    363     Sk2s    p2 = from_point(src[2]);
    364     Sk2s    p3 = from_point(src[3]);
    365     Sk2s    tt(t);
    366 
    367     Sk2s    ab = interp(p0, p1, tt);
    368     Sk2s    bc = interp(p1, p2, tt);
    369     Sk2s    cd = interp(p2, p3, tt);
    370     Sk2s    abc = interp(ab, bc, tt);
    371     Sk2s    bcd = interp(bc, cd, tt);
    372     Sk2s    abcd = interp(abc, bcd, tt);
    373 
    374     dst[0] = src[0];
    375     dst[1] = to_point(ab);
    376     dst[2] = to_point(abc);
    377     dst[3] = to_point(abcd);
    378     dst[4] = to_point(bcd);
    379     dst[5] = to_point(cd);
    380     dst[6] = src[3];
    381 }
    382 
    383 /*  http://code.google.com/p/skia/issues/detail?id=32
    384 
    385     This test code would fail when we didn't check the return result of
    386     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
    387     that after the first chop, the parameters to valid_unit_divide are equal
    388     (thanks to finite float precision and rounding in the subtracts). Thus
    389     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
    390     up with 1.0, hence the need to check and just return the last cubic as
    391     a degenerate clump of 4 points in the sampe place.
    392 
    393     static void test_cubic() {
    394         SkPoint src[4] = {
    395             { 556.25000, 523.03003 },
    396             { 556.23999, 522.96002 },
    397             { 556.21997, 522.89001 },
    398             { 556.21997, 522.82001 }
    399         };
    400         SkPoint dst[10];
    401         SkScalar tval[] = { 0.33333334f, 0.99999994f };
    402         SkChopCubicAt(src, dst, tval, 2);
    403     }
    404  */
    405 
    406 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
    407                    const SkScalar tValues[], int roots) {
    408 #ifdef SK_DEBUG
    409     {
    410         for (int i = 0; i < roots - 1; i++)
    411         {
    412             SkASSERT(is_unit_interval(tValues[i]));
    413             SkASSERT(is_unit_interval(tValues[i+1]));
    414             SkASSERT(tValues[i] < tValues[i+1]);
    415         }
    416     }
    417 #endif
    418 
    419     if (dst) {
    420         if (roots == 0) { // nothing to chop
    421             memcpy(dst, src, 4*sizeof(SkPoint));
    422         } else {
    423             SkScalar    t = tValues[0];
    424             SkPoint     tmp[4];
    425 
    426             for (int i = 0; i < roots; i++) {
    427                 SkChopCubicAt(src, dst, t);
    428                 if (i == roots - 1) {
    429                     break;
    430                 }
    431 
    432                 dst += 3;
    433                 // have src point to the remaining cubic (after the chop)
    434                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
    435                 src = tmp;
    436 
    437                 // watch out in case the renormalized t isn't in range
    438                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
    439                                        SK_Scalar1 - tValues[i], &t)) {
    440                     // if we can't, just create a degenerate cubic
    441                     dst[4] = dst[5] = dst[6] = src[3];
    442                     break;
    443                 }
    444             }
    445         }
    446     }
    447 }
    448 
    449 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
    450     SkChopCubicAt(src, dst, 0.5f);
    451 }
    452 
    453 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
    454     coords[4] = coords[8] = coords[6];
    455 }
    456 
    457 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
    458     the resulting beziers are monotonic in Y. This is called by the scan
    459     converter.  Depending on what is returned, dst[] is treated as follows:
    460     0   dst[0..3] is the original cubic
    461     1   dst[0..3] and dst[3..6] are the two new cubics
    462     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
    463     If dst == null, it is ignored and only the count is returned.
    464 */
    465 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
    466     SkScalar    tValues[2];
    467     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
    468                                            src[3].fY, tValues);
    469 
    470     SkChopCubicAt(src, dst, tValues, roots);
    471     if (dst && roots > 0) {
    472         // we do some cleanup to ensure our Y extrema are flat
    473         flatten_double_cubic_extrema(&dst[0].fY);
    474         if (roots == 2) {
    475             flatten_double_cubic_extrema(&dst[3].fY);
    476         }
    477     }
    478     return roots;
    479 }
    480 
    481 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
    482     SkScalar    tValues[2];
    483     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
    484                                            src[3].fX, tValues);
    485 
    486     SkChopCubicAt(src, dst, tValues, roots);
    487     if (dst && roots > 0) {
    488         // we do some cleanup to ensure our Y extrema are flat
    489         flatten_double_cubic_extrema(&dst[0].fX);
    490         if (roots == 2) {
    491             flatten_double_cubic_extrema(&dst[3].fX);
    492         }
    493     }
    494     return roots;
