Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/IntrinsicInst.h"
     16 #include "llvm/Analysis/ConstantFolding.h"
     17 #include "llvm/Analysis/InstructionSimplify.h"
     18 #include "llvm/Analysis/MemoryBuiltins.h"
     19 #include "llvm/Target/TargetData.h"
     20 #include "llvm/Support/ConstantRange.h"
     21 #include "llvm/Support/GetElementPtrTypeIterator.h"
     22 #include "llvm/Support/PatternMatch.h"
     23 using namespace llvm;
     24 using namespace PatternMatch;
     25 
     26 static ConstantInt *getOne(Constant *C) {
     27   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     28 }
     29 
     30 /// AddOne - Add one to a ConstantInt
     31 static Constant *AddOne(Constant *C) {
     32   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     33 }
     34 /// SubOne - Subtract one from a ConstantInt
     35 static Constant *SubOne(Constant *C) {
     36   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     37 }
     38 
     39 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     40   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     41 }
     42 
     43 static bool HasAddOverflow(ConstantInt *Result,
     44                            ConstantInt *In1, ConstantInt *In2,
     45                            bool IsSigned) {
     46   if (!IsSigned)
     47     return Result->getValue().ult(In1->getValue());
     48 
     49   if (In2->isNegative())
     50     return Result->getValue().sgt(In1->getValue());
     51   return Result->getValue().slt(In1->getValue());
     52 }
     53 
     54 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     55 /// overflowed for this type.
     56 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     57                             Constant *In2, bool IsSigned = false) {
     58   Result = ConstantExpr::getAdd(In1, In2);
     59 
     60   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     61     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     62       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     63       if (HasAddOverflow(ExtractElement(Result, Idx),
     64                          ExtractElement(In1, Idx),
     65                          ExtractElement(In2, Idx),
     66                          IsSigned))
     67         return true;
     68     }
     69     return false;
     70   }
     71 
     72   return HasAddOverflow(cast<ConstantInt>(Result),
     73                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     74                         IsSigned);
     75 }
     76 
     77 static bool HasSubOverflow(ConstantInt *Result,
     78                            ConstantInt *In1, ConstantInt *In2,
     79                            bool IsSigned) {
     80   if (!IsSigned)
     81     return Result->getValue().ugt(In1->getValue());
     82 
     83   if (In2->isNegative())
     84     return Result->getValue().slt(In1->getValue());
     85 
     86   return Result->getValue().sgt(In1->getValue());
     87 }
     88 
     89 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     90 /// overflowed for this type.
     91 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     92                             Constant *In2, bool IsSigned = false) {
     93   Result = ConstantExpr::getSub(In1, In2);
     94 
     95   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     96     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     97       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     98       if (HasSubOverflow(ExtractElement(Result, Idx),
     99                          ExtractElement(In1, Idx),
    100                          ExtractElement(In2, Idx),
    101                          IsSigned))
    102         return true;
    103     }
    104     return false;
    105   }
    106 
    107   return HasSubOverflow(cast<ConstantInt>(Result),
    108                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    109                         IsSigned);
    110 }
    111 
    112 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    113 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    114 /// TrueIfSigned if the result of the comparison is true when the input value is
    115 /// signed.
    116 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    117                            bool &TrueIfSigned) {
    118   switch (pred) {
    119   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    120     TrueIfSigned = true;
    121     return RHS->isZero();
    122   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    123     TrueIfSigned = true;
    124     return RHS->isAllOnesValue();
    125   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    126     TrueIfSigned = false;
    127     return RHS->isAllOnesValue();
    128   case ICmpInst::ICMP_UGT:
    129     // True if LHS u> RHS and RHS == high-bit-mask - 1
    130     TrueIfSigned = true;
    131     return RHS->isMaxValue(true);
    132   case ICmpInst::ICMP_UGE:
    133     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    134     TrueIfSigned = true;
    135     return RHS->getValue().isSignBit();
    136   default:
    137     return false;
    138   }
    139 }
    140 
    141 // isHighOnes - Return true if the constant is of the form 1+0+.
    142 // This is the same as lowones(~X).
    143 static bool isHighOnes(const ConstantInt *CI) {
    144   return (~CI->getValue() + 1).isPowerOf2();
    145 }
    146 
    147 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    148 /// set of known zero and one bits, compute the maximum and minimum values that
    149 /// could have the specified known zero and known one bits, returning them in
    150 /// min/max.
    151 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    152                                                    const APInt& KnownOne,
    153                                                    APInt& Min, APInt& Max) {
    154   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    155          KnownZero.getBitWidth() == Min.getBitWidth() &&
    156          KnownZero.getBitWidth() == Max.getBitWidth() &&
    157          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    158   APInt UnknownBits = ~(KnownZero|KnownOne);
    159 
    160   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    161   // bit if it is unknown.
    162   Min = KnownOne;
    163   Max = KnownOne|UnknownBits;
    164 
    165   if (UnknownBits.isNegative()) { // Sign bit is unknown
    166     Min.setBit(Min.getBitWidth()-1);
    167     Max.clearBit(Max.getBitWidth()-1);
    168   }
    169 }
    170 
    171 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    172 // a set of known zero and one bits, compute the maximum and minimum values that
    173 // could have the specified known zero and known one bits, returning them in
    174 // min/max.
    175 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    176                                                      const APInt &KnownOne,
    177                                                      APInt &Min, APInt &Max) {
    178   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    179          KnownZero.getBitWidth() == Min.getBitWidth() &&
    180          KnownZero.getBitWidth() == Max.getBitWidth() &&
    181          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    182   APInt UnknownBits = ~(KnownZero|KnownOne);
    183 
    184   // The minimum value is when the unknown bits are all zeros.
    185   Min = KnownOne;
    186   // The maximum value is when the unknown bits are all ones.
    187   Max = KnownOne|UnknownBits;
    188 }
    189 
    190 
    191 
    192 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    193 ///   cmp pred (load (gep GV, ...)), cmpcst
    194 /// where GV is a global variable with a constant initializer.  Try to simplify
    195 /// this into some simple computation that does not need the load.  For example
    196 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    197 ///
    198 /// If AndCst is non-null, then the loaded value is masked with that constant
    199 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    200 Instruction *InstCombiner::
    201 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    202                              CmpInst &ICI, ConstantInt *AndCst) {
    203   // We need TD information to know the pointer size unless this is inbounds.
    204   if (!GEP->isInBounds() && TD == 0) return 0;
    205 
    206   ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
    207   if (Init == 0 || Init->getNumOperands() > 1024) return 0;
    208 
    209   // There are many forms of this optimization we can handle, for now, just do
    210   // the simple index into a single-dimensional array.
    211   //
    212   // Require: GEP GV, 0, i {{, constant indices}}
    213   if (GEP->getNumOperands() < 3 ||
    214       !isa<ConstantInt>(GEP->getOperand(1)) ||
    215       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    216       isa<Constant>(GEP->getOperand(2)))
    217     return 0;
    218 
    219   // Check that indices after the variable are constants and in-range for the
    220   // type they index.  Collect the indices.  This is typically for arrays of
    221   // structs.
    222   SmallVector<unsigned, 4> LaterIndices;
    223 
    224   Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
    225   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    226     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    227     if (Idx == 0) return 0;  // Variable index.
    228 
    229     uint64_t IdxVal = Idx->getZExtValue();
    230     if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
    231 
    232     if (StructType *STy = dyn_cast<StructType>(EltTy))
    233       EltTy = STy->getElementType(IdxVal);
    234     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    235       if (IdxVal >= ATy->getNumElements()) return 0;
    236       EltTy = ATy->getElementType();
    237     } else {
    238       return 0; // Unknown type.
    239     }
    240 
    241     LaterIndices.push_back(IdxVal);
    242   }
    243 
    244   enum { Overdefined = -3, Undefined = -2 };
    245 
    246   // Variables for our state machines.
