Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCasts.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for cast operations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/Target/TargetData.h"
     17 #include "llvm/Support/PatternMatch.h"
     18 using namespace llvm;
     19 using namespace PatternMatch;
     20 
     21 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
     22 /// expression.  If so, decompose it, returning some value X, such that Val is
     23 /// X*Scale+Offset.
     24 ///
     25 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
     26                                         uint64_t &Offset) {
     27   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
     28     Offset = CI->getZExtValue();
     29     Scale  = 0;
     30     return ConstantInt::get(Val->getType(), 0);
     31   }
     32 
     33   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
     34     // Cannot look past anything that might overflow.
     35     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
     36     if (OBI && !OBI->hasNoUnsignedWrap()) {
     37       Scale = 1;
     38       Offset = 0;
     39       return Val;
     40     }
     41 
     42     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
     43       if (I->getOpcode() == Instruction::Shl) {
     44         // This is a value scaled by '1 << the shift amt'.
     45         Scale = UINT64_C(1) << RHS->getZExtValue();
     46         Offset = 0;
     47         return I->getOperand(0);
     48       }
     49 
     50       if (I->getOpcode() == Instruction::Mul) {
     51         // This value is scaled by 'RHS'.
     52         Scale = RHS->getZExtValue();
     53         Offset = 0;
     54         return I->getOperand(0);
     55       }
     56 
     57       if (I->getOpcode() == Instruction::Add) {
     58         // We have X+C.  Check to see if we really have (X*C2)+C1,
     59         // where C1 is divisible by C2.
     60         unsigned SubScale;
     61         Value *SubVal =
     62           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
     63         Offset += RHS->getZExtValue();
     64         Scale = SubScale;
     65         return SubVal;
     66       }
     67     }
     68   }
     69 
     70   // Otherwise, we can't look past this.
     71   Scale = 1;
     72   Offset = 0;
     73   return Val;
     74 }
     75 
     76 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
     77 /// try to eliminate the cast by moving the type information into the alloc.
     78 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
     79                                                    AllocaInst &AI) {
     80   // This requires TargetData to get the alloca alignment and size information.
     81   if (!TD) return 0;
     82 
     83   PointerType *PTy = cast<PointerType>(CI.getType());
     84 
     85   BuilderTy AllocaBuilder(*Builder);
     86   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
     87 
     88   // Get the type really allocated and the type casted to.
     89   Type *AllocElTy = AI.getAllocatedType();
     90   Type *CastElTy = PTy->getElementType();
     91   if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
     92 
     93   unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
     94   unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
     95   if (CastElTyAlign < AllocElTyAlign) return 0;
     96 
     97   // If the allocation has multiple uses, only promote it if we are strictly
     98   // increasing the alignment of the resultant allocation.  If we keep it the
     99   // same, we open the door to infinite loops of various kinds.
    100   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
    101 
    102   uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
    103   uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
    104   if (CastElTySize == 0 || AllocElTySize == 0) return 0;
    105 
    106   // See if we can satisfy the modulus by pulling a scale out of the array
    107   // size argument.
    108   unsigned ArraySizeScale;
    109   uint64_t ArrayOffset;
    110   Value *NumElements = // See if the array size is a decomposable linear expr.
    111     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
    112 
    113   // If we can now satisfy the modulus, by using a non-1 scale, we really can
    114   // do the xform.
    115   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
    116       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return 0;
    117 
    118   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
    119   Value *Amt = 0;
    120   if (Scale == 1) {
    121     Amt = NumElements;
    122   } else {
    123     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    124     // Insert before the alloca, not before the cast.
    125     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
    126   }
    127 
    128   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    129     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
    130                                   Offset, true);
    131     Amt = AllocaBuilder.CreateAdd(Amt, Off);
    132   }
    133 
    134   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
    135   New->setAlignment(AI.getAlignment());
    136   New->takeName(&AI);
    137 
    138   // If the allocation has multiple real uses, insert a cast and change all
    139   // things that used it to use the new cast.  This will also hack on CI, but it
    140   // will die soon.
    141   if (!AI.hasOneUse()) {
    142     // New is the allocation instruction, pointer typed. AI is the original
    143     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    144     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
    145     ReplaceInstUsesWith(AI, NewCast);
    146   }
    147   return ReplaceInstUsesWith(CI, New);
    148 }
    149 
    150 
    151 
    152 /// EvaluateInDifferentType - Given an expression that
    153 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
    154 /// insert the code to evaluate the expression.
    155 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
    156                                              bool isSigned) {
    157   if (Constant *C = dyn_cast<Constant>(V)) {
    158     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    159     // If we got a constantexpr back, try to simplify it with TD info.
    160     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    161       C = ConstantFoldConstantExpression(CE, TD);
    162     return C;
    163   }
    164 
    165   // Otherwise, it must be an instruction.
    166   Instruction *I = cast<Instruction>(V);
    167   Instruction *Res = 0;
    168   unsigned Opc = I->getOpcode();
    169   switch (Opc) {
    170   case Instruction::Add:
    171   case Instruction::Sub:
    172   case Instruction::Mul:
    173   case Instruction::And:
    174   case Instruction::Or:
    175   case Instruction::Xor:
    176   case Instruction::AShr:
    177   case Instruction::LShr:
    178   case Instruction::Shl:
    179   case Instruction::UDiv:
    180   case Instruction::URem: {
    181     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    182     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    183     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    184     break;
    185   }
    186   case Instruction::Trunc:
    187   case Instruction::ZExt:
    188   case Instruction::SExt:
    189     // If the source type of the cast is the type we're trying for then we can
    190     // just return the source.  There's no need to insert it because it is not
    191     // new.
    192     if (I->getOperand(0)->getType() == Ty)
    193       return I->getOperand(0);
    194 
    195     // Otherwise, must be the same type of cast, so just reinsert a new one.
    196     // This also handles the case of zext(trunc(x)) -> zext(x).
    197     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
    198                                       Opc == Instruction::SExt);
    199     break;
    200   case Instruction::Select: {
    201     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    202     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    203     Res = SelectInst::Create(I->getOperand(0), True, False);
    204     break;
    205   }
    206   case Instruction::PHI: {
    207     PHINode *OPN = cast<PHINode>(I);
    208     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    209     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
    210       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
    211       NPN->addIncoming(V, OPN->getIncomingBlock(i));
    212     }
    213     Res = NPN;
    214     break;
    215   }
    216   default:
    217     // TODO: Can handle more cases here.
    218     llvm_unreachable("Unreachable!");
    219     break;
    220   }
    221 
    222   Res->takeName(I);
    223   return InsertNewInstWith(Res, *I);
    224 }
    225 
    226 
    227 /// This function is a wrapper around CastInst::isEliminableCastPair. It
    228 /// simply extracts arguments and returns what that function returns.
    229 static Instruction::CastOps
    230 isEliminableCastPair(
    231   const CastInst *CI, ///< The first cast instruction
    232   unsigned opcode,       ///< The opcode of the second cast instruction
    233   Type *DstTy,     ///< The target type for the second cast instruction
    234   TargetData *TD         ///< The target data for pointer size
    235 ) {
    236 
    237   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
    238   Type *MidTy = CI->getType();                  // B from above
    239 
    240   // Get the opcodes of the two Cast instructions
    241   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
    242   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
    243 
    244   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
    245                                                 DstTy,
    246                                   TD ? TD->getIntPtrType(CI->getContext()) : 0);
    247 
    248   // We don't want to form an inttoptr or ptrtoint that converts to an integer
    249   // type that differs from the pointer size.
