Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains small standalone helper functions and enum definitions for
     11 // the X86 target useful for the compiler back-end and the MC libraries.
     12 // As such, it deliberately does not include references to LLVM core
     13 // code gen types, passes, etc..
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef X86BASEINFO_H
     18 #define X86BASEINFO_H
     19 
     20 #include "X86MCTargetDesc.h"
     21 #include "llvm/Support/DataTypes.h"
     22 #include <cassert>
     23 
     24 namespace llvm {
     25 
     26 namespace X86 {
     27   // Enums for memory operand decoding.  Each memory operand is represented with
     28   // a 5 operand sequence in the form:
     29   //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
     30   // These enums help decode this.
     31   enum {
     32     AddrBaseReg = 0,
     33     AddrScaleAmt = 1,
     34     AddrIndexReg = 2,
     35     AddrDisp = 3,
     36 
     37     /// AddrSegmentReg - The operand # of the segment in the memory operand.
     38     AddrSegmentReg = 4,
     39 
     40     /// AddrNumOperands - Total number of operands in a memory reference.
     41     AddrNumOperands = 5
     42   };
     43 } // end namespace X86;
     44 
     45 
     46 /// X86II - This namespace holds all of the target specific flags that
     47 /// instruction info tracks.
     48 ///
     49 namespace X86II {
     50   /// Target Operand Flag enum.
     51   enum TOF {
     52     //===------------------------------------------------------------------===//
     53     // X86 Specific MachineOperand flags.
     54 
     55     MO_NO_FLAG,
     56 
     57     /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
     58     /// relocation of:
     59     ///    SYMBOL_LABEL + [. - PICBASELABEL]
     60     MO_GOT_ABSOLUTE_ADDRESS,
     61 
     62     /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
     63     /// immediate should get the value of the symbol minus the PIC base label:
     64     ///    SYMBOL_LABEL - PICBASELABEL
     65     MO_PIC_BASE_OFFSET,
     66 
     67     /// MO_GOT - On a symbol operand this indicates that the immediate is the
     68     /// offset to the GOT entry for the symbol name from the base of the GOT.
     69     ///
     70     /// See the X86-64 ELF ABI supplement for more details.
     71     ///    SYMBOL_LABEL @GOT
     72     MO_GOT,
     73 
     74     /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
     75     /// the offset to the location of the symbol name from the base of the GOT.
     76     ///
     77     /// See the X86-64 ELF ABI supplement for more details.
     78     ///    SYMBOL_LABEL @GOTOFF
     79     MO_GOTOFF,
     80 
     81     /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
     82     /// offset to the GOT entry for the symbol name from the current code
     83     /// location.
     84     ///
     85     /// See the X86-64 ELF ABI supplement for more details.
     86     ///    SYMBOL_LABEL @GOTPCREL
     87     MO_GOTPCREL,
     88 
     89     /// MO_PLT - On a symbol operand this indicates that the immediate is
     90     /// offset to the PLT entry of symbol name from the current code location.
     91     ///
     92     /// See the X86-64 ELF ABI supplement for more details.
     93     ///    SYMBOL_LABEL @PLT
     94     MO_PLT,
     95 
     96     /// MO_TLSGD - On a symbol operand this indicates that the immediate is
     97     /// some TLS offset.
     98     ///
     99     /// See 'ELF Handling for Thread-Local Storage' for more details.
    100     ///    SYMBOL_LABEL @TLSGD
    101     MO_TLSGD,
    102 
    103     /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
    104     /// some TLS offset.
    105     ///
    106     /// See 'ELF Handling for Thread-Local Storage' for more details.
    107     ///    SYMBOL_LABEL @GOTTPOFF
    108     MO_GOTTPOFF,
    109 
    110     /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
    111     /// some TLS offset.
    112     ///
    113     /// See 'ELF Handling for Thread-Local Storage' for more details.
    114     ///    SYMBOL_LABEL @INDNTPOFF
    115     MO_INDNTPOFF,
    116 
    117     /// MO_TPOFF - On a symbol operand this indicates that the immediate is
    118     /// some TLS offset.
    119     ///
    120     /// See 'ELF Handling for Thread-Local Storage' for more details.
    121     ///    SYMBOL_LABEL @TPOFF
    122     MO_TPOFF,
    123 
    124     /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
    125     /// some TLS offset.
    126     ///
    127     /// See 'ELF Handling for Thread-Local Storage' for more details.