    247 
    248   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    249   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    250   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    251   // undefined, otherwise set to the first true element.  SecondTrueElement is
    252   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    253   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    254 
    255   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    256   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    257   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    258 
    259   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    260   /// define a state machine that triggers for ranges of values that the index
    261   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    262   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    263   /// index in the range (inclusive).  We use -2 for undefined here because we
    264   /// use relative comparisons and don't want 0-1 to match -1.
    265   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    266 
    267   // MagicBitvector - This is a magic bitvector where we set a bit if the
    268   // comparison is true for element 'i'.  If there are 64 elements or less in
    269   // the array, this will fully represent all the comparison results.
    270   uint64_t MagicBitvector = 0;
    271 
    272 
    273   // Scan the array and see if one of our patterns matches.
    274   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    275   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
    276     Constant *Elt = Init->getOperand(i);
    277 
    278     // If this is indexing an array of structures, get the structure element.
    279     if (!LaterIndices.empty())
    280       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    281 
    282     // If the element is masked, handle it.
    283     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    284 
    285     // Find out if the comparison would be true or false for the i'th element.
    286     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    287                                                   CompareRHS, TD);
    288     // If the result is undef for this element, ignore it.
    289     if (isa<UndefValue>(C)) {
    290       // Extend range state machines to cover this element in case there is an
    291       // undef in the middle of the range.
    292       if (TrueRangeEnd == (int)i-1)
    293         TrueRangeEnd = i;
    294       if (FalseRangeEnd == (int)i-1)
    295         FalseRangeEnd = i;
    296       continue;
    297     }
    298 
    299     // If we can't compute the result for any of the elements, we have to give
    300     // up evaluating the entire conditional.
    301     if (!isa<ConstantInt>(C)) return 0;
    302 
    303     // Otherwise, we know if the comparison is true or false for this element,
    304     // update our state machines.
    305     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    306 
    307     // State machine for single/double/range index comparison.
    308     if (IsTrueForElt) {
    309       // Update the TrueElement state machine.
    310       if (FirstTrueElement == Undefined)
    311         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    312       else {
    313         // Update double-compare state machine.
    314         if (SecondTrueElement == Undefined)
    315           SecondTrueElement = i;
    316         else
    317           SecondTrueElement = Overdefined;
    318 
    319         // Update range state machine.
    320         if (TrueRangeEnd == (int)i-1)
    321           TrueRangeEnd = i;
    322         else
    323           TrueRangeEnd = Overdefined;
    324       }
    325     } else {
    326       // Update the FalseElement state machine.
    327       if (FirstFalseElement == Undefined)
    328         FirstFalseElement = FalseRangeEnd = i; // First false element.
    329       else {
    330         // Update double-compare state machine.
    331         if (SecondFalseElement == Undefined)
    332           SecondFalseElement = i;
    333         else
    334           SecondFalseElement = Overdefined;
    335 
    336         // Update range state machine.
    337         if (FalseRangeEnd == (int)i-1)
    338           FalseRangeEnd = i;
    339         else
    340           FalseRangeEnd = Overdefined;
    341       }
    342     }
    343 
    344 
    345     // If this element is in range, update our magic bitvector.
    346     if (i < 64 && IsTrueForElt)
    347       MagicBitvector |= 1ULL << i;
    348 
    349     // If all of our states become overdefined, bail out early.  Since the
    350     // predicate is expensive, only check it every 8 elements.  This is only
    351     // really useful for really huge arrays.
    352     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    353         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    354         FalseRangeEnd == Overdefined)
    355       return 0;
    356   }
    357 
    358   // Now that we've scanned the entire array, emit our new comparison(s).  We
    359   // order the state machines in complexity of the generated code.
    360   Value *Idx = GEP->getOperand(2);
    361 
    362   // If the index is larger than the pointer size of the target, truncate the
    363   // index down like the GEP would do implicitly.  We don't have to do this for
    364   // an inbounds GEP because the index can't be out of range.
    365   if (!GEP->isInBounds() &&
    366       Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
    367     Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
    368 
    369   // If the comparison is only true for one or two elements, emit direct
    370   // comparisons.
    371   if (SecondTrueElement != Overdefined) {
    372     // None true -> false.
    373     if (FirstTrueElement == Undefined)
    374       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
    375 
    376     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    377 
    378     // True for one element -> 'i == 47'.
    379     if (SecondTrueElement == Undefined)
    380       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    381 
    382     // True for two elements -> 'i == 47 | i == 72'.
    383     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    384     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    385     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    386     return BinaryOperator::CreateOr(C1, C2);
    387   }
    388 
    389   // If the comparison is only false for one or two elements, emit direct
    390   // comparisons.
    391   if (SecondFalseElement != Overdefined) {
    392     // None false -> true.
    393     if (FirstFalseElement == Undefined)
    394       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
    395 
    396     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    397 
    398     // False for one element -> 'i != 47'.
    399     if (SecondFalseElement == Undefined)
    400       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    401 
    402     // False for two elements -> 'i != 47 & i != 72'.
    403     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    404     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    405     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    406     return BinaryOperator::CreateAnd(C1, C2);
    407   }
    408 
    409   // If the comparison can be replaced with a range comparison for the elements
    410   // where it is true, emit the range check.
    411   if (TrueRangeEnd != Overdefined) {
    412     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    413 
    414     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    415     if (FirstTrueElement) {
    416       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    417       Idx = Builder->CreateAdd(Idx, Offs);
    418     }
    419 
    420     Value *End = ConstantInt::get(Idx->getType(),
    421                                   TrueRangeEnd-FirstTrueElement+1);
    422     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    423   }
    424 
    425   // False range check.
    426   if (FalseRangeEnd != Overdefined) {
    427     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    428     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    429     if (FirstFalseElement) {
    430       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    431       Idx = Builder->CreateAdd(Idx, Offs);
    432     }
    433 
    434     Value *End = ConstantInt::get(Idx->getType(),
    435                                   FalseRangeEnd-FirstFalseElement);
    436     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    437   }
    438 
    439 
    440   // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
    441   // of this load, replace it with computation that does:
    442   //   ((magic_cst >> i) & 1) != 0
    443   if (Init->getNumOperands() <= 32 ||
    444       (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
    445     Type *Ty;
    446     if (Init->getNumOperands() <= 32)
    447       Ty = Type::getInt32Ty(Init->getContext());
    448     else
    449       Ty = Type::getInt64Ty(Init->getContext());
    450     Value *V = Builder->CreateIntCast(Idx, Ty, false);
    451     V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    452     V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    453     return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    454   }
    455 
    456   return 0;
    457 }
    458 
    459 
    460 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    461 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    462 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    463 /// be complex, and scales are involved.  The above expression would also be
    464 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    465 /// This later form is less amenable to optimization though, and we are allowed
    466 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    467 ///
    468 /// If we can't emit an optimized form for this expression, this returns null.
    469 ///
    470 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC) {
    471   TargetData &TD = *IC.getTargetData();
    472   gep_type_iterator GTI = gep_type_begin(GEP);
    473 
    474   // Check to see if this gep only has a single variable index.  If so, and if
    475   // any constant indices are a multiple of its scale, then we can compute this
    476   // in terms of the scale of the variable index.  For example, if the GEP
    477   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    478   // because the expression will cross zero at the same point.
    479   unsigned i, e = GEP->getNumOperands();
    480   int64_t Offset = 0;
    481   for (i = 1; i != e; ++i, ++GTI) {
    482     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    483       // Compute the aggregate offset of constant indices.
    484       if (CI->isZero()) continue;
    485 
    486       // Handle a struct index, which adds its field offset to the pointer.
    487       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    488         Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    489       } else {
    490         uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    491         Offset += Size*CI->getSExtValue();
    492       }
    493     } else {
    494       // Found our variable index.