    495 }
    496 
    497 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
    498 
    499     Inflection means that curvature is zero.
    500     Curvature is [F' x F''] / [F'^3]
    501     So we solve F'x X F''y - F'y X F''y == 0
    502     After some canceling of the cubic term, we get
    503     A = b - a
    504     B = c - 2b + a
    505     C = d - 3c + 3b - a
    506     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
    507 */
    508 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
    509     SkScalar    Ax = src[1].fX - src[0].fX;
    510     SkScalar    Ay = src[1].fY - src[0].fY;
    511     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
    512     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
    513     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
    514     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
    515 
    516     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
    517                                Ax*Cy - Ay*Cx,
    518                                Ax*By - Ay*Bx,
    519                                tValues);
    520 }
    521 
    522 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
    523     SkScalar    tValues[2];
    524     int         count = SkFindCubicInflections(src, tValues);
    525 
    526     if (dst) {
    527         if (count == 0) {
    528             memcpy(dst, src, 4 * sizeof(SkPoint));
    529         } else {
    530             SkChopCubicAt(src, dst, tValues, count);
    531         }
    532     }
    533     return count + 1;
    534 }
    535 
    536 // Assumes the third component of points is 1.
    537 // Calcs p0 . (p1 x p2)
    538 static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
    539     const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY);
    540     const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX);
    541     const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
    542     return (xComp + yComp + wComp);
    543 }
    544 
    545 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
    546 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
    547 // d0 = a1 - 2*a2+3*a3
    548 // d1 = -a2 + 3*a3
    549 // d2 = 3*a3
    550 // a1 = p0 . (p3 x p2)
    551 // a2 = p1 . (p0 x p3)
    552 // a3 = p2 . (p1 x p0)
    553 // Places the values of d1, d2, d3 in array d passed in
    554 static void calc_cubic_inflection_func(const SkPoint p[4], double d[4]) {
    555     const double a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
    556     const double a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
    557     const double a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
    558 
    559     d[3] = 3 * a3;
    560     d[2] = d[3] - a2;
    561     d[1] = d[2] - a2 + a1;
    562     d[0] = 0;
    563 }
    564 
    565 static void normalize_t_s(double t[], double s[], int count) {
    566     // Keep the exponents at or below zero to avoid overflow down the road.
    567     for (int i = 0; i < count; ++i) {
    568         SkASSERT(0 != s[i]); // classify_cubic should not call this method when s[i] is 0 or NaN.
    569 
    570         uint64_t bitsT, bitsS;
    571         memcpy(&bitsT, &t[i], sizeof(double));
    572         memcpy(&bitsS, &s[i], sizeof(double));
    573 
    574         uint64_t maxExponent = SkTMax(bitsT & 0x7ff0000000000000, bitsS & 0x7ff0000000000000);
    575 
    576 #ifdef SK_DEBUG
    577         uint64_t maxExponentValue = maxExponent >> 52;
    578         // Ensure max(absT,absS) is NOT in denormalized form. SkClassifyCubic is given fp32 points,
    579         // and does not call this method when s==0, so this should never happen.
    580         SkASSERT(0 != maxExponentValue);
    581         // Ensure 1/max(absT,absS) will NOT be in denormalized form. SkClassifyCubic is given fp32
    582         // points, so this should never happen.
    583         SkASSERT(2046 != maxExponentValue);
    584 #endif
    585 
    586         // Pick a normalizer that scales the larger exponent to 1 (aka 1023 in biased form), but
    587         // does NOT change the mantissa (thus preserving accuracy).
    588         double normalizer;
    589         uint64_t normalizerExponent = (uint64_t(1023 * 2) << 52) - maxExponent;
    590         memcpy(&normalizer, &normalizerExponent, sizeof(double));
    591 
    592         t[i] *= normalizer;
    593         s[i] *= normalizer;
    594     }
    595 }
    596 
    597 static void sort_and_orient_t_s(double t[2], double s[2]) {
    598     // This copysign/abs business orients the implicit function so positive values are always on the
    599     // "left" side of the curve.
