Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- LegalizeTypes.cpp - Common code for DAG type legalizer ------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the SelectionDAG::LegalizeTypes method.  It transforms
     11 // an arbitrary well-formed SelectionDAG to only consist of legal types.  This
     12 // is common code shared among the LegalizeTypes*.cpp files.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "LegalizeTypes.h"
     17 #include "llvm/CallingConv.h"
     18 #include "llvm/Target/TargetData.h"
     19 #include "llvm/ADT/SetVector.h"
     20 #include "llvm/Support/CommandLine.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 using namespace llvm;
     24 
     25 static cl::opt<bool>
     26 EnableExpensiveChecks("enable-legalize-types-checking", cl::Hidden);
     27 
     28 /// PerformExpensiveChecks - Do extensive, expensive, sanity checking.
     29 void DAGTypeLegalizer::PerformExpensiveChecks() {
     30   // If a node is not processed, then none of its values should be mapped by any
     31   // of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     32 
     33   // If a node is processed, then each value with an illegal type must be mapped
     34   // by exactly one of PromotedIntegers, ExpandedIntegers, ..., ReplacedValues.
     35   // Values with a legal type may be mapped by ReplacedValues, but not by any of
     36   // the other maps.
     37 
     38   // Note that these invariants may not hold momentarily when processing a node:
     39   // the node being processed may be put in a map before being marked Processed.
     40 
     41   // Note that it is possible to have nodes marked NewNode in the DAG.  This can
     42   // occur in two ways.  Firstly, a node may be created during legalization but
     43   // never passed to the legalization core.  This is usually due to the implicit
     44   // folding that occurs when using the DAG.getNode operators.  Secondly, a new
     45   // node may be passed to the legalization core, but when analyzed may morph
     46   // into a different node, leaving the original node as a NewNode in the DAG.
     47   // A node may morph if one of its operands changes during analysis.  Whether
     48   // it actually morphs or not depends on whether, after updating its operands,
     49   // it is equivalent to an existing node: if so, it morphs into that existing
     50   // node (CSE).  An operand can change during analysis if the operand is a new
     51   // node that morphs, or it is a processed value that was mapped to some other
     52   // value (as recorded in ReplacedValues) in which case the operand is turned
     53   // into that other value.  If a node morphs then the node it morphed into will
     54   // be used instead of it for legalization, however the original node continues
     55   // to live on in the DAG.
     56   // The conclusion is that though there may be nodes marked NewNode in the DAG,
     57   // all uses of such nodes are also marked NewNode: the result is a fungus of
     58   // NewNodes growing on top of the useful nodes, and perhaps using them, but
     59   // not used by them.
     60 
     61   // If a value is mapped by ReplacedValues, then it must have no uses, except
     62   // by nodes marked NewNode (see above).
     63 
     64   // The final node obtained by mapping by ReplacedValues is not marked NewNode.
     65   // Note that ReplacedValues should be applied iteratively.
     66 
     67   // Note that the ReplacedValues map may also map deleted nodes (by iterating
     68   // over the DAG we never dereference deleted nodes).  This means that it may
     69   // also map nodes marked NewNode if the deallocated memory was reallocated as
     70   // another node, and that new node was not seen by the LegalizeTypes machinery
     71   // (for example because it was created but not used).  In general, we cannot
     72   // distinguish between new nodes and deleted nodes.
     73   SmallVector<SDNode*, 16> NewNodes;
     74   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
     75        E = DAG.allnodes_end(); I != E; ++I) {
     76     // Remember nodes marked NewNode - they are subject to extra checking below.
     77     if (I->getNodeId() == NewNode)
     78       NewNodes.push_back(I);
     79 
     80     for (unsigned i = 0, e = I->getNumValues(); i != e; ++i) {
     81       SDValue Res(I, i);
     82       bool Failed = false;
     83 
     84       unsigned Mapped = 0;
     85       if (ReplacedValues.find(Res) != ReplacedValues.end()) {
     86         Mapped |= 1;
     87         // Check that remapped values are only used by nodes marked NewNode.
     88         for (SDNode::use_iterator UI = I->use_begin(), UE = I->use_end();
     89              UI != UE; ++UI)
     90           if (UI.getUse().getResNo() == i)
     91             assert(UI->getNodeId() == NewNode &&
     92                    "Remapped value has non-trivial use!");
     93 
     94         // Check that the final result of applying ReplacedValues is not
     95         // marked NewNode.
     96         SDValue NewVal = ReplacedValues[Res];
     97         DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(NewVal);
     98         while (I != ReplacedValues.end()) {
     99           NewVal = I->second;
    100           I = ReplacedValues.find(NewVal);
    101         }
    102         assert(NewVal.getNode()->getNodeId() != NewNode &&
    103                "ReplacedValues maps to a new node!");
    104       }
    105       if (PromotedIntegers.find(Res) != PromotedIntegers.end())
    106         Mapped |= 2;
    107       if (SoftenedFloats.find(Res) != SoftenedFloats.end())
    108         Mapped |= 4;
    109       if (ScalarizedVectors.find(Res) != ScalarizedVectors.end())
    110         Mapped |= 8;
    111       if (ExpandedIntegers.find(Res) != ExpandedIntegers.end())
    112         Mapped |= 16;
    113       if (ExpandedFloats.find(Res) != ExpandedFloats.end())
    114         Mapped |= 32;
    115       if (SplitVectors.find(Res) != SplitVectors.end())
    116         Mapped |= 64;
    117       if (WidenedVectors.find(Res) != WidenedVectors.end())
    118         Mapped |= 128;
    119 
    120       if (I->getNodeId() != Processed) {
    121         // Since we allow ReplacedValues to map deleted nodes, it may map nodes
    122         // marked NewNode too, since a deleted node may have been reallocated as
    123         // another node that has not been seen by the LegalizeTypes machinery.