    495       break;
    496     }
    497   }
    498 
    499   // If there are no variable indices, we must have a constant offset, just
    500   // evaluate it the general way.
    501   if (i == e) return 0;
    502 
    503   Value *VariableIdx = GEP->getOperand(i);
    504   // Determine the scale factor of the variable element.  For example, this is
    505   // 4 if the variable index is into an array of i32.
    506   uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
    507 
    508   // Verify that there are no other variable indices.  If so, emit the hard way.
    509   for (++i, ++GTI; i != e; ++i, ++GTI) {
    510     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    511     if (!CI) return 0;
    512 
    513     // Compute the aggregate offset of constant indices.
    514     if (CI->isZero()) continue;
    515 
    516     // Handle a struct index, which adds its field offset to the pointer.
    517     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    518       Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    519     } else {
    520       uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
    521       Offset += Size*CI->getSExtValue();
    522     }
    523   }
    524 
    525   // Okay, we know we have a single variable index, which must be a
    526   // pointer/array/vector index.  If there is no offset, life is simple, return
    527   // the index.
    528   unsigned IntPtrWidth = TD.getPointerSizeInBits();
    529   if (Offset == 0) {
    530     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    531     // we don't need to bother extending: the extension won't affect where the
    532     // computation crosses zero.
    533     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    534       Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    535       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    536     }
    537     return VariableIdx;
    538   }
    539 
    540   // Otherwise, there is an index.  The computation we will do will be modulo
    541   // the pointer size, so get it.
    542   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    543 
    544   Offset &= PtrSizeMask;
    545   VariableScale &= PtrSizeMask;
    546 
    547   // To do this transformation, any constant index must be a multiple of the
    548   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    549   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    550   // multiple of the variable scale.
    551   int64_t NewOffs = Offset / (int64_t)VariableScale;
    552   if (Offset != NewOffs*(int64_t)VariableScale)
    553     return 0;
    554 
    555   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    556   Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
    557   if (VariableIdx->getType() != IntPtrTy)
    558     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    559                                             true /*Signed*/);
    560   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    561   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    562 }
    563 
    564 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    565 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    566 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    567                                        ICmpInst::Predicate Cond,
    568                                        Instruction &I) {
    569   // Look through bitcasts.
    570   if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
    571     RHS = BCI->getOperand(0);
    572 
    573   Value *PtrBase = GEPLHS->getOperand(0);
    574   if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
    575     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    576     // This transformation (ignoring the base and scales) is valid because we
    577     // know pointers can't overflow since the gep is inbounds.  See if we can
    578     // output an optimized form.
    579     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this);
    580 
    581     // If not, synthesize the offset the hard way.
    582     if (Offset == 0)
    583       Offset = EmitGEPOffset(GEPLHS);
    584     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    585                         Constant::getNullValue(Offset->getType()));
    586   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    587     // If the base pointers are different, but the indices are the same, just
    588     // compare the base pointer.
    589     if (PtrBase != GEPRHS->getOperand(0)) {
    590       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    591       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    592                         GEPRHS->getOperand(0)->getType();
    593       if (IndicesTheSame)
    594         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    595           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    596             IndicesTheSame = false;
    597             break;
    598           }
    599 
    600       // If all indices are the same, just compare the base pointers.
    601       if (IndicesTheSame)
    602         return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
    603                             GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    604 
    605       // Otherwise, the base pointers are different and the indices are
    606       // different, bail out.
    607       return 0;
    608     }
    609 
    610     // If one of the GEPs has all zero indices, recurse.
    611     bool AllZeros = true;
    612     for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    613       if (!isa<Constant>(GEPLHS->getOperand(i)) ||
    614           !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
    615         AllZeros = false;
    616         break;
    617       }
    618     if (AllZeros)
    619       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    620                           ICmpInst::getSwappedPredicate(Cond), I);
    621 
    622     // If the other GEP has all zero indices, recurse.
    623     AllZeros = true;
    624     for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    625       if (!isa<Constant>(GEPRHS->getOperand(i)) ||
    626           !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
    627         AllZeros = false;
    628         break;
    629       }
    630     if (AllZeros)
    631       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    632 
    633     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    634     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    635       // If the GEPs only differ by one index, compare it.
    636       unsigned NumDifferences = 0;  // Keep track of # differences.
    637       unsigned DiffOperand = 0;     // The operand that differs.
    638       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    639         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    640           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    641                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    642             // Irreconcilable differences.
    643             NumDifferences = 2;
    644             break;
    645           } else {
    646             if (NumDifferences++) break;
    647             DiffOperand = i;
    648           }
    649         }
    650 
    651       if (NumDifferences == 0)   // SAME GEP?
    652         return ReplaceInstUsesWith(I, // No comparison is needed here.
    653                                ConstantInt::get(Type::getInt1Ty(I.getContext()),
    654                                              ICmpInst::isTrueWhenEqual(Cond)));
    655 
    656       else if (NumDifferences == 1 && GEPsInBounds) {
    657         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    658         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    659         // Make sure we do a signed comparison here.
    660         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    661       }
    662     }
    663 
    664     // Only lower this if the icmp is the only user of the GEP or if we expect
    665     // the result to fold to a constant!
    666     if (TD &&
    667         GEPsInBounds &&
    668         (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    669         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    670       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    671       Value *L = EmitGEPOffset(GEPLHS);
    672       Value *R = EmitGEPOffset(GEPRHS);
    673       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    674     }
    675   }
    676   return 0;
    677 }
    678 
    679 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    680 Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
    681                                             Value *X, ConstantInt *CI,
    682                                             ICmpInst::Predicate Pred,
    683                                             Value *TheAdd) {
    684   // If we have X+0, exit early (simplifying logic below) and let it get folded
    685   // elsewhere.   icmp X+0, X  -> icmp X, X
    686   if (CI->isZero()) {
    687     bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
    688     return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
    689   }
    690 
    691   // (X+4) == X -> false.
    692   if (Pred == ICmpInst::ICMP_EQ)
    693     return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
    694 
    695   // (X+4) != X -> true.
    696   if (Pred == ICmpInst::ICMP_NE)
    697     return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
    698 
    699   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    700   // so the values can never be equal.  Similarly for all other "or equals"
    701   // operators.
    702 
    703   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    704   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    705   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    706   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    707     Value *R =
    708       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    709     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    710   }
    711 
    712   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    713   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    714   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    715   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    716     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    717 
    718   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    719   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    720                                        APInt::getSignedMaxValue(BitWidth));
    721 
    722   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    723   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    724   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    725   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    726   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    727   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    728   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    729     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    730 
    731   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    732   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    733   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    734   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    735   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    736   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    737 
    738   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    739   Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
    740   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    741 }
    742 
    743 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    744 /// and CmpRHS are both known to be integer constants.
    745 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    746                                           ConstantInt *DivRHS) {
    747   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    748   const APInt &CmpRHSV = CmpRHS->getValue();
    749 
    750   // FIXME: If the operand types don't match the type of the divide
    751   // then don't attempt this transform. The code below doesn't have the
    752   // logic to deal with a signed divide and an unsigned compare (and
    753   // vice versa). This is because (x /s C1) <s C2  produces different
    754   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    755   // (x /u C1) <u C2.  Simply casting the operands and result won't
    756   // work. :(  The if statement below tests that condition and bails
    757   // if it finds it.
    758   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    759   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    760     return 0;
    761   if (DivRHS->isZero())
    762     return 0; // The ProdOV computation fails on divide by zero.
    763   if (DivIsSigned && DivRHS->isAllOnesValue())
    764     return 0; // The overflow computation also screws up here
    765   if (DivRHS->isOne()) {
    766     // This eliminates some funny cases with INT_MIN.
    767     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    768     return &ICI;
    769   }
    770 
    771   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    772   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    773   // C2 (CI). By solving for X we can turn this into a range check
    774   // instead of computing a divide.
