1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Target/TargetData.h" 17 #include "llvm/Support/PatternMatch.h" 18 using namespace llvm; 19 using namespace PatternMatch; 20 21 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear 22 /// expression. If so, decompose it, returning some value X, such that Val is 23 /// X*Scale+Offset. 24 /// 25 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 26 uint64_t &Offset) { 27 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 28 Offset = CI->getZExtValue(); 29 Scale = 0; 30 return ConstantInt::get(Val->getType(), 0); 31 } 32 33 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 34 // Cannot look past anything that might overflow. 35 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 36 if (OBI && !OBI->hasNoUnsignedWrap()) { 37 Scale = 1; 38 Offset = 0; 39 return Val; 40 } 41 42 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 43 if (I->getOpcode() == Instruction::Shl) { 44 // This is a value scaled by '1 << the shift amt'. 45 Scale = UINT64_C(1) << RHS->getZExtValue(); 46 Offset = 0; 47 return I->getOperand(0); 48 } 49 50 if (I->getOpcode() == Instruction::Mul) { 51 // This value is scaled by 'RHS'. 52 Scale = RHS->getZExtValue(); 53 Offset = 0; 54 return I->getOperand(0); 55 } 56 57 if (I->getOpcode() == Instruction::Add) { 58 // We have X+C. Check to see if we really have (X*C2)+C1, 59 // where C1 is divisible by C2. 60 unsigned SubScale; 61 Value *SubVal = 62 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 63 Offset += RHS->getZExtValue(); 64 Scale = SubScale; 65 return SubVal; 66 } 67 } 68 } 69 70 // Otherwise, we can't look past this. 71 Scale = 1; 72 Offset = 0; 73 return Val; 74 } 75 76 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, 77 /// try to eliminate the cast by moving the type information into the alloc. 78 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 79 AllocaInst &AI) { 80 // This requires TargetData to get the alloca alignment and size information. 81 if (!TD) return 0; 82 83 PointerType *PTy = cast<PointerType>(CI.getType()); 84 85 BuilderTy AllocaBuilder(*Builder); 86 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); 87 88 // Get the type really allocated and the type casted to. 89 Type *AllocElTy = AI.getAllocatedType(); 90 Type *CastElTy = PTy->getElementType(); 91 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0; 92 93 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy); 94 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy); 95 if (CastElTyAlign < AllocElTyAlign) return 0; 96 97 // If the allocation has multiple uses, only promote it if we are strictly 98 // increasing the alignment of the resultant allocation. If we keep it the 99 // same, we open the door to infinite loops of various kinds. 100 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0; 101 102 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy); 103 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy); 104 if (CastElTySize == 0 || AllocElTySize == 0) return 0; 105 106 // See if we can satisfy the modulus by pulling a scale out of the array 107 // size argument. 108 unsigned ArraySizeScale; 109 uint64_t ArrayOffset; 110 Value *NumElements = // See if the array size is a decomposable linear expr. 111 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 112 113 // If we can now satisfy the modulus, by using a non-1 scale, we really can 114 // do the xform. 115 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 116 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0; 117 118 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 119 Value *Amt = 0; 120 if (Scale == 1) { 121 Amt = NumElements; 122 } else { 123 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 124 // Insert before the alloca, not before the cast. 125 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 126 } 127 128 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 129 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 130 Offset, true); 131 Amt = AllocaBuilder.CreateAdd(Amt, Off); 132 } 133 134 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 135 New->setAlignment(AI.getAlignment()); 136 New->takeName(&AI); 137 138 // If the allocation has multiple real uses, insert a cast and change all 139 // things that used it to use the new cast. This will also hack on CI, but it 140 // will die soon. 141 if (!AI.hasOneUse()) { 142 // New is the allocation instruction, pointer typed. AI is the original 143 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 144 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 145 ReplaceInstUsesWith(AI, NewCast); 146 } 147 return ReplaceInstUsesWith(CI, New); 148 } 149 150 151 152 /// EvaluateInDifferentType - Given an expression that 153 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually 154 /// insert the code to evaluate the expression. 155 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 156 bool isSigned) { 157 if (Constant *C = dyn_cast<Constant>(V)) { 158 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 159 // If we got a constantexpr back, try to simplify it with TD info. 160 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 161 C = ConstantFoldConstantExpression(CE, TD); 162 return C; 163 } 164 165 // Otherwise, it must be an instruction. 166 Instruction *I = cast<Instruction>(V); 167 Instruction *Res = 0; 168 unsigned Opc = I->getOpcode(); 169 switch (Opc) { 170 case Instruction::Add: 171 case Instruction::Sub: 172 case Instruction::Mul: 173 case Instruction::And: 174 case Instruction::Or: 175 case Instruction::Xor: 176 case Instruction::AShr: 177 case Instruction::LShr: 178 case Instruction::Shl: 179 case Instruction::UDiv: 180 case Instruction::URem: { 181 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 182 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 183 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 184 break; 185 } 186 case Instruction::Trunc: 187 case Instruction::ZExt: 188 case Instruction::SExt: 189 // If the source type of the cast is the type we're trying for then we can 190 // just return the source. There's no need to insert it because it is not 191 // new. 192 if (I->getOperand(0)->getType() == Ty) 193 return I->getOperand(0); 194 195 // Otherwise, must be the same type of cast, so just reinsert a new one. 196 // This also handles the case of zext(trunc(x)) -> zext(x). 197 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 198 Opc == Instruction::SExt); 199 break; 200 case Instruction::Select: { 201 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 202 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 203 Res = SelectInst::Create(I->getOperand(0), True, False); 204 break; 205 } 206 case Instruction::PHI: { 207 PHINode *OPN = cast<PHINode>(I); 208 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 209 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 210 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 211 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 212 } 213 Res = NPN; 214 break; 215 } 216 default: 217 // TODO: Can handle more cases here. 218 llvm_unreachable("Unreachable!"); 219 break; 220 } 221 222 Res->takeName(I); 223 return InsertNewInstWith(Res, *I); 224 } 225 226 227 /// This function is a wrapper around CastInst::isEliminableCastPair. It 228 /// simply extracts arguments and returns what that function returns. 229 static Instruction::CastOps 230 isEliminableCastPair( 231 const CastInst *CI, ///< The first cast instruction 232 unsigned opcode, ///< The opcode of the second cast instruction 233 Type *DstTy, ///< The target type for the second cast instruction 234 TargetData *TD ///< The target data for pointer size 235 ) { 236 237 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 238 Type *MidTy = CI->getType(); // B from above 239 240 // Get the opcodes of the two Cast instructions 241 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 242 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 243 244 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 245 DstTy, 246 TD ? TD->getIntPtrType(CI->getContext()) : 0); 247 248 // We don't want to form an inttoptr or ptrtoint that converts to an integer 249 // type that differs from the pointer size. 250 if ((Res == Instruction::IntToPtr && 251 (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) || 252 (Res == Instruction::PtrToInt && 253 (!TD || DstTy != TD->getIntPtrType(CI->getContext())))) 254 Res = 0; 255 256 return Instruction::CastOps(Res); 257 } 258 259 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually 260 /// results in any code being generated and is interesting to optimize out. If 261 /// the cast can be eliminated by some other simple transformation, we prefer 262 /// to do the simplification first. 