Home | History | Annotate | Download | only in gpu
      1 /*
      2  * Copyright 2017 ARM Ltd.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkDistanceFieldGen.h"
      9 #include "GrDistanceFieldGenFromVector.h"
     10 
     11 #include "GrConfig.h"
     12 #include "GrPathUtils.h"
     13 #include "SkAutoMalloc.h"
     14 #include "SkGeometry.h"
     15 #include "SkMatrix.h"
     16 #include "SkPathOps.h"
     17 #include "SkPointPriv.h"
     18 #include "SkRectPriv.h"
     19 
     20 /**
     21  * If a scanline (a row of texel) cross from the kRight_SegSide
     22  * of a segment to the kLeft_SegSide, the winding score should
     23  * add 1.
     24  * And winding score should subtract 1 if the scanline cross
     25  * from kLeft_SegSide to kRight_SegSide.
     26  * Always return kNA_SegSide if the scanline does not cross over
     27  * the segment. Winding score should be zero in this case.
     28  * You can get the winding number for each texel of the scanline
     29  * by adding the winding score from left to right.
     30  * Assuming we always start from outside, so the winding number
     31  * should always start from zero.
     32  *      ________         ________
     33  *     |        |       |        |
     34  * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
     35  *     |+1      |-1     |-1      |+1     <= Winding score
     36  *   0 |   1    ^   0   ^  -1    |0      <= Winding number
     37  *     |________|       |________|
     38  *
     39  * .......NA................NA..........
     40  *         0                 0
     41  */
     42 enum SegSide {
     43     kLeft_SegSide  = -1,
     44     kOn_SegSide    =  0,
     45     kRight_SegSide =  1,
     46     kNA_SegSide    =  2,
     47 };
     48 
     49 struct DFData {
     50     float fDistSq;            // distance squared to nearest (so far) edge
     51     int   fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment
     52 };
     53 
     54 ///////////////////////////////////////////////////////////////////////////////
     55 
     56 /*
     57  * Type definition for double precision DPoint and DAffineMatrix
     58  */
     59 
     60 // Point with double precision
     61 struct DPoint {
     62     double fX, fY;
     63 
     64     static DPoint Make(double x, double y) {
     65         DPoint pt;
     66         pt.set(x, y);
     67         return pt;
     68     }
     69 
     70     double x() const { return fX; }
     71     double y() const { return fY; }
     72 
     73     void set(double x, double y) { fX = x; fY = y; }
     74 
     75     /** Returns the euclidian distance from (0,0) to (x,y)
     76     */
     77     static double Length(double x, double y) {
     78         return sqrt(x * x + y * y);
     79     }
     80 
     81     /** Returns the euclidian distance between a and b
     82     */
     83     static double Distance(const DPoint& a, const DPoint& b) {
     84         return Length(a.fX - b.fX, a.fY - b.fY);
     85     }
     86 
     87     double distanceToSqd(const DPoint& pt) const {
     88         double dx = fX - pt.fX;
     89         double dy = fY - pt.fY;
     90         return dx * dx + dy * dy;
     91     }
     92 };
     93 
     94 // Matrix with double precision for affine transformation.
     95 // We don't store row 3 because its always (0, 0, 1).