    250   if ((Res == Instruction::IntToPtr &&
    251           (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
    252       (Res == Instruction::PtrToInt &&
    253           (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
    254     Res = 0;
    255 
    256   return Instruction::CastOps(Res);
    257 }
    258 
    259 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    260 /// results in any code being generated and is interesting to optimize out. If
    261 /// the cast can be eliminated by some other simple transformation, we prefer
    262 /// to do the simplification first.
    263 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
    264                                       Type *Ty) {
    265   // Noop casts and casts of constants should be eliminated trivially.
    266   if (V->getType() == Ty || isa<Constant>(V)) return false;
    267 
    268   // If this is another cast that can be eliminated, we prefer to have it
    269   // eliminated.
    270   if (const CastInst *CI = dyn_cast<CastInst>(V))
    271     if (isEliminableCastPair(CI, opc, Ty, TD))
    272       return false;
    273 
    274   // If this is a vector sext from a compare, then we don't want to break the
    275   // idiom where each element of the extended vector is either zero or all ones.
    276   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
    277     return false;
    278 
    279   return true;
    280 }
    281 
    282 
    283 /// @brief Implement the transforms common to all CastInst visitors.
    284 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
    285   Value *Src = CI.getOperand(0);
    286 
    287   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
    288   // eliminate it now.
    289   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    290     if (Instruction::CastOps opc =
    291         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
    292       // The first cast (CSrc) is eliminable so we need to fix up or replace
    293       // the second cast (CI). CSrc will then have a good chance of being dead.
    294       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
    295     }
    296   }
    297 
    298   // If we are casting a select then fold the cast into the select
    299   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
    300     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
    301       return NV;
    302 
    303   // If we are casting a PHI then fold the cast into the PHI
    304   if (isa<PHINode>(Src)) {
    305     // We don't do this if this would create a PHI node with an illegal type if
    306     // it is currently legal.
    307     if (!Src->getType()->isIntegerTy() ||
    308         !CI.getType()->isIntegerTy() ||
    309         ShouldChangeType(CI.getType(), Src->getType()))
    310       if (Instruction *NV = FoldOpIntoPhi(CI))
    311         return NV;
    312   }
    313 
    314   return 0;
    315 }
    316 
    317 /// CanEvaluateTruncated - Return true if we can evaluate the specified
    318 /// expression tree as type Ty instead of its larger type, and arrive with the
    319 /// same value.  This is used by code that tries to eliminate truncates.
    320 ///
    321 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
    322 /// can be computed by computing V in the smaller type.  If V is an instruction,
    323 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
    324 /// makes sense if x and y can be efficiently truncated.
    325 ///
    326 /// This function works on both vectors and scalars.
    327 ///
    328 static bool CanEvaluateTruncated(Value *V, Type *Ty) {
    329   // We can always evaluate constants in another type.
    330   if (isa<Constant>(V))
    331     return true;
    332 
    333   Instruction *I = dyn_cast<Instruction>(V);
    334   if (!I) return false;
    335 
    336   Type *OrigTy = V->getType();
    337 
    338   // If this is an extension from the dest type, we can eliminate it, even if it
    339   // has multiple uses.
    340   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
    341       I->getOperand(0)->getType() == Ty)
    342     return true;
    343 
    344   // We can't extend or shrink something that has multiple uses: doing so would
    345   // require duplicating the instruction in general, which isn't profitable.
    346   if (!I->hasOneUse()) return false;
    347 
    348   unsigned Opc = I->getOpcode();
    349   switch (Opc) {
    350   case Instruction::Add:
    351   case Instruction::Sub:
    352   case Instruction::Mul:
    353   case Instruction::And:
    354   case Instruction::Or:
    355   case Instruction::Xor:
    356     // These operators can all arbitrarily be extended or truncated.
    357     return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    358            CanEvaluateTruncated(I->getOperand(1), Ty);
    359 
    360   case Instruction::UDiv:
    361   case Instruction::URem: {
    362     // UDiv and URem can be truncated if all the truncated bits are zero.
    363     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    364     uint32_t BitWidth = Ty->getScalarSizeInBits();
    365     if (BitWidth < OrigBitWidth) {
    366       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
    367       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
    368           MaskedValueIsZero(I->getOperand(1), Mask)) {
    369         return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    370                CanEvaluateTruncated(I->getOperand(1), Ty);
    371       }
    372     }
    373     break;
    374   }
    375   case Instruction::Shl:
    376     // If we are truncating the result of this SHL, and if it's a shift of a
    377     // constant amount, we can always perform a SHL in a smaller type.
    378     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    379       uint32_t BitWidth = Ty->getScalarSizeInBits();
    380       if (CI->getLimitedValue(BitWidth) < BitWidth)
    381         return CanEvaluateTruncated(I->getOperand(0), Ty);
    382     }
    383     break;
    384   case Instruction::LShr:
    385     // If this is a truncate of a logical shr, we can truncate it to a smaller
    386     // lshr iff we know that the bits we would otherwise be shifting in are
    387     // already zeros.
    388     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    389       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    390       uint32_t BitWidth = Ty->getScalarSizeInBits();
    391       if (MaskedValueIsZero(I->getOperand(0),
    392             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
    393           CI->getLimitedValue(BitWidth) < BitWidth) {
    394         return CanEvaluateTruncated(I->getOperand(0), Ty);
    395       }
    396     }
    397     break;
    398   case Instruction::Trunc:
    399     // trunc(trunc(x)) -> trunc(x)
    400     return true;
    401   case Instruction::ZExt:
    402   case Instruction::SExt:
    403     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    404     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    405     return true;
    406   case Instruction::Select: {
    407     SelectInst *SI = cast<SelectInst>(I);
    408     return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
    409            CanEvaluateTruncated(SI->getFalseValue(), Ty);
    410   }
    411   case Instruction::PHI: {
    412     // We can change a phi if we can change all operands.  Note that we never
    413     // get into trouble with cyclic PHIs here because we only consider
    414     // instructions with a single use.
    415     PHINode *PN = cast<PHINode>(I);
    416     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    417       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
    418         return false;
    419     return true;
    420   }
    421   default:
    422     // TODO: Can handle more cases here.
    423     break;
    424   }
    425 
    426   return false;
    427 }
    428 
    429 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
    430   if (Instruction *Result = commonCastTransforms(CI))
    431     return Result;
    432 
    433   // See if we can simplify any instructions used by the input whose sole
    434   // purpose is to compute bits we don't care about.
    435   if (SimplifyDemandedInstructionBits(CI))
    436     return &CI;
    437 
    438   Value *Src = CI.getOperand(0);
    439   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
    440 
    441   // Attempt to truncate the entire input expression tree to the destination
    442   // type.   Only do this if the dest type is a simple type, don't convert the
    443   // expression tree to something weird like i93 unless the source is also
    444   // strange.
    445   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    446       CanEvaluateTruncated(Src, DestTy)) {
    447 
    448     // If this cast is a truncate, evaluting in a different type always
    449     // eliminates the cast, so it is always a win.