    124         if ((I->getNodeId() == NewNode && Mapped > 1) ||
    125             (I->getNodeId() != NewNode && Mapped != 0)) {
    126           dbgs() << "Unprocessed value in a map!";
    127           Failed = true;
    128         }
    129       } else if (isTypeLegal(Res.getValueType()) || IgnoreNodeResults(I)) {
    130         if (Mapped > 1) {
    131           dbgs() << "Value with legal type was transformed!";
    132           Failed = true;
    133         }
    134       } else {
    135         if (Mapped == 0) {
    136           dbgs() << "Processed value not in any map!";
    137           Failed = true;
    138         } else if (Mapped & (Mapped - 1)) {
    139           dbgs() << "Value in multiple maps!";
    140           Failed = true;
    141         }
    142       }
    143 
    144       if (Failed) {
    145         if (Mapped & 1)
    146           dbgs() << " ReplacedValues";
    147         if (Mapped & 2)
    148           dbgs() << " PromotedIntegers";
    149         if (Mapped & 4)
    150           dbgs() << " SoftenedFloats";
    151         if (Mapped & 8)
    152           dbgs() << " ScalarizedVectors";
    153         if (Mapped & 16)
    154           dbgs() << " ExpandedIntegers";
    155         if (Mapped & 32)
    156           dbgs() << " ExpandedFloats";
    157         if (Mapped & 64)
    158           dbgs() << " SplitVectors";
    159         if (Mapped & 128)
    160           dbgs() << " WidenedVectors";
    161         dbgs() << "\n";
    162         llvm_unreachable(0);
    163       }
    164     }
    165   }
    166 
    167   // Checked that NewNodes are only used by other NewNodes.
    168   for (unsigned i = 0, e = NewNodes.size(); i != e; ++i) {
    169     SDNode *N = NewNodes[i];
    170     for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
    171          UI != UE; ++UI)
    172       assert(UI->getNodeId() == NewNode && "NewNode used by non-NewNode!");
    173   }
    174 }
    175 
    176 /// run - This is the main entry point for the type legalizer.  This does a
    177 /// top-down traversal of the dag, legalizing types as it goes.  Returns "true"
    178 /// if it made any changes.
    179 bool DAGTypeLegalizer::run() {
    180   bool Changed = false;
    181 
    182   // Create a dummy node (which is not added to allnodes), that adds a reference
    183   // to the root node, preventing it from being deleted, and tracking any
    184   // changes of the root.
    185   HandleSDNode Dummy(DAG.getRoot());
    186   Dummy.setNodeId(Unanalyzed);
    187 
    188   // The root of the dag may dangle to deleted nodes until the type legalizer is
    189   // done.  Set it to null to avoid confusion.
    190   DAG.setRoot(SDValue());
    191 
    192   // Walk all nodes in the graph, assigning them a NodeId of 'ReadyToProcess'
    193   // (and remembering them) if they are leaves and assigning 'Unanalyzed' if
    194   // non-leaves.
    195   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    196        E = DAG.allnodes_end(); I != E; ++I) {
    197     if (I->getNumOperands() == 0) {
    198       I->setNodeId(ReadyToProcess);
    199       Worklist.push_back(I);
    200     } else {
    201       I->setNodeId(Unanalyzed);
    202     }
    203   }
    204 
    205   // Now that we have a set of nodes to process, handle them all.
    206   while (!Worklist.empty()) {
    207 #ifndef XDEBUG
    208     if (EnableExpensiveChecks)
    209 #endif
    210       PerformExpensiveChecks();
    211 
    212     SDNode *N = Worklist.back();
    213     Worklist.pop_back();
    214     assert(N->getNodeId() == ReadyToProcess &&
    215            "Node should be ready if on worklist!");
    216 
    217     if (IgnoreNodeResults(N))
    218       goto ScanOperands;
    219 
    220     // Scan the values produced by the node, checking to see if any result
    221     // types are illegal.
    222     for (unsigned i = 0, NumResults = N->getNumValues(); i < NumResults; ++i) {
    223       EVT ResultVT = N->getValueType(i);
    224       switch (getTypeAction(ResultVT)) {
    225       default:
    226         assert(false && "Unknown action!");
    227       case TargetLowering::TypeLegal:
    228         break;
    229       // The following calls must take care of *all* of the node's results,
    230       // not just the illegal result they were passed (this includes results
    231       // with a legal type).  Results can be remapped using ReplaceValueWith,
    232       // or their promoted/expanded/etc values registered in PromotedIntegers,
    233       // ExpandedIntegers etc.
    234       case TargetLowering::TypePromoteInteger:
    235         PromoteIntegerResult(N, i);
    236         Changed = true;
    237         goto NodeDone;
    238       case TargetLowering::TypeExpandInteger:
    239         ExpandIntegerResult(N, i);
    240         Changed = true;
    241         goto NodeDone;
    242       case TargetLowering::TypeSoftenFloat:
    243         SoftenFloatResult(N, i);
    244         Changed = true;
    245         goto NodeDone;
    246       case TargetLowering::TypeExpandFloat:
    247         ExpandFloatResult(N, i);
    248         Changed = true;
    249         goto NodeDone;
    250       case TargetLowering::TypeScalarizeVector:
    251         ScalarizeVectorResult(N, i);
    252         Changed = true;
    253         goto NodeDone;
    254       case TargetLowering::TypeSplitVector:
    255         SplitVectorResult(N, i);
    256         Changed = true;
    257         goto NodeDone;
    258       case TargetLowering::TypeWidenVector:
    259         WidenVectorResult(N, i);
    260         Changed = true;
    261         goto NodeDone;
    262       }
    263     }
    264 
    265 ScanOperands:
    266     // Scan the operand list for the node, handling any nodes with operands that
    267     // are illegal.
    268     {
    269     unsigned NumOperands = N->getNumOperands();
    270     bool NeedsReanalyzing = false;
    271     unsigned i;
    272     for (i = 0; i != NumOperands; ++i) {
    273       if (IgnoreNodeResults(N->getOperand(i).getNode()))
    274         continue;
    275 
    276       EVT OpVT = N->getOperand(i).getValueType();
    277       switch (getTypeAction(OpVT)) {
    278       default:
    279         assert(false && "Unknown action!");
    280       case TargetLowering::TypeLegal:
    281         continue;
    282       // The following calls must either replace all of the node's results
    283       // using ReplaceValueWith, and return "false"; or update the node's
    284       // operands in place, and return "true".
    285       case TargetLowering::TypePromoteInteger:
    286         NeedsReanalyzing = PromoteIntegerOperand(N, i);
    287         Changed = true;
    288         break;
    289       case TargetLowering::TypeExpandInteger:
    290         NeedsReanalyzing = ExpandIntegerOperand(N, i);
    291         Changed = true;
    292         break;
    293       case TargetLowering::TypeSoftenFloat:
    294         NeedsReanalyzing = SoftenFloatOperand(N, i);
    295         Changed = true;
    296         break;
    297       case TargetLowering::TypeExpandFloat:
    298         NeedsReanalyzing = ExpandFloatOperand(N, i);
    299         Changed = true;
    300         break;
    301       case TargetLowering::TypeScalarizeVector:
    302         NeedsReanalyzing = ScalarizeVectorOperand(N, i);
    303         Changed = true;
    304         break;
    305       case TargetLowering::TypeSplitVector:
    306         NeedsReanalyzing = SplitVectorOperand(N, i);
    307         Changed = true;
    308         break;
    309       case TargetLowering::TypeWidenVector:
    310         NeedsReanalyzing = WidenVectorOperand(N, i);
    311         Changed = true;
    312         break;
    313       }
    314       break;
    315     }
    316 
    317     // The sub-method updated N in place.  Check to see if any operands are new,
    318     // and if so, mark them.  If the node needs revisiting, don't add all users
    319     // to the worklist etc.