    600     t[1] = -copysign(t[1], t[1] * s[1]);
    601     s[1] = -fabs(s[1]);
    602 
    603     // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
    604     if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
    605         std::swap(t[0], t[1]);
    606         std::swap(s[0], s[1]);
    607     }
    608 }
    609 
    610 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware"
    611 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
    612 // discr(I) = 3*d2^2 - 4*d1*d3
    613 // Classification:
    614 // d1 != 0, discr(I) > 0        Serpentine
    615 // d1 != 0, discr(I) < 0        Loop
    616 // d1 != 0, discr(I) = 0        Cusp (with inflection at infinity)
    617 // d1 = 0, d2 != 0              Cusp (with cusp at infinity)
    618 // d1 = d2 = 0, d3 != 0         Quadratic
    619 // d1 = d2 = d3 = 0             Line or Point
    620 static SkCubicType classify_cubic(const double d[4], double t[2], double s[2]) {
    621     if (0 == d[1]) {
    622         if (0 == d[2]) {
    623             if (t && s) {
    624                 t[0] = t[1] = 1;
    625                 s[0] = s[1] = 0; // infinity
    626             }
    627             return 0 == d[3] ? SkCubicType::kLineOrPoint : SkCubicType::kQuadratic;
    628         }
    629         if (t && s) {
    630             t[0] = d[3];
    631             s[0] = 3 * d[2];
    632             normalize_t_s(t, s, 1);
    633             t[1] = 1;
    634             s[1] = 0; // infinity
    635         }
    636         return SkCubicType::kCuspAtInfinity;
    637     }
    638 
    639     const double discr = 3 * d[2] * d[2] - 4 * d[1] * d[3];
    640     if (discr > 0) {
    641         if (t && s) {
    642             const double q = 3 * d[2] + copysign(sqrt(3 * discr), d[2]);
    643             t[0] = q;
    644             s[0] = 6 * d[1];
    645             t[1] = 2 * d[3];
    646             s[1] = q;
    647             normalize_t_s(t, s, 2);
    648             sort_and_orient_t_s(t, s);
    649         }
    650         return SkCubicType::kSerpentine;
    651     } else if (discr < 0) {
    652         if (t && s) {
    653             const double q = d[2] + copysign(sqrt(-discr), d[2]);
    654             t[0] = q;
    655             s[0] = 2 * d[1];
    656             t[1] = 2 * (d[2] * d[2] - d[3] * d[1]);
    657             s[1] = d[1] * q;
    658             normalize_t_s(t, s, 2);
    659             sort_and_orient_t_s(t, s);
    660         }
    661         return SkCubicType::kLoop;
    662     } else {
    663         if (t && s) {
    664             t[0] = d[2];
    665             s[0] = 2 * d[1];
    666             normalize_t_s(t, s, 1);
    667             t[1] = t[0];
    668             s[1] = s[0];
    669             sort_and_orient_t_s(t, s);
    670         }
    671         return SkCubicType::kLocalCusp;
    672     }
    673 }
    674 
    675 SkCubicType SkClassifyCubic(const SkPoint src[4], double t[2], double s[2], double d[4]) {
    676     double localD[4];
    677     double* dd = d ? d : localD;
    678     calc_cubic_inflection_func(src, dd);
    679     return classify_cubic(dd, t, s);
    680 }
    681 
    682 template <typename T> void bubble_sort(T array[], int count) {
    683     for (int i = count - 1; i > 0; --i)
    684         for (int j = i; j > 0; --j)
    685             if (array[j] < array[j-1])
    686             {
    687                 T   tmp(array[j]);
    688                 array[j] = array[j-1];
    689                 array[j-1] = tmp;
    690             }
    691 }
    692 
    693 /**
    694  *  Given an array and count, remove all pair-wise duplicates from the array,
    695  *  keeping the existing sorting, and return the new count
    696  */
    697 static int collaps_duplicates(SkScalar array[], int count) {
    698     for (int n = count; n > 1; --n) {
    699         if (array[0] == array[1]) {
    700             for (int i = 1; i < n; ++i) {
    701                 array[i - 1] = array[i];
    702             }
    703             count -= 1;
    704         } else {
    705             array += 1;
    706         }
    707     }
    708     return count;
    709 }
    710 
    711 #ifdef SK_DEBUG
    712 
    713 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
    714 
    715 static void test_collaps_duplicates() {
    716     static bool gOnce;
    717     if (gOnce) { return; }
    718     gOnce = true;
    719     const SkScalar src0[] = { 0 };
    720     const SkScalar src1[] = { 0, 0 };
    721     const SkScalar src2[] = { 0, 1 };
    722     const SkScalar src3[] = { 0, 0, 0 };
    723     const SkScalar src4[] = { 0, 0, 1 };
    724     const SkScalar src5[] = { 0, 1, 1 };
    725     const SkScalar src6[] = { 0, 1, 2 };
    726     const struct {
    727         const SkScalar* fData;
    728         int fCount;
    729         int fCollapsedCount;
    730     } data[] = {
    731         { TEST_COLLAPS_ENTRY(src0), 1 },
    732         { TEST_COLLAPS_ENTRY(src1), 1 },
    733         { TEST_COLLAPS_ENTRY(src2), 2 },
    734         { TEST_COLLAPS_ENTRY(src3), 1 },
    735         { TEST_COLLAPS_ENTRY(src4), 2 },
    736         { TEST_COLLAPS_ENTRY(src5), 2 },
    737         { TEST_COLLAPS_ENTRY(src6), 3 },
    738     };
    739     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
    740         SkScalar dst[3];
    741         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
    742         int count = collaps_duplicates(dst, data[i].fCount);
    743         SkASSERT(data[i].fCollapsedCount == count);
    744         for (int j = 1; j < count; ++j) {
    745             SkASSERT(dst[j-1] < dst[j]);
    746         }
    747     }
    748 }
    749 #endif
    750 
    751 static SkScalar SkScalarCubeRoot(SkScalar x) {
    752     return SkScalarPow(x, 0.3333333f);
    753 }
    754 
    755 /*  Solve coeff(t) == 0, returning the number of roots that
    756     lie withing 0 < t < 1.