     96 class DAffineMatrix {
     97 public:
     98     double operator[](int index) const {
     99         SkASSERT((unsigned)index < 6);
    100         return fMat[index];
    101     }
    102 
    103     double& operator[](int index) {
    104         SkASSERT((unsigned)index < 6);
    105         return fMat[index];
    106     }
    107 
    108     void setAffine(double m11, double m12, double m13,
    109                    double m21, double m22, double m23) {
    110         fMat[0] = m11;
    111         fMat[1] = m12;
    112         fMat[2] = m13;
    113         fMat[3] = m21;
    114         fMat[4] = m22;
    115         fMat[5] = m23;
    116     }
    117 
    118     /** Set the matrix to identity
    119     */
    120     void reset() {
    121         fMat[0] = fMat[4] = 1.0;
    122         fMat[1] = fMat[3] =
    123         fMat[2] = fMat[5] = 0.0;
    124     }
    125 
    126     // alias for reset()
    127     void setIdentity() { this->reset(); }
    128 
    129     DPoint mapPoint(const SkPoint& src) const {
    130         DPoint pt = DPoint::Make(src.x(), src.y());
    131         return this->mapPoint(pt);
    132     }
    133 
    134     DPoint mapPoint(const DPoint& src) const {
    135         return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
    136                             fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
    137     }
    138 private:
    139     double fMat[6];
    140 };
    141 
    142 ///////////////////////////////////////////////////////////////////////////////
    143 
    144 static const double kClose = (SK_Scalar1 / 16.0);
    145 static const double kCloseSqd = kClose * kClose;
    146 static const double kNearlyZero = (SK_Scalar1 / (1 << 18));
    147 static const double kTangentTolerance = (SK_Scalar1 / (1 << 11));
    148 static const float  kConicTolerance = 0.25f;
    149 
    150 static inline bool between_closed_open(double a, double b, double c,
    151                                        double tolerance = 0.0,
    152                                        bool xformToleranceToX = false) {
    153     SkASSERT(tolerance >= 0.0);
    154     double tolB = tolerance;
    155     double tolC = tolerance;
    156 
    157     if (xformToleranceToX) {
    158         // Canonical space is y = x^2 and the derivative of x^2 is 2x.
    159         // So the slope of the tangent line at point (x, x^2) is 2x.
    160         //
    161         //                          /|
    162         //  sqrt(2x * 2x + 1 * 1)  / | 2x
    163         //                        /__|
    164         //                         1
    165         tolB = tolerance / sqrt(4.0 * b * b + 1.0);
    166         tolC = tolerance / sqrt(4.0 * c * c + 1.0);
    167     }
    168     return b < c ? (a >= b - tolB && a < c - tolC) :
    169                    (a >= c - tolC && a < b - tolB);
    170 }
    171 
    172 static inline bool between_closed(double a, double b, double c,
    173                                   double tolerance = 0.0,
    174                                   bool xformToleranceToX = false) {
    175     SkASSERT(tolerance >= 0.0);
    176     double tolB = tolerance;
    177     double tolC = tolerance;
    178 
    179     if (xformToleranceToX) {
    180         tolB = tolerance / sqrt(4.0 * b * b + 1.0);
    181         tolC = tolerance / sqrt(4.0 * c * c + 1.0);
    182     }
    183     return b < c ? (a >= b - tolB && a <= c + tolC) :
    184                    (a >= c - tolC && a <= b + tolB);
    185 }
    186 
    187 static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
    188     SkASSERT(tolerance >= 0.0);
    189     return fabs(x) <= tolerance;
    190 }
    191 
    192 static inline bool nearly_equal(double x, double y,
    193                                 double tolerance = kNearlyZero,
    194                                 bool xformToleranceToX = false) {
    195     SkASSERT(tolerance >= 0.0);
    196     if (xformToleranceToX) {
    197         tolerance = tolerance / sqrt(4.0 * y * y + 1.0);
    198     }
    199     return fabs(x - y) <= tolerance;
    200 }
    201 
    202 static inline double sign_of(const double &val) {
    203     return (val < 0.0) ? -1.0 : 1.0;
    204 }
    205 
    206 static bool is_colinear(const SkPoint pts[3]) {
    207     return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
    208                        (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd);
    209 }
    210 
    211 class PathSegment {
    212 public:
    213     enum {
    214         // These enum values are assumed in member functions below.