    320     if (NeedsReanalyzing) {
    321       assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    322       N->setNodeId(NewNode);
    323       // Recompute the NodeId and correct processed operands, adding the node to
    324       // the worklist if ready.
    325       SDNode *M = AnalyzeNewNode(N);
    326       if (M == N)
    327         // The node didn't morph - nothing special to do, it will be revisited.
    328         continue;
    329 
    330       // The node morphed - this is equivalent to legalizing by replacing every
    331       // value of N with the corresponding value of M.  So do that now.
    332       assert(N->getNumValues() == M->getNumValues() &&
    333              "Node morphing changed the number of results!");
    334       for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    335         // Replacing the value takes care of remapping the new value.
    336         ReplaceValueWith(SDValue(N, i), SDValue(M, i));
    337       assert(N->getNodeId() == NewNode && "Unexpected node state!");
    338       // The node continues to live on as part of the NewNode fungus that
    339       // grows on top of the useful nodes.  Nothing more needs to be done
    340       // with it - move on to the next node.
    341       continue;
    342     }
    343 
    344     if (i == NumOperands) {
    345       DEBUG(dbgs() << "Legally typed node: "; N->dump(&DAG); dbgs() << "\n");
    346     }
    347     }
    348 NodeDone:
    349 
    350     // If we reach here, the node was processed, potentially creating new nodes.
    351     // Mark it as processed and add its users to the worklist as appropriate.
    352     assert(N->getNodeId() == ReadyToProcess && "Node ID recalculated?");
    353     N->setNodeId(Processed);
    354 
    355     for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
    356          UI != E; ++UI) {
    357       SDNode *User = *UI;
    358       int NodeId = User->getNodeId();
    359 
    360       // This node has two options: it can either be a new node or its Node ID
    361       // may be a count of the number of operands it has that are not ready.
    362       if (NodeId > 0) {
    363         User->setNodeId(NodeId-1);
    364 
    365         // If this was the last use it was waiting on, add it to the ready list.
    366         if (NodeId-1 == ReadyToProcess)
    367           Worklist.push_back(User);
    368         continue;
    369       }
    370 
    371       // If this is an unreachable new node, then ignore it.  If it ever becomes
    372       // reachable by being used by a newly created node then it will be handled
    373       // by AnalyzeNewNode.
    374       if (NodeId == NewNode)
    375         continue;
    376 
    377       // Otherwise, this node is new: this is the first operand of it that
    378       // became ready.  Its new NodeId is the number of operands it has minus 1
    379       // (as this node is now processed).
    380       assert(NodeId == Unanalyzed && "Unknown node ID!");
    381       User->setNodeId(User->getNumOperands() - 1);
    382 
    383       // If the node only has a single operand, it is now ready.
    384       if (User->getNumOperands() == 1)
    385         Worklist.push_back(User);
    386     }
    387   }
    388 
    389 #ifndef XDEBUG
    390   if (EnableExpensiveChecks)
    391 #endif
    392     PerformExpensiveChecks();
    393 
    394   // If the root changed (e.g. it was a dead load) update the root.
    395   DAG.setRoot(Dummy.getValue());
    396 
    397   // Remove dead nodes.  This is important to do for cleanliness but also before
    398   // the checking loop below.  Implicit folding by the DAG.getNode operators and
    399   // node morphing can cause unreachable nodes to be around with their flags set
    400   // to new.
    401   DAG.RemoveDeadNodes();
    402 
    403   // In a debug build, scan all the nodes to make sure we found them all.  This
    404   // ensures that there are no cycles and that everything got processed.
    405 #ifndef NDEBUG
    406   for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
    407        E = DAG.allnodes_end(); I != E; ++I) {
    408     bool Failed = false;
    409 
    410     // Check that all result types are legal.
    411     if (!IgnoreNodeResults(I))
    412       for (unsigned i = 0, NumVals = I->getNumValues(); i < NumVals; ++i)
    413         if (!isTypeLegal(I->getValueType(i))) {
    414           dbgs() << "Result type " << i << " illegal!\n";
    415           Failed = true;
    416         }
    417 
    418     // Check that all operand types are legal.
    419     for (unsigned i = 0, NumOps = I->getNumOperands(); i < NumOps; ++i)
    420       if (!IgnoreNodeResults(I->getOperand(i).getNode()) &&
    421           !isTypeLegal(I->getOperand(i).getValueType())) {
    422         dbgs() << "Operand type " << i << " illegal!\n";
    423         Failed = true;
    424       }
    425 
    426     if (I->getNodeId() != Processed) {
    427        if (I->getNodeId() == NewNode)
    428          dbgs() << "New node not analyzed?\n";
    429        else if (I->getNodeId() == Unanalyzed)
    430          dbgs() << "Unanalyzed node not noticed?\n";
    431        else if (I->getNodeId() > 0)
    432          dbgs() << "Operand not processed?\n";
    433        else if (I->getNodeId() == ReadyToProcess)
    434          dbgs() << "Not added to worklist?\n";
    435        Failed = true;
    436     }
    437 
    438     if (Failed) {
    439       I->dump(&DAG); dbgs() << "\n";
    440       llvm_unreachable(0);
    441     }
    442   }
    443 #endif
    444 
    445   return Changed;
    446 }
    447 
    448 /// AnalyzeNewNode - The specified node is the root of a subtree of potentially
    449 /// new nodes.  Correct any processed operands (this may change the node) and
    450 /// calculate the NodeId.  If the node itself changes to a processed node, it
    451 /// is not remapped - the caller needs to take care of this.
    452 /// Returns the potentially changed node.
    453 SDNode *DAGTypeLegalizer::AnalyzeNewNode(SDNode *N) {
    454   // If this was an existing node that is already done, we're done.
    455   if (N->getNodeId() != NewNode && N->getNodeId() != Unanalyzed)
    456     return N;
    457 
    458   // Remove any stale map entries.