    775   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    776 
    777   // Determine if the product overflows by seeing if the product is
    778   // not equal to the divide. Make sure we do the same kind of divide
    779   // as in the LHS instruction that we're folding.
    780   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    781                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    782 
    783   // Get the ICmp opcode
    784   ICmpInst::Predicate Pred = ICI.getPredicate();
    785 
    786   /// If the division is known to be exact, then there is no remainder from the
    787   /// divide, so the covered range size is unit, otherwise it is the divisor.
    788   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    789 
    790   // Figure out the interval that is being checked.  For example, a comparison
    791   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    792   // Compute this interval based on the constants involved and the signedness of
    793   // the compare/divide.  This computes a half-open interval, keeping track of
    794   // whether either value in the interval overflows.  After analysis each
    795   // overflow variable is set to 0 if it's corresponding bound variable is valid
    796   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    797   int LoOverflow = 0, HiOverflow = 0;
    798   Constant *LoBound = 0, *HiBound = 0;
    799 
    800   if (!DivIsSigned) {  // udiv
    801     // e.g. X/5 op 3  --> [15, 20)
    802     LoBound = Prod;
    803     HiOverflow = LoOverflow = ProdOV;
    804     if (!HiOverflow) {
    805       // If this is not an exact divide, then many values in the range collapse
    806       // to the same result value.
    807       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    808     }
    809 
    810   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    811     if (CmpRHSV == 0) {       // (X / pos) op 0
    812       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    813       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    814       HiBound = RangeSize;
    815     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    816       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    817       HiOverflow = LoOverflow = ProdOV;
    818       if (!HiOverflow)
    819         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    820     } else {                       // (X / pos) op neg
    821       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    822       HiBound = AddOne(Prod);
    823       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    824       if (!LoOverflow) {
    825         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    826         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    827       }
    828     }
    829   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    830     if (DivI->isExact())
    831       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    832     if (CmpRHSV == 0) {       // (X / neg) op 0
    833       // e.g. X/-5 op 0  --> [-4, 5)
    834       LoBound = AddOne(RangeSize);
    835       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    836       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    837         HiOverflow = 1;            // [INTMIN+1, overflow)
    838         HiBound = 0;               // e.g. X/INTMIN = 0 --> X > INTMIN
    839       }
    840     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    841       // e.g. X/-5 op 3  --> [-19, -14)
    842       HiBound = AddOne(Prod);
    843       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    844       if (!LoOverflow)
    845         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    846     } else {                       // (X / neg) op neg
    847       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    848       LoOverflow = HiOverflow = ProdOV;
    849       if (!HiOverflow)
    850         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    851     }
    852 
    853     // Dividing by a negative swaps the condition.  LT <-> GT
    854     Pred = ICmpInst::getSwappedPredicate(Pred);
    855   }
    856 
    857   Value *X = DivI->getOperand(0);
    858   switch (Pred) {
    859   default: llvm_unreachable("Unhandled icmp opcode!");
    860   case ICmpInst::ICMP_EQ:
    861     if (LoOverflow && HiOverflow)
    862       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    863     if (HiOverflow)
    864       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    865                           ICmpInst::ICMP_UGE, X, LoBound);
    866     if (LoOverflow)
    867       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    868                           ICmpInst::ICMP_ULT, X, HiBound);
    869     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    870                                                     DivIsSigned, true));
    871   case ICmpInst::ICMP_NE:
    872     if (LoOverflow && HiOverflow)
    873       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    874     if (HiOverflow)
    875       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    876                           ICmpInst::ICMP_ULT, X, LoBound);
    877     if (LoOverflow)
    878       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    879                           ICmpInst::ICMP_UGE, X, HiBound);
    880     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    881                                                     DivIsSigned, false));
    882   case ICmpInst::ICMP_ULT:
    883   case ICmpInst::ICMP_SLT:
    884     if (LoOverflow == +1)   // Low bound is greater than input range.
    885       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    886     if (LoOverflow == -1)   // Low bound is less than input range.
    887       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    888     return new ICmpInst(Pred, X, LoBound);
    889   case ICmpInst::ICMP_UGT:
    890   case ICmpInst::ICMP_SGT:
    891     if (HiOverflow == +1)       // High bound greater than input range.
    892       return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
    893     if (HiOverflow == -1)       // High bound less than input range.
    894       return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
    895     if (Pred == ICmpInst::ICMP_UGT)
    896       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    897     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
    898   }
    899 }
    900 
    901 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
    902 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
    903                                           ConstantInt *ShAmt) {
    904   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
    905 
    906   // Check that the shift amount is in range.  If not, don't perform
    907   // undefined shifts.  When the shift is visited it will be
    908   // simplified.
    909   uint32_t TypeBits = CmpRHSV.getBitWidth();
    910   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
    911   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    912     return 0;
    913 
    914   if (!ICI.isEquality()) {
    915     // If we have an unsigned comparison and an ashr, we can't simplify this.
    916     // Similarly for signed comparisons with lshr.
    917     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
    918       return 0;
    919 
    920     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
    921     // by a power of 2.  Since we already have logic to simplify these,
    922     // transform to div and then simplify the resultant comparison.
    923     if (Shr->getOpcode() == Instruction::AShr &&
    924         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
    925       return 0;
    926 
    927     // Revisit the shift (to delete it).
    928     Worklist.Add(Shr);
    929 
    930     Constant *DivCst =
    931       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
    932 
    933     Value *Tmp =
    934       Shr->getOpcode() == Instruction::AShr ?
    935       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
    936       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
    937 
    938     ICI.setOperand(0, Tmp);
    939 
    940     // If the builder folded the binop, just return it.
    941     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
    942     if (TheDiv == 0)
    943       return &ICI;
    944 
    945     // Otherwise, fold this div/compare.
    946     assert(TheDiv->getOpcode() == Instruction::SDiv ||
    947            TheDiv->getOpcode() == Instruction::UDiv);
    948 
    949     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
    950     assert(Res && "This div/cst should have folded!");
    951     return Res;
    952   }
    953 
    954 
    955   // If we are comparing against bits always shifted out, the
    956   // comparison cannot succeed.
    957   APInt Comp = CmpRHSV << ShAmtVal;
    958   ConstantInt *ShiftedCmpRHS = ConstantInt::get(ICI.getContext(), Comp);
    959   if (Shr->getOpcode() == Instruction::LShr)
    960     Comp = Comp.lshr(ShAmtVal);
    961   else
    962     Comp = Comp.ashr(ShAmtVal);
    963 
    964   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
    965     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
    966     Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
    967                                      IsICMP_NE);
    968     return ReplaceInstUsesWith(ICI, Cst);
    969   }
    970 
    971   // Otherwise, check to see if the bits shifted out are known to be zero.
    972   // If so, we can compare against the unshifted value:
    973   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
    974   if (Shr->hasOneUse() && Shr->isExact())
    975     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
    976 
    977   if (Shr->hasOneUse()) {
    978     // Otherwise strength reduce the shift into an and.
    979     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
    980     Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
    981 
    982     Value *And = Builder->CreateAnd(Shr->getOperand(0),
    983                                     Mask, Shr->getName()+".mask");
    984     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
    985   }
    986   return 0;
    987 }
    988 
    989 
    990 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
    991 ///
    992 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
    993                                                           Instruction *LHSI,
    994                                                           ConstantInt *RHS) {
    995   const APInt &RHSV = RHS->getValue();
    996 
    997   switch (LHSI->getOpcode()) {
    998   case Instruction::Trunc:
    999     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1000       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1001       // of the high bits truncated out of x are known.
   1002       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1003              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1004       APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
   1005       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1006       ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
   1007 
   1008       // If all the high bits are known, we can do this xform.
   1009       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1010         // Pull in the high bits from known-ones set.
