Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for add, fadd, sub, and fsub.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/Target/TargetData.h"
     17 #include "llvm/Support/GetElementPtrTypeIterator.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 /// AddOne - Add one to a ConstantInt.
     23 static Constant *AddOne(Constant *C) {
     24   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     25 }
     26 /// SubOne - Subtract one from a ConstantInt.
     27 static Constant *SubOne(ConstantInt *C) {
     28   return ConstantInt::get(C->getContext(), C->getValue()-1);
     29 }
     30 
     31 
     32 // dyn_castFoldableMul - If this value is a multiply that can be folded into
     33 // other computations (because it has a constant operand), return the
     34 // non-constant operand of the multiply, and set CST to point to the multiplier.
     35 // Otherwise, return null.
     36 //
     37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
     38   if (!V->hasOneUse() || !V->getType()->isIntegerTy())
     39     return 0;
     40 
     41   Instruction *I = dyn_cast<Instruction>(V);
     42   if (I == 0) return 0;
     43 
     44   if (I->getOpcode() == Instruction::Mul)
     45     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
     46       return I->getOperand(0);
     47   if (I->getOpcode() == Instruction::Shl)
     48     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
     49       // The multiplier is really 1 << CST.
     50       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
     51       uint32_t CSTVal = CST->getLimitedValue(BitWidth);
     52       CST = ConstantInt::get(V->getType()->getContext(),
     53                              APInt(BitWidth, 1).shl(CSTVal));
     54       return I->getOperand(0);
     55     }
     56   return 0;
     57 }
     58 
     59 
     60 /// WillNotOverflowSignedAdd - Return true if we can prove that:
     61 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
     62 /// This basically requires proving that the add in the original type would not
     63 /// overflow to change the sign bit or have a carry out.
     64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
     65   // There are different heuristics we can use for this.  Here are some simple
     66   // ones.
     67 
     68   // Add has the property that adding any two 2's complement numbers can only
     69   // have one carry bit which can change a sign.  As such, if LHS and RHS each
     70   // have at least two sign bits, we know that the addition of the two values
     71   // will sign extend fine.
     72   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
     73     return true;
     74 
     75 
     76   // If one of the operands only has one non-zero bit, and if the other operand
     77   // has a known-zero bit in a more significant place than it (not including the
     78   // sign bit) the ripple may go up to and fill the zero, but won't change the
     79   // sign.  For example, (X & ~4) + 1.
     80 
     81   // TODO: Implement.
     82 
     83   return false;
     84 }
     85 
     86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
     87   bool Changed = SimplifyAssociativeOrCommutative(I);
     88   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
     89 
     90   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
     91                                  I.hasNoUnsignedWrap(), TD))
     92     return ReplaceInstUsesWith(I, V);
     93 
     94   // (A*B)+(A*C) -> A*(B+C) etc
     95   if (Value *V = SimplifyUsingDistributiveLaws(I))
     96     return ReplaceInstUsesWith(I, V);
     97 
     98   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
     99     // X + (signbit) --> X ^ signbit
    100     const APInt &Val = CI->getValue();
    101     if (Val.isSignBit())
    102       return BinaryOperator::CreateXor(LHS, RHS);
    103 
    104     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
    105     // (X & 254)+1 -> (X&254)|1
    106     if (SimplifyDemandedInstructionBits(I))
    107       return &I;
    108 
    109     // zext(bool) + C -> bool ? C + 1 : C
    110     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
    111       if (ZI->getSrcTy()->isIntegerTy(1))
    112         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
    113 
    114     Value *XorLHS = 0; ConstantInt *XorRHS = 0;
    115     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
    116       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
    117       const APInt &RHSVal = CI->getValue();
    118       unsigned ExtendAmt = 0;
    119       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
    120       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
