Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright 2011 Google Inc.
      3  *
      4  * Use of this source code is governed by a BSD-style license that can be
      5  * found in the LICENSE file.
      6  */
      7 
      8 #include "SkMath.h"
      9 #include "SkMatrixPriv.h"
     10 #include "SkMatrixUtils.h"
     11 #include "SkPoint3.h"
     12 #include "SkRandom.h"
     13 #include "Test.h"
     14 
     15 static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
     16     const SkScalar tolerance = SK_Scalar1 / 200000;
     17     return SkScalarAbs(a - b) <= tolerance;
     18 }
     19 
     20 static bool nearly_equal(const SkMatrix& a, const SkMatrix& b) {
     21     for (int i = 0; i < 9; i++) {
     22         if (!nearly_equal_scalar(a[i], b[i])) {
     23             SkDebugf("not equal %g %g\n", (float)a[i], (float)b[i]);
     24             return false;
     25         }
     26     }
     27     return true;
     28 }
     29 
     30 static bool are_equal(skiatest::Reporter* reporter,
     31                       const SkMatrix& a,
     32                       const SkMatrix& b) {
     33     bool equal = a == b;
     34     bool cheapEqual = a.cheapEqualTo(b);
     35     if (equal != cheapEqual) {
     36         if (equal) {
     37             bool foundZeroSignDiff = false;
     38             for (int i = 0; i < 9; ++i) {
     39                 float aVal = a.get(i);
     40                 float bVal = b.get(i);
     41                 int aValI = *SkTCast<int*>(&aVal);
     42                 int bValI = *SkTCast<int*>(&bVal);
     43                 if (0 == aVal && 0 == bVal && aValI != bValI) {
     44                     foundZeroSignDiff = true;
     45                 } else {
     46                     REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI);
     47                 }
     48             }
     49             REPORTER_ASSERT(reporter, foundZeroSignDiff);
     50         } else {
     51             bool foundNaN = false;
     52             for (int i = 0; i < 9; ++i) {
     53                 float aVal = a.get(i);
     54                 float bVal = b.get(i);
     55                 int aValI = *SkTCast<int*>(&aVal);
     56                 int bValI = *SkTCast<int*>(&bVal);
     57                 if (sk_float_isnan(aVal) && aValI == bValI) {
     58                     foundNaN = true;
     59                 } else {
     60                     REPORTER_ASSERT(reporter, aVal == bVal && aValI == bValI);
     61                 }
     62             }
     63             REPORTER_ASSERT(reporter, foundNaN);
     64         }
     65     }
     66     return equal;
     67 }
     68 
     69 static bool is_identity(const SkMatrix& m) {
     70     SkMatrix identity;
     71     identity.reset();
     72     return nearly_equal(m, identity);
     73 }
     74 
     75 static void assert9(skiatest::Reporter* reporter, const SkMatrix& m,
     76                     SkScalar a, SkScalar b, SkScalar c,
     77                     SkScalar d, SkScalar e, SkScalar f,
     78                     SkScalar g, SkScalar h, SkScalar i) {
     79     SkScalar buffer[9];
     80     m.get9(buffer);
     81     REPORTER_ASSERT(reporter, buffer[0] == a);
     82     REPORTER_ASSERT(reporter, buffer[1] == b);
     83     REPORTER_ASSERT(reporter, buffer[2] == c);
     84     REPORTER_ASSERT(reporter, buffer[3] == d);
     85     REPORTER_ASSERT(reporter, buffer[4] == e);
     86     REPORTER_ASSERT(reporter, buffer[5] == f);
     87     REPORTER_ASSERT(reporter, buffer[6] == g);
     88     REPORTER_ASSERT(reporter, buffer[7] == h);
     89     REPORTER_ASSERT(reporter, buffer[8] == i);
     90 }
     91 
     92 static void test_set9(skiatest::Reporter* reporter) {
     93 
     94     SkMatrix m;
     95     m.reset();
     96     assert9(reporter, m, 1, 0, 0, 0, 1, 0, 0, 0, 1);
     97 
     98     m.setScale(2, 3);
     99     assert9(reporter, m, 2, 0, 0, 0, 3, 0, 0, 0, 1);
    100 
    101     m.postTranslate(4, 5);
    102     assert9(reporter, m, 2, 0, 4, 0, 3, 5, 0, 0, 1);
    103 
    104     SkScalar buffer[9];
    105     sk_bzero(buffer, sizeof(buffer));
    106     buffer[SkMatrix::kMScaleX] = 1;
    107     buffer[SkMatrix::kMScaleY] = 1;
    108     buffer[SkMatrix::kMPersp2] = 1;
    109     REPORTER_ASSERT(reporter, !m.isIdentity());
    110     m.set9(buffer);
    111     REPORTER_ASSERT(reporter, m.isIdentity());
    112 }
    113 
    114 static void test_matrix_recttorect(skiatest::Reporter* reporter) {
    115     SkRect src, dst;
    116     SkMatrix matrix;
    117 
    118     src.set(0, 0, SK_Scalar1*10, SK_Scalar1*10);
    119     dst = src;
    120     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
    121     REPORTER_ASSERT(reporter, SkMatrix::kIdentity_Mask == matrix.getType());
    122     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
    123 
    124     dst.offset(SK_Scalar1, SK_Scalar1);
    125     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
    126     REPORTER_ASSERT(reporter, SkMatrix::kTranslate_Mask == matrix.getType());
    127     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