    757     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
    758 
    759     Eliminates repeated roots (so that all tValues are distinct, and are always
    760     in increasing order.
    761 */
    762 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
    763     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
    764         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
    765     }
    766 
    767     SkScalar a, b, c, Q, R;
    768 
    769     {
    770         SkASSERT(coeff[0] != 0);
    771 
    772         SkScalar inva = SkScalarInvert(coeff[0]);
    773         a = coeff[1] * inva;
    774         b = coeff[2] * inva;
    775         c = coeff[3] * inva;
    776     }
    777     Q = (a*a - b*3) / 9;
    778     R = (2*a*a*a - 9*a*b + 27*c) / 54;
    779 
    780     SkScalar Q3 = Q * Q * Q;
    781     SkScalar R2MinusQ3 = R * R - Q3;
    782     SkScalar adiv3 = a / 3;
    783 
    784     SkScalar*   roots = tValues;
    785     SkScalar    r;
    786 
    787     if (R2MinusQ3 < 0) { // we have 3 real roots
    788         // the divide/root can, due to finite precisions, be slightly outside of -1...1
    789         SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
    790         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
    791 
    792         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
    793         if (is_unit_interval(r)) {
    794             *roots++ = r;
    795         }
    796         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
    797         if (is_unit_interval(r)) {
    798             *roots++ = r;
    799         }
    800         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
    801         if (is_unit_interval(r)) {
    802             *roots++ = r;
    803         }
    804         SkDEBUGCODE(test_collaps_duplicates();)
    805 
    806         // now sort the roots
    807         int count = (int)(roots - tValues);
    808         SkASSERT((unsigned)count <= 3);
    809         bubble_sort(tValues, count);
    810         count = collaps_duplicates(tValues, count);
    811         roots = tValues + count;    // so we compute the proper count below
    812     } else {              // we have 1 real root
    813         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
    814         A = SkScalarCubeRoot(A);
    815         if (R > 0) {
    816             A = -A;
    817         }
    818         if (A != 0) {
    819             A += Q / A;
    820         }
    821         r = A - adiv3;
    822         if (is_unit_interval(r)) {
    823             *roots++ = r;
    824         }
    825     }
    826 
    827     return (int)(roots - tValues);
    828 }
    829 
    830 /*  Looking for F' dot F'' == 0
    831 
    832     A = b - a
    833     B = c - 2b + a
    834     C = d - 3c + 3b - a
    835 
    836     F' = 3Ct^2 + 6Bt + 3A
    837     F'' = 6Ct + 6B
    838 
    839     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    840 */
    841 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
    842     SkScalar    a = src[2] - src[0];
    843     SkScalar    b = src[4] - 2 * src[2] + src[0];
    844     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
    845 
    846     coeff[0] = c * c;
    847     coeff[1] = 3 * b * c;
    848     coeff[2] = 2 * b * b + c * a;
    849     coeff[3] = a * b;
    850 }
    851 
    852 /*  Looking for F' dot F'' == 0
    853 
    854     A = b - a
    855     B = c - 2b + a
    856     C = d - 3c + 3b - a
    857 
    858     F' = 3Ct^2 + 6Bt + 3A
    859     F'' = 6Ct + 6B
    860 
    861     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
    862 */
    863 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
    864     SkScalar coeffX[4], coeffY[4];
    865     int      i;
    866 
    867     formulate_F1DotF2(&src[0].fX, coeffX);
    868     formulate_F1DotF2(&src[0].fY, coeffY);
    869 
    870     for (i = 0; i < 4; i++) {
    871         coeffX[i] += coeffY[i];
    872     }
    873 
    874     SkScalar    t[3];
    875     int         count = solve_cubic_poly(coeffX, t);
    876     int         maxCount = 0;
    877 
    878     // now remove extrema where the curvature is zero (mins)
    879     // !!!! need a test for this !!!!