    450     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    451           " to avoid cast: " << CI << '\n');
    452     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    453     assert(Res->getType() == DestTy);
    454     return ReplaceInstUsesWith(CI, Res);
    455   }
    456 
    457   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
    458   if (DestTy->getScalarSizeInBits() == 1) {
    459     Constant *One = ConstantInt::get(Src->getType(), 1);
    460     Src = Builder->CreateAnd(Src, One);
    461     Value *Zero = Constant::getNullValue(Src->getType());
    462     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
    463   }
    464 
    465   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
    466   Value *A = 0; ConstantInt *Cst = 0;
    467   if (Src->hasOneUse() &&
    468       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    469     // We have three types to worry about here, the type of A, the source of
    470     // the truncate (MidSize), and the destination of the truncate. We know that
    471     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    472     // between ASize and ResultSize.
    473     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    474 
    475     // If the shift amount is larger than the size of A, then the result is
    476     // known to be zero because all the input bits got shifted out.
    477     if (Cst->getZExtValue() >= ASize)
    478       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
    479 
    480     // Since we're doing an lshr and a zero extend, and know that the shift
    481     // amount is smaller than ASize, it is always safe to do the shift in A's
    482     // type, then zero extend or truncate to the result.
    483     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
    484     Shift->takeName(Src);
    485     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
    486   }
    487 
    488   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
    489   // type isn't non-native.
    490   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
    491       ShouldChangeType(Src->getType(), CI.getType()) &&
    492       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
    493     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
    494     return BinaryOperator::CreateAnd(NewTrunc,
    495                                      ConstantExpr::getTrunc(Cst, CI.getType()));
    496   }
    497 
    498   return 0;
    499 }
    500 
    501 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
    502 /// in order to eliminate the icmp.
    503 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    504                                              bool DoXform) {
    505   // If we are just checking for a icmp eq of a single bit and zext'ing it
    506   // to an integer, then shift the bit to the appropriate place and then
    507   // cast to integer to avoid the comparison.
    508   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
    509     const APInt &Op1CV = Op1C->getValue();
    510 
    511     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    512     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    513     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
    514         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
    515       if (!DoXform) return ICI;
    516 
    517       Value *In = ICI->getOperand(0);
    518       Value *Sh = ConstantInt::get(In->getType(),
    519                                    In->getType()->getScalarSizeInBits()-1);
    520       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
    521       if (In->getType() != CI.getType())
    522         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
    523 
    524       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
    525         Constant *One = ConstantInt::get(In->getType(), 1);
    526         In = Builder->CreateXor(In, One, In->getName()+".not");
    527       }
    528 
    529       return ReplaceInstUsesWith(CI, In);
    530     }
    531 
    532 
    533 
    534     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    535     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    536     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    537     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    538     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    539     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    540     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    541     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    542     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
    543         // This only works for EQ and NE
    544         ICI->isEquality()) {
    545       // If Op1C some other power of two, convert:
    546       uint32_t BitWidth = Op1C->getType()->getBitWidth();
    547       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    548       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
    549       ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
    550 
    551       APInt KnownZeroMask(~KnownZero);
    552       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
    553         if (!DoXform) return ICI;
    554 
    555         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
    556         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
    557           // (X&4) == 2 --> false
    558           // (X&4) != 2 --> true
    559           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
    560                                            isNE);
    561           Res = ConstantExpr::getZExt(Res, CI.getType());
    562           return ReplaceInstUsesWith(CI, Res);
    563         }
    564 
    565         uint32_t ShiftAmt = KnownZeroMask.logBase2();
    566         Value *In = ICI->getOperand(0);
    567         if (ShiftAmt) {
    568           // Perform a logical shr by shiftamt.
    569           // Insert the shift to put the result in the low bit.
    570           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
    571                                    In->getName()+".lobit");
    572         }
    573 
    574         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
    575           Constant *One = ConstantInt::get(In->getType(), 1);
    576           In = Builder->CreateXor(In, One);
    577         }
    578 
    579         if (CI.getType() == In->getType())
    580           return ReplaceInstUsesWith(CI, In);
    581         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
    582       }
    583     }
    584   }
    585 
    586   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
    587   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
    588   // may lead to additional simplifications.
    589   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
    590     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
    591       uint32_t BitWidth = ITy->getBitWidth();
    592       Value *LHS = ICI->getOperand(0);
    593       Value *RHS = ICI->getOperand(1);
    594 
    595       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
    596       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
    597       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
    598       ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
    599       ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
    600 
    601       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
    602         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
    603         APInt UnknownBit = ~KnownBits;
    604         if (UnknownBit.countPopulation() == 1) {
    605           if (!DoXform) return ICI;
    606 
    607           Value *Result = Builder->CreateXor(LHS, RHS);
    608 
    609           // Mask off any bits that are set and won't be shifted away.
    610           if (KnownOneLHS.uge(UnknownBit))
    611             Result = Builder->CreateAnd(Result,
    612                                         ConstantInt::get(ITy, UnknownBit));
    613 
    614           // Shift the bit we're testing down to the lsb.
    615           Result = Builder->CreateLShr(
    616                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
    617 
    618           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    619             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
    620           Result->takeName(ICI);
    621           return ReplaceInstUsesWith(CI, Result);
    622         }
    623       }
    624     }
    625   }
    626 
    627   return 0;
    628 }
    629 
    630 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
    631 /// specified wider type and produce the same low bits.  If not, return false.
    632 ///
    633 /// If this function returns true, it can also return a non-zero number of bits
    634 /// (in BitsToClear) which indicates that the value it computes is correct for
    635 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
    636 /// out.  For example, to promote something like:
    637 ///
    638 ///   %B = trunc i64 %A to i32
    639 ///   %C = lshr i32 %B, 8
    640 ///   %E = zext i32 %C to i64
    641 ///
    642 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
    643 /// set to 8 to indicate that the promoted value needs to have bits 24-31
    644 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
    645 /// clear the top bits anyway, doing this has no extra cost.
    646 ///
    647 /// This function works on both vectors and scalars.
    648 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
    649   BitsToClear = 0;
    650   if (isa<Constant>(V))
    651     return true;
    652 
    653   Instruction *I = dyn_cast<Instruction>(V);
    654   if (!I) return false;
    655 
    656   // If the input is a truncate from the destination type, we can trivially
    657   // eliminate it, even if it has multiple uses.
    658   // FIXME: This is currently disabled until codegen can handle this without
    659   // pessimizing code, PR5997.
    660   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    661     return true;
    662 
    663   // We can't extend or shrink something that has multiple uses: doing so would
    664   // require duplicating the instruction in general, which isn't profitable.
    665   if (!I->hasOneUse()) return false;
    666 
    667   unsigned Opc = I->getOpcode(), Tmp;
    668   switch (Opc) {
    669   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
    670   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
    671   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    672     return true;
    673   case Instruction::And:
    674   case Instruction::Or:
    675   case Instruction::Xor:
    676   case Instruction::Add:
    677   case Instruction::Sub:
    678   case Instruction::Mul:
    679   case Instruction::Shl:
    680     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
    681         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
    682       return false;
    683     // These can all be promoted if neither operand has 'bits to clear'.
    684     if (BitsToClear == 0 && Tmp == 0)
    685       return true;
    686 
    687     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    688     // other side, BitsToClear is ok.
    689     if (Tmp == 0 &&
    690         (Opc == Instruction::And || Opc == Instruction::Or ||
    691          Opc == Instruction::Xor)) {
    692       // We use MaskedValueIsZero here for generality, but the case we care
    693       // about the most is constant RHS.
    694       unsigned VSize = V->getType()->getScalarSizeInBits();
    695       if (MaskedValueIsZero(I->getOperand(1),
    696                             APInt::getHighBitsSet(VSize, BitsToClear)))
    697         return true;
    698     }
    699 
    700     // Otherwise, we don't know how to analyze this BitsToClear case yet.