263 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 264 Type *Ty) { 265 // Noop casts and casts of constants should be eliminated trivially. 266 if (V->getType() == Ty || isa<Constant>(V)) return false; 267 268 // If this is another cast that can be eliminated, we prefer to have it 269 // eliminated. 270 if (const CastInst *CI = dyn_cast<CastInst>(V)) 271 if (isEliminableCastPair(CI, opc, Ty, TD)) 272 return false; 273 274 // If this is a vector sext from a compare, then we don't want to break the 275 // idiom where each element of the extended vector is either zero or all ones. 276 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 277 return false; 278 279 return true; 280 } 281 282 283 /// @brief Implement the transforms common to all CastInst visitors. 284 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 285 Value *Src = CI.getOperand(0); 286 287 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 288 // eliminate it now. 289 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 290 if (Instruction::CastOps opc = 291 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) { 292 // The first cast (CSrc) is eliminable so we need to fix up or replace 293 // the second cast (CI). CSrc will then have a good chance of being dead. 294 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 295 } 296 } 297 298 // If we are casting a select then fold the cast into the select 299 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 300 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 301 return NV; 302 303 // If we are casting a PHI then fold the cast into the PHI 304 if (isa<PHINode>(Src)) { 305 // We don't do this if this would create a PHI node with an illegal type if 306 // it is currently legal. 307 if (!Src->getType()->isIntegerTy() || 308 !CI.getType()->isIntegerTy() || 309 ShouldChangeType(CI.getType(), Src->getType())) 310 if (Instruction *NV = FoldOpIntoPhi(CI)) 311 return NV; 312 } 313 314 return 0; 315 } 316 317 /// CanEvaluateTruncated - Return true if we can evaluate the specified 318 /// expression tree as type Ty instead of its larger type, and arrive with the 319 /// same value. This is used by code that tries to eliminate truncates. 320 /// 321 /// Ty will always be a type smaller than V. We should return true if trunc(V) 322 /// can be computed by computing V in the smaller type. If V is an instruction, 323 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 324 /// makes sense if x and y can be efficiently truncated. 325 /// 326 /// This function works on both vectors and scalars. 327 /// 328 static bool CanEvaluateTruncated(Value *V, Type *Ty) { 329 // We can always evaluate constants in another type. 330 if (isa<Constant>(V)) 331 return true; 332 333 Instruction *I = dyn_cast<Instruction>(V); 334 if (!I) return false; 335 336 Type *OrigTy = V->getType(); 337 338 // If this is an extension from the dest type, we can eliminate it, even if it 339 // has multiple uses. 340 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 341 I->getOperand(0)->getType() == Ty) 342 return true; 343 344 // We can't extend or shrink something that has multiple uses: doing so would 345 // require duplicating the instruction in general, which isn't profitable. 346 if (!I->hasOneUse()) return false; 347 348 unsigned Opc = I->getOpcode(); 349 switch (Opc) { 350 case Instruction::Add: 351 case Instruction::Sub: 352 case Instruction::Mul: 353 case Instruction::And: 354 case Instruction::Or: 355 case Instruction::Xor: 356 // These operators can all arbitrarily be extended or truncated. 357 return CanEvaluateTruncated(I->getOperand(0), Ty) && 358 CanEvaluateTruncated(I->getOperand(1), Ty); 359 360 case Instruction::UDiv: 361 case Instruction::URem: { 362 // UDiv and URem can be truncated if all the truncated bits are zero. 363 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 364 uint32_t BitWidth = Ty->getScalarSizeInBits(); 365 if (BitWidth < OrigBitWidth) { 366 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 367 if (MaskedValueIsZero(I->getOperand(0), Mask) && 368 MaskedValueIsZero(I->getOperand(1), Mask)) { 369 return CanEvaluateTruncated(I->getOperand(0), Ty) && 370 CanEvaluateTruncated(I->getOperand(1), Ty); 371 } 372 } 373 break; 374 } 375 case Instruction::Shl: 376 // If we are truncating the result of this SHL, and if it's a shift of a 377 // constant amount, we can always perform a SHL in a smaller type. 378 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 379 uint32_t BitWidth = Ty->getScalarSizeInBits(); 380 if (CI->getLimitedValue(BitWidth) < BitWidth) 381 return CanEvaluateTruncated(I->getOperand(0), Ty); 382 } 383 break; 384 case Instruction::LShr: 385 // If this is a truncate of a logical shr, we can truncate it to a smaller 386 // lshr iff we know that the bits we would otherwise be shifting in are 387 // already zeros. 388 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 389 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 390 uint32_t BitWidth = Ty->getScalarSizeInBits(); 391 if (MaskedValueIsZero(I->getOperand(0), 392 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && 393 CI->getLimitedValue(BitWidth) < BitWidth) { 394 return CanEvaluateTruncated(I->getOperand(0), Ty); 395 } 396 } 397 break; 398 case Instruction::Trunc: 399 // trunc(trunc(x)) -> trunc(x) 400 return true; 401 case Instruction::ZExt: 402 case Instruction::SExt: 403 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 404 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 405 return true; 406 case Instruction::Select: { 407 SelectInst *SI = cast<SelectInst>(I); 408 return CanEvaluateTruncated(SI->getTrueValue(), Ty) && 409 CanEvaluateTruncated(SI->getFalseValue(), Ty); 410 } 411 case Instruction::PHI: { 412 // We can change a phi if we can change all operands. Note that we never 413 // get into trouble with cyclic PHIs here because we only consider 414 // instructions with a single use. 415 PHINode *PN = cast<PHINode>(I); 416 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 417 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty)) 418 return false; 419 return true; 420 } 421 default: 422 // TODO: Can handle more cases here. 423 break; 424 } 425 426 return false; 427 } 428 429 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 430 if (Instruction *Result = commonCastTransforms(CI)) 431 return Result; 432 433 // See if we can simplify any instructions used by the input whose sole 434 // purpose is to compute bits we don't care about. 435 if (SimplifyDemandedInstructionBits(CI)) 436 return &CI; 437 438 Value *Src = CI.getOperand(0); 439 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 440 441 // Attempt to truncate the entire input expression tree to the destination 442 // type. Only do this if the dest type is a simple type, don't convert the 443 // expression tree to something weird like i93 unless the source is also 444 // strange. 445 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 446 CanEvaluateTruncated(Src, DestTy)) { 447 448 // If this cast is a truncate, evaluting in a different type always 449 // eliminates the cast, so it is always a win. 450 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 451 " to avoid cast: " << CI << '\n'); 452 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 453 assert(Res->getType() == DestTy); 454 return ReplaceInstUsesWith(CI, Res); 455 } 456 457 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 458 if (DestTy->getScalarSizeInBits() == 1) { 459 Constant *One = ConstantInt::get(Src->getType(), 1); 460 Src = Builder->CreateAnd(Src, One); 461 Value *Zero = Constant::getNullValue(Src->getType()); 462 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 463 } 464 465 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 466 Value *A = 0; ConstantInt *Cst = 0; 467 if (Src->hasOneUse() && 468 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 469 // We have three types to worry about here, the type of A, the source of 470 // the truncate (MidSize), and the destination of the truncate. We know that 471 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 472 // between ASize and ResultSize. 