Home | History | Annotate | Download | only in X86
      1 //===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86 specific subclass of TargetSubtargetInfo.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "subtarget"
     15 #include "X86Subtarget.h"
     16 #include "X86InstrInfo.h"
     17 #include "llvm/GlobalValue.h"
     18 #include "llvm/Support/Debug.h"
     19 #include "llvm/Support/ErrorHandling.h"
     20 #include "llvm/Support/raw_ostream.h"
     21 #include "llvm/Support/Host.h"
     22 #include "llvm/Target/TargetMachine.h"
     23 #include "llvm/Target/TargetOptions.h"
     24 #include "llvm/ADT/SmallVector.h"
     25 
     26 #define GET_SUBTARGETINFO_TARGET_DESC
     27 #define GET_SUBTARGETINFO_CTOR
     28 #include "X86GenSubtargetInfo.inc"
     29 
     30 using namespace llvm;
     31 
     32 #if defined(_MSC_VER)
     33 #include <intrin.h>
     34 #endif
     35 
     36 /// ClassifyBlockAddressReference - Classify a blockaddress reference for the
     37 /// current subtarget according to how we should reference it in a non-pcrel
     38 /// context.
     39 unsigned char X86Subtarget::
     40 ClassifyBlockAddressReference() const {
     41   if (isPICStyleGOT())    // 32-bit ELF targets.
     42     return X86II::MO_GOTOFF;
     43 
     44   if (isPICStyleStubPIC())   // Darwin/32 in PIC mode.
     45     return X86II::MO_PIC_BASE_OFFSET;
     46 
     47   // Direct static reference to label.
     48   return X86II::MO_NO_FLAG;
     49 }
     50 
     51 /// ClassifyGlobalReference - Classify a global variable reference for the
     52 /// current subtarget according to how we should reference it in a non-pcrel
     53 /// context.
     54 unsigned char X86Subtarget::
     55 ClassifyGlobalReference(const GlobalValue *GV, const TargetMachine &TM) const {
     56   // DLLImport only exists on windows, it is implemented as a load from a
     57   // DLLIMPORT stub.
     58   if (GV->hasDLLImportLinkage())
     59     return X86II::MO_DLLIMPORT;
     60 
     61   // Determine whether this is a reference to a definition or a declaration.
     62   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
     63   // load from stub.
     64   bool isDecl = GV->hasAvailableExternallyLinkage();
     65   if (GV->isDeclaration() && !GV->isMaterializable())
     66     isDecl = true;
     67 
     68   // X86-64 in PIC mode.
     69   if (isPICStyleRIPRel()) {
     70     // Large model never uses stubs.
     71     if (TM.getCodeModel() == CodeModel::Large)
     72       return X86II::MO_NO_FLAG;
     73 
     74     if (isTargetDarwin()) {
     75       // If symbol visibility is hidden, the extra load is not needed if
     76       // target is x86-64 or the symbol is definitely defined in the current
     77       // translation unit.
     78       if (GV->hasDefaultVisibility() &&
     79           (isDecl || GV->isWeakForLinker()))
     80         return X86II::MO_GOTPCREL;
     81     } else if (!isTargetWin64()) {
     82       assert(isTargetELF() && "Unknown rip-relative target");
     83 
     84       // Extra load is needed for all externally visible.
     85       if (!GV->hasLocalLinkage() && GV->hasDefaultVisibility())
     86         return X86II::MO_GOTPCREL;
     87     }
     88 
     89     return X86II::MO_NO_FLAG;
     90   }
     91 
     92   if (isPICStyleGOT()) {   // 32-bit ELF targets.
     93     // Extra load is needed for all externally visible.
     94     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
     95       return X86II::MO_GOTOFF;
     96     return X86II::MO_GOT;
     97   }
     98 
     99   if (isPICStyleStubPIC()) {  // Darwin/32 in PIC mode.
    100     // Determine whether we have a stub reference and/or whether the reference
    101     // is relative to the PIC base or not.
    102 
    103     // If this is a strong reference to a definition, it is definitely not
    104     // through a stub.