    459   ExpungeNode(N);
    460 
    461   // Okay, we know that this node is new.  Recursively walk all of its operands
    462   // to see if they are new also.  The depth of this walk is bounded by the size
    463   // of the new tree that was constructed (usually 2-3 nodes), so we don't worry
    464   // about revisiting of nodes.
    465   //
    466   // As we walk the operands, keep track of the number of nodes that are
    467   // processed.  If non-zero, this will become the new nodeid of this node.
    468   // Operands may morph when they are analyzed.  If so, the node will be
    469   // updated after all operands have been analyzed.  Since this is rare,
    470   // the code tries to minimize overhead in the non-morphing case.
    471 
    472   SmallVector<SDValue, 8> NewOps;
    473   unsigned NumProcessed = 0;
    474   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    475     SDValue OrigOp = N->getOperand(i);
    476     SDValue Op = OrigOp;
    477 
    478     AnalyzeNewValue(Op); // Op may morph.
    479 
    480     if (Op.getNode()->getNodeId() == Processed)
    481       ++NumProcessed;
    482 
    483     if (!NewOps.empty()) {
    484       // Some previous operand changed.  Add this one to the list.
    485       NewOps.push_back(Op);
    486     } else if (Op != OrigOp) {
    487       // This is the first operand to change - add all operands so far.
    488       NewOps.append(N->op_begin(), N->op_begin() + i);
    489       NewOps.push_back(Op);
    490     }
    491   }
    492 
    493   // Some operands changed - update the node.
    494   if (!NewOps.empty()) {
    495     SDNode *M = DAG.UpdateNodeOperands(N, &NewOps[0], NewOps.size());
    496     if (M != N) {
    497       // The node morphed into a different node.  Normally for this to happen
    498       // the original node would have to be marked NewNode.  However this can
    499       // in theory momentarily not be the case while ReplaceValueWith is doing
    500       // its stuff.  Mark the original node NewNode to help sanity checking.
    501       N->setNodeId(NewNode);
    502       if (M->getNodeId() != NewNode && M->getNodeId() != Unanalyzed)
    503         // It morphed into a previously analyzed node - nothing more to do.
    504         return M;
    505 
    506       // It morphed into a different new node.  Do the equivalent of passing
    507       // it to AnalyzeNewNode: expunge it and calculate the NodeId.  No need
    508       // to remap the operands, since they are the same as the operands we
    509       // remapped above.
    510       N = M;
    511       ExpungeNode(N);
    512     }
    513   }
    514 
    515   // Calculate the NodeId.
    516   N->setNodeId(N->getNumOperands() - NumProcessed);
    517   if (N->getNodeId() == ReadyToProcess)
    518     Worklist.push_back(N);
    519 
    520   return N;
    521 }
    522 
    523 /// AnalyzeNewValue - Call AnalyzeNewNode, updating the node in Val if needed.
    524 /// If the node changes to a processed node, then remap it.
    525 void DAGTypeLegalizer::AnalyzeNewValue(SDValue &Val) {
    526   Val.setNode(AnalyzeNewNode(Val.getNode()));
    527   if (Val.getNode()->getNodeId() == Processed)
    528     // We were passed a processed node, or it morphed into one - remap it.
    529     RemapValue(Val);
    530 }
    531 
    532 /// ExpungeNode - If N has a bogus mapping in ReplacedValues, eliminate it.
    533 /// This can occur when a node is deleted then reallocated as a new node -
    534 /// the mapping in ReplacedValues applies to the deleted node, not the new
    535 /// one.
    536 /// The only map that can have a deleted node as a source is ReplacedValues.
    537 /// Other maps can have deleted nodes as targets, but since their looked-up
    538 /// values are always immediately remapped using RemapValue, resulting in a
    539 /// not-deleted node, this is harmless as long as ReplacedValues/RemapValue
    540 /// always performs correct mappings.  In order to keep the mapping correct,
    541 /// ExpungeNode should be called on any new nodes *before* adding them as
    542 /// either source or target to ReplacedValues (which typically means calling
    543 /// Expunge when a new node is first seen, since it may no longer be marked
    544 /// NewNode by the time it is added to ReplacedValues).
    545 void DAGTypeLegalizer::ExpungeNode(SDNode *N) {
    546   if (N->getNodeId() != NewNode)
    547     return;
    548 
    549   // If N is not remapped by ReplacedValues then there is nothing to do.
    550   unsigned i, e;
    551   for (i = 0, e = N->getNumValues(); i != e; ++i)
    552     if (ReplacedValues.find(SDValue(N, i)) != ReplacedValues.end())
    553       break;
    554 
    555   if (i == e)
    556     return;
    557 
    558   // Remove N from all maps - this is expensive but rare.
    559 
    560   for (DenseMap<SDValue, SDValue>::iterator I = PromotedIntegers.begin(),
    561        E = PromotedIntegers.end(); I != E; ++I) {
    562     assert(I->first.getNode() != N);
    563     RemapValue(I->second);
    564   }
    565 
    566   for (DenseMap<SDValue, SDValue>::iterator I = SoftenedFloats.begin(),
    567        E = SoftenedFloats.end(); I != E; ++I) {
    568     assert(I->first.getNode() != N);
    569     RemapValue(I->second);
    570   }
    571 
    572   for (DenseMap<SDValue, SDValue>::iterator I = ScalarizedVectors.begin(),
    573        E = ScalarizedVectors.end(); I != E; ++I) {
    574     assert(I->first.getNode() != N);
    575     RemapValue(I->second);
    576   }
    577 
    578   for (DenseMap<SDValue, SDValue>::iterator I = WidenedVectors.begin(),
    579        E = WidenedVectors.end(); I != E; ++I) {
    580     assert(I->first.getNode() != N);
    581     RemapValue(I->second);
    582   }
    583 
    584   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    585        I = ExpandedIntegers.begin(), E = ExpandedIntegers.end(); I != E; ++I){
    586     assert(I->first.getNode() != N);
    587     RemapValue(I->second.first);
    588     RemapValue(I->second.second);
    589   }
    590 
    591   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    592        I = ExpandedFloats.begin(), E = ExpandedFloats.end(); I != E; ++I) {
    593     assert(I->first.getNode() != N);
    594     RemapValue(I->second.first);
    595     RemapValue(I->second.second);
    596   }
    597 
    598   for (DenseMap<SDValue, std::pair<SDValue, SDValue> >::iterator
    599        I = SplitVectors.begin(), E = SplitVectors.end(); I != E; ++I) {
    600     assert(I->first.getNode() != N);
    601     RemapValue(I->second.first);
    602     RemapValue(I->second.second);
    603   }
    604 
    605   for (DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.begin(),
    606        E = ReplacedValues.end(); I != E; ++I)
    607     RemapValue(I->second);
    608 
    609   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    610     ReplacedValues.erase(SDValue(N, i));
    611 }
    612 
    613 /// RemapValue - If the specified value was already legalized to another value,
    614 /// replace it by that value.