    128 
    129     dst.fRight += SK_Scalar1;
    130     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
    131     REPORTER_ASSERT(reporter,
    132                     (SkMatrix::kTranslate_Mask | SkMatrix::kScale_Mask) == matrix.getType());
    133     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
    134 
    135     dst = src;
    136     dst.fRight = src.fRight * 2;
    137     matrix.setRectToRect(src, dst, SkMatrix::kFill_ScaleToFit);
    138     REPORTER_ASSERT(reporter, SkMatrix::kScale_Mask == matrix.getType());
    139     REPORTER_ASSERT(reporter, matrix.rectStaysRect());
    140 }
    141 
    142 static void test_flatten(skiatest::Reporter* reporter, const SkMatrix& m) {
    143     // add 100 in case we have a bug, I don't want to kill my stack in the test
    144     static const size_t kBufferSize = SkMatrixPriv::kMaxFlattenSize + 100;
    145     char buffer[kBufferSize];
    146     size_t size1 = SkMatrixPriv::WriteToMemory(m, nullptr);
    147     size_t size2 = SkMatrixPriv::WriteToMemory(m, buffer);
    148     REPORTER_ASSERT(reporter, size1 == size2);
    149     REPORTER_ASSERT(reporter, size1 <= SkMatrixPriv::kMaxFlattenSize);
    150 
    151     SkMatrix m2;
    152     size_t size3 = SkMatrixPriv::ReadFromMemory(&m2, buffer, kBufferSize);
    153     REPORTER_ASSERT(reporter, size1 == size3);
    154     REPORTER_ASSERT(reporter, are_equal(reporter, m, m2));
    155 
    156     char buffer2[kBufferSize];
    157     size3 = SkMatrixPriv::WriteToMemory(m2, buffer2);
    158     REPORTER_ASSERT(reporter, size1 == size3);
    159     REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
    160 }
    161 
    162 static void test_matrix_min_max_scale(skiatest::Reporter* reporter) {
    163     SkScalar scales[2];
    164     bool success;
    165 
    166     SkMatrix identity;
    167     identity.reset();
    168     REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMinScale());
    169     REPORTER_ASSERT(reporter, SK_Scalar1 == identity.getMaxScale());
    170     success = identity.getMinMaxScales(scales);
    171     REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);
    172 
    173     SkMatrix scale;
    174     scale.setScale(SK_Scalar1 * 2, SK_Scalar1 * 4);
    175     REPORTER_ASSERT(reporter, SK_Scalar1 * 2 == scale.getMinScale());
    176     REPORTER_ASSERT(reporter, SK_Scalar1 * 4 == scale.getMaxScale());
    177     success = scale.getMinMaxScales(scales);
    178     REPORTER_ASSERT(reporter, success && SK_Scalar1 * 2 == scales[0] && SK_Scalar1 * 4 == scales[1]);
    179 
    180     SkMatrix rot90Scale;
    181     rot90Scale.setRotate(90 * SK_Scalar1);
    182     rot90Scale.postScale(SK_Scalar1 / 4, SK_Scalar1 / 2);
    183     REPORTER_ASSERT(reporter, SK_Scalar1 / 4 == rot90Scale.getMinScale());
    184     REPORTER_ASSERT(reporter, SK_Scalar1 / 2 == rot90Scale.getMaxScale());
    185     success = rot90Scale.getMinMaxScales(scales);
    186     REPORTER_ASSERT(reporter, success && SK_Scalar1 / 4  == scales[0] && SK_Scalar1 / 2 == scales[1]);
    187 
    188     SkMatrix rotate;
    189     rotate.setRotate(128 * SK_Scalar1);
    190     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMinScale(), SK_ScalarNearlyZero));
    191     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, rotate.getMaxScale(), SK_ScalarNearlyZero));
    192     success = rotate.getMinMaxScales(scales);
    193     REPORTER_ASSERT(reporter, success);
    194     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[0], SK_ScalarNearlyZero));
    195     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(SK_Scalar1, scales[1], SK_ScalarNearlyZero));
    196 
    197     SkMatrix translate;
    198     translate.setTranslate(10 * SK_Scalar1, -5 * SK_Scalar1);
    199     REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMinScale());
    200     REPORTER_ASSERT(reporter, SK_Scalar1 == translate.getMaxScale());
    201     success = translate.getMinMaxScales(scales);
    202     REPORTER_ASSERT(reporter, success && SK_Scalar1 == scales[0] && SK_Scalar1 == scales[1]);
    203 
    204     SkMatrix perspX;
    205     perspX.reset();
    206     perspX.setPerspX(SK_Scalar1 / 1000);
    207     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMinScale());
    208     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspX.getMaxScale());
    209     success = perspX.getMinMaxScales(scales);
    210     REPORTER_ASSERT(reporter, !success);
    211 
    212     // skbug.com/4718
    213     SkMatrix big;
    214     big.setAll(2.39394089e+36f, 8.85347779e+36f, 9.26526204e+36f,
    215                3.9159619e+36f, 1.44823453e+37f, 1.51559342e+37f,
    216                0.f, 0.f, 1.f);
    217     success = big.getMinMaxScales(scales);
    218     REPORTER_ASSERT(reporter, !success);
    219 
    220     // skbug.com/4718
    221     SkMatrix givingNegativeNearlyZeros;
    222     givingNegativeNearlyZeros.setAll(0.00436534f, 0.114138f, 0.37141f,
    223                                      0.00358857f, 0.0936228f, -0.0174198f,
    224                                      0.f, 0.f, 1.f);
    225     success = givingNegativeNearlyZeros.getMinMaxScales(scales);