    105     if (!isDecl && !GV->isWeakForLinker())
    106       return X86II::MO_PIC_BASE_OFFSET;
    107 
    108     // Unless we have a symbol with hidden visibility, we have to go through a
    109     // normal $non_lazy_ptr stub because this symbol might be resolved late.
    110     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    111       return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
    112 
    113     // If symbol visibility is hidden, we have a stub for common symbol
    114     // references and external declarations.
    115     if (isDecl || GV->hasCommonLinkage()) {
    116       // Hidden $non_lazy_ptr reference.
    117       return X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE;
    118     }
    119 
    120     // Otherwise, no stub.
    121     return X86II::MO_PIC_BASE_OFFSET;
    122   }
    123 
    124   if (isPICStyleStubNoDynamic()) {  // Darwin/32 in -mdynamic-no-pic mode.
    125     // Determine whether we have a stub reference.
    126 
    127     // If this is a strong reference to a definition, it is definitely not
    128     // through a stub.
    129     if (!isDecl && !GV->isWeakForLinker())
    130       return X86II::MO_NO_FLAG;
    131 
    132     // Unless we have a symbol with hidden visibility, we have to go through a
    133     // normal $non_lazy_ptr stub because this symbol might be resolved late.
    134     if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
    135       return X86II::MO_DARWIN_NONLAZY;
    136 
    137     // Otherwise, no stub.
    138     return X86II::MO_NO_FLAG;
    139   }
    140 
    141   // Direct static reference to global.
    142   return X86II::MO_NO_FLAG;
    143 }
    144 
    145 
    146 /// getBZeroEntry - This function returns the name of a function which has an
    147 /// interface like the non-standard bzero function, if such a function exists on
    148 /// the current subtarget and it is considered prefereable over memset with zero
    149 /// passed as the second argument. Otherwise it returns null.
    150 const char *X86Subtarget::getBZeroEntry() const {
    151   // Darwin 10 has a __bzero entry point for this purpose.
    152   if (getTargetTriple().isMacOSX() &&
    153       !getTargetTriple().isMacOSXVersionLT(10, 6))
    154     return "__bzero";
    155 
    156   return 0;
    157 }
    158 
    159 /// IsLegalToCallImmediateAddr - Return true if the subtarget allows calls
    160 /// to immediate address.
    161 bool X86Subtarget::IsLegalToCallImmediateAddr(const TargetMachine &TM) const {
    162   if (In64BitMode)
    163     return false;
    164   return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
    165 }
    166 
    167 /// getSpecialAddressLatency - For targets where it is beneficial to
    168 /// backschedule instructions that compute addresses, return a value
    169 /// indicating the number of scheduling cycles of backscheduling that
    170 /// should be attempted.
    171 unsigned X86Subtarget::getSpecialAddressLatency() const {
    172   // For x86 out-of-order targets, back-schedule address computations so
    173   // that loads and stores aren't blocked.
    174   // This value was chosen arbitrarily.
    175   return 200;
    176 }
    177 
    178 void X86Subtarget::AutoDetectSubtargetFeatures() {
    179   unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
    180   union {
    181     unsigned u[3];
    182     char     c[12];
    183   } text;
    184 
    185   if (X86_MC::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
    186     return;
    187 
    188   X86_MC::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
    189 
    190   if ((EDX >> 15) & 1) { HasCMov = true;      ToggleFeature(X86::FeatureCMOV); }
    191   if ((EDX >> 23) & 1) { X86SSELevel = MMX;   ToggleFeature(X86::FeatureMMX);  }
    192   if ((EDX >> 25) & 1) { X86SSELevel = SSE1;  ToggleFeature(X86::FeatureSSE1); }
    193   if ((EDX >> 26) & 1) { X86SSELevel = SSE2;  ToggleFeature(X86::FeatureSSE2); }
    194   if (ECX & 0x1)       { X86SSELevel = SSE3;  ToggleFeature(X86::FeatureSSE3); }
    195   if ((ECX >> 9)  & 1) { X86SSELevel = SSSE3; ToggleFeature(X86::FeatureSSSE3);}
    196   if ((ECX >> 19) & 1) { X86SSELevel = SSE41; ToggleFeature(X86::FeatureSSE41);}
    197   if ((ECX >> 20) & 1) { X86SSELevel = SSE42; ToggleFeature(X86::FeatureSSE42);}
    198   // FIXME: AVX codegen support is not ready.