    880     for (i = 0; i < count; i++) {
    881         // if (not_min_curvature())
    882         if (t[i] > 0 && t[i] < SK_Scalar1) {
    883             tValues[maxCount++] = t[i];
    884         }
    885     }
    886     return maxCount;
    887 }
    888 
    889 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
    890                               SkScalar tValues[3]) {
    891     SkScalar    t_storage[3];
    892 
    893     if (tValues == nullptr) {
    894         tValues = t_storage;
    895     }
    896 
    897     int count = SkFindCubicMaxCurvature(src, tValues);
    898 
    899     if (dst) {
    900         if (count == 0) {
    901             memcpy(dst, src, 4 * sizeof(SkPoint));
    902         } else {
    903             SkChopCubicAt(src, dst, tValues, count);
    904         }
    905     }
    906     return count + 1;
    907 }
    908 
    909 #include "../pathops/SkPathOpsCubic.h"
    910 
    911 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
    912 
    913 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
    914                                      InterceptProc method) {
    915     SkDCubic cubic;
    916     double roots[3];
    917     int count = (cubic.set(src).*method)(intercept, roots);
    918     if (count > 0) {
    919         SkDCubicPair pair = cubic.chopAt(roots[0]);
    920         for (int i = 0; i < 7; ++i) {
    921             dst[i] = pair.pts[i].asSkPoint();
    922         }
    923         return true;
    924     }
    925     return false;
    926 }
    927 
    928 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
    929     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
    930 }
    931 
    932 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
    933     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
    934 }
    935 
    936 ///////////////////////////////////////////////////////////////////////////////
    937 //
    938 // NURB representation for conics.  Helpful explanations at:
    939 //
    940 // http://citeseerx.ist.psu.edu/viewdoc/
    941 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
    942 // and
    943 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
    944 //
    945 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
    946 //     ------------------------------------------
    947 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
    948 //
    949 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
    950 //     ------------------------------------------------
    951 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
    952 //
    953 
    954 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
    955 //
    956 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
    957 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
    958 //  t^0 : -2 P0 w + 2 P1 w
    959 //
    960 //  We disregard magnitude, so we can freely ignore the denominator of F', and
    961 //  divide the numerator by 2
    962 //
    963 //    coeff[0] for t^2
    964 //    coeff[1] for t^1
    965 //    coeff[2] for t^0
    966 //
    967 static void conic_deriv_coeff(const SkScalar src[],
    968                               SkScalar w,
    969                               SkScalar coeff[3]) {
    970     const SkScalar P20 = src[4] - src[0];
    971     const SkScalar P10 = src[2] - src[0];
    972     const SkScalar wP10 = w * P10;
    973     coeff[0] = w * P20 - P20;
    974     coeff[1] = P20 - 2 * wP10;
    975     coeff[2] = wP10;
    976 }
    977 
    978 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
    979     SkScalar coeff[3];
    980     conic_deriv_coeff(src, w, coeff);
    981 
    982     SkScalar tValues[2];
    983     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
    984     SkASSERT(0 == roots || 1 == roots);
    985 
    986     if (1 == roots) {
    987         *t = tValues[0];
    988         return true;
    989     }
    990     return false;
    991 }
    992 
    993 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
    994 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
    995     SkScalar ab = SkScalarInterp(src[0], src[3], t);
    996     SkScalar bc = SkScalarInterp(src[3], src[6], t);
    997     dst[0] = ab;
    998     dst[3] = SkScalarInterp(ab, bc, t);
    999     dst[6] = bc;
   1000 }
   1001 
   1002 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) {
   1003     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
   1004     dst[1].set(src[1].fX * w, src[1].fY * w, w);
   1005     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
   1006 }
   1007 
   1008 static SkPoint project_down(const SkPoint3& src) {
   1009     return {src.fX / src.fZ, src.fY / src.fZ};
   1010 }
   1011 
   1012 // return false if infinity or NaN is generated; caller must check
   1013 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
   1014     SkPoint3 tmp[3], tmp2[3];
   1015 
   1016     ratquad_mapTo3D(fPts, fW, tmp);
   1017 
   1018     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
   1019     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
   1020     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
   1021 
   1022     dst[0].fPts[0] = fPts[0];
   1023     dst[0].fPts[1] = project_down(tmp2[0]);
   1024     dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2];
   1025     dst[1].fPts[1] = project_down(tmp2[2]);
   1026     dst[1].fPts[2] = fPts[2];
   1027 
   1028     // to put in "standard form", where w0 and w2 are both 1, we compute the
   1029     // new w1 as sqrt(w1*w1/w0*w2)
   1030     // or
   1031     // w1 /= sqrt(w0*w2)
   1032     //
   1033     // However, in our case, we know that for dst[0]:
   1034     //     w0 == 1, and for dst[1], w2 == 1
   1035     //
   1036     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
   1037     dst[0].fW = tmp2[0].fZ / root;
   1038     dst[1].fW = tmp2[2].fZ / root;
   1039     SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
   1040     SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
   1041     return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
   1042 }
   1043 
   1044 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
   1045     if (0 == t1 || 1 == t2) {
   1046         if (0 == t1 && 1 == t2) {
   1047             *dst = *this;
   1048             return;
   1049         } else {
   1050             SkConic pair[2];
   1051             if (this->chopAt(t1 ? t1 : t2, pair)) {
   1052                 *dst = pair[SkToBool(t1)];
   1053                 return;
   1054             }
   1055         }
   1056     }
   1057     SkConicCoeff coeff(*this);
   1058     Sk2s tt1(t1);
   1059     Sk2s aXY = coeff.fNumer.eval(tt1);
   1060     Sk2s aZZ = coeff.fDenom.eval(tt1);
   1061     Sk2s midTT((t1 + t2) / 2);
   1062     Sk2s dXY = coeff.fNumer.eval(midTT);
   1063     Sk2s dZZ = coeff.fDenom.eval(midTT);
   1064     Sk2s tt2(t2);
   1065     Sk2s cXY = coeff.fNumer.eval(tt2);
   1066     Sk2s cZZ = coeff.fDenom.eval(tt2);
   1067     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
   1068     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
   1069     dst->fPts[0] = to_point(aXY / aZZ);
   1070     dst->fPts[1] = to_point(bXY / bZZ);
   1071     dst->fPts[2] = to_point(cXY / cZZ);
   1072     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
   1073     dst->fW = ww[0];
   1074 }
   1075 
   1076 SkPoint SkConic::evalAt(SkScalar t) const {
   1077     return to_point(SkConicCoeff(*this).eval(t));
   1078 }
   1079 
   1080 SkVector SkConic::evalTangentAt(SkScalar t) const {
   1081     // The derivative equation returns a zero tangent vector when t is 0 or 1,
   1082     // and the control point is equal to the end point.