    128     ///    SYMBOL_LABEL @NTPOFF
    129     MO_NTPOFF,
    130 
    131     /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
    132     /// reference is actually to the "__imp_FOO" symbol.  This is used for
    133     /// dllimport linkage on windows.
    134     MO_DLLIMPORT,
    135 
    136     /// MO_DARWIN_STUB - On a symbol operand "FOO", this indicates that the
    137     /// reference is actually to the "FOO$stub" symbol.  This is used for calls
    138     /// and jumps to external functions on Tiger and earlier.
    139     MO_DARWIN_STUB,
    140 
    141     /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
    142     /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
    143     /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    144     MO_DARWIN_NONLAZY,
    145 
    146     /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
    147     /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
    148     /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
    149     MO_DARWIN_NONLAZY_PIC_BASE,
    150 
    151     /// MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this
    152     /// indicates that the reference is actually to "FOO$non_lazy_ptr -PICBASE",
    153     /// which is a PIC-base-relative reference to a hidden dyld lazy pointer
    154     /// stub.
    155     MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE,
    156 
    157     /// MO_TLVP - On a symbol operand this indicates that the immediate is
    158     /// some TLS offset.
    159     ///
    160     /// This is the TLS offset for the Darwin TLS mechanism.
    161     MO_TLVP,
    162 
    163     /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
    164     /// is some TLS offset from the picbase.
    165     ///
    166     /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
    167     MO_TLVP_PIC_BASE
    168   };
    169 
    170   enum {
    171     //===------------------------------------------------------------------===//
    172     // Instruction encodings.  These are the standard/most common forms for X86
    173     // instructions.
    174     //
    175 
    176     // PseudoFrm - This represents an instruction that is a pseudo instruction
    177     // or one that has not been implemented yet.  It is illegal to code generate
    178     // it, but tolerated for intermediate implementation stages.
    179     Pseudo         = 0,
    180 
    181     /// Raw - This form is for instructions that don't have any operands, so
    182     /// they are just a fixed opcode value, like 'leave'.
    183     RawFrm         = 1,
    184 
    185     /// AddRegFrm - This form is used for instructions like 'push r32' that have
    186     /// their one register operand added to their opcode.
    187     AddRegFrm      = 2,
    188 
    189     /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
    190     /// to specify a destination, which in this case is a register.
    191     ///
    192     MRMDestReg     = 3,
    193 
    194     /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
    195     /// to specify a destination, which in this case is memory.
    196     ///
    197     MRMDestMem     = 4,
    198 
    199     /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
    200     /// to specify a source, which in this case is a register.
    201     ///
    202     MRMSrcReg      = 5,
    203 
    204     /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
    205     /// to specify a source, which in this case is memory.
    206     ///
    207     MRMSrcMem      = 6,
    208 
    209     /// MRM[0-7][rm] - These forms are used to represent instructions that use
    210     /// a Mod/RM byte, and use the middle field to hold extended opcode
    211     /// information.  In the intel manual these are represented as /0, /1, ...
    212     ///
    213 
    214     // First, instructions that operate on a register r/m operand...
    215     MRM0r = 16,  MRM1r = 17,  MRM2r = 18,  MRM3r = 19, // Format /0 /1 /2 /3
    216     MRM4r = 20,  MRM5r = 21,  MRM6r = 22,  MRM7r = 23, // Format /4 /5 /6 /7
    217 
    218     // Next, instructions that operate on a memory r/m operand...
    219     MRM0m = 24,  MRM1m = 25,  MRM2m = 26,  MRM3m = 27, // Format /0 /1 /2 /3
    220     MRM4m = 28,  MRM5m = 29,  MRM6m = 30,  MRM7m = 31, // Format /4 /5 /6 /7
    221 
    222     // MRMInitReg - This form is used for instructions whose source and
    223     // destinations are the same register.
    224     MRMInitReg = 32,
    225 
    226     //// MRM_C1 - A mod/rm byte of exactly 0xC1.
    227     MRM_C1 = 33,
    228     MRM_C2 = 34,
    229     MRM_C3 = 35,
    230     MRM_C4 = 36,
    231     MRM_C8 = 37,
    232     MRM_C9 = 38,
    233     MRM_E8 = 39,
    234     MRM_F0 = 40,
    235     MRM_F8 = 41,
    236     MRM_F9 = 42,
    237     MRM_D0 = 45,
    238     MRM_D1 = 46,
    239 
    240     /// RawFrmImm8 - This is used for the ENTER instruction, which has two
    241     /// immediates, the first of which is a 16-bit immediate (specified by
    242     /// the imm encoding) and the second is a 8-bit fixed value.