473 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 474 475 // If the shift amount is larger than the size of A, then the result is 476 // known to be zero because all the input bits got shifted out. 477 if (Cst->getZExtValue() >= ASize) 478 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType())); 479 480 // Since we're doing an lshr and a zero extend, and know that the shift 481 // amount is smaller than ASize, it is always safe to do the shift in A's 482 // type, then zero extend or truncate to the result. 483 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 484 Shift->takeName(Src); 485 return CastInst::CreateIntegerCast(Shift, CI.getType(), false); 486 } 487 488 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 489 // type isn't non-native. 490 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && 491 ShouldChangeType(Src->getType(), CI.getType()) && 492 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 493 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr"); 494 return BinaryOperator::CreateAnd(NewTrunc, 495 ConstantExpr::getTrunc(Cst, CI.getType())); 496 } 497 498 return 0; 499 } 500 501 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations 502 /// in order to eliminate the icmp. 503 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 504 bool DoXform) { 505 // If we are just checking for a icmp eq of a single bit and zext'ing it 506 // to an integer, then shift the bit to the appropriate place and then 507 // cast to integer to avoid the comparison. 508 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 509 const APInt &Op1CV = Op1C->getValue(); 510 511 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 512 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 513 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 514 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { 515 if (!DoXform) return ICI; 516 517 Value *In = ICI->getOperand(0); 518 Value *Sh = ConstantInt::get(In->getType(), 519 In->getType()->getScalarSizeInBits()-1); 520 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); 521 if (In->getType() != CI.getType()) 522 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 523 524 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 525 Constant *One = ConstantInt::get(In->getType(), 1); 526 In = Builder->CreateXor(In, One, In->getName()+".not"); 527 } 528 529 return ReplaceInstUsesWith(CI, In); 530 } 531 532 533 534 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 535 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 536 // zext (X == 1) to i32 --> X iff X has only the low bit set. 537 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 538 // zext (X != 0) to i32 --> X iff X has only the low bit set. 539 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 540 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 541 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 542 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 543 // This only works for EQ and NE 544 ICI->isEquality()) { 545 // If Op1C some other power of two, convert: 546 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 547 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 548 APInt TypeMask(APInt::getAllOnesValue(BitWidth)); 549 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne); 550 551 APInt KnownZeroMask(~KnownZero); 552 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 553 if (!DoXform) return ICI; 554 555 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 556 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 557 // (X&4) == 2 --> false 558 // (X&4) != 2 --> true 559 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 560 isNE); 561 Res = ConstantExpr::getZExt(Res, CI.getType()); 562 return ReplaceInstUsesWith(CI, Res); 563 } 564 565 uint32_t ShiftAmt = KnownZeroMask.logBase2(); 566 Value *In = ICI->getOperand(0); 567 if (ShiftAmt) { 568 // Perform a logical shr by shiftamt. 569 // Insert the shift to put the result in the low bit. 570 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), 571 In->getName()+".lobit"); 572 } 573 574 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 575 Constant *One = ConstantInt::get(In->getType(), 1); 576 In = Builder->CreateXor(In, One); 577 } 578 579 if (CI.getType() == In->getType()) 580 return ReplaceInstUsesWith(CI, In); 581 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 582 } 583 } 584 } 585 586 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 587 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 588 // may lead to additional simplifications. 589 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 590 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 591 uint32_t BitWidth = ITy->getBitWidth(); 592 Value *LHS = ICI->getOperand(0); 593 Value *RHS = ICI->getOperand(1); 594 595 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 596 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 597 APInt TypeMask(APInt::getAllOnesValue(BitWidth)); 598 ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS); 599 ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS); 600 601 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 602 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 603 APInt UnknownBit = ~KnownBits; 604 if (UnknownBit.countPopulation() == 1) { 605 if (!DoXform) return ICI; 606 607 Value *Result = Builder->CreateXor(LHS, RHS); 608 609 // Mask off any bits that are set and won't be shifted away. 610 if (KnownOneLHS.uge(UnknownBit)) 611 Result = Builder->CreateAnd(Result, 612 ConstantInt::get(ITy, UnknownBit)); 613 614 // Shift the bit we're testing down to the lsb. 615 Result = Builder->CreateLShr( 616 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 617 618 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 619 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 620 Result->takeName(ICI); 621 return ReplaceInstUsesWith(CI, Result); 622 } 623 } 624 } 625 } 626 627 return 0; 628 } 629 630 /// CanEvaluateZExtd - Determine if the specified value can be computed in the 631 /// specified wider type and produce the same low bits. If not, return false. 632 /// 633 /// If this function returns true, it can also return a non-zero number of bits 634 /// (in BitsToClear) which indicates that the value it computes is correct for 635 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 636 /// out. For example, to promote something like: 637 /// 638 /// %B = trunc i64 %A to i32 639 /// %C = lshr i32 %B, 8 640 /// %E = zext i32 %C to i64 641 /// 642 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 643 /// set to 8 to indicate that the promoted value needs to have bits 24-31 644 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 645 /// clear the top bits anyway, doing this has no extra cost. 646 /// 647 /// This function works on both vectors and scalars. 648 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { 649 BitsToClear = 0; 650 if (isa<Constant>(V)) 651 return true; 652 653 Instruction *I = dyn_cast<Instruction>(V); 654 if (!I) return false; 655 656 // If the input is a truncate from the destination type, we can trivially 657 // eliminate it, even if it has multiple uses. 658 // FIXME: This is currently disabled until codegen can handle this without 659 // pessimizing code, PR5997. 660 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 661 return true; 662 663 // We can't extend or shrink something that has multiple uses: doing so would 664 // require duplicating the instruction in general, which isn't profitable. 665 if (!I->hasOneUse()) return false; 666 667 unsigned Opc = I->getOpcode(), Tmp; 668 switch (Opc) { 669 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 670 case Instruction::SExt: // zext(sext(x)) -> sext(x). 671 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 672 return true; 673 case Instruction::And: 674 case Instruction::Or: 675 case Instruction::Xor: 676 case Instruction::Add: 677 case Instruction::Sub: 678 case Instruction::Mul: 679 case Instruction::Shl: 680 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) || 681 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp)) 682 return false; 683 // These can all be promoted if neither operand has 'bits to clear'. 684 if (BitsToClear == 0 && Tmp == 0) 685 return true; 686 687 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 688 // other side, BitsToClear is ok. 689 if (Tmp == 0 && 690 (Opc == Instruction::And || Opc == Instruction::Or || 691 Opc == Instruction::Xor)) { 692 // We use MaskedValueIsZero here for generality, but the case we care 693 // about the most is constant RHS. 694 unsigned VSize = V->getType()->getScalarSizeInBits(); 695 if (MaskedValueIsZero(I->getOperand(1), 696 APInt::getHighBitsSet(VSize, BitsToClear))) 697 return true; 698 } 699 700 // Otherwise, we don't know how to analyze this BitsToClear case yet. 701 return false; 702 703 case Instruction::LShr: 704 // We can promote lshr(x, cst) if we can promote x. This requires the 705 // ultimate 'and' to clear out the high zero bits we're clearing out though. 