   1083     // In this case, use the conic endpoints to compute the tangent.
   1084     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
   1085         return fPts[2] - fPts[0];
   1086     }
   1087     Sk2s p0 = from_point(fPts[0]);
   1088     Sk2s p1 = from_point(fPts[1]);
   1089     Sk2s p2 = from_point(fPts[2]);
   1090     Sk2s ww(fW);
   1091 
   1092     Sk2s p20 = p2 - p0;
   1093     Sk2s p10 = p1 - p0;
   1094 
   1095     Sk2s C = ww * p10;
   1096     Sk2s A = ww * p20 - p20;
   1097     Sk2s B = p20 - C - C;
   1098 
   1099     return to_vector(SkQuadCoeff(A, B, C).eval(t));
   1100 }
   1101 
   1102 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
   1103     SkASSERT(t >= 0 && t <= SK_Scalar1);
   1104 
   1105     if (pt) {
   1106         *pt = this->evalAt(t);
   1107     }
   1108     if (tangent) {
   1109         *tangent = this->evalTangentAt(t);
   1110     }
   1111 }
   1112 
   1113 static SkScalar subdivide_w_value(SkScalar w) {
   1114     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
   1115 }
   1116 
   1117 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
   1118     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
   1119     SkScalar newW = subdivide_w_value(fW);
   1120 
   1121     Sk2s p0 = from_point(fPts[0]);
   1122     Sk2s p1 = from_point(fPts[1]);
   1123     Sk2s p2 = from_point(fPts[2]);
   1124     Sk2s ww(fW);
   1125 
   1126     Sk2s wp1 = ww * p1;
   1127     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
   1128 
   1129     dst[0].fPts[0] = fPts[0];
   1130     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
   1131     dst[0].fPts[2] = dst[1].fPts[0] = to_point(m);
   1132     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
   1133     dst[1].fPts[2] = fPts[2];
   1134 
   1135     dst[0].fW = dst[1].fW = newW;
   1136 }
   1137 
   1138 /*
   1139  *  "High order approximation of conic sections by quadratic splines"
   1140  *      by Michael Floater, 1993
   1141  */
   1142 #define AS_QUAD_ERROR_SETUP                                         \
   1143     SkScalar a = fW - 1;                                            \
   1144     SkScalar k = a / (4 * (2 + a));                                 \
   1145     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
   1146     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
   1147 
   1148 void SkConic::computeAsQuadError(SkVector* err) const {
   1149     AS_QUAD_ERROR_SETUP
   1150     err->set(x, y);
   1151 }
   1152 
   1153 bool SkConic::asQuadTol(SkScalar tol) const {
   1154     AS_QUAD_ERROR_SETUP
   1155     return (x * x + y * y) <= tol * tol;
   1156 }
   1157 
   1158 // Limit the number of suggested quads to approximate a conic
   1159 #define kMaxConicToQuadPOW2     5
   1160 
   1161 int SkConic::computeQuadPOW2(SkScalar tol) const {
   1162     if (tol < 0 || !SkScalarIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) {
   1163         return 0;
   1164     }
   1165 
   1166     AS_QUAD_ERROR_SETUP
   1167 
   1168     SkScalar error = SkScalarSqrt(x * x + y * y);
   1169     int pow2;
   1170     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
   1171         if (error <= tol) {
   1172             break;
   1173         }
   1174         error *= 0.25f;
   1175     }
   1176     // float version -- using ceil gives the same results as the above.