    243     RawFrmImm8 = 43,
    244 
    245     /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
    246     /// immediates, the first of which is a 16 or 32-bit immediate (specified by
    247     /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
    248     /// manual, this operand is described as pntr16:32 and pntr16:16
    249     RawFrmImm16 = 44,
    250 
    251     FormMask       = 63,
    252 
    253     //===------------------------------------------------------------------===//
    254     // Actual flags...
    255 
    256     // OpSize - Set if this instruction requires an operand size prefix (0x66),
    257     // which most often indicates that the instruction operates on 16 bit data
    258     // instead of 32 bit data.
    259     OpSize      = 1 << 6,
    260 
    261     // AsSize - Set if this instruction requires an operand size prefix (0x67),
    262     // which most often indicates that the instruction address 16 bit address
    263     // instead of 32 bit address (or 32 bit address in 64 bit mode).
    264     AdSize      = 1 << 7,
    265 
    266     //===------------------------------------------------------------------===//
    267     // Op0Mask - There are several prefix bytes that are used to form two byte
    268     // opcodes.  These are currently 0x0F, 0xF3, and 0xD8-0xDF.  This mask is
    269     // used to obtain the setting of this field.  If no bits in this field is
    270     // set, there is no prefix byte for obtaining a multibyte opcode.
    271     //
    272     Op0Shift    = 8,
    273     Op0Mask     = 0x1F << Op0Shift,
    274 
    275     // TB - TwoByte - Set if this instruction has a two byte opcode, which
    276     // starts with a 0x0F byte before the real opcode.
    277     TB          = 1 << Op0Shift,
    278 
    279     // REP - The 0xF3 prefix byte indicating repetition of the following
    280     // instruction.
    281     REP         = 2 << Op0Shift,
    282 
    283     // D8-DF - These escape opcodes are used by the floating point unit.  These
    284     // values must remain sequential.
    285     D8 = 3 << Op0Shift,   D9 = 4 << Op0Shift,
    286     DA = 5 << Op0Shift,   DB = 6 << Op0Shift,
    287     DC = 7 << Op0Shift,   DD = 8 << Op0Shift,
    288     DE = 9 << Op0Shift,   DF = 10 << Op0Shift,
    289 
    290     // XS, XD - These prefix codes are for single and double precision scalar
    291     // floating point operations performed in the SSE registers.
    292     XD = 11 << Op0Shift,  XS = 12 << Op0Shift,
    293 
    294     // T8, TA, A6, A7 - Prefix after the 0x0F prefix.
    295     T8 = 13 << Op0Shift,  TA = 14 << Op0Shift,
    296     A6 = 15 << Op0Shift,  A7 = 16 << Op0Shift,
    297 
    298     // TF - Prefix before and after 0x0F
    299     TF = 17 << Op0Shift,
    300 
    301     //===------------------------------------------------------------------===//
    302     // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
    303     // They are used to specify GPRs and SSE registers, 64-bit operand size,
    304     // etc. We only cares about REX.W and REX.R bits and only the former is
    305     // statically determined.
    306     //
    307     REXShift    = Op0Shift + 5,
    308     REX_W       = 1 << REXShift,
    309 
    310     //===------------------------------------------------------------------===//
    311     // This three-bit field describes the size of an immediate operand.  Zero is
    312     // unused so that we can tell if we forgot to set a value.
    313     ImmShift = REXShift + 1,
    314     ImmMask    = 7 << ImmShift,
    315     Imm8       = 1 << ImmShift,
    316     Imm8PCRel  = 2 << ImmShift,
    317     Imm16      = 3 << ImmShift,
    318     Imm16PCRel = 4 << ImmShift,
    319     Imm32      = 5 << ImmShift,
    320     Imm32PCRel = 6 << ImmShift,
    321     Imm64      = 7 << ImmShift,
    322 
    323     //===------------------------------------------------------------------===//
    324     // FP Instruction Classification...  Zero is non-fp instruction.
    325 
    326     // FPTypeMask - Mask for all of the FP types...
    327     FPTypeShift = ImmShift + 3,
    328     FPTypeMask  = 7 << FPTypeShift,
    329 
    330     // NotFP - The default, set for instructions that do not use FP registers.
    331     NotFP      = 0 << FPTypeShift,
    332 
    333     // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
    334     ZeroArgFP  = 1 << FPTypeShift,
    335 
    336     // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
    337     OneArgFP   = 2 << FPTypeShift,
    338 
    339     // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
    340     // result back to ST(0).  For example, fcos, fsqrt, etc.