    226     REPORTER_ASSERT(reporter, success && 0 == scales[0]);
    227 
    228     SkMatrix perspY;
    229     perspY.reset();
    230     perspY.setPerspY(-SK_Scalar1 / 500);
    231     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMinScale());
    232     REPORTER_ASSERT(reporter, -SK_Scalar1 == perspY.getMaxScale());
    233     scales[0] = -5;
    234     scales[1] = -5;
    235     success = perspY.getMinMaxScales(scales);
    236     REPORTER_ASSERT(reporter, !success && -5 * SK_Scalar1 == scales[0] && -5 * SK_Scalar1  == scales[1]);
    237 
    238     SkMatrix baseMats[] = {scale, rot90Scale, rotate,
    239                            translate, perspX, perspY};
    240     SkMatrix mats[2*SK_ARRAY_COUNT(baseMats)];
    241     for (size_t i = 0; i < SK_ARRAY_COUNT(baseMats); ++i) {
    242         mats[i] = baseMats[i];
    243         bool invertible = mats[i].invert(&mats[i + SK_ARRAY_COUNT(baseMats)]);
    244         REPORTER_ASSERT(reporter, invertible);
    245     }
    246     SkRandom rand;
    247     for (int m = 0; m < 1000; ++m) {
    248         SkMatrix mat;
    249         mat.reset();
    250         for (int i = 0; i < 4; ++i) {
    251             int x = rand.nextU() % SK_ARRAY_COUNT(mats);
    252             mat.postConcat(mats[x]);
    253         }
    254 
    255         SkScalar minScale = mat.getMinScale();
    256         SkScalar maxScale = mat.getMaxScale();
    257         REPORTER_ASSERT(reporter, (minScale < 0) == (maxScale < 0));
    258         REPORTER_ASSERT(reporter, (maxScale < 0) == mat.hasPerspective());
    259 
    260         SkScalar scales[2];
    261         bool success = mat.getMinMaxScales(scales);
    262         REPORTER_ASSERT(reporter, success == !mat.hasPerspective());
    263         REPORTER_ASSERT(reporter, !success || (scales[0] == minScale && scales[1] == maxScale));
    264 
    265         if (mat.hasPerspective()) {
    266             m -= 1; // try another non-persp matrix
    267             continue;
    268         }
    269 
    270         // test a bunch of vectors. All should be scaled by between minScale and maxScale
    271         // (modulo some error) and we should find a vector that is scaled by almost each.
    272         static const SkScalar gVectorScaleTol = (105 * SK_Scalar1) / 100;
    273         static const SkScalar gCloseScaleTol = (97 * SK_Scalar1) / 100;
    274         SkScalar max = 0, min = SK_ScalarMax;
    275         SkVector vectors[1000];
    276         for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
    277             vectors[i].fX = rand.nextSScalar1();
    278             vectors[i].fY = rand.nextSScalar1();
    279             if (!vectors[i].normalize()) {
    280                 i -= 1;
    281                 continue;
    282             }
    283         }
    284         mat.mapVectors(vectors, SK_ARRAY_COUNT(vectors));
    285         for (size_t i = 0; i < SK_ARRAY_COUNT(vectors); ++i) {
    286             SkScalar d = vectors[i].length();
    287             REPORTER_ASSERT(reporter, d / maxScale < gVectorScaleTol);
    288             REPORTER_ASSERT(reporter, minScale / d < gVectorScaleTol);
    289             if (max < d) {
    290                 max = d;
    291             }
    292             if (min > d) {
    293                 min = d;
    294             }
    295         }
    296         REPORTER_ASSERT(reporter, max / maxScale >= gCloseScaleTol);
    297         REPORTER_ASSERT(reporter, minScale / min >= gCloseScaleTol);
    298     }
    299 }
    300 
    301 static void test_matrix_preserve_shape(skiatest::Reporter* reporter) {
    302     SkMatrix mat;
    303 
    304     // identity
    305     mat.setIdentity();
    306     REPORTER_ASSERT(reporter, mat.isSimilarity());
    307     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    308 
    309     // translation only
    310     mat.reset();
    311     mat.setTranslate(SkIntToScalar(100), SkIntToScalar(100));
    312     REPORTER_ASSERT(reporter, mat.isSimilarity());
    313     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    314 
    315     // scale with same size
    316     mat.reset();
    317     mat.setScale(SkIntToScalar(15), SkIntToScalar(15));
    318     REPORTER_ASSERT(reporter, mat.isSimilarity());
    319     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    320 
    321     // scale with one negative
    322     mat.reset();
    323     mat.setScale(SkIntToScalar(-15), SkIntToScalar(15));
    324     REPORTER_ASSERT(reporter, mat.isSimilarity());
    325     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    326 
    327     // scale with different size
    328     mat.reset();
    329     mat.setScale(SkIntToScalar(15), SkIntToScalar(20));
    330     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    331     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    332 
    333     // scale with same size at a pivot point
    334     mat.reset();
    335     mat.setScale(SkIntToScalar(15), SkIntToScalar(15),
    336                  SkIntToScalar(2), SkIntToScalar(2));
    337     REPORTER_ASSERT(reporter, mat.isSimilarity());