    121       if (XorRHS->getValue() == -RHSVal) {
    122         if (RHSVal.isPowerOf2())
    123           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
    124         else if (XorRHS->getValue().isPowerOf2())
    125           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
    126       }
    127 
    128       if (ExtendAmt) {
    129         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
    130         if (!MaskedValueIsZero(XorLHS, Mask))
    131           ExtendAmt = 0;
    132       }
    133 
    134       if (ExtendAmt) {
    135         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
    136         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
    137         return BinaryOperator::CreateAShr(NewShl, ShAmt);
    138       }
    139     }
    140   }
    141 
    142   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
    143     if (Instruction *NV = FoldOpIntoPhi(I))
    144       return NV;
    145 
    146   if (I.getType()->isIntegerTy(1))
    147     return BinaryOperator::CreateXor(LHS, RHS);
    148 
    149   // X + X --> X << 1
    150   if (LHS == RHS) {
    151     BinaryOperator *New =
    152       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
    153     New->setHasNoSignedWrap(I.hasNoSignedWrap());
    154     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    155     return New;
    156   }
    157 
    158   // -A + B  -->  B - A
    159   // -A + -B  -->  -(A + B)
    160   if (Value *LHSV = dyn_castNegVal(LHS)) {
    161     if (Value *RHSV = dyn_castNegVal(RHS)) {
    162       Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
    163       return BinaryOperator::CreateNeg(NewAdd);
    164     }
    165 
    166     return BinaryOperator::CreateSub(RHS, LHSV);
    167   }
    168 
    169   // A + -B  -->  A - B
    170   if (!isa<Constant>(RHS))
    171     if (Value *V = dyn_castNegVal(RHS))
    172       return BinaryOperator::CreateSub(LHS, V);
    173 
    174 
    175   ConstantInt *C2;
    176   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
    177     if (X == RHS)   // X*C + X --> X * (C+1)
    178       return BinaryOperator::CreateMul(RHS, AddOne(C2));
    179 
    180     // X*C1 + X*C2 --> X * (C1+C2)
    181     ConstantInt *C1;
    182     if (X == dyn_castFoldableMul(RHS, C1))
    183       return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
    184   }
    185 
    186   // X + X*C --> X * (C+1)
    187   if (dyn_castFoldableMul(RHS, C2) == LHS)
    188     return BinaryOperator::CreateMul(LHS, AddOne(C2));
    189 
    190   // A+B --> A|B iff A and B have no bits set in common.
    191   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
    192     APInt Mask = APInt::getAllOnesValue(IT->getBitWidth());
    193     APInt LHSKnownOne(IT->getBitWidth(), 0);
    194     APInt LHSKnownZero(IT->getBitWidth(), 0);
    195     ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
    196     if (LHSKnownZero != 0) {
    197       APInt RHSKnownOne(IT->getBitWidth(), 0);
    198       APInt RHSKnownZero(IT->getBitWidth(), 0);
    199       ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
    200 
    201       // No bits in common -> bitwise or.
    202       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
    203         return BinaryOperator::CreateOr(LHS, RHS);
    204     }
    205   }
    206 
    207   // W*X + Y*Z --> W * (X+Z)  iff W == Y
    208   {
    209     Value *W, *X, *Y, *Z;
    210     if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
    211         match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
    212       if (W != Y) {
    213         if (W == Z) {
    214           std::swap(Y, Z);
    215         } else if (Y == X) {
    216           std::swap(W, X);
    217         } else if (X == Z) {
    218           std::swap(Y, Z);
    219           std::swap(W, X);
    220         }
    221       }
    222 
    223       if (W == Y) {
    224         Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
    225         return BinaryOperator::CreateMul(W, NewAdd);
    226       }
    227     }
    228   }
    229 
    230   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
    231     Value *X = 0;
    232     if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
    233       return BinaryOperator::CreateSub(SubOne(CRHS), X);
    234 
    235     // (X & FF00) + xx00  -> (X+xx00) & FF00
    236     if (LHS->hasOneUse() &&
    237         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
    238         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
    239       // See if all bits from the first bit set in the Add RHS up are included
    240       // in the mask.  First, get the rightmost bit.