    215         kLine = 0,
    216         kQuad = 1,
    217     } fType;
    218 
    219     // line uses 2 pts, quad uses 3 pts
    220     SkPoint fPts[3];
    221 
    222     DPoint  fP0T, fP2T;
    223     DAffineMatrix fXformMatrix;
    224     double fScalingFactor;
    225     double fScalingFactorSqd;
    226     double fNearlyZeroScaled;
    227     double fTangentTolScaledSqd;
    228     SkRect  fBoundingBox;
    229 
    230     void init();
    231 
    232     int countPoints() {
    233         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
    234         return fType + 2;
    235     }
    236 
    237     const SkPoint& endPt() const {
    238         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
    239         return fPts[fType + 1];
    240     }
    241 };
    242 
    243 typedef SkTArray<PathSegment, true> PathSegmentArray;
    244 
    245 void PathSegment::init() {
    246     const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
    247     const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
    248     const double p0x = p0.x();
    249     const double p0y = p0.y();
    250     const double p2x = p2.x();
    251     const double p2y = p2.y();
    252 
    253     fBoundingBox.set(fPts[0], this->endPt());
    254 
    255     if (fType == PathSegment::kLine) {
    256         fScalingFactorSqd = fScalingFactor = 1.0;
    257         double hypotenuse = DPoint::Distance(p0, p2);
    258 
    259         const double cosTheta = (p2x - p0x) / hypotenuse;
    260         const double sinTheta = (p2y - p0y) / hypotenuse;
    261 
    262         fXformMatrix.setAffine(
    263             cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
    264             -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
    265         );
    266     } else {
    267         SkASSERT(fType == PathSegment::kQuad);
    268 
    269         // Calculate bounding box
    270         const SkPoint _P1mP0 = fPts[1] - fPts[0];
    271         SkPoint t = _P1mP0 - fPts[2] + fPts[1];
    272         t.fX = _P1mP0.x() / t.x();
    273         t.fY = _P1mP0.y() / t.y();
    274         t.fX = SkScalarClampMax(t.x(), 1.0);
    275         t.fY = SkScalarClampMax(t.y(), 1.0);
    276         t.fX = _P1mP0.x() * t.x();
    277         t.fY = _P1mP0.y() * t.y();
    278         const SkPoint m = fPts[0] + t;
    279         SkRectPriv::GrowToInclude(&fBoundingBox, m);
    280 
    281         const double p1x = fPts[1].x();
    282         const double p1y = fPts[1].y();
    283 
    284         const double p0xSqd = p0x * p0x;
    285         const double p0ySqd = p0y * p0y;
    286         const double p2xSqd = p2x * p2x;
    287         const double p2ySqd = p2y * p2y;
    288         const double p1xSqd = p1x * p1x;
    289         const double p1ySqd = p1y * p1y;
    290 
    291         const double p01xProd = p0x * p1x;
    292         const double p02xProd = p0x * p2x;
    293         const double b12xProd = p1x * p2x;
    294         const double p01yProd = p0y * p1y;
    295         const double p02yProd = p0y * p2y;
    296         const double b12yProd = p1y * p2y;
    297 
    298         const double sqrtA = p0y - (2.0 * p1y) + p2y;
    299         const double a = sqrtA * sqrtA;
    300         const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
    301         const double sqrtB = p0x - (2.0 * p1x) + p2x;
    302         const double b = sqrtB * sqrtB;
    303         const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
    304                 - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
    305                 + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
    306                 + (p2xSqd * p0ySqd);
    307         const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
    308                 + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
    309                 + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
    310                 + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
    311                 + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
    312                 - (2.0 * p2x * p1ySqd);
    313         const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
    314                 - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
    315                 + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
    316                 + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
    317                 - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
    318                 + (p2xSqd * p0y));
    319 
    320         const double cosTheta = sqrt(a / (a + b));
    321         const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
    322 
    323         const double gDef = cosTheta * g - sinTheta * f;
    324         const double fDef = sinTheta * g + cosTheta * f;
    325 
    326 
    327         const double x0 = gDef / (a + b);
    328         const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
    329 
    330 
    331         const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
    332         fScalingFactor = fabs(1.0 / lambda);
    333         fScalingFactorSqd = fScalingFactor * fScalingFactor;
    334 
    335         const double lambda_cosTheta = lambda * cosTheta;