    338     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    339 
    340     // scale with different size at a pivot point
    341     mat.reset();
    342     mat.setScale(SkIntToScalar(15), SkIntToScalar(20),
    343                  SkIntToScalar(2), SkIntToScalar(2));
    344     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    345     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    346 
    347     // skew with same size
    348     mat.reset();
    349     mat.setSkew(SkIntToScalar(15), SkIntToScalar(15));
    350     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    351     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    352 
    353     // skew with different size
    354     mat.reset();
    355     mat.setSkew(SkIntToScalar(15), SkIntToScalar(20));
    356     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    357     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    358 
    359     // skew with same size at a pivot point
    360     mat.reset();
    361     mat.setSkew(SkIntToScalar(15), SkIntToScalar(15),
    362                 SkIntToScalar(2), SkIntToScalar(2));
    363     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    364     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    365 
    366     // skew with different size at a pivot point
    367     mat.reset();
    368     mat.setSkew(SkIntToScalar(15), SkIntToScalar(20),
    369                 SkIntToScalar(2), SkIntToScalar(2));
    370     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    371     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    372 
    373     // perspective x
    374     mat.reset();
    375     mat.setPerspX(SK_Scalar1 / 2);
    376     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    377     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    378 
    379     // perspective y
    380     mat.reset();
    381     mat.setPerspY(SK_Scalar1 / 2);
    382     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    383     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    384 
    385     // rotate
    386     for (int angle = 0; angle < 360; ++angle) {
    387         mat.reset();
    388         mat.setRotate(SkIntToScalar(angle));
    389         REPORTER_ASSERT(reporter, mat.isSimilarity());
    390         REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    391     }
    392 
    393     // see if there are any accumulated precision issues
    394     mat.reset();
    395     for (int i = 1; i < 360; i++) {
    396         mat.postRotate(SkIntToScalar(1));
    397     }
    398     REPORTER_ASSERT(reporter, mat.isSimilarity());
    399     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    400 
    401     // rotate + translate
    402     mat.reset();
    403     mat.setRotate(SkIntToScalar(30));
    404     mat.postTranslate(SkIntToScalar(10), SkIntToScalar(20));
    405     REPORTER_ASSERT(reporter, mat.isSimilarity());
    406     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    407 
    408     // rotate + uniform scale
    409     mat.reset();
    410     mat.setRotate(SkIntToScalar(30));
    411     mat.postScale(SkIntToScalar(2), SkIntToScalar(2));
    412     REPORTER_ASSERT(reporter, mat.isSimilarity());
    413     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    414 
    415     // rotate + non-uniform scale
    416     mat.reset();
    417     mat.setRotate(SkIntToScalar(30));
    418     mat.postScale(SkIntToScalar(3), SkIntToScalar(2));
    419     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    420     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    421 
    422     // non-uniform scale + rotate
    423     mat.reset();
    424     mat.setScale(SkIntToScalar(3), SkIntToScalar(2));
    425     mat.postRotate(SkIntToScalar(30));
    426     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    427     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    428 
    429     // all zero
    430     mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, 0);
    431     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    432     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    433 
    434     // all zero except perspective
    435     mat.reset();
    436     mat.setAll(0, 0, 0, 0, 0, 0, 0, 0, SK_Scalar1);
    437     REPORTER_ASSERT(reporter, !mat.isSimilarity());
    438     REPORTER_ASSERT(reporter, !mat.preservesRightAngles());
    439 
    440     // scales zero, only skews (rotation)
    441     mat.setAll(0, SK_Scalar1, 0,
    442                -SK_Scalar1, 0, 0,
    443                0, 0, SkMatrix::I()[8]);
    444     REPORTER_ASSERT(reporter, mat.isSimilarity());
    445     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    446 
    447     // scales zero, only skews (reflection)
    448     mat.setAll(0, SK_Scalar1, 0,
    449                SK_Scalar1, 0, 0,
    450                0, 0, SkMatrix::I()[8]);
    451     REPORTER_ASSERT(reporter, mat.isSimilarity());
    452     REPORTER_ASSERT(reporter, mat.preservesRightAngles());
    453 }
    454 
    455 // For test_matrix_decomposition, below.