    199   //if ((ECX >> 28) & 1) { HasAVX = true;  ToggleFeature(X86::FeatureAVX); }
    200 
    201   bool IsIntel = memcmp(text.c, "GenuineIntel", 12) == 0;
    202   bool IsAMD   = !IsIntel && memcmp(text.c, "AuthenticAMD", 12) == 0;
    203 
    204   if (IsIntel && ((ECX >> 1) & 0x1)) {
    205     HasCLMUL = true;
    206     ToggleFeature(X86::FeatureCLMUL);
    207   }
    208   if (IsIntel && ((ECX >> 12) & 0x1)) {
    209     HasFMA3 = true;
    210     ToggleFeature(X86::FeatureFMA3);
    211   }
    212   if (IsIntel && ((ECX >> 22) & 0x1)) {
    213     HasMOVBE = true;
    214     ToggleFeature(X86::FeatureMOVBE);
    215   }
    216   if (IsIntel && ((ECX >> 23) & 0x1)) {
    217     HasPOPCNT = true;
    218     ToggleFeature(X86::FeaturePOPCNT);
    219   }
    220   if (IsIntel && ((ECX >> 25) & 0x1)) {
    221     HasAES = true;
    222     ToggleFeature(X86::FeatureAES);
    223   }
    224   if (IsIntel && ((ECX >> 29) & 0x1)) {
    225     HasF16C = true;
    226     ToggleFeature(X86::FeatureF16C);
    227   }
    228   if (IsIntel && ((ECX >> 30) & 0x1)) {
    229     HasRDRAND = true;
    230     ToggleFeature(X86::FeatureRDRAND);
    231   }
    232 
    233   if ((ECX >> 13) & 0x1) {
    234     HasCmpxchg16b = true;
    235     ToggleFeature(X86::FeatureCMPXCHG16B);
    236   }
    237 
    238   if (IsIntel || IsAMD) {
    239     // Determine if bit test memory instructions are slow.
    240     unsigned Family = 0;
    241     unsigned Model  = 0;
    242     X86_MC::DetectFamilyModel(EAX, Family, Model);
    243     if (IsAMD || (Family == 6 && Model >= 13)) {
    244       IsBTMemSlow = true;
    245       ToggleFeature(X86::FeatureSlowBTMem);
    246     }
    247     // If it's Nehalem, unaligned memory access is fast.
    248     if (Family == 15 && Model == 26) {
    249       IsUAMemFast = true;
    250       ToggleFeature(X86::FeatureFastUAMem);
    251     }
    252 
    253     X86_MC::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
    254     if ((EDX >> 29) & 0x1) {
    255       HasX86_64 = true;
    256       ToggleFeature(X86::Feature64Bit);
    257     }
    258     if ((ECX >> 5) & 0x1) {
    259       HasLZCNT = true;
    260       ToggleFeature(X86::FeatureLZCNT);
    261     }
    262     if (IsAMD && ((ECX >> 6) & 0x1)) {
    263       HasSSE4A = true;
    264       ToggleFeature(X86::FeatureSSE4A);
    265     }
    266     if (IsAMD && ((ECX >> 16) & 0x1)) {
    267       HasFMA4 = true;
    268       ToggleFeature(X86::FeatureFMA4);
    269     }
    270   }
    271 }
    272 
    273 X86Subtarget::X86Subtarget(const std::string &TT, const std::string &CPU,
    274                            const std::string &FS,
    275                            unsigned StackAlignOverride, bool is64Bit)
    276   : X86GenSubtargetInfo(TT, CPU, FS)
    277   , PICStyle(PICStyles::None)
    278   , X86SSELevel(NoMMXSSE)
    279   , X863DNowLevel(NoThreeDNow)
    280   , HasCMov(false)
    281   , HasX86_64(false)
    282   , HasPOPCNT(false)
    283   , HasSSE4A(false)
    284   , HasAVX(false)
    285   , HasAES(false)
    286   , HasCLMUL(false)
    287   , HasFMA3(false)
    288   , HasFMA4(false)
    289   , HasMOVBE(false)
    290   , HasRDRAND(false)
    291   , HasF16C(false)
    292   , HasLZCNT(false)
    293   , HasBMI(false)
    294   , IsBTMemSlow(false)
    295   , IsUAMemFast(false)
    296   , HasVectorUAMem(false)
    297   , HasCmpxchg16b(false)
    298   , stackAlignment(8)
    299   // FIXME: this is a known good value for Yonah. How about others?