    336         const double lambda_sinTheta = lambda * sinTheta;
    337 
    338         fXformMatrix.setAffine(
    339             lambda_cosTheta, -lambda_sinTheta, lambda * x0,
    340             lambda_sinTheta, lambda_cosTheta, lambda * y0
    341         );
    342     }
    343 
    344     fNearlyZeroScaled = kNearlyZero / fScalingFactor;
    345     fTangentTolScaledSqd = kTangentTolerance * kTangentTolerance / fScalingFactorSqd;
    346 
    347     fP0T = fXformMatrix.mapPoint(p0);
    348     fP2T = fXformMatrix.mapPoint(p2);
    349 }
    350 
    351 static void init_distances(DFData* data, int size) {
    352     DFData* currData = data;
    353 
    354     for (int i = 0; i < size; ++i) {
    355         // init distance to "far away"
    356         currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude;
    357         currData->fDeltaWindingScore = 0;
    358         ++currData;
    359     }
    360 }
    361 
    362 static inline void add_line_to_segment(const SkPoint pts[2],
    363                                        PathSegmentArray* segments) {
    364     segments->push_back();
    365     segments->back().fType = PathSegment::kLine;
    366     segments->back().fPts[0] = pts[0];
    367     segments->back().fPts[1] = pts[1];
    368 
    369     segments->back().init();
    370 }
    371 
    372 static inline void add_quad_segment(const SkPoint pts[3],
    373                                     PathSegmentArray* segments) {
    374     if (SkPointPriv::DistanceToSqd(pts[0], pts[1]) < kCloseSqd ||
    375         SkPointPriv::DistanceToSqd(pts[1], pts[2]) < kCloseSqd ||
    376         is_colinear(pts)) {
    377         if (pts[0] != pts[2]) {
    378             SkPoint line_pts[2];
    379             line_pts[0] = pts[0];
    380             line_pts[1] = pts[2];
    381             add_line_to_segment(line_pts, segments);
    382         }
    383     } else {
    384         segments->push_back();
    385         segments->back().fType = PathSegment::kQuad;
    386         segments->back().fPts[0] = pts[0];
    387         segments->back().fPts[1] = pts[1];
    388         segments->back().fPts[2] = pts[2];
    389 
    390         segments->back().init();
    391     }
    392 }
    393 
    394 static inline void add_cubic_segments(const SkPoint pts[4],
    395                                       PathSegmentArray* segments) {
    396     SkSTArray<15, SkPoint, true> quads;
    397     GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
    398     int count = quads.count();
    399     for (int q = 0; q < count; q += 3) {
    400         add_quad_segment(&quads[q], segments);
    401     }
    402 }
    403 
    404 static float calculate_nearest_point_for_quad(
    405                 const PathSegment& segment,
    406                 const DPoint &xFormPt) {
    407     static const float kThird = 0.33333333333f;
    408     static const float kTwentySeventh = 0.037037037f;
    409 
    410     const float a = 0.5f - (float)xFormPt.y();
    411     const float b = -0.5f * (float)xFormPt.x();
    412 
    413     const float a3 = a * a * a;
    414     const float b2 = b * b;
    415 
    416     const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
    417 
    418     if (c >= 0.f) {
    419         const float sqrtC = sqrt(c);
    420         const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
    421         return result;
    422     } else {
    423         const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
    424         const float phi = (float)acos(cosPhi);
    425         float result;
    426         if (xFormPt.x() > 0.f) {
    427             result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
    428             if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
    429                 result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
    430             }
    431         } else {
    432             result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
    433             if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
    434                 result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
    435             }
    436         }
    437         return result;
    438     }
    439 }
    440 
    441 // This structure contains some intermediate values shared by the same row.
    442 // It is used to calculate segment side of a quadratic bezier.
    443 struct RowData {
    444     // The intersection type of a scanline and y = x * x parabola in canonical space.
    445     enum IntersectionType {
    446         kNoIntersection,
    447         kVerticalLine,
    448         kTangentLine,
    449         kTwoPointsIntersect
    450     } fIntersectionType;
    451 
    452     // The direction of the quadratic segment/scanline in the canonical space.
    453     //  1: The quadratic segment/scanline going from negative x-axis to positive x-axis.
    454     //  0: The scanline is a vertical line in the canonical space.
    455     // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis.
    456     int fQuadXDirection;
    457     int fScanlineXDirection;
    458 
    459     // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type.
    460     double fYAtIntersection;
    461 
    462     // The x-value for two intersection points.