    456 static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
    457                                          SkScalar tolerance = SK_ScalarNearlyZero) {
    458     // from Bruce Dawson
    459     // absolute check
    460     SkScalar diff = SkScalarAbs(a - b);
    461     if (diff < tolerance) {
    462         return true;
    463     }
    464 
    465     // relative check
    466     a = SkScalarAbs(a);
    467     b = SkScalarAbs(b);
    468     SkScalar largest = (b > a) ? b : a;
    469 
    470     if (diff <= largest*tolerance) {
    471         return true;
    472     }
    473 
    474     return false;
    475 }
    476 
    477 static bool check_matrix_recomposition(const SkMatrix& mat,
    478                                        const SkPoint& rotation1,
    479                                        const SkPoint& scale,
    480                                        const SkPoint& rotation2) {
    481     SkScalar c1 = rotation1.fX;
    482     SkScalar s1 = rotation1.fY;
    483     SkScalar scaleX = scale.fX;
    484     SkScalar scaleY = scale.fY;
    485     SkScalar c2 = rotation2.fX;
    486     SkScalar s2 = rotation2.fY;
    487 
    488     // We do a relative check here because large scale factors cause problems with an absolute check
    489     bool result = scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
    490                                                scaleX*c1*c2 - scaleY*s1*s2) &&
    491                   scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
    492                                                -scaleX*s1*c2 - scaleY*c1*s2) &&
    493                   scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
    494                                                scaleX*c1*s2 + scaleY*s1*c2) &&
    495                   scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
    496                                                -scaleX*s1*s2 + scaleY*c1*c2);
    497     return result;
    498 }
    499 
    500 static void test_matrix_decomposition(skiatest::Reporter* reporter) {
    501     SkMatrix mat;
    502     SkPoint rotation1, scale, rotation2;
    503 
    504     const float kRotation0 = 15.5f;
    505     const float kRotation1 = -50.f;
    506     const float kScale0 = 5000.f;
    507     const float kScale1 = 0.001f;
    508 
    509     // identity
    510     mat.reset();
    511     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    512     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    513     // make sure it doesn't crash if we pass in NULLs
    514     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, nullptr, nullptr, nullptr));
    515 
    516     // rotation only
    517     mat.setRotate(kRotation0);
    518     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    519     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    520 
    521     // uniform scale only
    522     mat.setScale(kScale0, kScale0);
    523     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    524     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    525 
    526     // anisotropic scale only
    527     mat.setScale(kScale1, kScale0);
    528     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    529     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    530 
    531     // rotation then uniform scale
    532     mat.setRotate(kRotation1);
    533     mat.postScale(kScale0, kScale0);
    534     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    535     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    536 
    537     // uniform scale then rotation
    538     mat.setScale(kScale0, kScale0);
    539     mat.postRotate(kRotation1);
    540     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    541     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    542 
    543     // rotation then uniform scale+reflection
    544     mat.setRotate(kRotation0);
    545     mat.postScale(kScale1, -kScale1);
    546     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    547     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    548 
    549     // uniform scale+reflection, then rotate
    550     mat.setScale(kScale0, -kScale0);
    551     mat.postRotate(kRotation1);
    552     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    553     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    554 
    555     // rotation then anisotropic scale
    556     mat.setRotate(kRotation1);
    557     mat.postScale(kScale1, kScale0);
    558     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    559     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    560 
    561     // rotation then anisotropic scale
    562     mat.setRotate(90);
    563     mat.postScale(kScale1, kScale0);
    564     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    565     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    566 
    567     // anisotropic scale then rotation
    568     mat.setScale(kScale1, kScale0);
    569     mat.postRotate(kRotation0);
    570     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    571     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    572 
    573     // anisotropic scale then rotation
    574     mat.setScale(kScale1, kScale0);
    575     mat.postRotate(90);
    576     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    577     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    578 
    579     // rotation, uniform scale, then different rotation
    580     mat.setRotate(kRotation1);
    581     mat.postScale(kScale0, kScale0);
    582     mat.postRotate(kRotation0);
    583     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    584     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    585 
    586     // rotation, anisotropic scale, then different rotation
    587     mat.setRotate(kRotation0);
    588     mat.postScale(kScale1, kScale0);
    589     mat.postRotate(kRotation1);
    590     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    591     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    592 
    593     // rotation, anisotropic scale + reflection, then different rotation
    594     mat.setRotate(kRotation0);
    595     mat.postScale(-kScale1, kScale0);
    596     mat.postRotate(kRotation1);
    597     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    598     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    599 
    600     // try some random matrices
    601     SkRandom rand;
    602     for (int m = 0; m < 1000; ++m) {
    603         SkScalar rot0 = rand.nextRangeF(-180, 180);
    604         SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
    605         SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
    606         SkScalar rot1 = rand.nextRangeF(-180, 180);
    607         mat.setRotate(rot0);
    608         mat.postScale(sx, sy);
    609         mat.postRotate(rot1);
    610 
    611         if (SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2)) {
    612             REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    613         } else {
    614             // if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
    615             SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
    616                                mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
    617             REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
    618         }
    619     }
    620 
    621     // translation shouldn't affect this
    622     mat.postTranslate(-1000.f, 1000.f);
    623     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    624     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    625 
    626     // perspective shouldn't affect this
    627     mat[SkMatrix::kMPersp0] = 12.f;
    628     mat[SkMatrix::kMPersp1] = 4.f;
    629     mat[SkMatrix::kMPersp2] = 1872.f;
    630     REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    631     REPORTER_ASSERT(reporter, check_matrix_recomposition(mat, rotation1, scale, rotation2));
    632 
    633     // degenerate matrices
    634     // mostly zero entries
    635     mat.reset();
    636     mat[SkMatrix::kMScaleX] = 0.f;
    637     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    638     mat.reset();
    639     mat[SkMatrix::kMScaleY] = 0.f;
    640     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    641     mat.reset();
    642     // linearly dependent entries
    643     mat[SkMatrix::kMScaleX] = 1.f;
    644     mat[SkMatrix::kMSkewX] = 2.f;
    645     mat[SkMatrix::kMSkewY] = 4.f;
    646     mat[SkMatrix::kMScaleY] = 8.f;
    647     REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation1, &scale, &rotation2));
    648 }
    649 
    650 // For test_matrix_homogeneous, below.