    241       const APInt &AddRHSV = CRHS->getValue();
    242 
    243       // Form a mask of all bits from the lowest bit added through the top.
    244       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
    245 
    246       // See if the and mask includes all of these bits.
    247       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
    248 
    249       if (AddRHSHighBits == AddRHSHighBitsAnd) {
    250         // Okay, the xform is safe.  Insert the new add pronto.
    251         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
    252         return BinaryOperator::CreateAnd(NewAdd, C2);
    253       }
    254     }
    255 
    256     // Try to fold constant add into select arguments.
    257     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
    258       if (Instruction *R = FoldOpIntoSelect(I, SI))
    259         return R;
    260   }
    261 
    262   // add (select X 0 (sub n A)) A  -->  select X A n
    263   {
    264     SelectInst *SI = dyn_cast<SelectInst>(LHS);
    265     Value *A = RHS;
    266     if (!SI) {
    267       SI = dyn_cast<SelectInst>(RHS);
    268       A = LHS;
    269     }
    270     if (SI && SI->hasOneUse()) {
    271       Value *TV = SI->getTrueValue();
    272       Value *FV = SI->getFalseValue();
    273       Value *N;
    274 
    275       // Can we fold the add into the argument of the select?
    276       // We check both true and false select arguments for a matching subtract.
    277       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
    278         // Fold the add into the true select value.
    279         return SelectInst::Create(SI->getCondition(), N, A);
    280 
    281       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
    282         // Fold the add into the false select value.
    283         return SelectInst::Create(SI->getCondition(), A, N);
    284     }
    285   }
    286 
    287   // Check for (add (sext x), y), see if we can merge this into an
    288   // integer add followed by a sext.
    289   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
    290     // (add (sext x), cst) --> (sext (add x, cst'))
    291     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
    292       Constant *CI =
    293         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
    294       if (LHSConv->hasOneUse() &&
    295           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
    296           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
    297         // Insert the new, smaller add.
    298         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    299                                               CI, "addconv");
    300         return new SExtInst(NewAdd, I.getType());
    301       }
    302     }
    303 
    304     // (add (sext x), (sext y)) --> (sext (add int x, y))
    305     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
    306       // Only do this if x/y have the same type, if at last one of them has a
    307       // single use (so we don't increase the number of sexts), and if the
    308       // integer add will not overflow.
    309       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
    310           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
    311           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
    312                                    RHSConv->getOperand(0))) {
    313         // Insert the new integer add.
    314         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    315                                              RHSConv->getOperand(0), "addconv");
    316         return new SExtInst(NewAdd, I.getType());
    317       }
    318     }
    319   }
    320 
    321   return Changed ? &I : 0;
    322 }
    323 
    324 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
    325   bool Changed = SimplifyAssociativeOrCommutative(I);
    326   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    327 
    328   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
    329     // X + 0 --> X
    330     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
    331       if (CFP->isExactlyValue(ConstantFP::getNegativeZero
    332                               (I.getType())->getValueAPF()))
    333         return ReplaceInstUsesWith(I, LHS);
    334     }
    335 
    336     if (isa<PHINode>(LHS))
    337       if (Instruction *NV = FoldOpIntoPhi(I))
    338         return NV;
    339   }
    340 
    341   // -A + B  -->  B - A
    342   // -A + -B  -->  -(A + B)
    343   if (Value *LHSV = dyn_castFNegVal(LHS))
    344     return BinaryOperator::CreateFSub(RHS, LHSV);
    345 
    346   // A + -B  -->  A - B
    347   if (!isa<Constant>(RHS))
    348     if (Value *V = dyn_castFNegVal(RHS))
    349       return BinaryOperator::CreateFSub(LHS, V);
    350 
    351   // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
    352   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
    353     if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
    354       return ReplaceInstUsesWith(I, LHS);
    355 
    356   // Check for (fadd double (sitofp x), y), see if we can merge this into an
    357   // integer add followed by a promotion.