   1011         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1012         NewRHS |= KnownOne;
   1013         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1014                             ConstantInt::get(ICI.getContext(), NewRHS));
   1015       }
   1016     }
   1017     break;
   1018 
   1019   case Instruction::Xor:         // (icmp pred (xor X, XorCST), CI)
   1020     if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1021       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1022       // fold the xor.
   1023       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1024           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1025         Value *CompareVal = LHSI->getOperand(0);
   1026 
   1027         // If the sign bit of the XorCST is not set, there is no change to
   1028         // the operation, just stop using the Xor.
   1029         if (!XorCST->isNegative()) {
   1030           ICI.setOperand(0, CompareVal);
   1031           Worklist.Add(LHSI);
   1032           return &ICI;
   1033         }
   1034 
   1035         // Was the old condition true if the operand is positive?
   1036         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1037 
   1038         // If so, the new one isn't.
   1039         isTrueIfPositive ^= true;
   1040 
   1041         if (isTrueIfPositive)
   1042           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1043                               SubOne(RHS));
   1044         else
   1045           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1046                               AddOne(RHS));
   1047       }
   1048 
   1049       if (LHSI->hasOneUse()) {
   1050         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1051         if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
   1052           const APInt &SignBit = XorCST->getValue();
   1053           ICmpInst::Predicate Pred = ICI.isSigned()
   1054                                          ? ICI.getUnsignedPredicate()
   1055                                          : ICI.getSignedPredicate();
   1056           return new ICmpInst(Pred, LHSI->getOperand(0),
   1057                               ConstantInt::get(ICI.getContext(),
   1058                                                RHSV ^ SignBit));
   1059         }
   1060 
   1061         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1062         if (!ICI.isEquality() && XorCST->isMaxValue(true)) {
   1063           const APInt &NotSignBit = XorCST->getValue();
   1064           ICmpInst::Predicate Pred = ICI.isSigned()
   1065                                          ? ICI.getUnsignedPredicate()
   1066                                          : ICI.getSignedPredicate();
   1067           Pred = ICI.getSwappedPredicate(Pred);
   1068           return new ICmpInst(Pred, LHSI->getOperand(0),
   1069                               ConstantInt::get(ICI.getContext(),
   1070                                                RHSV ^ NotSignBit));
   1071         }
   1072       }
   1073     }
   1074     break;
   1075   case Instruction::And:         // (icmp pred (and X, AndCST), RHS)
   1076     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1077         LHSI->getOperand(0)->hasOneUse()) {
   1078       ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
   1079 
   1080       // If the LHS is an AND of a truncating cast, we can widen the
   1081       // and/compare to be the input width without changing the value
   1082       // produced, eliminating a cast.
   1083       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1084         // We can do this transformation if either the AND constant does not
   1085         // have its sign bit set or if it is an equality comparison.
   1086         // Extending a relational comparison when we're checking the sign
   1087         // bit would not work.
   1088         if (ICI.isEquality() ||
   1089             (!AndCST->isNegative() && RHSV.isNonNegative())) {
   1090           Value *NewAnd =
   1091             Builder->CreateAnd(Cast->getOperand(0),
   1092                                ConstantExpr::getZExt(AndCST, Cast->getSrcTy()));
   1093           NewAnd->takeName(LHSI);
   1094           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1095                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1096         }
   1097       }
   1098 
   1099       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1100       // shrink the and/compare to the smaller type, eliminating the cast.
   1101       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1102         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1103         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1104         // should fold the icmp to true/false in that case.
   1105         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1106           Value *NewAnd =
   1107             Builder->CreateAnd(Cast->getOperand(0),
   1108                                ConstantExpr::getTrunc(AndCST, Ty));
   1109           NewAnd->takeName(LHSI);
   1110           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1111                               ConstantExpr::getTrunc(RHS, Ty));
   1112         }
   1113       }
   1114 
   1115       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1116       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1117       // happens a LOT in code produced by the C front-end, for bitfield
   1118       // access.
   1119       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1120       if (Shift && !Shift->isShift())
   1121         Shift = 0;
   1122 
   1123       ConstantInt *ShAmt;
   1124       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
   1125       Type *Ty = Shift ? Shift->getType() : 0;  // Type of the shift.
   1126       Type *AndTy = AndCST->getType();          // Type of the and.
   1127 
   1128       // We can fold this as long as we can't shift unknown bits
   1129       // into the mask.  This can only happen with signed shift
   1130       // rights, as they sign-extend.
   1131       if (ShAmt) {
   1132         bool CanFold = Shift->isLogicalShift();
   1133         if (!CanFold) {
   1134           // To test for the bad case of the signed shr, see if any
   1135           // of the bits shifted in could be tested after the mask.
   1136           uint32_t TyBits = Ty->getPrimitiveSizeInBits();
   1137           int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
   1138 
   1139           uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
   1140           if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
   1141                AndCST->getValue()) == 0)
   1142             CanFold = true;
   1143         }
   1144 
   1145         if (CanFold) {
   1146           Constant *NewCst;
   1147           if (Shift->getOpcode() == Instruction::Shl)
   1148             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1149           else
   1150             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1151 
   1152           // Check to see if we are shifting out any of the bits being
   1153           // compared.
   1154           if (ConstantExpr::get(Shift->getOpcode(),
   1155                                        NewCst, ShAmt) != RHS) {
   1156             // If we shifted bits out, the fold is not going to work out.
   1157             // As a special case, check to see if this means that the
   1158             // result is always true or false now.
   1159             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1160               return ReplaceInstUsesWith(ICI,
   1161                                        ConstantInt::getFalse(ICI.getContext()));
   1162             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1163               return ReplaceInstUsesWith(ICI,
   1164                                        ConstantInt::getTrue(ICI.getContext()));
   1165           } else {
   1166             ICI.setOperand(1, NewCst);
   1167             Constant *NewAndCST;
   1168             if (Shift->getOpcode() == Instruction::Shl)
   1169               NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
   1170             else
   1171               NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
   1172             LHSI->setOperand(1, NewAndCST);
   1173             LHSI->setOperand(0, Shift->getOperand(0));
   1174             Worklist.Add(Shift); // Shift is dead.
   1175             return &ICI;
   1176           }
   1177         }
   1178       }
   1179 
   1180       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1181       // preferable because it allows the C<<Y expression to be hoisted out
   1182       // of a loop if Y is invariant and X is not.
   1183       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1184           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1185           !isa<Constant>(Shift->getOperand(0))) {
   1186         // Compute C << Y.
   1187         Value *NS;
   1188         if (Shift->getOpcode() == Instruction::LShr) {
   1189           NS = Builder->CreateShl(AndCST, Shift->getOperand(1));
   1190         } else {
   1191           // Insert a logical shift.
   1192           NS = Builder->CreateLShr(AndCST, Shift->getOperand(1));
   1193         }
   1194 
   1195         // Compute X & (C << Y).
   1196         Value *NewAnd =
   1197           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1198 
   1199         ICI.setOperand(0, NewAnd);
   1200         return &ICI;
   1201       }
   1202     }
   1203 
   1204     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1205     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1206       if (GetElementPtrInst *GEP =
   1207           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1208         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1209           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1210               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1211             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1212             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1213               return Res;
   1214           }
   1215     }
   1216     break;
   1217 
   1218   case Instruction::Or: {
   1219     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1220       break;
   1221     Value *P, *Q;
   1222     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1223       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1224       // -> and (icmp eq P, null), (icmp eq Q, null).
   1225       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1226                                         Constant::getNullValue(P->getType()));
   1227       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1228                                         Constant::getNullValue(Q->getType()));
   1229       Instruction *Op;
   1230       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1231         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1232       else
   1233         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1234       return Op;
   1235     }
   1236     break;
   1237   }
   1238 
   1239   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1240     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1241     if (!ShAmt) break;
   1242 
   1243     uint32_t TypeBits = RHSV.getBitWidth();
   1244 
   1245     // Check that the shift amount is in range.  If not, don't perform
   1246     // undefined shifts.  When the shift is visited it will be
   1247     // simplified.