    341     //
    342     OneArgFPRW = 3 << FPTypeShift,
    343 
    344     // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
    345     // explicit argument, storing the result to either ST(0) or the implicit
    346     // argument.  For example: fadd, fsub, fmul, etc...
    347     TwoArgFP   = 4 << FPTypeShift,
    348 
    349     // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
    350     // explicit argument, but have no destination.  Example: fucom, fucomi, ...
    351     CompareFP  = 5 << FPTypeShift,
    352 
    353     // CondMovFP - "2 operand" floating point conditional move instructions.
    354     CondMovFP  = 6 << FPTypeShift,
    355 
    356     // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
    357     SpecialFP  = 7 << FPTypeShift,
    358 
    359     // Lock prefix
    360     LOCKShift = FPTypeShift + 3,
    361     LOCK = 1 << LOCKShift,
    362 
    363     // Segment override prefixes. Currently we just need ability to address
    364     // stuff in gs and fs segments.
    365     SegOvrShift = LOCKShift + 1,
    366     SegOvrMask  = 3 << SegOvrShift,
    367     FS          = 1 << SegOvrShift,
    368     GS          = 2 << SegOvrShift,
    369 
    370     // Execution domain for SSE instructions in bits 23, 24.
    371     // 0 in bits 23-24 means normal, non-SSE instruction.
    372     SSEDomainShift = SegOvrShift + 2,
    373 
    374     OpcodeShift   = SSEDomainShift + 2,
    375 
    376     //===------------------------------------------------------------------===//
    377     /// VEX - The opcode prefix used by AVX instructions
    378     VEXShift = OpcodeShift + 8,
    379     VEX         = 1U << 0,
    380 
    381     /// VEX_W - Has a opcode specific functionality, but is used in the same
    382     /// way as REX_W is for regular SSE instructions.
    383     VEX_W       = 1U << 1,
    384 
    385     /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
    386     /// address instructions in SSE are represented as 3 address ones in AVX
    387     /// and the additional register is encoded in VEX_VVVV prefix.
    388     VEX_4V      = 1U << 2,
    389 
    390     /// VEX_I8IMM - Specifies that the last register used in a AVX instruction,
    391     /// must be encoded in the i8 immediate field. This usually happens in
    392     /// instructions with 4 operands.
    393     VEX_I8IMM   = 1U << 3,
    394 
    395     /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
    396     /// instruction uses 256-bit wide registers. This is usually auto detected
    397     /// if a VR256 register is used, but some AVX instructions also have this
    398     /// field marked when using a f256 memory references.
    399     VEX_L       = 1U << 4,
    400 
    401     // VEX_LIG - Specifies that this instruction ignores the L-bit in the VEX
    402     // prefix. Usually used for scalar instructions. Needed by disassembler.
    403     VEX_LIG     = 1U << 5,
    404 
    405     /// Has3DNow0F0FOpcode - This flag indicates that the instruction uses the
    406     /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
    407     /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
    408     /// storing a classifier in the imm8 field.  To simplify our implementation,
    409     /// we handle this by storeing the classifier in the opcode field and using
    410     /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
    411     Has3DNow0F0FOpcode = 1U << 6
    412   };
    413 
    414   // getBaseOpcodeFor - This function returns the "base" X86 opcode for the
    415   // specified machine instruction.
    416   //
    417   static inline unsigned char getBaseOpcodeFor(uint64_t TSFlags) {
    418     return TSFlags >> X86II::OpcodeShift;
    419   }
    420 
    421   static inline bool hasImm(uint64_t TSFlags) {
    422     return (TSFlags & X86II::ImmMask) != 0;
    423   }
    424 
    425   /// getSizeOfImm - Decode the "size of immediate" field from the TSFlags field
    426   /// of the specified instruction.
    427   static inline unsigned getSizeOfImm(uint64_t TSFlags) {
    428     switch (TSFlags & X86II::ImmMask) {
    429     default: assert(0 && "Unknown immediate size");
    430     case X86II::Imm8:
    431     case X86II::Imm8PCRel:  return 1;
    432     case X86II::Imm16:
    433     case X86II::Imm16PCRel: return 2;
    434     case X86II::Imm32:
    435     case X86II::Imm32PCRel: return 4;
    436     case X86II::Imm64:      return 8;
    437     }
    438   }
    439 
    440   /// isImmPCRel - Return true if the immediate of the specified instruction's
    441   /// TSFlags indicates that it is pc relative.