    615 void DAGTypeLegalizer::RemapValue(SDValue &N) {
    616   DenseMap<SDValue, SDValue>::iterator I = ReplacedValues.find(N);
    617   if (I != ReplacedValues.end()) {
    618     // Use path compression to speed up future lookups if values get multiply
    619     // replaced with other values.
    620     RemapValue(I->second);
    621     N = I->second;
    622     assert(N.getNode()->getNodeId() != NewNode && "Mapped to new node!");
    623   }
    624 }
    625 
    626 namespace {
    627   /// NodeUpdateListener - This class is a DAGUpdateListener that listens for
    628   /// updates to nodes and recomputes their ready state.
    629   class NodeUpdateListener : public SelectionDAG::DAGUpdateListener {
    630     DAGTypeLegalizer &DTL;
    631     SmallSetVector<SDNode*, 16> &NodesToAnalyze;
    632   public:
    633     explicit NodeUpdateListener(DAGTypeLegalizer &dtl,
    634                                 SmallSetVector<SDNode*, 16> &nta)
    635       : DTL(dtl), NodesToAnalyze(nta) {}
    636 
    637     virtual void NodeDeleted(SDNode *N, SDNode *E) {
    638       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    639              N->getNodeId() != DAGTypeLegalizer::Processed &&
    640              "Invalid node ID for RAUW deletion!");
    641       // It is possible, though rare, for the deleted node N to occur as a
    642       // target in a map, so note the replacement N -> E in ReplacedValues.
    643       assert(E && "Node not replaced?");
    644       DTL.NoteDeletion(N, E);
    645 
    646       // In theory the deleted node could also have been scheduled for analysis.
    647       // So remove it from the set of nodes which will be analyzed.
    648       NodesToAnalyze.remove(N);
    649 
    650       // In general nothing needs to be done for E, since it didn't change but
    651       // only gained new uses.  However N -> E was just added to ReplacedValues,
    652       // and the result of a ReplacedValues mapping is not allowed to be marked
    653       // NewNode.  So if E is marked NewNode, then it needs to be analyzed.
    654       if (E->getNodeId() == DAGTypeLegalizer::NewNode)
    655         NodesToAnalyze.insert(E);
    656     }
    657 
    658     virtual void NodeUpdated(SDNode *N) {
    659       // Node updates can mean pretty much anything.  It is possible that an
    660       // operand was set to something already processed (f.e.) in which case
    661       // this node could become ready.  Recompute its flags.
    662       assert(N->getNodeId() != DAGTypeLegalizer::ReadyToProcess &&
    663              N->getNodeId() != DAGTypeLegalizer::Processed &&
    664              "Invalid node ID for RAUW deletion!");
    665       N->setNodeId(DAGTypeLegalizer::NewNode);
    666       NodesToAnalyze.insert(N);
    667     }
    668   };
    669 }
    670 
    671 
    672 /// ReplaceValueWith - The specified value was legalized to the specified other
    673 /// value.  Update the DAG and NodeIds replacing any uses of From to use To
    674 /// instead.
    675 void DAGTypeLegalizer::ReplaceValueWith(SDValue From, SDValue To) {
    676   assert(From.getNode() != To.getNode() && "Potential legalization loop!");
    677 
    678   // If expansion produced new nodes, make sure they are properly marked.
    679   ExpungeNode(From.getNode());
    680   AnalyzeNewValue(To); // Expunges To.
    681 
    682   // Anything that used the old node should now use the new one.  Note that this
    683   // can potentially cause recursive merging.
    684   SmallSetVector<SDNode*, 16> NodesToAnalyze;
    685   NodeUpdateListener NUL(*this, NodesToAnalyze);
    686   do {
    687     DAG.ReplaceAllUsesOfValueWith(From, To, &NUL);
    688 
    689     // The old node may still be present in a map like ExpandedIntegers or
    690     // PromotedIntegers.  Inform maps about the replacement.
    691     ReplacedValues[From] = To;
    692 
    693     // Process the list of nodes that need to be reanalyzed.
    694     while (!NodesToAnalyze.empty()) {
    695       SDNode *N = NodesToAnalyze.back();
    696       NodesToAnalyze.pop_back();
    697       if (N->getNodeId() != DAGTypeLegalizer::NewNode)
    698         // The node was analyzed while reanalyzing an earlier node - it is safe
    699         // to skip.  Note that this is not a morphing node - otherwise it would
    700         // still be marked NewNode.
    701         continue;
    702 
    703       // Analyze the node's operands and recalculate the node ID.
    704       SDNode *M = AnalyzeNewNode(N);
    705       if (M != N) {
    706         // The node morphed into a different node.  Make everyone use the new
    707         // node instead.
    708         assert(M->getNodeId() != NewNode && "Analysis resulted in NewNode!");
    709         assert(N->getNumValues() == M->getNumValues() &&
    710                "Node morphing changed the number of results!");
    711         for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
    712           SDValue OldVal(N, i);
    713           SDValue NewVal(M, i);
    714           if (M->getNodeId() == Processed)
    715             RemapValue(NewVal);
    716           DAG.ReplaceAllUsesOfValueWith(OldVal, NewVal, &NUL);
    717           // OldVal may be a target of the ReplacedValues map which was marked
    718           // NewNode to force reanalysis because it was updated.  Ensure that
    719           // anything that ReplacedValues mapped to OldVal will now be mapped
    720           // all the way to NewVal.
    721           ReplacedValues[OldVal] = NewVal;
    722         }
    723         // The original node continues to exist in the DAG, marked NewNode.
    724       }
    725     }
    726     // When recursively update nodes with new nodes, it is possible to have
    727     // new uses of From due to CSE. If this happens, replace the new uses of
    728     // From with To.