    701     return false;
    702 
    703   case Instruction::LShr:
    704     // We can promote lshr(x, cst) if we can promote x.  This requires the
    705     // ultimate 'and' to clear out the high zero bits we're clearing out though.
    706     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    707       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
    708         return false;
    709       BitsToClear += Amt->getZExtValue();
    710       if (BitsToClear > V->getType()->getScalarSizeInBits())
    711         BitsToClear = V->getType()->getScalarSizeInBits();
    712       return true;
    713     }
    714     // Cannot promote variable LSHR.
    715     return false;
    716   case Instruction::Select:
    717     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
    718         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
    719         // TODO: If important, we could handle the case when the BitsToClear are
    720         // known zero in the disagreeing side.
    721         Tmp != BitsToClear)
    722       return false;
    723     return true;
    724 
    725   case Instruction::PHI: {
    726     // We can change a phi if we can change all operands.  Note that we never
    727     // get into trouble with cyclic PHIs here because we only consider
    728     // instructions with a single use.
    729     PHINode *PN = cast<PHINode>(I);
    730     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
    731       return false;
    732     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
    733       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
    734           // TODO: If important, we could handle the case when the BitsToClear
    735           // are known zero in the disagreeing input.
    736           Tmp != BitsToClear)
    737         return false;
    738     return true;
    739   }
    740   default:
    741     // TODO: Can handle more cases here.
    742     return false;
    743   }
    744 }
    745 
    746 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
    747   // If this zero extend is only used by a truncate, let the truncate by
    748   // eliminated before we try to optimize this zext.
    749   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
    750     return 0;
    751 
    752   // If one of the common conversion will work, do it.
    753   if (Instruction *Result = commonCastTransforms(CI))
    754     return Result;
    755 
    756   // See if we can simplify any instructions used by the input whose sole
    757   // purpose is to compute bits we don't care about.
    758   if (SimplifyDemandedInstructionBits(CI))
    759     return &CI;
    760 
    761   Value *Src = CI.getOperand(0);
    762   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
    763 
    764   // Attempt to extend the entire input expression tree to the destination
    765   // type.   Only do this if the dest type is a simple type, don't convert the
    766   // expression tree to something weird like i93 unless the source is also
    767   // strange.
    768   unsigned BitsToClear;
    769   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    770       CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
    771     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
    772            "Unreasonable BitsToClear");
    773 
    774     // Okay, we can transform this!  Insert the new expression now.
    775     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    776           " to avoid zero extend: " << CI);
    777     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    778     assert(Res->getType() == DestTy);
    779 
    780     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    781     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
    782 
    783     // If the high bits are already filled with zeros, just replace this
    784     // cast with the result.
    785     if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
    786                                                      DestBitSize-SrcBitsKept)))
    787       return ReplaceInstUsesWith(CI, Res);
    788 
    789     // We need to emit an AND to clear the high bits.
    790     Constant *C = ConstantInt::get(Res->getType(),
    791                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    792     return BinaryOperator::CreateAnd(Res, C);
    793   }
    794 
    795   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
    796   // types and if the sizes are just right we can convert this into a logical
    797   // 'and' which will be much cheaper than the pair of casts.
    798   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    799     // TODO: Subsume this into EvaluateInDifferentType.
    800 
    801     // Get the sizes of the types involved.  We know that the intermediate type
    802     // will be smaller than A or C, but don't know the relation between A and C.
    803     Value *A = CSrc->getOperand(0);
    804     unsigned SrcSize = A->getType()->getScalarSizeInBits();
    805     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    806     unsigned DstSize = CI.getType()->getScalarSizeInBits();
    807     // If we're actually extending zero bits, then if
    808     // SrcSize <  DstSize: zext(a & mask)
    809     // SrcSize == DstSize: a & mask
    810     // SrcSize  > DstSize: trunc(a) & mask
    811     if (SrcSize < DstSize) {
    812       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    813       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
    814       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
    815       return new ZExtInst(And, CI.getType());
    816     }
    817 
    818     if (SrcSize == DstSize) {
    819       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    820       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
    821                                                            AndValue));
    822     }
    823     if (SrcSize > DstSize) {
    824       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
    825       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
    826       return BinaryOperator::CreateAnd(Trunc,
    827                                        ConstantInt::get(Trunc->getType(),
    828                                                         AndValue));
    829     }
    830   }
    831 
    832   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    833     return transformZExtICmp(ICI, CI);
    834 
    835   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
    836   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    837     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
    838     // of the (zext icmp) will be transformed.
    839     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    840     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    841     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
    842         (transformZExtICmp(LHS, CI, false) ||
    843          transformZExtICmp(RHS, CI, false))) {
    844       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
    845       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
    846       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
    847     }
    848   }
    849 
    850   // zext(trunc(t) & C) -> (t & zext(C)).
    851   if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
    852     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    853       if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
    854         Value *TI0 = TI->getOperand(0);
    855         if (TI0->getType() == CI.getType())
    856           return
    857             BinaryOperator::CreateAnd(TI0,
    858                                 ConstantExpr::getZExt(C, CI.getType()));
    859       }
    860 
    861   // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
    862   if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
    863     if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
    864       if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
    865         if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
    866             And->getOperand(1) == C)
    867           if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
    868             Value *TI0 = TI->getOperand(0);
    869             if (TI0->getType() == CI.getType()) {
    870               Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    871               Value *NewAnd = Builder->CreateAnd(TI0, ZC);
    872               return BinaryOperator::CreateXor(NewAnd, ZC);
    873             }
    874           }
    875 
    876   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
    877   Value *X;
    878   if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
    879       match(SrcI, m_Not(m_Value(X))) &&
    880       (!X->hasOneUse() || !isa<CmpInst>(X))) {
    881     Value *New = Builder->CreateZExt(X, CI.getType());
    882     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
    883   }
    884 
    885   return 0;
    886 }
    887 
    888 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
    889 /// in order to eliminate the icmp.
    890 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
    891   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
    892   ICmpInst::Predicate Pred = ICI->getPredicate();
    893 
    894   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    895     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    896     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    897     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
    898         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
    899 
    900       Value *Sh = ConstantInt::get(Op0->getType(),
    901                                    Op0->getType()->getScalarSizeInBits()-1);
    902       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
    903       if (In->getType() != CI.getType())
    904         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
    905 
    906       if (Pred == ICmpInst::ICMP_SGT)
    907         In = Builder->CreateNot(In, In->getName()+".not");
    908       return ReplaceInstUsesWith(CI, In);
    909     }
    910 
    911     // If we know that only one bit of the LHS of the icmp can be set and we
    912     // have an equality comparison with zero or a power of 2, we can transform
    913     // the icmp and sext into bitwise/integer operations.
    914     if (ICI->hasOneUse() &&
    915         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
    916       unsigned BitWidth = Op1C->getType()->getBitWidth();
    917       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    918       APInt TypeMask(APInt::getAllOnesValue(BitWidth));
    919       ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne);
    920 
    921       APInt KnownZeroMask(~KnownZero);
    922       if (KnownZeroMask.isPowerOf2()) {
    923         Value *In = ICI->getOperand(0);
    924 
    925         // If the icmp tests for a known zero bit we can constant fold it.
    926         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
    927           Value *V = Pred == ICmpInst::ICMP_NE ?
    928                        ConstantInt::getAllOnesValue(CI.getType()) :
    929                        ConstantInt::getNullValue(CI.getType());
    930           return ReplaceInstUsesWith(CI, V);
    931         }
    932 
    933         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
    934           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
    935           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
    936           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
    937           // Perform a right shift to place the desired bit in the LSB.