    651 static bool point3_array_nearly_equal_relative(const SkPoint3 a[], const SkPoint3 b[], int count) {
    652     for (int i = 0; i < count; ++i) {
    653         if (!scalar_nearly_equal_relative(a[i].fX, b[i].fX)) {
    654             return false;
    655         }
    656         if (!scalar_nearly_equal_relative(a[i].fY, b[i].fY)) {
    657             return false;
    658         }
    659         if (!scalar_nearly_equal_relative(a[i].fZ, b[i].fZ)) {
    660             return false;
    661         }
    662     }
    663     return true;
    664 }
    665 
    666 // For test_matrix_homogeneous, below.
    667 // Maps a single triple in src using m and compares results to those in dst
    668 static bool naive_homogeneous_mapping(const SkMatrix& m, const SkPoint3& src,
    669                                       const SkPoint3& dst) {
    670     SkPoint3 res;
    671     SkScalar ms[9] = {m[0], m[1], m[2],
    672                       m[3], m[4], m[5],
    673                       m[6], m[7], m[8]};
    674     res.fX = src.fX * ms[0] + src.fY * ms[1] + src.fZ * ms[2];
    675     res.fY = src.fX * ms[3] + src.fY * ms[4] + src.fZ * ms[5];
    676     res.fZ = src.fX * ms[6] + src.fY * ms[7] + src.fZ * ms[8];
    677     return point3_array_nearly_equal_relative(&res, &dst, 1);
    678 }
    679 
    680 static void test_matrix_homogeneous(skiatest::Reporter* reporter) {
    681     SkMatrix mat;
    682 
    683     const float kRotation0 = 15.5f;
    684     const float kRotation1 = -50.f;
    685     const float kScale0 = 5000.f;
    686 
    687 #if defined(SK_BUILD_FOR_GOOGLE3)
    688     // Stack frame size is limited in SK_BUILD_FOR_GOOGLE3.
    689     const int kTripleCount = 100;
    690     const int kMatrixCount = 100;
    691 #else
    692     const int kTripleCount = 1000;
    693     const int kMatrixCount = 1000;
    694 #endif
    695     SkRandom rand;
    696 
    697     SkPoint3 randTriples[kTripleCount];
    698     for (int i = 0; i < kTripleCount; ++i) {
    699         randTriples[i].fX = rand.nextRangeF(-3000.f, 3000.f);
    700         randTriples[i].fY = rand.nextRangeF(-3000.f, 3000.f);
    701         randTriples[i].fZ = rand.nextRangeF(-3000.f, 3000.f);
    702     }
    703 
    704     SkMatrix mats[kMatrixCount];
    705     for (int i = 0; i < kMatrixCount; ++i) {
    706         for (int j = 0; j < 9; ++j) {
    707             mats[i].set(j, rand.nextRangeF(-3000.f, 3000.f));
    708         }
    709     }
    710 
    711     // identity
    712     {
    713     mat.reset();
    714     SkPoint3 dst[kTripleCount];
    715     mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
    716     REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(randTriples, dst, kTripleCount));
    717     }
    718 
    719     const SkPoint3 zeros = {0.f, 0.f, 0.f};
    720     // zero matrix
    721     {
    722     mat.setAll(0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f);
    723     SkPoint3 dst[kTripleCount];
    724     mat.mapHomogeneousPoints(dst, randTriples, kTripleCount);
    725     for (int i = 0; i < kTripleCount; ++i) {
    726         REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(&dst[i], &zeros, 1));
    727     }
    728     }
    729 
    730     // zero point
    731     {
    732     for (int i = 0; i < kMatrixCount; ++i) {
    733         SkPoint3 dst;
    734         mats[i].mapHomogeneousPoints(&dst, &zeros, 1);
    735         REPORTER_ASSERT(reporter, point3_array_nearly_equal_relative(&dst, &zeros, 1));
    736     }
    737     }
    738 
    739     // doesn't crash with null dst, src, count == 0
    740     {
    741     mats[0].mapHomogeneousPoints(nullptr, nullptr, 0);
    742     }
    743 
    744     // uniform scale of point
    745     {
    746     mat.setScale(kScale0, kScale0);
    747     SkPoint3 dst;
    748     SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f};
    749     SkPoint pnt;
    750     pnt.set(src.fX, src.fY);
    751     mat.mapHomogeneousPoints(&dst, &src, 1);
    752     mat.mapPoints(&pnt, &pnt, 1);
    753     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX));
    754     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY));
    755     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, SK_Scalar1));
    756     }
    757 
    758     // rotation of point
    759     {
    760     mat.setRotate(kRotation0);
    761     SkPoint3 dst;
    762     SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f};
    763     SkPoint pnt;
    764     pnt.set(src.fX, src.fY);
    765     mat.mapHomogeneousPoints(&dst, &src, 1);
    766     mat.mapPoints(&pnt, &pnt, 1);
    767     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX));
    768     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY));
    769     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, SK_Scalar1));
    770     }
    771 