    729   } while (!From.use_empty());
    730 }
    731 
    732 void DAGTypeLegalizer::SetPromotedInteger(SDValue Op, SDValue Result) {
    733   assert(Result.getValueType() ==
    734          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    735          "Invalid type for promoted integer");
    736   AnalyzeNewValue(Result);
    737 
    738   SDValue &OpEntry = PromotedIntegers[Op];
    739   assert(OpEntry.getNode() == 0 && "Node is already promoted!");
    740   OpEntry = Result;
    741 }
    742 
    743 void DAGTypeLegalizer::SetSoftenedFloat(SDValue Op, SDValue Result) {
    744   assert(Result.getValueType() ==
    745          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    746          "Invalid type for softened float");
    747   AnalyzeNewValue(Result);
    748 
    749   SDValue &OpEntry = SoftenedFloats[Op];
    750   assert(OpEntry.getNode() == 0 && "Node is already converted to integer!");
    751   OpEntry = Result;
    752 }
    753 
    754 void DAGTypeLegalizer::SetScalarizedVector(SDValue Op, SDValue Result) {
    755   assert(Result.getValueType() == Op.getValueType().getVectorElementType() &&
    756          "Invalid type for scalarized vector");
    757   AnalyzeNewValue(Result);
    758 
    759   SDValue &OpEntry = ScalarizedVectors[Op];
    760   assert(OpEntry.getNode() == 0 && "Node is already scalarized!");
    761   OpEntry = Result;
    762 }
    763 
    764 void DAGTypeLegalizer::GetExpandedInteger(SDValue Op, SDValue &Lo,
    765                                           SDValue &Hi) {
    766   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    767   RemapValue(Entry.first);
    768   RemapValue(Entry.second);
    769   assert(Entry.first.getNode() && "Operand isn't expanded");
    770   Lo = Entry.first;
    771   Hi = Entry.second;
    772 }
    773 
    774 void DAGTypeLegalizer::SetExpandedInteger(SDValue Op, SDValue Lo,
    775                                           SDValue Hi) {
    776   assert(Lo.getValueType() ==
    777          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    778          Hi.getValueType() == Lo.getValueType() &&
    779          "Invalid type for expanded integer");
    780   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    781   AnalyzeNewValue(Lo);
    782   AnalyzeNewValue(Hi);
    783 
    784   // Remember that this is the result of the node.
    785   std::pair<SDValue, SDValue> &Entry = ExpandedIntegers[Op];
    786   assert(Entry.first.getNode() == 0 && "Node already expanded");
    787   Entry.first = Lo;
    788   Entry.second = Hi;
    789 }
    790 
    791 void DAGTypeLegalizer::GetExpandedFloat(SDValue Op, SDValue &Lo,
    792                                         SDValue &Hi) {
    793   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    794   RemapValue(Entry.first);
    795   RemapValue(Entry.second);
    796   assert(Entry.first.getNode() && "Operand isn't expanded");
    797   Lo = Entry.first;
    798   Hi = Entry.second;
    799 }
    800 
    801 void DAGTypeLegalizer::SetExpandedFloat(SDValue Op, SDValue Lo,
    802                                         SDValue Hi) {
    803   assert(Lo.getValueType() ==
    804          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    805          Hi.getValueType() == Lo.getValueType() &&
    806          "Invalid type for expanded float");
    807   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    808   AnalyzeNewValue(Lo);
    809   AnalyzeNewValue(Hi);
    810 
    811   // Remember that this is the result of the node.
    812   std::pair<SDValue, SDValue> &Entry = ExpandedFloats[Op];
    813   assert(Entry.first.getNode() == 0 && "Node already expanded");
    814   Entry.first = Lo;
    815   Entry.second = Hi;
    816 }
    817 
    818 void DAGTypeLegalizer::GetSplitVector(SDValue Op, SDValue &Lo,
    819                                       SDValue &Hi) {
    820   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    821   RemapValue(Entry.first);
    822   RemapValue(Entry.second);
    823   assert(Entry.first.getNode() && "Operand isn't split");
    824   Lo = Entry.first;
    825   Hi = Entry.second;
    826 }
    827 
    828 void DAGTypeLegalizer::SetSplitVector(SDValue Op, SDValue Lo,
    829                                       SDValue Hi) {
    830   assert(Lo.getValueType().getVectorElementType() ==
    831          Op.getValueType().getVectorElementType() &&
    832          2*Lo.getValueType().getVectorNumElements() ==
    833          Op.getValueType().getVectorNumElements() &&
    834          Hi.getValueType() == Lo.getValueType() &&
    835          "Invalid type for split vector");
    836   // Lo/Hi may have been newly allocated, if so, add nodeid's as relevant.
    837   AnalyzeNewValue(Lo);
    838   AnalyzeNewValue(Hi);
    839 
    840   // Remember that this is the result of the node.
    841   std::pair<SDValue, SDValue> &Entry = SplitVectors[Op];
    842   assert(Entry.first.getNode() == 0 && "Node already split");
    843   Entry.first = Lo;
    844   Entry.second = Hi;
    845 }
    846 
    847 void DAGTypeLegalizer::SetWidenedVector(SDValue Op, SDValue Result) {
    848   assert(Result.getValueType() ==
    849          TLI.getTypeToTransformTo(*DAG.getContext(), Op.getValueType()) &&
    850          "Invalid type for widened vector");
    851   AnalyzeNewValue(Result);
    852 
    853   SDValue &OpEntry = WidenedVectors[Op];
    854   assert(OpEntry.getNode() == 0 && "Node already widened!");
    855   OpEntry = Result;
    856 }
    857 
    858 
    859 //===----------------------------------------------------------------------===//
    860 // Utilities.
    861 //===----------------------------------------------------------------------===//
    862 
    863 /// BitConvertToInteger - Convert to an integer of the same size.
    864 SDValue DAGTypeLegalizer::BitConvertToInteger(SDValue Op) {
    865   unsigned BitWidth = Op.getValueType().getSizeInBits();
    866   return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(),
    867                      EVT::getIntegerVT(*DAG.getContext(), BitWidth), Op);
    868 }
    869 
    870 /// BitConvertVectorToIntegerVector - Convert to a vector of integers of the
    871 /// same size.
    872 SDValue DAGTypeLegalizer::BitConvertVectorToIntegerVector(SDValue Op) {
    873   assert(Op.getValueType().isVector() && "Only applies to vectors!");
    874   unsigned EltWidth = Op.getValueType().getVectorElementType().getSizeInBits();
    875   EVT EltNVT = EVT::getIntegerVT(*DAG.getContext(), EltWidth);
    876   unsigned NumElts = Op.getValueType().getVectorNumElements();
    877   return DAG.getNode(ISD::BITCAST, Op.getDebugLoc(),
    878                      EVT::getVectorVT(*DAG.getContext(), EltNVT, NumElts), Op);
    879 }
    880 
    881 SDValue DAGTypeLegalizer::CreateStackStoreLoad(SDValue Op,
    882                                                EVT DestVT) {
    883   DebugLoc dl = Op.getDebugLoc();
    884   // Create the stack frame object.  Make sure it is aligned for both
    885   // the source and destination types.