   1177     if (false) {
   1178         SkScalar err = SkScalarSqrt(x * x + y * y);
   1179         if (err <= tol) {
   1180             return 0;
   1181         }
   1182         SkScalar tol2 = tol * tol;
   1183         if (tol2 == 0) {
   1184             return kMaxConicToQuadPOW2;
   1185         }
   1186         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
   1187         int altPow2 = SkScalarCeilToInt(fpow2);
   1188         if (altPow2 != pow2) {
   1189             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
   1190         }
   1191         pow2 = altPow2;
   1192     }
   1193     return pow2;
   1194 }
   1195 
   1196 // This was originally developed and tested for pathops: see SkOpTypes.h
   1197 // returns true if (a <= b <= c) || (a >= b >= c)
   1198 static bool between(SkScalar a, SkScalar b, SkScalar c) {
   1199     return (a - b) * (c - b) <= 0;
   1200 }
   1201 
   1202 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
   1203     SkASSERT(level >= 0);
   1204 
   1205     if (0 == level) {
   1206         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
   1207         return pts + 2;
   1208     } else {
   1209         SkConic dst[2];
   1210         src.chop(dst);
   1211         const SkScalar startY = src.fPts[0].fY;
   1212         const SkScalar endY = src.fPts[2].fY;
   1213         if (between(startY, src.fPts[1].fY, endY)) {
   1214             // If the input is monotonic and the output is not, the scan converter hangs.
   1215             // Ensure that the chopped conics maintain their y-order.
   1216             SkScalar midY = dst[0].fPts[2].fY;
   1217             if (!between(startY, midY, endY)) {
   1218                 // If the computed midpoint is outside the ends, move it to the closer one.
   1219                 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
   1220                 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
   1221             }
   1222             if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
   1223                 // If the 1st control is not between the start and end, put it at the start.
   1224                 // This also reduces the quad to a line.
   1225                 dst[0].fPts[1].fY = startY;
   1226             }
   1227             if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
   1228                 // If the 2nd control is not between the start and end, put it at the end.
   1229                 // This also reduces the quad to a line.
   1230                 dst[1].fPts[1].fY = endY;
   1231             }
   1232             // Verify that all five points are in order.
   1233             SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
   1234             SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
   1235             SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
   1236         }
   1237         --level;
   1238         pts = subdivide(dst[0], pts, level);
   1239         return subdivide(dst[1], pts, level);
   1240     }
   1241 }
   1242 
   1243 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
   1244     SkASSERT(pow2 >= 0);
   1245     *pts = fPts[0];
   1246     SkDEBUGCODE(SkPoint* endPts);
   1247     if (pow2 == kMaxConicToQuadPOW2) {  // If an extreme weight generates many quads ...
   1248         SkConic dst[2];
   1249         this->chop(dst);
   1250         // check to see if the first chop generates a pair of lines
   1251         if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) &&
   1252                 SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) {
   1253             pts[1] = pts[2] = pts[3] = dst[0].fPts[1];  // set ctrl == end to make lines
   1254             pts[4] = dst[1].fPts[2];
   1255             pow2 = 1;
   1256             SkDEBUGCODE(endPts = &pts[5]);
   1257             goto commonFinitePtCheck;
   1258         }
   1259     }
   1260     SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
   1261 commonFinitePtCheck:
   1262     const int quadCount = 1 << pow2;
   1263     const int ptCount = 2 * quadCount + 1;
   1264     SkASSERT(endPts - pts == ptCount);
   1265     if (!SkPointPriv::AreFinite(pts, ptCount)) {
   1266         // if we generated a non-finite, pin ourselves to the middle of the hull,
   1267         // as our first and last are already on the first/last pts of the hull.