    772     // rotation, scale, rotation of point
    773     {
    774     mat.setRotate(kRotation1);
    775     mat.postScale(kScale0, kScale0);
    776     mat.postRotate(kRotation0);
    777     SkPoint3 dst;
    778     SkPoint3 src = {randTriples[0].fX, randTriples[0].fY, 1.f};
    779     SkPoint pnt;
    780     pnt.set(src.fX, src.fY);
    781     mat.mapHomogeneousPoints(&dst, &src, 1);
    782     mat.mapPoints(&pnt, &pnt, 1);
    783     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fX, pnt.fX));
    784     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fY, pnt.fY));
    785     REPORTER_ASSERT(reporter, SkScalarNearlyEqual(dst.fZ, SK_Scalar1));
    786     }
    787 
    788     // compare with naive approach
    789     {
    790     for (int i = 0; i < kMatrixCount; ++i) {
    791         for (int j = 0; j < kTripleCount; ++j) {
    792             SkPoint3 dst;
    793             mats[i].mapHomogeneousPoints(&dst, &randTriples[j], 1);
    794             REPORTER_ASSERT(reporter, naive_homogeneous_mapping(mats[i], randTriples[j], dst));
    795         }
    796     }
    797     }
    798 
    799 }
    800 
    801 static bool check_decompScale(const SkMatrix& matrix) {
    802     SkSize scale;
    803     SkMatrix remaining;
    804 
    805     if (!matrix.decomposeScale(&scale, &remaining)) {
    806         return false;
    807     }
    808     if (scale.width() <= 0 || scale.height() <= 0) {
    809         return false;
    810     }
    811     remaining.preScale(scale.width(), scale.height());
    812     return nearly_equal(matrix, remaining);
    813 }
    814 
    815 static void test_decompScale(skiatest::Reporter* reporter) {
    816     SkMatrix m;
    817 
    818     m.reset();
    819     REPORTER_ASSERT(reporter, check_decompScale(m));
    820     m.setScale(2, 3);
    821     REPORTER_ASSERT(reporter, check_decompScale(m));
    822     m.setRotate(35, 0, 0);
    823     REPORTER_ASSERT(reporter, check_decompScale(m));
    824 
    825     m.setScale(1, 0);
    826     REPORTER_ASSERT(reporter, !check_decompScale(m));
    827 }
    828 
    829 DEF_TEST(Matrix, reporter) {
    830     SkMatrix    mat, inverse, iden1, iden2;
    831 
    832     mat.reset();
    833     mat.setTranslate(SK_Scalar1, SK_Scalar1);
    834     REPORTER_ASSERT(reporter, mat.invert(&inverse));
    835     iden1.setConcat(mat, inverse);
    836     REPORTER_ASSERT(reporter, is_identity(iden1));
    837 
    838     mat.setScale(SkIntToScalar(2), SkIntToScalar(4));
    839     REPORTER_ASSERT(reporter, mat.invert(&inverse));
    840     iden1.setConcat(mat, inverse);
    841     REPORTER_ASSERT(reporter, is_identity(iden1));
    842     test_flatten(reporter, mat);
    843 
    844     mat.setScale(SK_Scalar1/2, SkIntToScalar(2));
    845     REPORTER_ASSERT(reporter, mat.invert(&inverse));
    846     iden1.setConcat(mat, inverse);
    847     REPORTER_ASSERT(reporter, is_identity(iden1));
    848     test_flatten(reporter, mat);
    849 
    850     mat.setScale(SkIntToScalar(3), SkIntToScalar(5), SkIntToScalar(20), 0);
    851     mat.postRotate(SkIntToScalar(25));
    852     REPORTER_ASSERT(reporter, mat.invert(nullptr));
    853     REPORTER_ASSERT(reporter, mat.invert(&inverse));
    854     iden1.setConcat(mat, inverse);
    855     REPORTER_ASSERT(reporter, is_identity(iden1));
    856     iden2.setConcat(inverse, mat);
    857     REPORTER_ASSERT(reporter, is_identity(iden2));
    858     test_flatten(reporter, mat);
    859     test_flatten(reporter, iden2);
    860 
    861     mat.setScale(0, SK_Scalar1);
    862     REPORTER_ASSERT(reporter, !mat.invert(nullptr));
    863     REPORTER_ASSERT(reporter, !mat.invert(&inverse));
    864     mat.setScale(SK_Scalar1, 0);
    865     REPORTER_ASSERT(reporter, !mat.invert(nullptr));
    866     REPORTER_ASSERT(reporter, !mat.invert(&inverse));
    867 
    868     // Inverting this matrix results in a non-finite matrix
    869     mat.setAll(0.0f, 1.0f, 2.0f,
    870                0.0f, 1.0f, -3.40277175e+38f,
    871                1.00003040f, 1.0f, 0.0f);
    872     REPORTER_ASSERT(reporter, !mat.invert(nullptr));
    873     REPORTER_ASSERT(reporter, !mat.invert(&inverse));
    874 
    875     // rectStaysRect test
    876     {
    877         static const struct {
    878             SkScalar    m00, m01, m10, m11;
    879             bool        mStaysRect;
    880         }
    881         gRectStaysRectSamples[] = {
    882             {          0,          0,          0,           0, false },
    883             {          0,          0,          0,  SK_Scalar1, false },
    884             {          0,          0, SK_Scalar1,           0, false },
    885             {          0,          0, SK_Scalar1,  SK_Scalar1, false },
    886             {          0, SK_Scalar1,          0,           0, false },
    887             {          0, SK_Scalar1,          0,  SK_Scalar1, false },