    442   static inline unsigned isImmPCRel(uint64_t TSFlags) {
    443     switch (TSFlags & X86II::ImmMask) {
    444     default: assert(0 && "Unknown immediate size");
    445     case X86II::Imm8PCRel:
    446     case X86II::Imm16PCRel:
    447     case X86II::Imm32PCRel:
    448       return true;
    449     case X86II::Imm8:
    450     case X86II::Imm16:
    451     case X86II::Imm32:
    452     case X86II::Imm64:
    453       return false;
    454     }
    455   }
    456 
    457   /// getMemoryOperandNo - The function returns the MCInst operand # for the
    458   /// first field of the memory operand.  If the instruction doesn't have a
    459   /// memory operand, this returns -1.
    460   ///
    461   /// Note that this ignores tied operands.  If there is a tied register which
    462   /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
    463   /// counted as one operand.
    464   ///
    465   static inline int getMemoryOperandNo(uint64_t TSFlags) {
    466     switch (TSFlags & X86II::FormMask) {
    467     case X86II::MRMInitReg:  assert(0 && "FIXME: Remove this form");
    468     default: assert(0 && "Unknown FormMask value in getMemoryOperandNo!");
    469     case X86II::Pseudo:
    470     case X86II::RawFrm:
    471     case X86II::AddRegFrm:
    472     case X86II::MRMDestReg:
    473     case X86II::MRMSrcReg:
    474     case X86II::RawFrmImm8:
    475     case X86II::RawFrmImm16:
    476        return -1;
    477     case X86II::MRMDestMem:
    478       return 0;
    479     case X86II::MRMSrcMem: {
    480       bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    481       unsigned FirstMemOp = 1;
    482       if (HasVEX_4V)
    483         ++FirstMemOp;// Skip the register source (which is encoded in VEX_VVVV).
    484 
    485       // FIXME: Maybe lea should have its own form?  This is a horrible hack.
    486       //if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r ||
    487       //    Opcode == X86::LEA16r || Opcode == X86::LEA32r)
    488       return FirstMemOp;
    489     }
    490     case X86II::MRM0r: case X86II::MRM1r:
    491     case X86II::MRM2r: case X86II::MRM3r:
    492     case X86II::MRM4r: case X86II::MRM5r:
    493     case X86II::MRM6r: case X86II::MRM7r:
    494       return -1;
    495     case X86II::MRM0m: case X86II::MRM1m:
    496     case X86II::MRM2m: case X86II::MRM3m:
    497     case X86II::MRM4m: case X86II::MRM5m:
    498     case X86II::MRM6m: case X86II::MRM7m:
    499       return 0;
    500     case X86II::MRM_C1:
    501     case X86II::MRM_C2:
    502     case X86II::MRM_C3:
    503     case X86II::MRM_C4:
    504     case X86II::MRM_C8:
    505     case X86II::MRM_C9:
    506     case X86II::MRM_E8:
    507     case X86II::MRM_F0:
    508     case X86II::MRM_F8:
    509     case X86II::MRM_F9:
    510     case X86II::MRM_D0:
    511     case X86II::MRM_D1:
    512       return -1;
    513     }
    514   }
    515 
    516   /// isX86_64ExtendedReg - Is the MachineOperand a x86-64 extended (r8 or
    517   /// higher) register?  e.g. r8, xmm8, xmm13, etc.
    518   static inline bool isX86_64ExtendedReg(unsigned RegNo) {
    519     switch (RegNo) {
    520     default: break;
    521     case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
    522     case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
    523     case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
    524     case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
    525     case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
    526     case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
    527     case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
    528     case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
    529     case X86::XMM8:  case X86::XMM9:  case X86::XMM10: case X86::XMM11:
    530     case X86::XMM12: case X86::XMM13: case X86::XMM14: case X86::XMM15:
    531     case X86::YMM8:  case X86::YMM9:  case X86::YMM10: case X86::YMM11:
    532     case X86::YMM12: case X86::YMM13: case X86::YMM14: case X86::YMM15:
    533     case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
    534     case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
    535         return true;
    536     }
    537     return false;
    538   }
    539 
    540   static inline bool isX86_64NonExtLowByteReg(unsigned reg) {
    541     return (reg == X86::SPL || reg == X86::BPL ||
    542             reg == X86::SIL || reg == X86::DIL);
    543   }
    544 }
    545 
    546 } // end namespace llvm;
    547 
    548 #endif
    549