   1248     if (ShAmt->uge(TypeBits))
   1249       break;
   1250 
   1251     if (ICI.isEquality()) {
   1252       // If we are comparing against bits always shifted out, the
   1253       // comparison cannot succeed.
   1254       Constant *Comp =
   1255         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1256                                                                  ShAmt);
   1257       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1258         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1259         Constant *Cst =
   1260           ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
   1261         return ReplaceInstUsesWith(ICI, Cst);
   1262       }
   1263 
   1264       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1265       // AND.
   1266       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1267         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1268                             ConstantExpr::getLShr(RHS, ShAmt));
   1269 
   1270       if (LHSI->hasOneUse()) {
   1271         // Otherwise strength reduce the shift into an and.
   1272         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1273         Constant *Mask =
   1274           ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
   1275                                                        TypeBits-ShAmtVal));
   1276 
   1277         Value *And =
   1278           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1279         return new ICmpInst(ICI.getPredicate(), And,
   1280                             ConstantExpr::getLShr(RHS, ShAmt));
   1281       }
   1282     }
   1283 
   1284     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1285     bool TrueIfSigned = false;
   1286     if (LHSI->hasOneUse() &&
   1287         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1288       // (X << 31) <s 0  --> (X&1) != 0
   1289       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1290                                         APInt::getOneBitSet(TypeBits,
   1291                                             TypeBits-ShAmt->getZExtValue()-1));
   1292       Value *And =
   1293         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1294       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1295                           And, Constant::getNullValue(And->getType()));
   1296     }
   1297     break;
   1298   }
   1299 
   1300   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1301   case Instruction::AShr: {
   1302     // Handle equality comparisons of shift-by-constant.
   1303     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1304     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1305       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1306         return Res;
   1307     }
   1308 
   1309     // Handle exact shr's.
   1310     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1311       if (RHSV.isMinValue())
   1312         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1313     }
   1314     break;
   1315   }
   1316 
   1317   case Instruction::SDiv:
   1318   case Instruction::UDiv:
   1319     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1320     // Fold this div into the comparison, producing a range check.
   1321     // Determine, based on the divide type, what the range is being
   1322     // checked.  If there is an overflow on the low or high side, remember
   1323     // it, otherwise compute the range [low, hi) bounding the new value.
   1324     // See: InsertRangeTest above for the kinds of replacements possible.
   1325     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1326       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1327                                           DivRHS))
   1328         return R;
   1329     break;
   1330 
   1331   case Instruction::Add:
   1332     // Fold: icmp pred (add X, C1), C2
   1333     if (!ICI.isEquality()) {
   1334       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1335       if (!LHSC) break;
   1336       const APInt &LHSV = LHSC->getValue();
   1337 
   1338       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1339                             .subtract(LHSV);
   1340 
   1341       if (ICI.isSigned()) {
   1342         if (CR.getLower().isSignBit()) {
   1343           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1344                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1345         } else if (CR.getUpper().isSignBit()) {
   1346           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1347                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1348         }
   1349       } else {
   1350         if (CR.getLower().isMinValue()) {
   1351           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1352                               ConstantInt::get(ICI.getContext(),CR.getUpper()));
   1353         } else if (CR.getUpper().isMinValue()) {
   1354           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1355                               ConstantInt::get(ICI.getContext(),CR.getLower()));
   1356         }
   1357       }
   1358     }
   1359     break;
   1360   }
   1361 
   1362   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1363   if (ICI.isEquality()) {
   1364     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1365 
   1366     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1367     // the second operand is a constant, simplify a bit.
   1368     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1369       switch (BO->getOpcode()) {
   1370       case Instruction::SRem:
   1371         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1372         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1373           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1374           if (V.sgt(1) && V.isPowerOf2()) {
   1375             Value *NewRem =
   1376               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1377                                   BO->getName());
   1378             return new ICmpInst(ICI.getPredicate(), NewRem,
   1379                                 Constant::getNullValue(BO->getType()));
   1380           }
   1381         }
   1382         break;
   1383       case Instruction::Add:
   1384         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1385         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1386           if (BO->hasOneUse())
   1387             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1388                                 ConstantExpr::getSub(RHS, BOp1C));
   1389         } else if (RHSV == 0) {
   1390           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1391           // efficiently invertible, or if the add has just this one use.
   1392           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1393 
   1394           if (Value *NegVal = dyn_castNegVal(BOp1))
   1395             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1396           if (Value *NegVal = dyn_castNegVal(BOp0))
   1397             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1398           if (BO->hasOneUse()) {
   1399             Value *Neg = Builder->CreateNeg(BOp1);
   1400             Neg->takeName(BO);
   1401             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1402           }
   1403         }
   1404         break;
   1405       case Instruction::Xor:
   1406         // For the xor case, we can xor two constants together, eliminating
   1407         // the explicit xor.
   1408         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1409           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1410                               ConstantExpr::getXor(RHS, BOC));
   1411         } else if (RHSV == 0) {
   1412           // Replace ((xor A, B) != 0) with (A != B)
   1413           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1414                               BO->getOperand(1));
   1415         }
   1416         break;
   1417       case Instruction::Sub:
   1418         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1419         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1420           if (BO->hasOneUse())
   1421             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1422                                 ConstantExpr::getSub(BOp0C, RHS));
   1423         } else if (RHSV == 0) {
   1424           // Replace ((sub A, B) != 0) with (A != B)
   1425           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1426                               BO->getOperand(1));
   1427         }
   1428         break;
   1429       case Instruction::Or:
   1430         // If bits are being or'd in that are not present in the constant we
   1431         // are comparing against, then the comparison could never succeed!
   1432         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1433           Constant *NotCI = ConstantExpr::getNot(RHS);
   1434           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1435             return ReplaceInstUsesWith(ICI,
   1436                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1437                                        isICMP_NE));
   1438         }
   1439         break;
   1440 
   1441       case Instruction::And:
   1442         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1443           // If bits are being compared against that are and'd out, then the
   1444           // comparison can never succeed!
   1445           if ((RHSV & ~BOC->getValue()) != 0)
   1446             return ReplaceInstUsesWith(ICI,
   1447                              ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
   1448                                        isICMP_NE));
   1449 
   1450           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1451           if (RHS == BOC && RHSV.isPowerOf2())
   1452             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1453                                 ICmpInst::ICMP_NE, LHSI,
   1454                                 Constant::getNullValue(RHS->getType()));
   1455 
   1456           // Don't perform the following transforms if the AND has multiple uses
   1457           if (!BO->hasOneUse())
   1458             break;
   1459 
   1460           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1461           if (BOC->getValue().isSignBit()) {
   1462             Value *X = BO->getOperand(0);
   1463             Constant *Zero = Constant::getNullValue(X->getType());
   1464             ICmpInst::Predicate pred = isICMP_NE ?
   1465               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1466             return new ICmpInst(pred, X, Zero);
   1467           }
   1468 
   1469           // ((X & ~7) == 0) --> X < 8
   1470           if (RHSV == 0 && isHighOnes(BOC)) {
   1471             Value *X = BO->getOperand(0);
   1472             Constant *NegX = ConstantExpr::getNeg(BOC);
   1473             ICmpInst::Predicate pred = isICMP_NE ?
   1474               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1475             return new ICmpInst(pred, X, NegX);
   1476           }
   1477         }
   1478       default: break;
   1479       }
   1480     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1481       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1482       switch (II->getIntrinsicID()) {
   1483       case Intrinsic::bswap:
   1484         Worklist.Add(II);
   1485         ICI.setOperand(0, II->getArgOperand(0));
   1486         ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
   1487         return &ICI;
   1488       case Intrinsic::ctlz:
   1489       case Intrinsic::cttz:
   1490         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1491         if (RHSV == RHS->getType()->getBitWidth()) {
   1492           Worklist.Add(II);
   1493           ICI.setOperand(0, II->getArgOperand(0));
   1494           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1495           return &ICI;
   1496         }
   1497         break;
   1498       case Intrinsic::ctpop:
   1499         // popcount(A) == 0  ->  A == 0 and likewise for !=
   1500         if (RHS->isZero()) {
   1501           Worklist.Add(II);
   1502           ICI.setOperand(0, II->getArgOperand(0));
   1503           ICI.setOperand(1, RHS);
   1504           return &ICI;
   1505         }
   1506         break;
   1507       default:
   1508         break;
   1509       }
   1510     }
   1511   }
   1512   return 0;
   1513 }
   1514 
   1515 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   1516 /// We only handle extending casts so far.