    300   , MaxInlineSizeThreshold(128)
    301   , TargetTriple(TT)
    302   , In64BitMode(is64Bit)
    303   , InNaClMode(false) {
    304   // Determine default and user specified characteristics
    305   if (!FS.empty() || !CPU.empty()) {
    306     std::string CPUName = CPU;
    307     if (CPUName.empty()) {
    308 #if defined (__x86_64__) || defined(__i386__)
    309       CPUName = sys::getHostCPUName();
    310 #else
    311       CPUName = "generic";
    312 #endif
    313     }
    314 
    315     // Make sure 64-bit features are available in 64-bit mode. (But make sure
    316     // SSE2 can be turned off explicitly.)
    317     std::string FullFS = FS;
    318     if (In64BitMode) {
    319       if (!FullFS.empty())
    320         FullFS = "+64bit,+sse2," + FullFS;
    321       else
    322         FullFS = "+64bit,+sse2";
    323     }
    324 
    325     // If feature string is not empty, parse features string.
    326     ParseSubtargetFeatures(CPUName, FullFS);
    327   } else {
    328     // Otherwise, use CPUID to auto-detect feature set.
    329     AutoDetectSubtargetFeatures();
    330 
    331     // Make sure 64-bit features are available in 64-bit mode.
    332     if (In64BitMode) {
    333       HasX86_64 = true; ToggleFeature(X86::Feature64Bit);
    334       HasCMov = true;   ToggleFeature(X86::FeatureCMOV);
    335 
    336       if (!HasAVX && X86SSELevel < SSE2) {
    337         X86SSELevel = SSE2;
    338         ToggleFeature(X86::FeatureSSE1);
    339         ToggleFeature(X86::FeatureSSE2);
    340       }
    341     }
    342   }
    343 
    344   // It's important to keep the MCSubtargetInfo feature bits in sync with
    345   // target data structure which is shared with MC code emitter, etc.
    346   if (In64BitMode)
    347     ToggleFeature(X86::Mode64Bit);
    348 
    349   if (isTargetNaCl()) {
    350     InNaClMode = true;
    351     ToggleFeature(X86::ModeNaCl);
    352   }
    353 
    354   if (HasAVX)
    355     X86SSELevel = NoMMXSSE;
    356 
    357   DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
    358                << ", 3DNowLevel " << X863DNowLevel
    359                << ", 64bit " << HasX86_64 << "\n");
    360   assert((!In64BitMode || HasX86_64) &&
    361          "64-bit code requested on a subtarget that doesn't support it!");
    362 
    363   if(EnableSegmentedStacks && !isTargetELF())
    364     report_fatal_error("Segmented stacks are only implemented on ELF.");
    365 
    366   // Stack alignment is 16 bytes on Darwin, FreeBSD, Linux and Solaris (both
    367   // 32 and 64 bit) and for all 64-bit targets.
    368   if (StackAlignOverride)
    369     stackAlignment = StackAlignOverride;
    370   else if (isTargetDarwin() || isTargetFreeBSD() || isTargetLinux() ||
    371            isTargetSolaris() || In64BitMode)
    372     stackAlignment = 16;
    373 }
    374