    358   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
    359     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
    360     // ... if the constant fits in the integer value.  This is useful for things
    361     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
    362     // requires a constant pool load, and generally allows the add to be better
    363     // instcombined.
    364     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
    365       Constant *CI =
    366       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
    367       if (LHSConv->hasOneUse() &&
    368           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
    369           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
    370         // Insert the new integer add.
    371         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    372                                               CI, "addconv");
    373         return new SIToFPInst(NewAdd, I.getType());
    374       }
    375     }
    376 
    377     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
    378     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
    379       // Only do this if x/y have the same type, if at last one of them has a
    380       // single use (so we don't increase the number of int->fp conversions),
    381       // and if the integer add will not overflow.
    382       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
    383           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
    384           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
    385                                    RHSConv->getOperand(0))) {
    386         // Insert the new integer add.
    387         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    388                                               RHSConv->getOperand(0),"addconv");
    389         return new SIToFPInst(NewAdd, I.getType());
    390       }
    391     }
    392   }
    393 
    394   return Changed ? &I : 0;
    395 }
    396 
    397 
    398 /// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
    399 /// code necessary to compute the offset from the base pointer (without adding
    400 /// in the base pointer).  Return the result as a signed integer of intptr size.
    401 Value *InstCombiner::EmitGEPOffset(User *GEP) {
    402   TargetData &TD = *getTargetData();
    403   gep_type_iterator GTI = gep_type_begin(GEP);
    404   Type *IntPtrTy = TD.getIntPtrType(GEP->getContext());
    405   Value *Result = Constant::getNullValue(IntPtrTy);
    406 
    407   // If the GEP is inbounds, we know that none of the addressing operations will
    408   // overflow in an unsigned sense.
    409   bool isInBounds = cast<GEPOperator>(GEP)->isInBounds();
    410 
    411   // Build a mask for high order bits.
    412   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    413   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    414 
    415   for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
    416        ++i, ++GTI) {
    417     Value *Op = *i;
    418     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
    419     if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
    420       if (OpC->isZero()) continue;
    421 
    422       // Handle a struct index, which adds its field offset to the pointer.
    423       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    424         Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
    425 
    426         if (Size)
    427           Result = Builder->CreateAdd(Result, ConstantInt::get(IntPtrTy, Size),
    428                                       GEP->getName()+".offs");
    429         continue;
    430       }
    431 
    432       Constant *Scale = ConstantInt::get(IntPtrTy, Size);
    433       Constant *OC =
    434               ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
    435       Scale = ConstantExpr::getMul(OC, Scale, isInBounds/*NUW*/);
    436       // Emit an add instruction.
    437       Result = Builder->CreateAdd(Result, Scale, GEP->getName()+".offs");
    438       continue;
    439     }
    440     // Convert to correct type.
    441     if (Op->getType() != IntPtrTy)
    442       Op = Builder->CreateIntCast(Op, IntPtrTy, true, Op->getName()+".c");
    443     if (Size != 1) {
    444       // We'll let instcombine(mul) convert this to a shl if possible.
    445       Op = Builder->CreateMul(Op, ConstantInt::get(IntPtrTy, Size),
    446                               GEP->getName()+".idx", isInBounds /*NUW*/);
    447     }
    448 
    449     // Emit an add instruction.
    450     Result = Builder->CreateAdd(Op, Result, GEP->getName()+".offs");
    451   }
    452   return Result;
    453 }
    454 
    455 
    456 
    457 
    458 /// Optimize pointer differences into the same array into a size.  Consider:
    459 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
    460 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
    461 ///
    462 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
    463                                                Type *Ty) {
    464   assert(TD && "Must have target data info for this");
    465 
    466   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
    467   // this.
    468   bool Swapped = false;
    469   GetElementPtrInst *GEP = 0;
    470   ConstantExpr *CstGEP = 0;
    471 
    472   // TODO: Could also optimize &A[i] - &A[j] -> "i-j", and "&A.foo[i] - &A.foo".