    888             {          0, SK_Scalar1, SK_Scalar1,           0, true },
    889             {          0, SK_Scalar1, SK_Scalar1,  SK_Scalar1, false },
    890             { SK_Scalar1,          0,          0,           0, false },
    891             { SK_Scalar1,          0,          0,  SK_Scalar1, true },
    892             { SK_Scalar1,          0, SK_Scalar1,           0, false },
    893             { SK_Scalar1,          0, SK_Scalar1,  SK_Scalar1, false },
    894             { SK_Scalar1, SK_Scalar1,          0,           0, false },
    895             { SK_Scalar1, SK_Scalar1,          0,  SK_Scalar1, false },
    896             { SK_Scalar1, SK_Scalar1, SK_Scalar1,           0, false },
    897             { SK_Scalar1, SK_Scalar1, SK_Scalar1,  SK_Scalar1, false }
    898         };
    899 
    900         for (size_t i = 0; i < SK_ARRAY_COUNT(gRectStaysRectSamples); i++) {
    901             SkMatrix    m;
    902 
    903             m.reset();
    904             m.set(SkMatrix::kMScaleX, gRectStaysRectSamples[i].m00);
    905             m.set(SkMatrix::kMSkewX,  gRectStaysRectSamples[i].m01);
    906             m.set(SkMatrix::kMSkewY,  gRectStaysRectSamples[i].m10);
    907             m.set(SkMatrix::kMScaleY, gRectStaysRectSamples[i].m11);
    908             REPORTER_ASSERT(reporter,
    909                     m.rectStaysRect() == gRectStaysRectSamples[i].mStaysRect);
    910         }
    911     }
    912 
    913     mat.reset();
    914     mat.set(SkMatrix::kMScaleX, SkIntToScalar(1));
    915     mat.set(SkMatrix::kMSkewX,  SkIntToScalar(2));
    916     mat.set(SkMatrix::kMTransX, SkIntToScalar(3));
    917     mat.set(SkMatrix::kMSkewY,  SkIntToScalar(4));
    918     mat.set(SkMatrix::kMScaleY, SkIntToScalar(5));
    919     mat.set(SkMatrix::kMTransY, SkIntToScalar(6));
    920     SkScalar affine[6];
    921     REPORTER_ASSERT(reporter, mat.asAffine(affine));
    922 
    923     #define affineEqual(e) affine[SkMatrix::kA##e] == mat.get(SkMatrix::kM##e)
    924     REPORTER_ASSERT(reporter, affineEqual(ScaleX));
    925     REPORTER_ASSERT(reporter, affineEqual(SkewY));
    926     REPORTER_ASSERT(reporter, affineEqual(SkewX));
    927     REPORTER_ASSERT(reporter, affineEqual(ScaleY));
    928     REPORTER_ASSERT(reporter, affineEqual(TransX));
    929     REPORTER_ASSERT(reporter, affineEqual(TransY));
    930     #undef affineEqual
    931 
    932     mat.set(SkMatrix::kMPersp1, SK_Scalar1 / 2);
    933     REPORTER_ASSERT(reporter, !mat.asAffine(affine));
    934 
    935     SkMatrix mat2;
    936     mat2.reset();
    937     mat.reset();
    938     SkScalar zero = 0;
    939     mat.set(SkMatrix::kMSkewX, -zero);
    940     REPORTER_ASSERT(reporter, are_equal(reporter, mat, mat2));
    941 
    942     mat2.reset();
    943     mat.reset();
    944     mat.set(SkMatrix::kMSkewX, SK_ScalarNaN);
    945     mat2.set(SkMatrix::kMSkewX, SK_ScalarNaN);
    946     REPORTER_ASSERT(reporter, !are_equal(reporter, mat, mat2));
    947 
    948     test_matrix_min_max_scale(reporter);
    949     test_matrix_preserve_shape(reporter);
    950     test_matrix_recttorect(reporter);
    951     test_matrix_decomposition(reporter);
    952     test_matrix_homogeneous(reporter);
    953     test_set9(reporter);
    954 
    955     test_decompScale(reporter);
    956 
    957     mat.setScaleTranslate(2, 3, 1, 4);
    958     mat2.setScale(2, 3);
    959     mat2.postTranslate(1, 4);
    960     REPORTER_ASSERT(reporter, mat == mat2);
    961 }
    962 
    963 DEF_TEST(Matrix_Concat, r) {
    964     SkMatrix a;
    965     a.setTranslate(10, 20);
    966 
    967     SkMatrix b;
    968     b.setScale(3, 5);
    969 
    970     SkMatrix expected;
    971     expected.setConcat(a,b);
    972 
    973     REPORTER_ASSERT(r, expected == SkMatrix::Concat(a, b));
    974 }
    975 
    976 // Test that all variants of maprect are correct.
    977 DEF_TEST(Matrix_maprects, r) {
    978     const SkScalar scale = 1000;
    979 
    980     SkMatrix mat;
    981     mat.setScale(2, 3);
    982     mat.postTranslate(1, 4);
    983 
    984     SkRandom rand;
    985     for (int i = 0; i < 10000; ++i) {
    986         SkRect src = SkRect::MakeLTRB(rand.nextSScalar1() * scale,
    987                                       rand.nextSScalar1() * scale,
    988                                       rand.nextSScalar1() * scale,
    989                                       rand.nextSScalar1() * scale);
    990         SkRect dst[3];
    991 
    992         mat.mapPoints((SkPoint*)&dst[0].fLeft, (SkPoint*)&src.fLeft, 2);
    993         dst[0].sort();
    994         mat.mapRect(&dst[1], src);
    995         mat.mapRectScaleTranslate(&dst[2], src);
    996 
    997         REPORTER_ASSERT(r, dst[0] == dst[1]);
    998         REPORTER_ASSERT(r, dst[0] == dst[2]);
    999     }
   1000 }
   1001