    463     double fXAtIntersection1;
    464     double fXAtIntersection2;
    465 };
    466 
    467 void precomputation_for_row(
    468             RowData *rowData,
    469             const PathSegment& segment,
    470             const SkPoint& pointLeft,
    471             const SkPoint& pointRight
    472             ) {
    473     if (segment.fType != PathSegment::kQuad) {
    474         return;
    475     }
    476 
    477     const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
    478     const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
    479 
    480     rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x());
    481     rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x());
    482 
    483     const double x1 = xFormPtLeft.x();
    484     const double y1 = xFormPtLeft.y();
    485     const double x2 = xFormPtRight.x();
    486     const double y2 = xFormPtRight.y();
    487 
    488     if (nearly_equal(x1, x2, segment.fNearlyZeroScaled, true)) {
    489         rowData->fIntersectionType = RowData::kVerticalLine;
    490         rowData->fYAtIntersection = x1 * x1;
    491         rowData->fScanlineXDirection = 0;
    492         return;
    493     }
    494 
    495     // Line y = mx + b
    496     const double m = (y2 - y1) / (x2 - x1);
    497     const double b = -m * x1 + y1;
    498 
    499     const double m2 = m * m;
    500     const double c = m2 + 4.0 * b;
    501 
    502     const double tol = 4.0 * segment.fTangentTolScaledSqd / (m2 + 1.0);
    503 
    504     // Check if the scanline is the tangent line of the curve,
    505     // and the curve start or end at the same y-coordinate of the scanline
    506     if ((rowData->fScanlineXDirection == 1 &&
    507          (segment.fPts[0].y() == pointLeft.y() ||
    508          segment.fPts[2].y() == pointLeft.y())) &&
    509          nearly_zero(c, tol)) {
    510         rowData->fIntersectionType = RowData::kTangentLine;
    511         rowData->fXAtIntersection1 = m / 2.0;
    512         rowData->fXAtIntersection2 = m / 2.0;
    513     } else if (c <= 0.0) {
    514         rowData->fIntersectionType = RowData::kNoIntersection;
    515         return;
    516     } else {
    517         rowData->fIntersectionType = RowData::kTwoPointsIntersect;
    518         const double d = sqrt(c);
    519         rowData->fXAtIntersection1 = (m + d) / 2.0;
    520         rowData->fXAtIntersection2 = (m - d) / 2.0;
    521     }
    522 }
    523 
    524 SegSide calculate_side_of_quad(
    525             const PathSegment& segment,
    526             const SkPoint& point,
    527             const DPoint& xFormPt,
    528             const RowData& rowData) {
    529     SegSide side = kNA_SegSide;
    530 
    531     if (RowData::kVerticalLine == rowData.fIntersectionType) {
    532         side = (SegSide)(int)(sign_of(xFormPt.y() - rowData.fYAtIntersection) * rowData.fQuadXDirection);
    533     }
    534     else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) {
    535         const double p1 = rowData.fXAtIntersection1;
    536         const double p2 = rowData.fXAtIntersection2;
    537 
    538         int signP1 = (int)sign_of(p1 - xFormPt.x());
    539         bool includeP1 = true;
    540         bool includeP2 = true;
    541 
    542         if (rowData.fScanlineXDirection == 1) {
    543             if ((rowData.fQuadXDirection == -1 && segment.fPts[0].y() <= point.y() &&
    544                  nearly_equal(segment.fP0T.x(), p1, segment.fNearlyZeroScaled, true)) ||
    545                  (rowData.fQuadXDirection == 1 && segment.fPts[2].y() <= point.y() &&
    546                  nearly_equal(segment.fP2T.x(), p1, segment.fNearlyZeroScaled, true))) {
    547                 includeP1 = false;
    548             }
    549             if ((rowData.fQuadXDirection == -1 && segment.fPts[2].y() <= point.y() &&
    550                  nearly_equal(segment.fP2T.x(), p2, segment.fNearlyZeroScaled, true)) ||
    551                  (rowData.fQuadXDirection == 1 && segment.fPts[0].y() <= point.y() &&
    552                  nearly_equal(segment.fP0T.x(), p2, segment.fNearlyZeroScaled, true))) {
    553                 includeP2 = false;
    554             }
    555         }
    556 
    557         if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(),
    558                                         segment.fNearlyZeroScaled, true)) {
    559             side = (SegSide)(signP1 * rowData.fQuadXDirection);
    560         }
    561         if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(),
    562                                         segment.fNearlyZeroScaled, true)) {
    563             int signP2 = (int)sign_of(p2 - xFormPt.x());
    564             if (side == kNA_SegSide || signP2 == 1) {
    565                 side = (SegSide)(-signP2 * rowData.fQuadXDirection);
    566             }
    567         }
    568     } else if (RowData::kTangentLine == rowData.fIntersectionType) {
    569         // The scanline is the tangent line of current quadratic segment.