   1517 ///
   1518 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   1519   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   1520   Value *LHSCIOp        = LHSCI->getOperand(0);
   1521   Type *SrcTy     = LHSCIOp->getType();
   1522   Type *DestTy    = LHSCI->getType();
   1523   Value *RHSCIOp;
   1524 
   1525   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   1526   // integer type is the same size as the pointer type.
   1527   if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
   1528       TD->getPointerSizeInBits() ==
   1529          cast<IntegerType>(DestTy)->getBitWidth()) {
   1530     Value *RHSOp = 0;
   1531     if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
   1532       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   1533     } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
   1534       RHSOp = RHSC->getOperand(0);
   1535       // If the pointer types don't match, insert a bitcast.
   1536       if (LHSCIOp->getType() != RHSOp->getType())
   1537         RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   1538     }
   1539 
   1540     if (RHSOp)
   1541       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   1542   }
   1543 
   1544   // The code below only handles extension cast instructions, so far.
   1545   // Enforce this.
   1546   if (LHSCI->getOpcode() != Instruction::ZExt &&
   1547       LHSCI->getOpcode() != Instruction::SExt)
   1548     return 0;
   1549 
   1550   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   1551   bool isSignedCmp = ICI.isSigned();
   1552 
   1553   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   1554     // Not an extension from the same type?
   1555     RHSCIOp = CI->getOperand(0);
   1556     if (RHSCIOp->getType() != LHSCIOp->getType())
   1557       return 0;
   1558 
   1559     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   1560     // and the other is a zext), then we can't handle this.
   1561     if (CI->getOpcode() != LHSCI->getOpcode())
   1562       return 0;
   1563 
   1564     // Deal with equality cases early.
   1565     if (ICI.isEquality())
   1566       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1567 
   1568     // A signed comparison of sign extended values simplifies into a
   1569     // signed comparison.
   1570     if (isSignedCmp && isSignedExt)
   1571       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1572 
   1573     // The other three cases all fold into an unsigned comparison.
   1574     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   1575   }
   1576 
   1577   // If we aren't dealing with a constant on the RHS, exit early
   1578   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   1579   if (!CI)
   1580     return 0;
   1581 
   1582   // Compute the constant that would happen if we truncated to SrcTy then
   1583   // reextended to DestTy.
   1584   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   1585   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   1586                                                 Res1, DestTy);
   1587 
   1588   // If the re-extended constant didn't change...
   1589   if (Res2 == CI) {
   1590     // Deal with equality cases early.
   1591     if (ICI.isEquality())
   1592       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1593 
   1594     // A signed comparison of sign extended values simplifies into a
   1595     // signed comparison.
   1596     if (isSignedExt && isSignedCmp)
   1597       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1598 
   1599     // The other three cases all fold into an unsigned comparison.
   1600     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   1601   }
   1602 
   1603   // The re-extended constant changed so the constant cannot be represented
   1604   // in the shorter type. Consequently, we cannot emit a simple comparison.
   1605   // All the cases that fold to true or false will have already been handled
   1606   // by SimplifyICmpInst, so only deal with the tricky case.
   1607 
   1608   if (isSignedCmp || !isSignedExt)
   1609     return 0;
   1610 
   1611   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   1612   // should have been folded away previously and not enter in here.
   1613 
   1614   // We're performing an unsigned comp with a sign extended value.
   1615   // This is true if the input is >= 0. [aka >s -1]
   1616   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   1617   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   1618 
   1619   // Finally, return the value computed.
   1620   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   1621     return ReplaceInstUsesWith(ICI, Result);
   1622 
   1623   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   1624   return BinaryOperator::CreateNot(Result);
   1625 }
   1626 
   1627 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   1628 ///   I = icmp ugt (add (add A, B), CI2), CI1
   1629 /// If this is of the form:
   1630 ///   sum = a + b
   1631 ///   if (sum+128 >u 255)
   1632 /// Then replace it with llvm.sadd.with.overflow.i8.
   1633 ///
   1634 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   1635                                           ConstantInt *CI2, ConstantInt *CI1,
   1636                                           InstCombiner &IC) {
   1637   // The transformation we're trying to do here is to transform this into an
   1638   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   1639   // with a narrower add, and discard the add-with-constant that is part of the
   1640   // range check (if we can't eliminate it, this isn't profitable).
   1641 
   1642   // In order to eliminate the add-with-constant, the compare can be its only
   1643   // use.
   1644   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   1645   if (!AddWithCst->hasOneUse()) return 0;
   1646 
   1647   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   1648   if (!CI2->getValue().isPowerOf2()) return 0;
   1649   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   1650   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
   1651 
   1652   // The width of the new add formed is 1 more than the bias.
   1653   ++NewWidth;
   1654 
   1655   // Check to see that CI1 is an all-ones value with NewWidth bits.
   1656   if (CI1->getBitWidth() == NewWidth ||
   1657       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   1658     return 0;
   1659 
   1660   // In order to replace the original add with a narrower
   1661   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   1662   // and truncates that discard the high bits of the add.  Verify that this is
   1663   // the case.
   1664   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   1665   for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
   1666        UI != E; ++UI) {
   1667     if (*UI == AddWithCst) continue;
   1668 
   1669     // Only accept truncates for now.  We would really like a nice recursive
   1670     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   1671     // chain to see which bits of a value are actually demanded.  If the
   1672     // original add had another add which was then immediately truncated, we
   1673     // could still do the transformation.
   1674     TruncInst *TI = dyn_cast<TruncInst>(*UI);
   1675     if (TI == 0 ||
   1676         TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
   1677   }
   1678 
   1679   // If the pattern matches, truncate the inputs to the narrower type and
   1680   // use the sadd_with_overflow intrinsic to efficiently compute both the
   1681   // result and the overflow bit.
   1682   Module *M = I.getParent()->getParent()->getParent();
   1683 
   1684   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   1685   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
   1686                                        NewType);
   1687 
   1688   InstCombiner::BuilderTy *Builder = IC.Builder;
   1689 
   1690   // Put the new code above the original add, in case there are any uses of the
   1691   // add between the add and the compare.
   1692   Builder->SetInsertPoint(OrigAdd);
   1693 
   1694   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   1695   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   1696   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
   1697   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   1698   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   1699 
   1700   // The inner add was the result of the narrow add, zero extended to the
   1701   // wider type.  Replace it with the result computed by the intrinsic.
   1702   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   1703 
   1704   // The original icmp gets replaced with the overflow value.
   1705   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   1706 }
   1707 
   1708 static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
   1709                                      InstCombiner &IC) {
   1710   // Don't bother doing this transformation for pointers, don't do it for
   1711   // vectors.
   1712   if (!isa<IntegerType>(OrigAddV->getType())) return 0;
   1713 
   1714   // If the add is a constant expr, then we don't bother transforming it.
   1715   Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
   1716   if (OrigAdd == 0) return 0;
   1717 
   1718   Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
   1719 
   1720   // Put the new code above the original add, in case there are any uses of the
   1721   // add between the add and the compare.