706 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 707 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) 708 return false; 709 BitsToClear += Amt->getZExtValue(); 710 if (BitsToClear > V->getType()->getScalarSizeInBits()) 711 BitsToClear = V->getType()->getScalarSizeInBits(); 712 return true; 713 } 714 // Cannot promote variable LSHR. 715 return false; 716 case Instruction::Select: 717 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) || 718 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) || 719 // TODO: If important, we could handle the case when the BitsToClear are 720 // known zero in the disagreeing side. 721 Tmp != BitsToClear) 722 return false; 723 return true; 724 725 case Instruction::PHI: { 726 // We can change a phi if we can change all operands. Note that we never 727 // get into trouble with cyclic PHIs here because we only consider 728 // instructions with a single use. 729 PHINode *PN = cast<PHINode>(I); 730 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear)) 731 return false; 732 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 733 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) || 734 // TODO: If important, we could handle the case when the BitsToClear 735 // are known zero in the disagreeing input. 736 Tmp != BitsToClear) 737 return false; 738 return true; 739 } 740 default: 741 // TODO: Can handle more cases here. 742 return false; 743 } 744 } 745 746 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 747 // If this zero extend is only used by a truncate, let the truncate by 748 // eliminated before we try to optimize this zext. 749 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) 750 return 0; 751 752 // If one of the common conversion will work, do it. 753 if (Instruction *Result = commonCastTransforms(CI)) 754 return Result; 755 756 // See if we can simplify any instructions used by the input whose sole 757 // purpose is to compute bits we don't care about. 758 if (SimplifyDemandedInstructionBits(CI)) 759 return &CI; 760 761 Value *Src = CI.getOperand(0); 762 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 763 764 // Attempt to extend the entire input expression tree to the destination 765 // type. Only do this if the dest type is a simple type, don't convert the 766 // expression tree to something weird like i93 unless the source is also 767 // strange. 768 unsigned BitsToClear; 769 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 770 CanEvaluateZExtd(Src, DestTy, BitsToClear)) { 771 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 772 "Unreasonable BitsToClear"); 773 774 // Okay, we can transform this! Insert the new expression now. 775 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 776 " to avoid zero extend: " << CI); 777 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 778 assert(Res->getType() == DestTy); 779 780 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 781 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 782 783 // If the high bits are already filled with zeros, just replace this 784 // cast with the result. 785 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, 786 DestBitSize-SrcBitsKept))) 787 return ReplaceInstUsesWith(CI, Res); 788 789 // We need to emit an AND to clear the high bits. 790 Constant *C = ConstantInt::get(Res->getType(), 791 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 792 return BinaryOperator::CreateAnd(Res, C); 793 } 794 795 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 796 // types and if the sizes are just right we can convert this into a logical 797 // 'and' which will be much cheaper than the pair of casts. 798 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 799 // TODO: Subsume this into EvaluateInDifferentType. 800 801 // Get the sizes of the types involved. We know that the intermediate type 802 // will be smaller than A or C, but don't know the relation between A and C. 803 Value *A = CSrc->getOperand(0); 804 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 805 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 806 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 807 // If we're actually extending zero bits, then if 808 // SrcSize < DstSize: zext(a & mask) 809 // SrcSize == DstSize: a & mask 810 // SrcSize > DstSize: trunc(a) & mask 811 if (SrcSize < DstSize) { 812 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 813 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 814 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 815 return new ZExtInst(And, CI.getType()); 816 } 817 818 if (SrcSize == DstSize) { 819 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 820 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 821 AndValue)); 822 } 823 if (SrcSize > DstSize) { 824 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 825 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 826 return BinaryOperator::CreateAnd(Trunc, 827 ConstantInt::get(Trunc->getType(), 828 AndValue)); 829 } 830 } 831 832 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 833 return transformZExtICmp(ICI, CI); 834 835 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 836 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 837 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 838 // of the (zext icmp) will be transformed. 839 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 840 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 841 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 842 (transformZExtICmp(LHS, CI, false) || 843 transformZExtICmp(RHS, CI, false))) { 844 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 845 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 846 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 847 } 848 } 849 850 // zext(trunc(t) & C) -> (t & zext(C)). 851 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse()) 852 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) 853 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) { 854 Value *TI0 = TI->getOperand(0); 855 if (TI0->getType() == CI.getType()) 856 return 857 BinaryOperator::CreateAnd(TI0, 858 ConstantExpr::getZExt(C, CI.getType())); 859 } 860 861 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)). 862 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse()) 863 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1))) 864 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0))) 865 if (And->getOpcode() == Instruction::And && And->hasOneUse() && 866 And->getOperand(1) == C) 867 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) { 868 Value *TI0 = TI->getOperand(0); 869 if (TI0->getType() == CI.getType()) { 870 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 871 Value *NewAnd = Builder->CreateAnd(TI0, ZC); 872 return BinaryOperator::CreateXor(NewAnd, ZC); 873 } 874 } 875 876 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 877 Value *X; 878 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) && 879 match(SrcI, m_Not(m_Value(X))) && 880 (!X->hasOneUse() || !isa<CmpInst>(X))) { 881 Value *New = Builder->CreateZExt(X, CI.getType()); 882 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 883 } 884 885 return 0; 886 } 887 888 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations 889 /// in order to eliminate the icmp. 890 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 891 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 892 ICmpInst::Predicate Pred = ICI->getPredicate(); 893 894 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 895 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 896 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 897 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) || 898 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 899 900 Value *Sh = ConstantInt::get(Op0->getType(), 901 Op0->getType()->getScalarSizeInBits()-1); 902 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 903 if (In->getType() != CI.getType()) 904 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 905 906 if (Pred == ICmpInst::ICMP_SGT) 907 In = Builder->CreateNot(In, In->getName()+".not"); 908 return ReplaceInstUsesWith(CI, In); 909 } 910 911 // If we know that only one bit of the LHS of the icmp can be set and we 912 // have an equality comparison with zero or a power of 2, we can transform 913 // the icmp and sext into bitwise/integer operations. 