    473   // For now we require one side to be the base pointer "A" or a constant
    474   // expression derived from it.
    475   if (GetElementPtrInst *LHSGEP = dyn_cast<GetElementPtrInst>(LHS)) {
    476     // (gep X, ...) - X
    477     if (LHSGEP->getOperand(0) == RHS) {
    478       GEP = LHSGEP;
    479       Swapped = false;
    480     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(RHS)) {
    481       // (gep X, ...) - (ce_gep X, ...)
    482       if (CE->getOpcode() == Instruction::GetElementPtr &&
    483           LHSGEP->getOperand(0) == CE->getOperand(0)) {
    484         CstGEP = CE;
    485         GEP = LHSGEP;
    486         Swapped = false;
    487       }
    488     }
    489   }
    490 
    491   if (GetElementPtrInst *RHSGEP = dyn_cast<GetElementPtrInst>(RHS)) {
    492     // X - (gep X, ...)
    493     if (RHSGEP->getOperand(0) == LHS) {
    494       GEP = RHSGEP;
    495       Swapped = true;
    496     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(LHS)) {
    497       // (ce_gep X, ...) - (gep X, ...)
    498       if (CE->getOpcode() == Instruction::GetElementPtr &&
    499           RHSGEP->getOperand(0) == CE->getOperand(0)) {
    500         CstGEP = CE;
    501         GEP = RHSGEP;
    502         Swapped = true;
    503       }
    504     }
    505   }
    506 
    507   if (GEP == 0)
    508     return 0;
    509 
    510   // Emit the offset of the GEP and an intptr_t.
    511   Value *Result = EmitGEPOffset(GEP);
    512 
    513   // If we had a constant expression GEP on the other side offsetting the
    514   // pointer, subtract it from the offset we have.
    515   if (CstGEP) {
    516     Value *CstOffset = EmitGEPOffset(CstGEP);
    517     Result = Builder->CreateSub(Result, CstOffset);
    518   }
    519 
    520 
    521   // If we have p - gep(p, ...)  then we have to negate the result.
    522   if (Swapped)
    523     Result = Builder->CreateNeg(Result, "diff.neg");
    524 
    525   return Builder->CreateIntCast(Result, Ty, true);
    526 }
    527 
    528 
    529 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
    530   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    531 
    532   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
    533                                  I.hasNoUnsignedWrap(), TD))
    534     return ReplaceInstUsesWith(I, V);
    535 
    536   // (A*B)-(A*C) -> A*(B-C) etc
    537   if (Value *V = SimplifyUsingDistributiveLaws(I))
    538     return ReplaceInstUsesWith(I, V);
    539 
    540   // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
    541   if (Value *V = dyn_castNegVal(Op1)) {
    542     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
    543     Res->setHasNoSignedWrap(I.hasNoSignedWrap());
    544     Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    545     return Res;
    546   }
    547 
    548   if (I.getType()->isIntegerTy(1))
    549     return BinaryOperator::CreateXor(Op0, Op1);
    550 
    551   // Replace (-1 - A) with (~A).
    552   if (match(Op0, m_AllOnes()))
    553     return BinaryOperator::CreateNot(Op1);
    554 
    555   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
    556     // C - ~X == X + (1+C)
    557     Value *X = 0;
    558     if (match(Op1, m_Not(m_Value(X))))
    559       return BinaryOperator::CreateAdd(X, AddOne(C));
    560 
    561     // -(X >>u 31) -> (X >>s 31)
    562     // -(X >>s 31) -> (X >>u 31)
    563     if (C->isZero()) {
    564       Value *X; ConstantInt *CI;
    565       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
    566           // Verify we are shifting out everything but the sign bit.
    567           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
    568         return BinaryOperator::CreateAShr(X, CI);
    569 
    570       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
    571           // Verify we are shifting out everything but the sign bit.
    572           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
    573         return BinaryOperator::CreateLShr(X, CI);
    574     }
    575 
    576     // Try to fold constant sub into select arguments.