    938           if (ShiftAmt)
    939             In = Builder->CreateLShr(In,
    940                                      ConstantInt::get(In->getType(), ShiftAmt));
    941 
    942           // At this point "In" is either 1 or 0. Subtract 1 to turn
    943           // {1, 0} -> {0, -1}.
    944           In = Builder->CreateAdd(In,
    945                                   ConstantInt::getAllOnesValue(In->getType()),
    946                                   "sext");
    947         } else {
    948           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
    949           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
    950           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
    951           // Perform a left shift to place the desired bit in the MSB.
    952           if (ShiftAmt)
    953             In = Builder->CreateShl(In,
    954                                     ConstantInt::get(In->getType(), ShiftAmt));
    955 
    956           // Distribute the bit over the whole bit width.
    957           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
    958                                                         BitWidth - 1), "sext");
    959         }
    960 
    961         if (CI.getType() == In->getType())
    962           return ReplaceInstUsesWith(CI, In);
    963         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
    964       }
    965     }
    966   }
    967 
    968   // vector (x <s 0) ? -1 : 0 -> ashr x, 31   -> all ones if signed.
    969   if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
    970     if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
    971         Op0->getType() == CI.getType()) {
    972       Type *EltTy = VTy->getElementType();
    973 
    974       // splat the shift constant to a constant vector.
    975       Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
    976       Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
    977       return ReplaceInstUsesWith(CI, In);
    978     }
    979   }
    980 
    981   return 0;
    982 }
    983 
    984 /// CanEvaluateSExtd - Return true if we can take the specified value
    985 /// and return it as type Ty without inserting any new casts and without
    986 /// changing the value of the common low bits.  This is used by code that tries
    987 /// to promote integer operations to a wider types will allow us to eliminate
    988 /// the extension.
    989 ///
    990 /// This function works on both vectors and scalars.
    991 ///
    992 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
    993   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
    994          "Can't sign extend type to a smaller type");
    995   // If this is a constant, it can be trivially promoted.
    996   if (isa<Constant>(V))
    997     return true;
    998 
    999   Instruction *I = dyn_cast<Instruction>(V);
   1000   if (!I) return false;
   1001 
   1002   // If this is a truncate from the dest type, we can trivially eliminate it,
   1003   // even if it has multiple uses.
   1004   // FIXME: This is currently disabled until codegen can handle this without
   1005   // pessimizing code, PR5997.
   1006   if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
   1007     return true;
   1008 
   1009   // We can't extend or shrink something that has multiple uses: doing so would
   1010   // require duplicating the instruction in general, which isn't profitable.
   1011   if (!I->hasOneUse()) return false;
   1012 
   1013   switch (I->getOpcode()) {
   1014   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
   1015   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
   1016   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
   1017     return true;
   1018   case Instruction::And:
   1019   case Instruction::Or:
   1020   case Instruction::Xor:
   1021   case Instruction::Add:
   1022   case Instruction::Sub:
   1023   case Instruction::Mul:
   1024     // These operators can all arbitrarily be extended if their inputs can.
   1025     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
   1026            CanEvaluateSExtd(I->getOperand(1), Ty);
   1027 
   1028   //case Instruction::Shl:   TODO
   1029   //case Instruction::LShr:  TODO
   1030 
   1031   case Instruction::Select:
   1032     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
   1033            CanEvaluateSExtd(I->getOperand(2), Ty);
   1034 
   1035   case Instruction::PHI: {
   1036     // We can change a phi if we can change all operands.  Note that we never
   1037     // get into trouble with cyclic PHIs here because we only consider
   1038     // instructions with a single use.
   1039     PHINode *PN = cast<PHINode>(I);
   1040     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1041       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
   1042     return true;
   1043   }
   1044   default:
   1045     // TODO: Can handle more cases here.
   1046     break;
   1047   }
   1048 
   1049   return false;
   1050 }
   1051 
   1052 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
   1053   // If this sign extend is only used by a truncate, let the truncate by
   1054   // eliminated before we try to optimize this zext.
   1055   if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
   1056     return 0;
   1057 
   1058   if (Instruction *I = commonCastTransforms(CI))
   1059     return I;
   1060 
   1061   // See if we can simplify any instructions used by the input whose sole
   1062   // purpose is to compute bits we don't care about.
   1063   if (SimplifyDemandedInstructionBits(CI))
   1064     return &CI;
   1065 
   1066   Value *Src = CI.getOperand(0);
   1067   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
   1068 
   1069   // Attempt to extend the entire input expression tree to the destination
   1070   // type.   Only do this if the dest type is a simple type, don't convert the
   1071   // expression tree to something weird like i93 unless the source is also
   1072   // strange.
   1073   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
   1074       CanEvaluateSExtd(Src, DestTy)) {
   1075     // Okay, we can transform this!  Insert the new expression now.
   1076     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
   1077           " to avoid sign extend: " << CI);
   1078     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
   1079     assert(Res->getType() == DestTy);
   1080 
   1081     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1082     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1083 
   1084     // If the high bits are already filled with sign bit, just replace this
   1085     // cast with the result.
   1086     if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
   1087       return ReplaceInstUsesWith(CI, Res);
   1088 
   1089     // We need to emit a shl + ashr to do the sign extend.
   1090     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1091     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
   1092                                       ShAmt);
   1093   }
   1094 
   1095   // If this input is a trunc from our destination, then turn sext(trunc(x))
   1096   // into shifts.
   1097   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
   1098     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
   1099       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1100       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1101 
   1102       // We need to emit a shl + ashr to do the sign extend.
   1103       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1104       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
   1105       return BinaryOperator::CreateAShr(Res, ShAmt);
   1106     }
   1107 
   1108   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
   1109     return transformSExtICmp(ICI, CI);
   1110 
   1111   // If the input is a shl/ashr pair of a same constant, then this is a sign
   1112   // extension from a smaller value.  If we could trust arbitrary bitwidth
   1113   // integers, we could turn this into a truncate to the smaller bit and then
   1114   // use a sext for the whole extension.  Since we don't, look deeper and check
   1115   // for a truncate.  If the source and dest are the same type, eliminate the
   1116   // trunc and extend and just do shifts.  For example, turn:
   1117   //   %a = trunc i32 %i to i8
   1118   //   %b = shl i8 %a, 6
   1119   //   %c = ashr i8 %b, 6
   1120   //   %d = sext i8 %c to i32
   1121   // into:
   1122   //   %a = shl i32 %i, 30
   1123   //   %d = ashr i32 %a, 30
   1124   Value *A = 0;
   1125   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
   1126   ConstantInt *BA = 0, *CA = 0;
   1127   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
   1128                         m_ConstantInt(CA))) &&
   1129       BA == CA && A->getType() == CI.getType()) {
   1130     unsigned MidSize = Src->getType()->getScalarSizeInBits();
   1131     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
   1132     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
   1133     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
   1134     A = Builder->CreateShl(A, ShAmtV, CI.getName());
   1135     return BinaryOperator::CreateAShr(A, ShAmtV);
   1136   }
   1137 
   1138   return 0;
   1139 }
   1140 
   1141 
   1142 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
   1143 /// in the specified FP type without changing its value.