914 if (ICI->hasOneUse() && 915 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 916 unsigned BitWidth = Op1C->getType()->getBitWidth(); 917 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 918 APInt TypeMask(APInt::getAllOnesValue(BitWidth)); 919 ComputeMaskedBits(Op0, TypeMask, KnownZero, KnownOne); 920 921 APInt KnownZeroMask(~KnownZero); 922 if (KnownZeroMask.isPowerOf2()) { 923 Value *In = ICI->getOperand(0); 924 925 // If the icmp tests for a known zero bit we can constant fold it. 926 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 927 Value *V = Pred == ICmpInst::ICMP_NE ? 928 ConstantInt::getAllOnesValue(CI.getType()) : 929 ConstantInt::getNullValue(CI.getType()); 930 return ReplaceInstUsesWith(CI, V); 931 } 932 933 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 934 // sext ((x & 2^n) == 0) -> (x >> n) - 1 935 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 936 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 937 // Perform a right shift to place the desired bit in the LSB. 938 if (ShiftAmt) 939 In = Builder->CreateLShr(In, 940 ConstantInt::get(In->getType(), ShiftAmt)); 941 942 // At this point "In" is either 1 or 0. Subtract 1 to turn 943 // {1, 0} -> {0, -1}. 944 In = Builder->CreateAdd(In, 945 ConstantInt::getAllOnesValue(In->getType()), 946 "sext"); 947 } else { 948 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 949 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 950 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 951 // Perform a left shift to place the desired bit in the MSB. 952 if (ShiftAmt) 953 In = Builder->CreateShl(In, 954 ConstantInt::get(In->getType(), ShiftAmt)); 955 956 // Distribute the bit over the whole bit width. 957 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 958 BitWidth - 1), "sext"); 959 } 960 961 if (CI.getType() == In->getType()) 962 return ReplaceInstUsesWith(CI, In); 963 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 964 } 965 } 966 } 967 968 // vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed. 969 if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) { 970 if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) && 971 Op0->getType() == CI.getType()) { 972 Type *EltTy = VTy->getElementType(); 973 974 // splat the shift constant to a constant vector. 975 Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1); 976 Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit"); 977 return ReplaceInstUsesWith(CI, In); 978 } 979 } 980 981 return 0; 982 } 983 984 /// CanEvaluateSExtd - Return true if we can take the specified value 985 /// and return it as type Ty without inserting any new casts and without 986 /// changing the value of the common low bits. This is used by code that tries 987 /// to promote integer operations to a wider types will allow us to eliminate 988 /// the extension. 989 /// 990 /// This function works on both vectors and scalars. 991 /// 992 static bool CanEvaluateSExtd(Value *V, Type *Ty) { 993 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 994 "Can't sign extend type to a smaller type"); 995 // If this is a constant, it can be trivially promoted. 996 if (isa<Constant>(V)) 997 return true; 998 999 Instruction *I = dyn_cast<Instruction>(V); 1000 if (!I) return false; 1001 1002 // If this is a truncate from the dest type, we can trivially eliminate it, 1003 // even if it has multiple uses. 1004 // FIXME: This is currently disabled until codegen can handle this without 1005 // pessimizing code, PR5997. 1006 if (0 && isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 1007 return true; 1008 1009 // We can't extend or shrink something that has multiple uses: doing so would 1010 // require duplicating the instruction in general, which isn't profitable. 1011 if (!I->hasOneUse()) return false; 1012 1013 switch (I->getOpcode()) { 1014 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1015 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1016 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1017 return true; 1018 case Instruction::And: 1019 case Instruction::Or: 1020 case Instruction::Xor: 1021 case Instruction::Add: 1022 case Instruction::Sub: 1023 case Instruction::Mul: 1024 // These operators can all arbitrarily be extended if their inputs can. 1025 return CanEvaluateSExtd(I->getOperand(0), Ty) && 1026 CanEvaluateSExtd(I->getOperand(1), Ty); 1027 1028 //case Instruction::Shl: TODO 1029 //case Instruction::LShr: TODO 1030 1031 case Instruction::Select: 1032 return CanEvaluateSExtd(I->getOperand(1), Ty) && 1033 CanEvaluateSExtd(I->getOperand(2), Ty); 1034 1035 case Instruction::PHI: { 1036 // We can change a phi if we can change all operands. Note that we never 1037 // get into trouble with cyclic PHIs here because we only consider 1038 // instructions with a single use. 1039 PHINode *PN = cast<PHINode>(I); 1040 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1041 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false; 1042 return true; 1043 } 1044 default: 1045 // TODO: Can handle more cases here. 1046 break; 1047 } 1048 1049 return false; 1050 } 1051 1052 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1053 // If this sign extend is only used by a truncate, let the truncate by 1054 // eliminated before we try to optimize this zext. 1055 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back())) 1056 return 0; 1057 1058 if (Instruction *I = commonCastTransforms(CI)) 1059 return I; 1060 1061 // See if we can simplify any instructions used by the input whose sole 1062 // purpose is to compute bits we don't care about. 1063 if (SimplifyDemandedInstructionBits(CI)) 1064 return &CI; 1065 1066 Value *Src = CI.getOperand(0); 1067 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1068 1069 // Attempt to extend the entire input expression tree to the destination 1070 // type. Only do this if the dest type is a simple type, don't convert the 1071 // expression tree to something weird like i93 unless the source is also 1072 // strange. 1073 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1074 CanEvaluateSExtd(Src, DestTy)) { 1075 // Okay, we can transform this! Insert the new expression now. 1076 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1077 " to avoid sign extend: " << CI); 1078 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1079 assert(Res->getType() == DestTy); 1080 1081 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1082 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1083 1084 // If the high bits are already filled with sign bit, just replace this 1085 // cast with the result. 1086 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) 1087 return ReplaceInstUsesWith(CI, Res); 1088 1089 // We need to emit a shl + ashr to do the sign extend. 1090 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1091 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1092 ShAmt); 1093 } 1094 1095 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1096 // into shifts. 1097 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1098 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1099 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1100 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1101 1102 // We need to emit a shl + ashr to do the sign extend. 1103 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1104 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1105 return BinaryOperator::CreateAShr(Res, ShAmt); 1106 } 1107 1108 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1109 return transformSExtICmp(ICI, CI); 1110 1111 // If the input is a shl/ashr pair of a same constant, then this is a sign 1112 // extension from a smaller value. If we could trust arbitrary bitwidth 1113 // integers, we could turn this into a truncate to the smaller bit and then 1114 // use a sext for the whole extension. Since we don't, look deeper and check 1115 // for a truncate. If the source and dest are the same type, eliminate the 1116 // trunc and extend and just do shifts. For example, turn: 1117 // %a = trunc i32 %i to i8 1118 // %b = shl i8 %a, 6 1119 // %c = ashr i8 %b, 6 1120 // %d = sext i8 %c to i32 1121 // into: 1122 // %a = shl i32 %i, 30 1123 // %d = ashr i32 %a, 30 1124 Value *A = 0; 1125 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1126 ConstantInt *BA = 0, *CA = 0; 1127 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1128 m_ConstantInt(CA))) && 1129 BA == CA && A->getType() == CI.getType()) { 1130 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1131 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1132 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1133 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1134 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1135 return BinaryOperator::CreateAShr(A, ShAmtV); 1136 } 1137 1138 return 0; 1139 } 1140 1141 1142 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits 1143 /// in the specified FP type without changing its value. 