    577     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
    578       if (Instruction *R = FoldOpIntoSelect(I, SI))
    579         return R;
    580 
    581     // C - zext(bool) -> bool ? C - 1 : C
    582     if (ZExtInst *ZI = dyn_cast<ZExtInst>(Op1))
    583       if (ZI->getSrcTy()->isIntegerTy(1))
    584         return SelectInst::Create(ZI->getOperand(0), SubOne(C), C);
    585 
    586     // C-(X+C2) --> (C-C2)-X
    587     ConstantInt *C2;
    588     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
    589       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
    590   }
    591 
    592 
    593   { Value *Y;
    594     // X-(X+Y) == -Y    X-(Y+X) == -Y
    595     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
    596         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
    597       return BinaryOperator::CreateNeg(Y);
    598 
    599     // (X-Y)-X == -Y
    600     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
    601       return BinaryOperator::CreateNeg(Y);
    602   }
    603 
    604   if (Op1->hasOneUse()) {
    605     Value *X = 0, *Y = 0, *Z = 0;
    606     Constant *C = 0;
    607     ConstantInt *CI = 0;
    608 
    609     // (X - (Y - Z))  -->  (X + (Z - Y)).
    610     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
    611       return BinaryOperator::CreateAdd(Op0,
    612                                       Builder->CreateSub(Z, Y, Op1->getName()));
    613 
    614     // (X - (X & Y))   -->   (X & ~Y)
    615     //
    616     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
    617         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
    618       return BinaryOperator::CreateAnd(Op0,
    619                                   Builder->CreateNot(Y, Y->getName() + ".not"));
    620 
    621     // 0 - (X sdiv C)  -> (X sdiv -C)
    622     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
    623         match(Op0, m_Zero()))
    624       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
    625 
    626     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
    627     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
    628       if (Value *XNeg = dyn_castNegVal(X))
    629         return BinaryOperator::CreateShl(XNeg, Y);
    630 
    631     // X - X*C --> X * (1-C)
    632     if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
    633       Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
    634       return BinaryOperator::CreateMul(Op0, CP1);
    635     }
    636 
    637     // X - X<<C --> X * (1-(1<<C))
    638     if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
    639       Constant *One = ConstantInt::get(I.getType(), 1);
    640       C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
    641       return BinaryOperator::CreateMul(Op0, C);
    642     }
    643 
    644     // X - A*-B -> X + A*B
    645     // X - -A*B -> X + A*B
    646     Value *A, *B;
    647     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
    648         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
    649       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
    650 
    651     // X - A*CI -> X + A*-CI
    652     // X - CI*A -> X + A*-CI
    653     if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
    654         match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
    655       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
    656       return BinaryOperator::CreateAdd(Op0, NewMul);
    657     }
    658   }
    659 
    660   ConstantInt *C1;
    661   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
    662     if (X == Op1)  // X*C - X --> X * (C-1)
    663       return BinaryOperator::CreateMul(Op1, SubOne(C1));
    664 
    665     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
    666     if (X == dyn_castFoldableMul(Op1, C2))
    667       return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
    668   }
    669 
    670   // Optimize pointer differences into the same array into a size.  Consider:
    671   //  &A[10] - &A[0]: we should compile this to "10".
    672   if (TD) {
    673     Value *LHSOp, *RHSOp;
    674     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
    675         match(Op1, m_PtrToInt(m_Value(RHSOp))))
    676       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
    677         return ReplaceInstUsesWith(I, Res);
    678 
    679     // trunc(p)-trunc(q) -> trunc(p-q)
    680     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
    681         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
    682       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
    683         return ReplaceInstUsesWith(I, Res);
    684   }
    685 
    686   return 0;
    687 }
    688 
    689 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
    690   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    691 
    692   // If this is a 'B = x-(-A)', change to B = x+A...
    693   if (Value *V = dyn_castFNegVal(Op1))
    694     return BinaryOperator::CreateFAdd(Op0, V);
    695 
    696   return 0;
    697 }
    698