   1268         for (int i = 1; i < ptCount - 1; ++i) {
   1269             pts[i] = fPts[1];
   1270         }
   1271     }
   1272     return 1 << pow2;
   1273 }
   1274 
   1275 bool SkConic::findXExtrema(SkScalar* t) const {
   1276     return conic_find_extrema(&fPts[0].fX, fW, t);
   1277 }
   1278 
   1279 bool SkConic::findYExtrema(SkScalar* t) const {
   1280     return conic_find_extrema(&fPts[0].fY, fW, t);
   1281 }
   1282 
   1283 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
   1284     SkScalar t;
   1285     if (this->findXExtrema(&t)) {
   1286         if (!this->chopAt(t, dst)) {
   1287             // if chop can't return finite values, don't chop
   1288             return false;
   1289         }
   1290         // now clean-up the middle, since we know t was meant to be at
   1291         // an X-extrema
   1292         SkScalar value = dst[0].fPts[2].fX;
   1293         dst[0].fPts[1].fX = value;
   1294         dst[1].fPts[0].fX = value;
   1295         dst[1].fPts[1].fX = value;
   1296         return true;
   1297     }
   1298     return false;
   1299 }
   1300 
   1301 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
   1302     SkScalar t;
   1303     if (this->findYExtrema(&t)) {
   1304         if (!this->chopAt(t, dst)) {
   1305             // if chop can't return finite values, don't chop
   1306             return false;
   1307         }
   1308         // now clean-up the middle, since we know t was meant to be at
   1309         // an Y-extrema
   1310         SkScalar value = dst[0].fPts[2].fY;
   1311         dst[0].fPts[1].fY = value;
   1312         dst[1].fPts[0].fY = value;
   1313         dst[1].fPts[1].fY = value;
   1314         return true;
   1315     }
   1316     return false;
   1317 }
   1318 
   1319 void SkConic::computeTightBounds(SkRect* bounds) const {
   1320     SkPoint pts[4];
   1321     pts[0] = fPts[0];
   1322     pts[1] = fPts[2];
   1323     int count = 2;
   1324 
   1325     SkScalar t;
   1326     if (this->findXExtrema(&t)) {
   1327         this->evalAt(t, &pts[count++]);
   1328     }
   1329     if (this->findYExtrema(&t)) {
   1330         this->evalAt(t, &pts[count++]);
   1331     }
   1332     bounds->set(pts, count);
   1333 }
   1334 
   1335 void SkConic::computeFastBounds(SkRect* bounds) const {
   1336     bounds->set(fPts, 3);
   1337 }
   1338 
   1339 #if 0  // unimplemented
   1340 bool SkConic::findMaxCurvature(SkScalar* t) const {
   1341     // TODO: Implement me
   1342     return false;
   1343 }
   1344 #endif
   1345 
   1346 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w,
   1347                              const SkMatrix& matrix) {
   1348     if (!matrix.hasPerspective()) {
   1349         return w;
   1350     }
   1351 
   1352     SkPoint3 src[3], dst[3];
   1353 
   1354     ratquad_mapTo3D(pts, w, src);
   1355 
   1356     matrix.mapHomogeneousPoints(dst, src, 3);
   1357 
   1358     // w' = sqrt(w1*w1/w0*w2)
   1359     SkScalar w0 = dst[0].fZ;
   1360     SkScalar w1 = dst[1].fZ;
   1361     SkScalar w2 = dst[2].fZ;
   1362     w = SkScalarSqrt((w1 * w1) / (w0 * w2));
   1363     return w;
   1364 }
   1365 
   1366 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
   1367                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
   1368     // rotate by x,y so that uStart is (1.0)
   1369     SkScalar x = SkPoint::DotProduct(uStart, uStop);
   1370     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
   1371 
   1372     SkScalar absY = SkScalarAbs(y);
   1373 
   1374     // check for (effectively) coincident vectors
   1375     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
   1376     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
   1377     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
   1378                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
   1379         return 0;
   1380     }
   1381 
   1382     if (dir == kCCW_SkRotationDirection) {
   1383         y = -y;
   1384     }
   1385 
   1386     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
   1387     //      0 == [0  .. 90)
   1388     //      1 == [90 ..180)
   1389     //      2 == [180..270)
   1390     //      3 == [270..360)
   1391     //
   1392     int quadrant = 0;
   1393     if (0 == y) {
   1394         quadrant = 2;        // 180
   1395         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
   1396     } else if (0 == x) {
   1397         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
   1398         quadrant = y > 0 ? 1 : 3; // 90 : 270
   1399     } else {
   1400         if (y < 0) {
   1401             quadrant += 2;
   1402         }
   1403         if ((x < 0) != (y < 0)) {
   1404             quadrant += 1;
   1405         }
   1406     }
   1407 
   1408     const SkPoint quadrantPts[] = {
   1409         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
   1410     };
   1411     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
   1412 
   1413     int conicCount = quadrant;
   1414     for (int i = 0; i < conicCount; ++i) {
   1415         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
   1416     }
   1417 
   1418     // Now compute any remaing (sub-90-degree) arc for the last conic
   1419     const SkPoint finalP = { x, y };
   1420     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
   1421     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
   1422     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
   1423 
   1424     if (dot < 1) {
   1425         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
   1426         // compute the bisector vector, and then rescale to be the off-curve point.
   1427         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
   1428         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
   1429         // This is nice, since our computed weight is cos(theta/2) as well!
   1430         //
   1431         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
   1432         offCurve.setLength(SkScalarInvert(cosThetaOver2));
   1433         if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) {
   1434             dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
   1435             conicCount += 1;
   1436         }
   1437     }
   1438 
   1439     // now handle counter-clockwise and the initial unitStart rotation
   1440     SkMatrix    matrix;
   1441     matrix.setSinCos(uStart.fY, uStart.fX);
   1442     if (dir == kCCW_SkRotationDirection) {
   1443         matrix.preScale(SK_Scalar1, -SK_Scalar1);
   1444     }
   1445     if (userMatrix) {
   1446         matrix.postConcat(*userMatrix);
   1447     }
   1448     for (int i = 0; i < conicCount; ++i) {
   1449         matrix.mapPoints(dst[i].fPts, 3);
   1450     }
   1451     return conicCount;
   1452 }
   1453