    886   SDValue StackPtr = DAG.CreateStackTemporary(Op.getValueType(), DestVT);
    887   // Emit a store to the stack slot.
    888   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op, StackPtr,
    889                                MachinePointerInfo(), false, false, 0);
    890   // Result is a load from the stack slot.
    891   return DAG.getLoad(DestVT, dl, Store, StackPtr, MachinePointerInfo(),
    892                      false, false, 0);
    893 }
    894 
    895 /// CustomLowerNode - Replace the node's results with custom code provided
    896 /// by the target and return "true", or do nothing and return "false".
    897 /// The last parameter is FALSE if we are dealing with a node with legal
    898 /// result types and illegal operand. The second parameter denotes the type of
    899 /// illegal OperandNo in that case.
    900 /// The last parameter being TRUE means we are dealing with a
    901 /// node with illegal result types. The second parameter denotes the type of
    902 /// illegal ResNo in that case.
    903 bool DAGTypeLegalizer::CustomLowerNode(SDNode *N, EVT VT, bool LegalizeResult) {
    904   // See if the target wants to custom lower this node.
    905   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    906     return false;
    907 
    908   SmallVector<SDValue, 8> Results;
    909   if (LegalizeResult)
    910     TLI.ReplaceNodeResults(N, Results, DAG);
    911   else
    912     TLI.LowerOperationWrapper(N, Results, DAG);
    913 
    914   if (Results.empty())
    915     // The target didn't want to custom lower it after all.
    916     return false;
    917 
    918   // Make everything that once used N's values now use those in Results instead.
    919   assert(Results.size() == N->getNumValues() &&
    920          "Custom lowering returned the wrong number of results!");
    921   for (unsigned i = 0, e = Results.size(); i != e; ++i)
    922     ReplaceValueWith(SDValue(N, i), Results[i]);
    923   return true;
    924 }
    925 
    926 
    927 /// CustomWidenLowerNode - Widen the node's results with custom code provided
    928 /// by the target and return "true", or do nothing and return "false".
    929 bool DAGTypeLegalizer::CustomWidenLowerNode(SDNode *N, EVT VT) {
    930   // See if the target wants to custom lower this node.
    931   if (TLI.getOperationAction(N->getOpcode(), VT) != TargetLowering::Custom)
    932     return false;
    933 
    934   SmallVector<SDValue, 8> Results;
    935   TLI.ReplaceNodeResults(N, Results, DAG);
    936 
    937   if (Results.empty())
    938     // The target didn't want to custom widen lower its result  after all.
    939     return false;
    940 
    941   // Update the widening map.
    942   assert(Results.size() == N->getNumValues() &&
    943          "Custom lowering returned the wrong number of results!");
    944   for (unsigned i = 0, e = Results.size(); i != e; ++i)
    945     SetWidenedVector(SDValue(N, i), Results[i]);
    946   return true;
    947 }
    948 
    949 SDValue DAGTypeLegalizer::DisintegrateMERGE_VALUES(SDNode *N, unsigned ResNo) {
    950   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i)
    951     if (i != ResNo)
    952       ReplaceValueWith(SDValue(N, i), SDValue(N->getOperand(i)));
    953   return SDValue(N, ResNo);
    954 }
    955 
    956 /// GetSplitDestVTs - Compute the VTs needed for the low/hi parts of a type
    957 /// which is split into two not necessarily identical pieces.
    958 void DAGTypeLegalizer::GetSplitDestVTs(EVT InVT, EVT &LoVT, EVT &HiVT) {
    959   // Currently all types are split in half.
    960   if (!InVT.isVector()) {
    961     LoVT = HiVT = TLI.getTypeToTransformTo(*DAG.getContext(), InVT);
    962   } else {
    963     unsigned NumElements = InVT.getVectorNumElements();
    964     assert(!(NumElements & 1) && "Splitting vector, but not in half!");
    965     LoVT = HiVT = EVT::getVectorVT(*DAG.getContext(),
    966                                    InVT.getVectorElementType(), NumElements/2);
    967   }
    968 }
    969 
    970 /// GetPairElements - Use ISD::EXTRACT_ELEMENT nodes to extract the low and
    971 /// high parts of the given value.
    972 void DAGTypeLegalizer::GetPairElements(SDValue Pair,
    973                                        SDValue &Lo, SDValue &Hi) {
    974   DebugLoc dl = Pair.getDebugLoc();
    975   EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), Pair.getValueType());
    976   Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
    977                    DAG.getIntPtrConstant(0));
    978   Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, NVT, Pair,
    979                    DAG.getIntPtrConstant(1));
    980 }
    981 
    982 SDValue DAGTypeLegalizer::GetVectorElementPointer(SDValue VecPtr, EVT EltVT,
    983                                                   SDValue Index) {
    984   DebugLoc dl = Index.getDebugLoc();
    985   // Make sure the index type is big enough to compute in.
    986   if (Index.getValueType().bitsGT(TLI.getPointerTy()))
    987     Index = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Index);
    988   else
    989     Index = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Index);
    990 
    991   // Calculate the element offset and add it to the pointer.
    992   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
    993 
    994   Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index,
    995                       DAG.getConstant(EltSize, Index.getValueType()));
    996   return DAG.getNode(ISD::ADD, dl, Index.getValueType(), Index, VecPtr);
    997 }
    998 
    999 /// JoinIntegers - Build an integer with low bits Lo and high bits Hi.
   1000 SDValue DAGTypeLegalizer::JoinIntegers(SDValue Lo, SDValue Hi) {
   1001   // Arbitrarily use dlHi for result DebugLoc
   1002   DebugLoc dlHi = Hi.getDebugLoc();
   1003   DebugLoc dlLo = Lo.getDebugLoc();
   1004   EVT LVT = Lo.getValueType();
   1005   EVT HVT = Hi.getValueType();
   1006   EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
   1007                               LVT.getSizeInBits() + HVT.getSizeInBits());
   1008 
   1009   Lo = DAG.getNode(ISD::ZERO_EXTEND, dlLo, NVT, Lo);
   1010   Hi = DAG.getNode(ISD::ANY_EXTEND, dlHi, NVT, Hi);
   1011   Hi = DAG.getNode(ISD::SHL, dlHi, NVT, Hi,
   1012                    DAG.getConstant(LVT.getSizeInBits(), TLI.getPointerTy()));
   1013   return DAG.getNode(ISD::OR, dlHi, NVT, Lo, Hi);
   1014 }
   1015 
   1016 /// LibCallify - Convert the node into a libcall with the same prototype.