1144 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1145 bool losesInfo; 1146 APFloat F = CFP->getValueAPF(); 1147 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1148 if (!losesInfo) 1149 return ConstantFP::get(CFP->getContext(), F); 1150 return 0; 1151 } 1152 1153 /// LookThroughFPExtensions - If this is an fp extension instruction, look 1154 /// through it until we get the source value. 1155 static Value *LookThroughFPExtensions(Value *V) { 1156 if (Instruction *I = dyn_cast<Instruction>(V)) 1157 if (I->getOpcode() == Instruction::FPExt) 1158 return LookThroughFPExtensions(I->getOperand(0)); 1159 1160 // If this value is a constant, return the constant in the smallest FP type 1161 // that can accurately represent it. This allows us to turn 1162 // (float)((double)X+2.0) into x+2.0f. 1163 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1164 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1165 return V; // No constant folding of this. 1166 // See if the value can be truncated to float and then reextended. 1167 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) 1168 return V; 1169 if (CFP->getType()->isDoubleTy()) 1170 return V; // Won't shrink. 1171 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) 1172 return V; 1173 // Don't try to shrink to various long double types. 1174 } 1175 1176 return V; 1177 } 1178 1179 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1180 if (Instruction *I = commonCastTransforms(CI)) 1181 return I; 1182 1183 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are 1184 // smaller than the destination type, we can eliminate the truncate by doing 1185 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well 1186 // as many builtins (sqrt, etc). 1187 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1188 if (OpI && OpI->hasOneUse()) { 1189 switch (OpI->getOpcode()) { 1190 default: break; 1191 case Instruction::FAdd: 1192 case Instruction::FSub: 1193 case Instruction::FMul: 1194 case Instruction::FDiv: 1195 case Instruction::FRem: 1196 Type *SrcTy = OpI->getType(); 1197 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0)); 1198 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1)); 1199 if (LHSTrunc->getType() != SrcTy && 1200 RHSTrunc->getType() != SrcTy) { 1201 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 1202 // If the source types were both smaller than the destination type of 1203 // the cast, do this xform. 1204 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize && 1205 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) { 1206 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType()); 1207 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType()); 1208 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc); 1209 } 1210 } 1211 break; 1212 } 1213 } 1214 1215 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) 1216 // NOTE: This should be disabled by -fno-builtin-sqrt if we ever support it. 1217 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); 1218 if (Call && Call->getCalledFunction() && 1219 Call->getCalledFunction()->getName() == "sqrt" && 1220 Call->getNumArgOperands() == 1 && 1221 Call->hasOneUse()) { 1222 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0)); 1223 if (Arg && Arg->getOpcode() == Instruction::FPExt && 1224 CI.getType()->isFloatTy() && 1225 Call->getType()->isDoubleTy() && 1226 Arg->getType()->isDoubleTy() && 1227 Arg->getOperand(0)->getType()->isFloatTy()) { 1228 Function *Callee = Call->getCalledFunction(); 1229 Module *M = CI.getParent()->getParent()->getParent(); 1230 Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf", 1231 Callee->getAttributes(), 1232 Builder->getFloatTy(), 1233 Builder->getFloatTy(), 1234 NULL); 1235 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), 1236 "sqrtfcall"); 1237 ret->setAttributes(Callee->getAttributes()); 1238 1239 1240 // Remove the old Call. With -fmath-errno, it won't get marked readnone. 1241 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); 1242 EraseInstFromFunction(*Call); 1243 return ret; 1244 } 1245 } 1246 1247 return 0; 1248 } 1249 1250 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1251 return commonCastTransforms(CI); 1252 } 1253 1254 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1255 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1256 if (OpI == 0) 1257 return commonCastTransforms(FI); 1258 1259 // fptoui(uitofp(X)) --> X 1260 // fptoui(sitofp(X)) --> X 1261 // This is safe if the intermediate type has enough bits in its mantissa to 1262 // accurately represent all values of X. For example, do not do this with 1263 // i64->float->i64. This is also safe for sitofp case, because any negative 1264 // 'X' value would cause an undefined result for the fptoui. 1265 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1266 OpI->getOperand(0)->getType() == FI.getType() && 1267 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ 1268 OpI->getType()->getFPMantissaWidth()) 1269 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1270 1271 return commonCastTransforms(FI); 1272 } 1273 1274 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1275 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1276 if (OpI == 0) 1277 return commonCastTransforms(FI); 1278 1279 // fptosi(sitofp(X)) --> X 1280 // fptosi(uitofp(X)) --> X 1281 // This is safe if the intermediate type has enough bits in its mantissa to 1282 // accurately represent all values of X. For example, do not do this with 1283 // i64->float->i64. This is also safe for sitofp case, because any negative 1284 // 'X' value would cause an undefined result for the fptoui. 1285 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1286 OpI->getOperand(0)->getType() == FI.getType() && 1287 (int)FI.getType()->getScalarSizeInBits() <= 1288 OpI->getType()->getFPMantissaWidth()) 1289 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1290 1291 return commonCastTransforms(FI); 1292 } 1293 1294 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1295 return commonCastTransforms(CI); 1296 } 1297 1298 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1299 return commonCastTransforms(CI); 1300 } 1301 1302 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1303 // If the source integer type is not the intptr_t type for this target, do a 1304 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1305 // cast to be exposed to other transforms. 1306 if (TD) { 1307 if (CI.getOperand(0)->getType()->getScalarSizeInBits() > 1308 TD->getPointerSizeInBits()) { 1309 Value *P = Builder->CreateTrunc(CI.getOperand(0), 1310 TD->getIntPtrType(CI.getContext())); 1311 return new IntToPtrInst(P, CI.getType()); 1312 } 1313 if (CI.getOperand(0)->getType()->getScalarSizeInBits() < 1314 TD->getPointerSizeInBits()) { 1315 Value *P = Builder->CreateZExt(CI.getOperand(0), 1316 TD->getIntPtrType(CI.getContext())); 1317 return new IntToPtrInst(P, CI.getType()); 1318 } 1319 } 1320 1321 if (Instruction *I = commonCastTransforms(CI)) 1322 return I; 1323 1324 return 0; 1325 } 1326 1327 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1328 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1329 Value *Src = CI.getOperand(0); 1330 1331 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1332 // If casting the result of a getelementptr instruction with no offset, turn 1333 // this into a cast of the original pointer! 1334 if (GEP->hasAllZeroIndices()) { 1335 // Changing the cast operand is usually not a good idea but it is safe 1336 // here because the pointer operand is being replaced with another 1337 // pointer operand so the opcode doesn't need to change. 1338 Worklist.Add(GEP); 1339 CI.setOperand(0, GEP->getOperand(0)); 1340 return &CI; 1341 } 1342 1343 // If the GEP has a single use, and the base pointer is a bitcast, and the 1344 // GEP computes a constant offset, see if we can convert these three 1345 // instructions into fewer. This typically happens with unions and other 1346 // non-type-safe code. 1347 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) && 1348 GEP->hasAllConstantIndices()) { 1349 // We are guaranteed to get a constant from EmitGEPOffset. 