   1144 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
   1145   bool losesInfo;
   1146   APFloat F = CFP->getValueAPF();
   1147   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
   1148   if (!losesInfo)
   1149     return ConstantFP::get(CFP->getContext(), F);
   1150   return 0;
   1151 }
   1152 
   1153 /// LookThroughFPExtensions - If this is an fp extension instruction, look
   1154 /// through it until we get the source value.
   1155 static Value *LookThroughFPExtensions(Value *V) {
   1156   if (Instruction *I = dyn_cast<Instruction>(V))
   1157     if (I->getOpcode() == Instruction::FPExt)
   1158       return LookThroughFPExtensions(I->getOperand(0));
   1159 
   1160   // If this value is a constant, return the constant in the smallest FP type
   1161   // that can accurately represent it.  This allows us to turn
   1162   // (float)((double)X+2.0) into x+2.0f.
   1163   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1164     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
   1165       return V;  // No constant folding of this.
   1166     // See if the value can be truncated to float and then reextended.
   1167     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
   1168       return V;
   1169     if (CFP->getType()->isDoubleTy())
   1170       return V;  // Won't shrink.
   1171     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
   1172       return V;
   1173     // Don't try to shrink to various long double types.
   1174   }
   1175 
   1176   return V;
   1177 }
   1178 
   1179 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
   1180   if (Instruction *I = commonCastTransforms(CI))
   1181     return I;
   1182 
   1183   // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
   1184   // smaller than the destination type, we can eliminate the truncate by doing
   1185   // the add as the smaller type.  This applies to fadd/fsub/fmul/fdiv as well
   1186   // as many builtins (sqrt, etc).
   1187   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
   1188   if (OpI && OpI->hasOneUse()) {
   1189     switch (OpI->getOpcode()) {
   1190     default: break;
   1191     case Instruction::FAdd:
   1192     case Instruction::FSub:
   1193     case Instruction::FMul:
   1194     case Instruction::FDiv:
   1195     case Instruction::FRem:
   1196       Type *SrcTy = OpI->getType();
   1197       Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
   1198       Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
   1199       if (LHSTrunc->getType() != SrcTy &&
   1200           RHSTrunc->getType() != SrcTy) {
   1201         unsigned DstSize = CI.getType()->getScalarSizeInBits();
   1202         // If the source types were both smaller than the destination type of
   1203         // the cast, do this xform.
   1204         if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
   1205             RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
   1206           LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
   1207           RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
   1208           return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
   1209         }
   1210       }
   1211       break;
   1212     }
   1213   }
   1214 
   1215   // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
   1216   // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it.
   1217   CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
   1218   if (Call && Call->getCalledFunction() &&
   1219       Call->getCalledFunction()->getName() == "sqrt" &&
   1220       Call->getNumArgOperands() == 1 &&
   1221       Call->hasOneUse()) {
   1222     CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
   1223     if (Arg && Arg->getOpcode() == Instruction::FPExt &&
   1224         CI.getType()->isFloatTy() &&
   1225         Call->getType()->isDoubleTy() &&
   1226         Arg->getType()->isDoubleTy() &&
   1227         Arg->getOperand(0)->getType()->isFloatTy()) {
   1228       Function *Callee = Call->getCalledFunction();
   1229       Module *M = CI.getParent()->getParent()->getParent();
   1230       Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
   1231                                                    Callee->getAttributes(),
   1232                                                    Builder->getFloatTy(),
   1233                                                    Builder->getFloatTy(),
   1234                                                    NULL);
   1235       CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
   1236                                        "sqrtfcall");
   1237       ret->setAttributes(Callee->getAttributes());
   1238 
   1239 
   1240       // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
   1241       ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
   1242       EraseInstFromFunction(*Call);
   1243       return ret;
   1244     }
   1245   }
   1246 
   1247   return 0;
   1248 }
   1249 
   1250 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
   1251   return commonCastTransforms(CI);
   1252 }
   1253 
   1254 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
   1255   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1256   if (OpI == 0)
   1257     return commonCastTransforms(FI);
   1258 
   1259   // fptoui(uitofp(X)) --> X
   1260   // fptoui(sitofp(X)) --> X
   1261   // This is safe if the intermediate type has enough bits in its mantissa to
   1262   // accurately represent all values of X.  For example, do not do this with
   1263   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1264   // 'X' value would cause an undefined result for the fptoui.
   1265   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1266       OpI->getOperand(0)->getType() == FI.getType() &&
   1267       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
   1268                     OpI->getType()->getFPMantissaWidth())
   1269     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1270 
   1271   return commonCastTransforms(FI);
   1272 }
   1273 
   1274 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
   1275   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1276   if (OpI == 0)
   1277     return commonCastTransforms(FI);
   1278 
   1279   // fptosi(sitofp(X)) --> X
   1280   // fptosi(uitofp(X)) --> X
   1281   // This is safe if the intermediate type has enough bits in its mantissa to
   1282   // accurately represent all values of X.  For example, do not do this with
   1283   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1284   // 'X' value would cause an undefined result for the fptoui.
   1285   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1286       OpI->getOperand(0)->getType() == FI.getType() &&
   1287       (int)FI.getType()->getScalarSizeInBits() <=
   1288                     OpI->getType()->getFPMantissaWidth())
   1289     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1290 
   1291   return commonCastTransforms(FI);
   1292 }
   1293 
   1294 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
   1295   return commonCastTransforms(CI);
   1296 }
   1297 
   1298 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
   1299   return commonCastTransforms(CI);
   1300 }
   1301 
   1302 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
   1303   // If the source integer type is not the intptr_t type for this target, do a
   1304   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
   1305   // cast to be exposed to other transforms.
   1306   if (TD) {
   1307     if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
   1308         TD->getPointerSizeInBits()) {
   1309       Value *P = Builder->CreateTrunc(CI.getOperand(0),
   1310                                       TD->getIntPtrType(CI.getContext()));
   1311       return new IntToPtrInst(P, CI.getType());
   1312     }
   1313     if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
   1314         TD->getPointerSizeInBits()) {
   1315       Value *P = Builder->CreateZExt(CI.getOperand(0),
   1316                                      TD->getIntPtrType(CI.getContext()));
   1317       return new IntToPtrInst(P, CI.getType());
   1318     }
   1319   }
   1320 
   1321   if (Instruction *I = commonCastTransforms(CI))
   1322     return I;
   1323 
   1324   return 0;
   1325 }
   1326 
   1327 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
   1328 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
   1329   Value *Src = CI.getOperand(0);
   1330 
   1331   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
   1332     // If casting the result of a getelementptr instruction with no offset, turn
   1333     // this into a cast of the original pointer!
   1334     if (GEP->hasAllZeroIndices()) {
   1335       // Changing the cast operand is usually not a good idea but it is safe
   1336       // here because the pointer operand is being replaced with another
   1337       // pointer operand so the opcode doesn't need to change.
   1338       Worklist.Add(GEP);
   1339       CI.setOperand(0, GEP->getOperand(0));
   1340       return &CI;
   1341     }
   1342 
   1343     // If the GEP has a single use, and the base pointer is a bitcast, and the
   1344     // GEP computes a constant offset, see if we can convert these three
   1345     // instructions into fewer.  This typically happens with unions and other
   1346     // non-type-safe code.
   1347     if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
   1348         GEP->hasAllConstantIndices()) {
   1349       // We are guaranteed to get a constant from EmitGEPOffset.
   1350       ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
   1351       int64_t Offset = OffsetV->getSExtValue();
   1352 
   1353       // Get the base pointer input of the bitcast, and the type it points to.