   1017 SDValue DAGTypeLegalizer::LibCallify(RTLIB::Libcall LC, SDNode *N,
   1018                                      bool isSigned) {
   1019   unsigned NumOps = N->getNumOperands();
   1020   DebugLoc dl = N->getDebugLoc();
   1021   if (NumOps == 0) {
   1022     return MakeLibCall(LC, N->getValueType(0), 0, 0, isSigned, dl);
   1023   } else if (NumOps == 1) {
   1024     SDValue Op = N->getOperand(0);
   1025     return MakeLibCall(LC, N->getValueType(0), &Op, 1, isSigned, dl);
   1026   } else if (NumOps == 2) {
   1027     SDValue Ops[2] = { N->getOperand(0), N->getOperand(1) };
   1028     return MakeLibCall(LC, N->getValueType(0), Ops, 2, isSigned, dl);
   1029   }
   1030   SmallVector<SDValue, 8> Ops(NumOps);
   1031   for (unsigned i = 0; i < NumOps; ++i)
   1032     Ops[i] = N->getOperand(i);
   1033 
   1034   return MakeLibCall(LC, N->getValueType(0), &Ops[0], NumOps, isSigned, dl);
   1035 }
   1036 
   1037 /// MakeLibCall - Generate a libcall taking the given operands as arguments and
   1038 /// returning a result of type RetVT.
   1039 SDValue DAGTypeLegalizer::MakeLibCall(RTLIB::Libcall LC, EVT RetVT,
   1040                                       const SDValue *Ops, unsigned NumOps,
   1041                                       bool isSigned, DebugLoc dl) {
   1042   TargetLowering::ArgListTy Args;
   1043   Args.reserve(NumOps);
   1044 
   1045   TargetLowering::ArgListEntry Entry;
   1046   for (unsigned i = 0; i != NumOps; ++i) {
   1047     Entry.Node = Ops[i];
   1048     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
   1049     Entry.isSExt = isSigned;
   1050     Entry.isZExt = !isSigned;
   1051     Args.push_back(Entry);
   1052   }
   1053   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1054                                          TLI.getPointerTy());
   1055 
   1056   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
   1057   std::pair<SDValue,SDValue> CallInfo =
   1058     TLI.LowerCallTo(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
   1059                     false, 0, TLI.getLibcallCallingConv(LC), false,
   1060                     /*isReturnValueUsed=*/true,
   1061                     Callee, Args, DAG, dl);
   1062   return CallInfo.first;
   1063 }
   1064 
   1065 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
   1066 // ExpandLibCall except that the first operand is the in-chain.
   1067 std::pair<SDValue, SDValue>
   1068 DAGTypeLegalizer::ExpandChainLibCall(RTLIB::Libcall LC,
   1069                                          SDNode *Node,
   1070                                          bool isSigned) {
   1071   SDValue InChain = Node->getOperand(0);
   1072 
   1073   TargetLowering::ArgListTy Args;
   1074   TargetLowering::ArgListEntry Entry;
   1075   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
   1076     EVT ArgVT = Node->getOperand(i).getValueType();
   1077     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   1078     Entry.Node = Node->getOperand(i);
   1079     Entry.Ty = ArgTy;
   1080     Entry.isSExt = isSigned;
   1081     Entry.isZExt = !isSigned;
   1082     Args.push_back(Entry);
   1083   }
   1084   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
   1085                                          TLI.getPointerTy());
   1086 
   1087   // Splice the libcall in wherever FindInputOutputChains tells us to.
   1088   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
   1089   std::pair<SDValue, SDValue> CallInfo =
   1090     TLI.LowerCallTo(InChain, RetTy, isSigned, !isSigned, false, false,
   1091                     0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
   1092                     /*isReturnValueUsed=*/true,
   1093                     Callee, Args, DAG, Node->getDebugLoc());
   1094 
   1095   return CallInfo;
   1096 }
   1097 
   1098 /// PromoteTargetBoolean - Promote the given target boolean to a target boolean
   1099 /// of the given type.  A target boolean is an integer value, not necessarily of
   1100 /// type i1, the bits of which conform to getBooleanContents.
   1101 SDValue DAGTypeLegalizer::PromoteTargetBoolean(SDValue Bool, EVT VT) {
   1102   DebugLoc dl = Bool.getDebugLoc();
   1103   ISD::NodeType ExtendCode =
   1104     TargetLowering::getExtendForContent(TLI.getBooleanContents(VT.isVector()));
   1105   return DAG.getNode(ExtendCode, dl, VT, Bool);
   1106 }
   1107 
   1108 /// SplitInteger - Return the lower LoVT bits of Op in Lo and the upper HiVT
   1109 /// bits in Hi.
   1110 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1111                                     EVT LoVT, EVT HiVT,
   1112                                     SDValue &Lo, SDValue &Hi) {
   1113   DebugLoc dl = Op.getDebugLoc();
   1114   assert(LoVT.getSizeInBits() + HiVT.getSizeInBits() ==
   1115          Op.getValueType().getSizeInBits() && "Invalid integer splitting!");
   1116   Lo = DAG.getNode(ISD::TRUNCATE, dl, LoVT, Op);
   1117   Hi = DAG.getNode(ISD::SRL, dl, Op.getValueType(), Op,
   1118                    DAG.getConstant(LoVT.getSizeInBits(), TLI.getPointerTy()));
   1119   Hi = DAG.getNode(ISD::TRUNCATE, dl, HiVT, Hi);
   1120 }
   1121 
   1122 /// SplitInteger - Return the lower and upper halves of Op's bits in a value
   1123 /// type half the size of Op's.
   1124 void DAGTypeLegalizer::SplitInteger(SDValue Op,
   1125                                     SDValue &Lo, SDValue &Hi) {
   1126   EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(),
   1127                                  Op.getValueType().getSizeInBits()/2);
   1128   SplitInteger(Op, HalfVT, HalfVT, Lo, Hi);
   1129 }
   1130 
   1131 
   1132 //===----------------------------------------------------------------------===//
   1133 //  Entry Point
   1134 //===----------------------------------------------------------------------===//
   1135 
   1136 /// LegalizeTypes - This transforms the SelectionDAG into a SelectionDAG that
   1137 /// only uses types natively supported by the target.  Returns "true" if it made
   1138 /// any changes.
   1139 ///
   1140 /// Note that this is an involved process that may invalidate pointers into
   1141 /// the graph.
   1142 bool SelectionDAG::LegalizeTypes() {
   1143   return DAGTypeLegalizer(*this).run();
   1144 }
   1145