1350 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP)); 1351 int64_t Offset = OffsetV->getSExtValue(); 1352 1353 // Get the base pointer input of the bitcast, and the type it points to. 1354 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0); 1355 Type *GEPIdxTy = 1356 cast<PointerType>(OrigBase->getType())->getElementType(); 1357 SmallVector<Value*, 8> NewIndices; 1358 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) { 1359 // If we were able to index down into an element, create the GEP 1360 // and bitcast the result. This eliminates one bitcast, potentially 1361 // two. 1362 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? 1363 Builder->CreateInBoundsGEP(OrigBase, NewIndices) : 1364 Builder->CreateGEP(OrigBase, NewIndices); 1365 NGEP->takeName(GEP); 1366 1367 if (isa<BitCastInst>(CI)) 1368 return new BitCastInst(NGEP, CI.getType()); 1369 assert(isa<PtrToIntInst>(CI)); 1370 return new PtrToIntInst(NGEP, CI.getType()); 1371 } 1372 } 1373 } 1374 1375 return commonCastTransforms(CI); 1376 } 1377 1378 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1379 // If the destination integer type is not the intptr_t type for this target, 1380 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1381 // to be exposed to other transforms. 1382 if (TD) { 1383 if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) { 1384 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), 1385 TD->getIntPtrType(CI.getContext())); 1386 return new TruncInst(P, CI.getType()); 1387 } 1388 if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) { 1389 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), 1390 TD->getIntPtrType(CI.getContext())); 1391 return new ZExtInst(P, CI.getType()); 1392 } 1393 } 1394 1395 return commonPointerCastTransforms(CI); 1396 } 1397 1398 /// OptimizeVectorResize - This input value (which is known to have vector type) 1399 /// is being zero extended or truncated to the specified vector type. Try to 1400 /// replace it with a shuffle (and vector/vector bitcast) if possible. 1401 /// 1402 /// The source and destination vector types may have different element types. 1403 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, 1404 InstCombiner &IC) { 1405 // We can only do this optimization if the output is a multiple of the input 1406 // element size, or the input is a multiple of the output element size. 1407 // Convert the input type to have the same element type as the output. 1408 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1409 1410 if (SrcTy->getElementType() != DestTy->getElementType()) { 1411 // The input types don't need to be identical, but for now they must be the 1412 // same size. There is no specific reason we couldn't handle things like 1413 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1414 // there yet. 1415 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1416 DestTy->getElementType()->getPrimitiveSizeInBits()) 1417 return 0; 1418 1419 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1420 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1421 } 1422 1423 // Now that the element types match, get the shuffle mask and RHS of the 1424 // shuffle to use, which depends on whether we're increasing or decreasing the 1425 // size of the input. 1426 SmallVector<Constant*, 16> ShuffleMask; 1427 Value *V2; 1428 IntegerType *Int32Ty = Type::getInt32Ty(SrcTy->getContext()); 1429 1430 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1431 // If we're shrinking the number of elements, just shuffle in the low 1432 // elements from the input and use undef as the second shuffle input. 1433 V2 = UndefValue::get(SrcTy); 1434 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1435 ShuffleMask.push_back(ConstantInt::get(Int32Ty, i)); 1436 1437 } else { 1438 // If we're increasing the number of elements, shuffle in all of the 1439 // elements from InVal and fill the rest of the result elements with zeros 1440 // from a constant zero. 1441 V2 = Constant::getNullValue(SrcTy); 1442 unsigned SrcElts = SrcTy->getNumElements(); 1443 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1444 ShuffleMask.push_back(ConstantInt::get(Int32Ty, i)); 1445 1446 // The excess elements reference the first element of the zero input. 1447 ShuffleMask.append(DestTy->getNumElements()-SrcElts, 1448 ConstantInt::get(Int32Ty, SrcElts)); 1449 } 1450 1451 return new ShuffleVectorInst(InVal, V2, ConstantVector::get(ShuffleMask)); 1452 } 1453 1454 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1455 return Value % Ty->getPrimitiveSizeInBits() == 0; 1456 } 1457 1458 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1459 return Value / Ty->getPrimitiveSizeInBits(); 1460 } 1461 1462 /// CollectInsertionElements - V is a value which is inserted into a vector of 1463 /// VecEltTy. Look through the value to see if we can decompose it into 1464 /// insertions into the vector. See the example in the comment for 1465 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1466 /// The type of V is always a non-zero multiple of VecEltTy's size. 1467 /// 1468 /// This returns false if the pattern can't be matched or true if it can, 1469 /// filling in Elements with the elements found here. 1470 static bool CollectInsertionElements(Value *V, unsigned ElementIndex, 1471 SmallVectorImpl<Value*> &Elements, 1472 Type *VecEltTy) { 1473 // Undef values never contribute useful bits to the result. 1474 if (isa<UndefValue>(V)) return true; 1475 1476 // If we got down to a value of the right type, we win, try inserting into the 1477 // right element. 1478 if (V->getType() == VecEltTy) { 1479 // Inserting null doesn't actually insert any elements. 1480 if (Constant *C = dyn_cast<Constant>(V)) 1481 if (C->isNullValue()) 1482 return true; 1483 1484 // Fail if multiple elements are inserted into this slot. 1485 if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0) 1486 return false; 1487 1488 Elements[ElementIndex] = V; 1489 return true; 1490 } 1491 1492 if (Constant *C = dyn_cast<Constant>(V)) { 1493 // Figure out the # elements this provides, and bitcast it or slice it up 1494 // as required. 1495 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1496 VecEltTy); 1497 // If the constant is the size of a vector element, we just need to bitcast 1498 // it to the right type so it gets properly inserted. 1499 if (NumElts == 1) 1500 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1501 ElementIndex, Elements, VecEltTy); 1502 1503 // Okay, this is a constant that covers multiple elements. Slice it up into 1504 // pieces and insert each element-sized piece into the vector. 1505 if (!isa<IntegerType>(C->getType())) 1506 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1507 C->getType()->getPrimitiveSizeInBits())); 1508 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1509 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1510 1511 for (unsigned i = 0; i != NumElts; ++i) { 1512 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1513 i*ElementSize)); 1514 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1515 if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy)) 1516 return false; 1517 } 1518 return true; 1519 } 1520 1521 if (!V->hasOneUse()) return false; 1522 1523 Instruction *I = dyn_cast<Instruction>(V); 1524 if (I == 0) return false; 1525 switch (I->getOpcode()) { 1526 default: return false; // Unhandled case. 1527 case Instruction::BitCast: 1528 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1529 Elements, VecEltTy); 1530 case Instruction::ZExt: 1531 if (!isMultipleOfTypeSize( 1532 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1533 VecEltTy)) 1534 return false; 1535 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1536 Elements, VecEltTy); 1537 case Instruction::Or: 1538 return CollectInsertionElements(I->getOperand(0), ElementIndex, 1539 Elements, VecEltTy) && 1540 CollectInsertionElements(I->getOperand(1), ElementIndex, 1541 Elements, VecEltTy); 1542 case Instruction::Shl: { 1543 // Must be shifting by a constant that is a multiple of the element size. 1544 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1545 if (CI == 0) return false; 1546 if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false; 1547 unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy); 1548 1549 return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift, 1550 Elements, VecEltTy); 1551 } 1552 1553 } 1554 } 1555 1556 1557 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we 1558 /// may be doing shifts and ors to assemble the elements of the vector manually. 