    570 
    571         const double p = rowData.fXAtIntersection1;
    572         int signP = (int)sign_of(p - xFormPt.x());
    573         if (rowData.fScanlineXDirection == 1) {
    574             // The path start or end at the tangent point.
    575             if (segment.fPts[0].y() == point.y()) {
    576                 side = (SegSide)(signP);
    577             } else if (segment.fPts[2].y() == point.y()) {
    578                 side = (SegSide)(-signP);
    579             }
    580         }
    581     }
    582 
    583     return side;
    584 }
    585 
    586 static float distance_to_segment(const SkPoint& point,
    587                                  const PathSegment& segment,
    588                                  const RowData& rowData,
    589                                  SegSide* side) {
    590     SkASSERT(side);
    591 
    592     const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
    593 
    594     if (segment.fType == PathSegment::kLine) {
    595         float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
    596 
    597         if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
    598             result = (float)(xformPt.y() * xformPt.y());
    599         } else if (xformPt.x() < segment.fP0T.x()) {
    600             result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
    601         } else {
    602             result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x())
    603                      + xformPt.y() * xformPt.y());
    604         }
    605 
    606         if (between_closed_open(point.y(), segment.fBoundingBox.top(),
    607                                 segment.fBoundingBox.bottom())) {
    608             *side = (SegSide)(int)sign_of(xformPt.y());
    609         } else {
    610             *side = kNA_SegSide;
    611         }
    612         return result;
    613     } else {
    614         SkASSERT(segment.fType == PathSegment::kQuad);
    615 
    616         const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt);
    617 
    618         float dist;
    619 
    620         if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
    621             DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
    622             dist = (float)xformPt.distanceToSqd(x);
    623         } else {
    624             const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T);
    625             const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T);
    626 
    627             if (distToB0T < distToB2T) {
    628                 dist = distToB0T;
    629             } else {
    630                 dist = distToB2T;
    631             }
    632         }
    633 
    634         if (between_closed_open(point.y(), segment.fBoundingBox.top(),
    635                                 segment.fBoundingBox.bottom())) {
    636             *side = calculate_side_of_quad(segment, point, xformPt, rowData);
    637         } else {
    638             *side = kNA_SegSide;
    639         }
    640 
    641         return (float)(dist * segment.fScalingFactorSqd);
    642     }
    643 }
    644 
    645 static void calculate_distance_field_data(PathSegmentArray* segments,
    646                                           DFData* dataPtr,
    647                                           int width, int height) {
    648     int count = segments->count();
    649     for (int a = 0; a < count; ++a) {
    650         PathSegment& segment = (*segments)[a];
    651         const SkRect& segBB = segment.fBoundingBox.makeOutset(
    652                                 SK_DistanceFieldPad, SK_DistanceFieldPad);
    653         int startColumn = (int)segBB.left();
    654         int endColumn = SkScalarCeilToInt(segBB.right());
    655 
    656         int startRow = (int)segBB.top();
    657         int endRow = SkScalarCeilToInt(segBB.bottom());
    658 
    659         SkASSERT((startColumn >= 0) && "StartColumn < 0!");
    660         SkASSERT((endColumn <= width) && "endColumn > width!");
    661         SkASSERT((startRow >= 0) && "StartRow < 0!");
    662         SkASSERT((endRow <= height) && "EndRow > height!");
    663 
    664         // Clip inside the distance field to avoid overflow
    665         startColumn = SkTMax(startColumn, 0);
    666         endColumn   = SkTMin(endColumn,   width);
    667         startRow    = SkTMax(startRow,    0);
    668         endRow      = SkTMin(endRow,      height);
    669 
    670         for (int row = startRow; row < endRow; ++row) {
    671             SegSide prevSide = kNA_SegSide;
    672             const float pY = row + 0.5f;
    673             RowData rowData;
    674 