   1354       Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
   1355       Type *GEPIdxTy =
   1356       cast<PointerType>(OrigBase->getType())->getElementType();
   1357       SmallVector<Value*, 8> NewIndices;
   1358       if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
   1359         // If we were able to index down into an element, create the GEP
   1360         // and bitcast the result.  This eliminates one bitcast, potentially
   1361         // two.
   1362         Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
   1363         Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
   1364         Builder->CreateGEP(OrigBase, NewIndices);
   1365         NGEP->takeName(GEP);
   1366 
   1367         if (isa<BitCastInst>(CI))
   1368           return new BitCastInst(NGEP, CI.getType());
   1369         assert(isa<PtrToIntInst>(CI));
   1370         return new PtrToIntInst(NGEP, CI.getType());
   1371       }
   1372     }
   1373   }
   1374 
   1375   return commonCastTransforms(CI);
   1376 }
   1377 
   1378 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
   1379   // If the destination integer type is not the intptr_t type for this target,
   1380   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
   1381   // to be exposed to other transforms.
   1382   if (TD) {
   1383     if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
   1384       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
   1385                                          TD->getIntPtrType(CI.getContext()));
   1386       return new TruncInst(P, CI.getType());
   1387     }
   1388     if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
   1389       Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
   1390                                          TD->getIntPtrType(CI.getContext()));
   1391       return new ZExtInst(P, CI.getType());
   1392     }
   1393   }
   1394 
   1395   return commonPointerCastTransforms(CI);
   1396 }
   1397 
   1398 /// OptimizeVectorResize - This input value (which is known to have vector type)
   1399 /// is being zero extended or truncated to the specified vector type.  Try to
   1400 /// replace it with a shuffle (and vector/vector bitcast) if possible.
   1401 ///
   1402 /// The source and destination vector types may have different element types.
   1403 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
   1404                                          InstCombiner &IC) {
   1405   // We can only do this optimization if the output is a multiple of the input
   1406   // element size, or the input is a multiple of the output element size.
   1407   // Convert the input type to have the same element type as the output.
   1408   VectorType *SrcTy = cast<VectorType>(InVal->getType());
   1409 
   1410   if (SrcTy->getElementType() != DestTy->getElementType()) {
   1411     // The input types don't need to be identical, but for now they must be the
   1412     // same size.  There is no specific reason we couldn't handle things like
   1413     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
   1414     // there yet.
   1415     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
   1416         DestTy->getElementType()->getPrimitiveSizeInBits())
   1417       return 0;
   1418 
   1419     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
   1420     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
   1421   }
   1422 
   1423   // Now that the element types match, get the shuffle mask and RHS of the
   1424   // shuffle to use, which depends on whether we're increasing or decreasing the
   1425   // size of the input.
   1426   SmallVector<Constant*, 16> ShuffleMask;
   1427   Value *V2;
   1428   IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext());
   1429 
   1430   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
   1431     // If we're shrinking the number of elements, just shuffle in the low
   1432     // elements from the input and use undef as the second shuffle input.
   1433     V2 = UndefValue::get(SrcTy);
   1434     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
   1435       ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
   1436 
   1437   } else {
   1438     // If we're increasing the number of elements, shuffle in all of the
   1439     // elements from InVal and fill the rest of the result elements with zeros
   1440     // from a constant zero.
   1441     V2 = Constant::getNullValue(SrcTy);
   1442     unsigned SrcElts = SrcTy->getNumElements();
   1443     for (unsigned i = 0, e = SrcElts; i != e; ++i)
   1444       ShuffleMask.push_back(ConstantInt::get(Int32Ty, i));
   1445 
   1446     // The excess elements reference the first element of the zero input.
   1447     ShuffleMask.append(DestTy->getNumElements()-SrcElts,
   1448                        ConstantInt::get(Int32Ty, SrcElts));
   1449   }
   1450 
   1451   return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask));
   1452 }
   1453 
   1454 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
   1455   return Value % Ty->getPrimitiveSizeInBits() == 0;
   1456 }
   1457 
   1458 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
   1459   return Value / Ty->getPrimitiveSizeInBits();
   1460 }
   1461 
   1462 /// CollectInsertionElements - V is a value which is inserted into a vector of
   1463 /// VecEltTy.  Look through the value to see if we can decompose it into
   1464 /// insertions into the vector.  See the example in the comment for
   1465 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
   1466 /// The type of V is always a non-zero multiple of VecEltTy's size.
   1467 ///
   1468 /// This returns false if the pattern can't be matched or true if it can,
   1469 /// filling in Elements with the elements found here.
   1470 static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
   1471                                      SmallVectorImpl<Value*> &Elements,
   1472                                      Type *VecEltTy) {
   1473   // Undef values never contribute useful bits to the result.
   1474   if (isa<UndefValue>(V)) return true;
   1475 
   1476   // If we got down to a value of the right type, we win, try inserting into the
   1477   // right element.
   1478   if (V->getType() == VecEltTy) {
   1479     // Inserting null doesn't actually insert any elements.
   1480     if (Constant *C = dyn_cast<Constant>(V))
   1481       if (C->isNullValue())
   1482         return true;
   1483 
   1484     // Fail if multiple elements are inserted into this slot.
   1485     if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
   1486       return false;
   1487 
   1488     Elements[ElementIndex] = V;
   1489     return true;
   1490   }
   1491 
   1492   if (Constant *C = dyn_cast<Constant>(V)) {
   1493     // Figure out the # elements this provides, and bitcast it or slice it up
   1494     // as required.
   1495     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
   1496                                         VecEltTy);
   1497     // If the constant is the size of a vector element, we just need to bitcast
   1498     // it to the right type so it gets properly inserted.
   1499     if (NumElts == 1)
   1500       return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
   1501                                       ElementIndex, Elements, VecEltTy);
   1502 
   1503     // Okay, this is a constant that covers multiple elements.  Slice it up into
   1504     // pieces and insert each element-sized piece into the vector.
   1505     if (!isa<IntegerType>(C->getType()))
   1506       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
   1507                                        C->getType()->getPrimitiveSizeInBits()));
   1508     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
   1509     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
   1510 
   1511     for (unsigned i = 0; i != NumElts; ++i) {
   1512       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
   1513                                                                i*ElementSize));
   1514       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
   1515       if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
   1516         return false;
   1517     }
   1518     return true;
   1519   }
   1520 
   1521   if (!V->hasOneUse()) return false;
   1522 
   1523   Instruction *I = dyn_cast<Instruction>(V);
   1524   if (I == 0) return false;
   1525   switch (I->getOpcode()) {
   1526   default: return false; // Unhandled case.
   1527   case Instruction::BitCast:
   1528     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1529                                     Elements, VecEltTy);
   1530   case Instruction::ZExt:
   1531     if (!isMultipleOfTypeSize(
   1532                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
   1533                               VecEltTy))
   1534       return false;
   1535     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1536                                     Elements, VecEltTy);
   1537   case Instruction::Or:
   1538     return CollectInsertionElements(I->getOperand(0), ElementIndex,
   1539                                     Elements, VecEltTy) &&
   1540            CollectInsertionElements(I->getOperand(1), ElementIndex,
   1541                                     Elements, VecEltTy);
   1542   case Instruction::Shl: {
   1543     // Must be shifting by a constant that is a multiple of the element size.
   1544     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
   1545     if (CI == 0) return false;
   1546     if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
   1547     unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
   1548 
   1549     return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
   1550                                     Elements, VecEltTy);
   1551   }
   1552 
   1553   }
   1554 }
   1555 
   1556 
   1557 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
   1558 /// may be doing shifts and ors to assemble the elements of the vector manually.