1559 /// Try to rip the code out and replace it with insertelements. This is to 1560 /// optimize code like this: 1561 /// 1562 /// %tmp37 = bitcast float %inc to i32 1563 /// %tmp38 = zext i32 %tmp37 to i64 1564 /// %tmp31 = bitcast float %inc5 to i32 1565 /// %tmp32 = zext i32 %tmp31 to i64 1566 /// %tmp33 = shl i64 %tmp32, 32 1567 /// %ins35 = or i64 %tmp33, %tmp38 1568 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1569 /// 1570 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1571 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, 1572 InstCombiner &IC) { 1573 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1574 Value *IntInput = CI.getOperand(0); 1575 1576 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1577 if (!CollectInsertionElements(IntInput, 0, Elements, 1578 DestVecTy->getElementType())) 1579 return 0; 1580 1581 // If we succeeded, we know that all of the element are specified by Elements 1582 // or are zero if Elements has a null entry. Recast this as a set of 1583 // insertions. 1584 Value *Result = Constant::getNullValue(CI.getType()); 1585 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1586 if (Elements[i] == 0) continue; // Unset element. 1587 1588 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1589 IC.Builder->getInt32(i)); 1590 } 1591 1592 return Result; 1593 } 1594 1595 1596 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double 1597 /// bitcast. The various long double bitcasts can't get in here. 1598 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ 1599 Value *Src = CI.getOperand(0); 1600 Type *DestTy = CI.getType(); 1601 1602 // If this is a bitcast from int to float, check to see if the int is an 1603 // extraction from a vector. 1604 Value *VecInput = 0; 1605 // bitcast(trunc(bitcast(somevector))) 1606 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && 1607 isa<VectorType>(VecInput->getType())) { 1608 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1609 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1610 1611 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { 1612 // If the element type of the vector doesn't match the result type, 1613 // bitcast it to be a vector type we can extract from. 1614 if (VecTy->getElementType() != DestTy) { 1615 VecTy = VectorType::get(DestTy, 1616 VecTy->getPrimitiveSizeInBits() / DestWidth); 1617 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1618 } 1619 1620 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0)); 1621 } 1622 } 1623 1624 // bitcast(trunc(lshr(bitcast(somevector), cst)) 1625 ConstantInt *ShAmt = 0; 1626 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), 1627 m_ConstantInt(ShAmt)))) && 1628 isa<VectorType>(VecInput->getType())) { 1629 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1630 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1631 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && 1632 ShAmt->getZExtValue() % DestWidth == 0) { 1633 // If the element type of the vector doesn't match the result type, 1634 // bitcast it to be a vector type we can extract from. 1635 if (VecTy->getElementType() != DestTy) { 1636 VecTy = VectorType::get(DestTy, 1637 VecTy->getPrimitiveSizeInBits() / DestWidth); 1638 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1639 } 1640 1641 unsigned Elt = ShAmt->getZExtValue() / DestWidth; 1642 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1643 } 1644 } 1645 return 0; 1646 } 1647 1648 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1649 // If the operands are integer typed then apply the integer transforms, 1650 // otherwise just apply the common ones. 1651 Value *Src = CI.getOperand(0); 1652 Type *SrcTy = Src->getType(); 1653 Type *DestTy = CI.getType(); 1654 1655 // Get rid of casts from one type to the same type. These are useless and can 1656 // be replaced by the operand. 1657 if (DestTy == Src->getType()) 1658 return ReplaceInstUsesWith(CI, Src); 1659 1660 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1661 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1662 Type *DstElTy = DstPTy->getElementType(); 1663 Type *SrcElTy = SrcPTy->getElementType(); 1664 1665 // If the address spaces don't match, don't eliminate the bitcast, which is 1666 // required for changing types. 1667 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace()) 1668 return 0; 1669 1670 // If we are casting a alloca to a pointer to a type of the same 1671 // size, rewrite the allocation instruction to allocate the "right" type. 1672 // There is no need to modify malloc calls because it is their bitcast that 1673 // needs to be cleaned up. 1674 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1675 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1676 return V; 1677 1678 // If the source and destination are pointers, and this cast is equivalent 1679 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1680 // This can enhance SROA and other transforms that want type-safe pointers. 1681 Constant *ZeroUInt = 1682 Constant::getNullValue(Type::getInt32Ty(CI.getContext())); 1683 unsigned NumZeros = 0; 1684 while (SrcElTy != DstElTy && 1685 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1686 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1687 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); 1688 ++NumZeros; 1689 } 1690 1691 // If we found a path from the src to dest, create the getelementptr now. 1692 if (SrcElTy == DstElTy) { 1693 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); 1694 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1695 } 1696 } 1697 1698 // Try to optimize int -> float bitcasts. 1699 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) 1700 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) 1701 return I; 1702 1703 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1704 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1705 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1706 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1707 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1708 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1709 } 1710 1711 if (isa<IntegerType>(SrcTy)) { 1712 // If this is a cast from an integer to vector, check to see if the input 1713 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1714 // the casts with a shuffle and (potentially) a bitcast. 1715 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1716 CastInst *SrcCast = cast<CastInst>(Src); 1717 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1718 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1719 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0), 1720 cast<VectorType>(DestTy), *this)) 1721 return I; 1722 } 1723 1724 // If the input is an 'or' instruction, we may be doing shifts and ors to 1725 // assemble the elements of the vector manually. Try to rip the code out 1726 // and replace it with insertelements. 1727 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this)) 1728 return ReplaceInstUsesWith(CI, V); 1729 } 1730 } 1731 1732 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1733 if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) { 1734 Value *Elem = 1735 Builder->CreateExtractElement(Src, 1736 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1737 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1738 } 1739 } 1740 1741 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1742 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1743 // a bitcast to a vector with the same # elts. 1744 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1745 cast<VectorType>(DestTy)->getNumElements() == 1746 SVI->getType()->getNumElements() && 1747 SVI->getType()->getNumElements() == 1748 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) { 1749 BitCastInst *Tmp; 1750 // If either of the operands is a cast from CI.getType(), then 1751 // evaluating the shuffle in the casted destination's type will allow 1752 // us to eliminate at least one cast. 1753 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1754 Tmp->getOperand(0)->getType() == DestTy) || 1755 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1756 Tmp->getOperand(0)->getType() == DestTy)) { 1757 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1758 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1759 // Return a new shuffle vector. Use the same element ID's, as we 1760 // know the vector types match #elts. 1761 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 1762 } 1763 } 1764 } 1765 1766 if (SrcTy->isPointerTy()) 1767 return commonPointerCastTransforms(CI); 1768 return commonCastTransforms(CI); 1769 } 1770