    675             const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY);
    676             const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY);
    677 
    678             if (between_closed_open(pY, segment.fBoundingBox.top(),
    679                                     segment.fBoundingBox.bottom())) {
    680                 precomputation_for_row(&rowData, segment, pointLeft, pointRight);
    681             }
    682 
    683             for (int col = startColumn; col < endColumn; ++col) {
    684                 int idx = (row * width) + col;
    685 
    686                 const float pX = col + 0.5f;
    687                 const SkPoint point = SkPoint::Make(pX, pY);
    688 
    689                 const float distSq = dataPtr[idx].fDistSq;
    690                 int dilation = distSq < 1.5 * 1.5 ? 1 :
    691                                distSq < 2.5 * 2.5 ? 2 :
    692                                distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
    693                 if (dilation > SK_DistanceFieldPad) {
    694                     dilation = SK_DistanceFieldPad;
    695                 }
    696 
    697                 // Optimisation for not calculating some points.
    698                 if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut()
    699                     .makeOutset(dilation, dilation).contains(col, row)) {
    700                     continue;
    701                 }
    702 
    703                 SegSide side = kNA_SegSide;
    704                 int     deltaWindingScore = 0;
    705                 float   currDistSq = distance_to_segment(point, segment, rowData, &side);
    706                 if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
    707                     deltaWindingScore = -1;
    708                 } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
    709                     deltaWindingScore = 1;
    710                 }
    711 
    712                 prevSide = side;
    713 
    714                 if (currDistSq < distSq) {
    715                     dataPtr[idx].fDistSq = currDistSq;
    716                 }
    717 
    718                 dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
    719             }
    720         }
    721     }
    722 }
    723 
    724 template <int distanceMagnitude>
    725 static unsigned char pack_distance_field_val(float dist) {
    726     // The distance field is constructed as unsigned char values, so that the zero value is at 128,
    727     // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
    728     // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
    729     dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f);
    730 
    731     // Scale into the positive range for unsigned distance.
    732     dist += distanceMagnitude;
    733 
    734     // Scale into unsigned char range.
    735     // Round to place negative and positive values as equally as possible around 128
    736     // (which represents zero).
    737     return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f);
    738 }
    739 
    740 bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
    741                                      const SkPath& path, const SkMatrix& drawMatrix,
    742                                      int width, int height, size_t rowBytes) {
    743     SkASSERT(distanceField);
    744 
    745     SkDEBUGCODE(SkPath xformPath;);
    746     SkDEBUGCODE(path.transform(drawMatrix, &xformPath));
    747     SkDEBUGCODE(SkIRect pathBounds = xformPath.getBounds().roundOut());
    748     SkDEBUGCODE(SkIRect expectPathBounds = SkIRect::MakeWH(width - 2 * SK_DistanceFieldPad,
    749                                                            height - 2 * SK_DistanceFieldPad));
    750     SkASSERT(expectPathBounds.isEmpty() ||
    751              expectPathBounds.contains(pathBounds.x(), pathBounds.y()));
    752     SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
    753              expectPathBounds.contains(pathBounds));
    754 
    755     SkPath simplifiedPath;
    756     SkPath workingPath;
    757     if (Simplify(path, &simplifiedPath)) {
    758         workingPath = simplifiedPath;
    759     } else {
    760         workingPath = path;
    761     }
    762 
    763     if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) {
    764         return false;
    765     }
    766 
    767     workingPath.transform(drawMatrix);
    768 
    769     SkDEBUGCODE(pathBounds = workingPath.getBounds().roundOut());
    770     SkASSERT(expectPathBounds.isEmpty() ||
    771              expectPathBounds.contains(pathBounds.x(), pathBounds.y()));
    772     SkASSERT(expectPathBounds.isEmpty() || pathBounds.isEmpty() ||