   1559 /// Try to rip the code out and replace it with insertelements.  This is to
   1560 /// optimize code like this:
   1561 ///
   1562 ///    %tmp37 = bitcast float %inc to i32
   1563 ///    %tmp38 = zext i32 %tmp37 to i64
   1564 ///    %tmp31 = bitcast float %inc5 to i32
   1565 ///    %tmp32 = zext i32 %tmp31 to i64
   1566 ///    %tmp33 = shl i64 %tmp32, 32
   1567 ///    %ins35 = or i64 %tmp33, %tmp38
   1568 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
   1569 ///
   1570 /// Into two insertelements that do "buildvector{%inc, %inc5}".
   1571 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
   1572                                                 InstCombiner &IC) {
   1573   VectorType *DestVecTy = cast<VectorType>(CI.getType());
   1574   Value *IntInput = CI.getOperand(0);
   1575 
   1576   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
   1577   if (!CollectInsertionElements(IntInput, 0, Elements,
   1578                                 DestVecTy->getElementType()))
   1579     return 0;
   1580 
   1581   // If we succeeded, we know that all of the element are specified by Elements
   1582   // or are zero if Elements has a null entry.  Recast this as a set of
   1583   // insertions.
   1584   Value *Result = Constant::getNullValue(CI.getType());
   1585   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   1586     if (Elements[i] == 0) continue;  // Unset element.
   1587 
   1588     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
   1589                                              IC.Builder->getInt32(i));
   1590   }
   1591 
   1592   return Result;
   1593 }
   1594 
   1595 
   1596 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
   1597 /// bitcast.  The various long double bitcasts can't get in here.
   1598 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
   1599   Value *Src = CI.getOperand(0);
   1600   Type *DestTy = CI.getType();
   1601 
   1602   // If this is a bitcast from int to float, check to see if the int is an
   1603   // extraction from a vector.
   1604   Value *VecInput = 0;
   1605   // bitcast(trunc(bitcast(somevector)))
   1606   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
   1607       isa<VectorType>(VecInput->getType())) {
   1608     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1609     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1610 
   1611     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
   1612       // If the element type of the vector doesn't match the result type,
   1613       // bitcast it to be a vector type we can extract from.
   1614       if (VecTy->getElementType() != DestTy) {
   1615         VecTy = VectorType::get(DestTy,
   1616                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1617         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1618       }
   1619 
   1620       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
   1621     }
   1622   }
   1623 
   1624   // bitcast(trunc(lshr(bitcast(somevector), cst))
   1625   ConstantInt *ShAmt = 0;
   1626   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
   1627                                 m_ConstantInt(ShAmt)))) &&
   1628       isa<VectorType>(VecInput->getType())) {
   1629     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1630     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1631     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
   1632         ShAmt->getZExtValue() % DestWidth == 0) {
   1633       // If the element type of the vector doesn't match the result type,
   1634       // bitcast it to be a vector type we can extract from.
   1635       if (VecTy->getElementType() != DestTy) {
   1636         VecTy = VectorType::get(DestTy,
   1637                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1638         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1639       }
   1640 
   1641       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
   1642       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
   1643     }
   1644   }
   1645   return 0;
   1646 }
   1647 
   1648 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
   1649   // If the operands are integer typed then apply the integer transforms,
   1650   // otherwise just apply the common ones.
   1651   Value *Src = CI.getOperand(0);
   1652   Type *SrcTy = Src->getType();
   1653   Type *DestTy = CI.getType();
   1654 
   1655   // Get rid of casts from one type to the same type. These are useless and can
   1656   // be replaced by the operand.
   1657   if (DestTy == Src->getType())
   1658     return ReplaceInstUsesWith(CI, Src);
   1659 
   1660   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
   1661     PointerType *SrcPTy = cast<PointerType>(SrcTy);
   1662     Type *DstElTy = DstPTy->getElementType();
   1663     Type *SrcElTy = SrcPTy->getElementType();
   1664 
   1665     // If the address spaces don't match, don't eliminate the bitcast, which is
   1666     // required for changing types.
   1667     if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
   1668       return 0;
   1669 
   1670     // If we are casting a alloca to a pointer to a type of the same
   1671     // size, rewrite the allocation instruction to allocate the "right" type.
   1672     // There is no need to modify malloc calls because it is their bitcast that
   1673     // needs to be cleaned up.
   1674     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
   1675       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
   1676         return V;
   1677 
   1678     // If the source and destination are pointers, and this cast is equivalent
   1679     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
   1680     // This can enhance SROA and other transforms that want type-safe pointers.
   1681     Constant *ZeroUInt =
   1682       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
   1683     unsigned NumZeros = 0;
   1684     while (SrcElTy != DstElTy &&
   1685            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
   1686            SrcElTy->getNumContainedTypes() /* not "{}" */) {
   1687       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
   1688       ++NumZeros;
   1689     }
   1690 
   1691     // If we found a path from the src to dest, create the getelementptr now.
   1692     if (SrcElTy == DstElTy) {
   1693       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
   1694       return GetElementPtrInst::CreateInBounds(Src, Idxs);
   1695     }
   1696   }
   1697 
   1698   // Try to optimize int -> float bitcasts.
   1699   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
   1700     if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
   1701       return I;
   1702 
   1703   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
   1704     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
   1705       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
   1706       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
   1707                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1708       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
   1709     }
   1710 
   1711     if (isa<IntegerType>(SrcTy)) {
   1712       // If this is a cast from an integer to vector, check to see if the input
   1713       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
   1714       // the casts with a shuffle and (potentially) a bitcast.
   1715       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
   1716         CastInst *SrcCast = cast<CastInst>(Src);
   1717         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
   1718           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
   1719             if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
   1720                                                cast<VectorType>(DestTy), *this))
   1721               return I;
   1722       }
   1723 
   1724       // If the input is an 'or' instruction, we may be doing shifts and ors to
   1725       // assemble the elements of the vector manually.  Try to rip the code out
   1726       // and replace it with insertelements.
   1727       if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
   1728         return ReplaceInstUsesWith(CI, V);
   1729     }
   1730   }
   1731 
   1732   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
   1733     if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
   1734       Value *Elem =
   1735         Builder->CreateExtractElement(Src,
   1736                    Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1737       return CastInst::Create(Instruction::BitCast, Elem, DestTy);
   1738     }
   1739   }
   1740 
   1741   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
   1742     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
   1743     // a bitcast to a vector with the same # elts.
   1744     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
   1745         cast<VectorType>(DestTy)->getNumElements() ==
   1746               SVI->getType()->getNumElements() &&
   1747         SVI->getType()->getNumElements() ==
   1748           cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
   1749       BitCastInst *Tmp;
   1750       // If either of the operands is a cast from CI.getType(), then
   1751       // evaluating the shuffle in the casted destination's type will allow
   1752       // us to eliminate at least one cast.
   1753       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
   1754            Tmp->getOperand(0)->getType() == DestTy) ||
   1755           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
   1756            Tmp->getOperand(0)->getType() == DestTy)) {
   1757         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
   1758         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
   1759         // Return a new shuffle vector.  Use the same element ID's, as we
   1760         // know the vector types match #elts.
   1761         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
   1762       }
   1763     }
   1764   }
   1765 
   1766   if (SrcTy->isPointerTy())
   1767     return commonPointerCastTransforms(CI);
   1768   return commonCastTransforms(CI);
   1769 }
   1770