    773              expectPathBounds.contains(pathBounds));
    774 
    775     // translate path to offset (SK_DistanceFieldPad, SK_DistanceFieldPad)
    776     SkMatrix dfMatrix;
    777     dfMatrix.setTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
    778     workingPath.transform(dfMatrix);
    779 
    780     // create temp data
    781     size_t dataSize = width * height * sizeof(DFData);
    782     SkAutoSMalloc<1024> dfStorage(dataSize);
    783     DFData* dataPtr = (DFData*) dfStorage.get();
    784 
    785     // create initial distance data
    786     init_distances(dataPtr, width * height);
    787 
    788     SkPath::Iter iter(workingPath, true);
    789     SkSTArray<15, PathSegment, true> segments;
    790 
    791     for (;;) {
    792         SkPoint pts[4];
    793         SkPath::Verb verb = iter.next(pts);
    794         switch (verb) {
    795             case SkPath::kMove_Verb:
    796                 break;
    797             case SkPath::kLine_Verb: {
    798                 add_line_to_segment(pts, &segments);
    799                 break;
    800             }
    801             case SkPath::kQuad_Verb:
    802                 add_quad_segment(pts, &segments);
    803                 break;
    804             case SkPath::kConic_Verb: {
    805                 SkScalar weight = iter.conicWeight();
    806                 SkAutoConicToQuads converter;
    807                 const SkPoint* quadPts = converter.computeQuads(pts, weight, kConicTolerance);
    808                 for (int i = 0; i < converter.countQuads(); ++i) {
    809                     add_quad_segment(quadPts + 2*i, &segments);
    810                 }
    811                 break;
    812             }
    813             case SkPath::kCubic_Verb: {
    814                 add_cubic_segments(pts, &segments);
    815                 break;
    816             };
    817             default:
    818                 break;
    819         }
    820         if (verb == SkPath::kDone_Verb) {
    821             break;
    822         }
    823     }
    824 
    825     calculate_distance_field_data(&segments, dataPtr, width, height);
    826 
    827     for (int row = 0; row < height; ++row) {
    828         int windingNumber = 0; // Winding number start from zero for each scanline
    829         for (int col = 0; col < width; ++col) {
    830             int idx = (row * width) + col;
    831             windingNumber += dataPtr[idx].fDeltaWindingScore;
    832 
    833             enum DFSign {
    834                 kInside = -1,
    835                 kOutside = 1
    836             } dfSign;
    837 
    838             if (workingPath.getFillType() == SkPath::kWinding_FillType) {
    839                 dfSign = windingNumber ? kInside : kOutside;
    840             } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) {
    841                 dfSign = windingNumber ? kOutside : kInside;
    842             } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) {
    843                 dfSign = (windingNumber % 2) ? kInside : kOutside;
    844             } else {
    845                 SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType);
    846                 dfSign = (windingNumber % 2) ? kOutside : kInside;
    847             }
    848 
    849             // The winding number at the end of a scanline should be zero.
    850             SkASSERT(((col != width - 1) || (windingNumber == 0)) &&
    851                     "Winding number should be zero at the end of a scan line.");
    852             // Fallback to use SkPath::contains to determine the sign of pixel in release build.
    853             if (col == width - 1 && windingNumber != 0) {
    854                 for (int col = 0; col < width; ++col) {
    855                     int idx = (row * width) + col;
    856                     dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside;
    857                     const float miniDist = sqrt(dataPtr[idx].fDistSq);
    858                     const float dist = dfSign * miniDist;
    859 
    860                     unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
    861 
    862                     distanceField[(row * rowBytes) + col] = pixelVal;
    863                 }
    864                 continue;
    865             }
    866 
    867             const float miniDist = sqrt(dataPtr[idx].fDistSq);
    868             const float dist = dfSign * miniDist;
    869 
    870             unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
    871 
    872             distanceField[(row * rowBytes) + col] = pixelVal;
    873         }
    874     }
    875     return true;
    876 }
    877