   1722   InstCombiner::BuilderTy *Builder = IC.Builder;
   1723   Builder->SetInsertPoint(OrigAdd);
   1724 
   1725   Module *M = I.getParent()->getParent()->getParent();
   1726   Type *Ty = LHS->getType();
   1727   Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, Ty);
   1728   CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
   1729   Value *Add = Builder->CreateExtractValue(Call, 0);
   1730 
   1731   IC.ReplaceInstUsesWith(*OrigAdd, Add);
   1732 
   1733   // The original icmp gets replaced with the overflow value.
   1734   return ExtractValueInst::Create(Call, 1, "uadd.overflow");
   1735 }
   1736 
   1737 // DemandedBitsLHSMask - When performing a comparison against a constant,
   1738 // it is possible that not all the bits in the LHS are demanded.  This helper
   1739 // method computes the mask that IS demanded.
   1740 static APInt DemandedBitsLHSMask(ICmpInst &I,
   1741                                  unsigned BitWidth, bool isSignCheck) {
   1742   if (isSignCheck)
   1743     return APInt::getSignBit(BitWidth);
   1744 
   1745   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   1746   if (!CI) return APInt::getAllOnesValue(BitWidth);
   1747   const APInt &RHS = CI->getValue();
   1748 
   1749   switch (I.getPredicate()) {
   1750   // For a UGT comparison, we don't care about any bits that
   1751   // correspond to the trailing ones of the comparand.  The value of these
   1752   // bits doesn't impact the outcome of the comparison, because any value
   1753   // greater than the RHS must differ in a bit higher than these due to carry.
   1754   case ICmpInst::ICMP_UGT: {
   1755     unsigned trailingOnes = RHS.countTrailingOnes();
   1756     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   1757     return ~lowBitsSet;
   1758   }
   1759 
   1760   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   1761   // Any value less than the RHS must differ in a higher bit because of carries.
   1762   case ICmpInst::ICMP_ULT: {
   1763     unsigned trailingZeros = RHS.countTrailingZeros();
   1764     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   1765     return ~lowBitsSet;
   1766   }
   1767 
   1768   default:
   1769     return APInt::getAllOnesValue(BitWidth);
   1770   }
   1771 
   1772 }
   1773 
   1774 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   1775   bool Changed = false;
   1776   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1777 
   1778   /// Orders the operands of the compare so that they are listed from most
   1779   /// complex to least complex.  This puts constants before unary operators,
   1780   /// before binary operators.
   1781   if (getComplexity(Op0) < getComplexity(Op1)) {
   1782     I.swapOperands();
   1783     std::swap(Op0, Op1);
   1784     Changed = true;
   1785   }
   1786 
   1787   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
   1788     return ReplaceInstUsesWith(I, V);
   1789 
   1790   Type *Ty = Op0->getType();
   1791 
   1792   // icmp's with boolean values can always be turned into bitwise operations
   1793   if (Ty->isIntegerTy(1)) {
   1794     switch (I.getPredicate()) {
   1795     default: llvm_unreachable("Invalid icmp instruction!");
   1796     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   1797       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   1798       return BinaryOperator::CreateNot(Xor);
   1799     }
   1800     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   1801       return BinaryOperator::CreateXor(Op0, Op1);
   1802 
   1803     case ICmpInst::ICMP_UGT:
   1804       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   1805       // FALL THROUGH
   1806     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   1807       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1808       return BinaryOperator::CreateAnd(Not, Op1);
   1809     }
   1810     case ICmpInst::ICMP_SGT:
   1811       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   1812       // FALL THROUGH
   1813     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   1814       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1815       return BinaryOperator::CreateAnd(Not, Op0);
   1816     }
   1817     case ICmpInst::ICMP_UGE:
   1818       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   1819       // FALL THROUGH
   1820     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   1821       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   1822       return BinaryOperator::CreateOr(Not, Op1);
   1823     }
   1824     case ICmpInst::ICMP_SGE:
   1825       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   1826       // FALL THROUGH
   1827     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   1828       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   1829       return BinaryOperator::CreateOr(Not, Op0);
   1830     }
   1831     }
   1832   }
   1833 
   1834   unsigned BitWidth = 0;
   1835   if (Ty->isIntOrIntVectorTy())
   1836     BitWidth = Ty->getScalarSizeInBits();
   1837   else if (TD)  // Pointers require TD info to get their size.
   1838     BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
   1839 
   1840   bool isSignBit = false;
   1841 
   1842   // See if we are doing a comparison with a constant.
   1843   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   1844     Value *A = 0, *B = 0;
   1845 
   1846     // Match the following pattern, which is a common idiom when writing
   1847     // overflow-safe integer arithmetic function.  The source performs an
   1848     // addition in wider type, and explicitly checks for overflow using
   1849     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   1850     // sadd_with_overflow intrinsic.
   1851     //
   1852     // TODO: This could probably be generalized to handle other overflow-safe
   1853     // operations if we worked out the formulas to compute the appropriate
   1854     // magic constants.
   1855     //
   1856     // sum = a + b
   1857     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   1858     {
   1859     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   1860     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   1861         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   1862       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   1863         return Res;
   1864     }
   1865 
   1866     // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   1867     if (I.isEquality() && CI->isZero() &&
   1868         match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
   1869       // (icmp cond A B) if cond is equality
   1870       return new ICmpInst(I.getPredicate(), A, B);
   1871     }
   1872 
   1873     // If we have an icmp le or icmp ge instruction, turn it into the
   1874     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   1875     // them being folded in the code below.  The SimplifyICmpInst code has
   1876     // already handled the edge cases for us, so we just assert on them.
   1877     switch (I.getPredicate()) {
   1878     default: break;
   1879     case ICmpInst::ICMP_ULE:
   1880       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   1881       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   1882                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1883     case ICmpInst::ICMP_SLE:
   1884       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   1885       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   1886                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   1887     case ICmpInst::ICMP_UGE:
   1888       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   1889       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   1890                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1891     case ICmpInst::ICMP_SGE:
   1892       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   1893       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   1894                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   1895     }
   1896 
   1897     // If this comparison is a normal comparison, it demands all
   1898     // bits, if it is a sign bit comparison, it only demands the sign bit.
   1899     bool UnusedBit;
   1900     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   1901   }
   1902 
   1903   // See if we can fold the comparison based on range information we can get
   1904   // by checking whether bits are known to be zero or one in the input.
   1905   if (BitWidth != 0) {
   1906     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   1907     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   1908 
   1909     if (SimplifyDemandedBits(I.getOperandUse(0),
   1910                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   1911                              Op0KnownZero, Op0KnownOne, 0))
   1912       return &I;
   1913     if (SimplifyDemandedBits(I.getOperandUse(1),
   1914                              APInt::getAllOnesValue(BitWidth),
   1915                              Op1KnownZero, Op1KnownOne, 0))
   1916       return &I;
   1917 
   1918     // Given the known and unknown bits, compute a range that the LHS could be
   1919     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   1920     // EQ and NE we use unsigned values.
   1921     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   1922     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   1923     if (I.isSigned()) {
   1924       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   1925                                              Op0Min, Op0Max);
   1926       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   1927                                              Op1Min, Op1Max);
   1928     } else {
   1929       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   1930                                                Op0Min, Op0Max);
   1931       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   1932                                                Op1Min, Op1Max);
   1933     }
   1934 
   1935     // If Min and Max are known to be the same, then SimplifyDemandedBits
   1936     // figured out that the LHS is a constant.  Just constant fold this now so
   1937     // that code below can assume that Min != Max.
   1938     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   1939       return new ICmpInst(I.getPredicate(),
   1940                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   1941     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   1942       return new ICmpInst(I.getPredicate(), Op0,
   1943                           ConstantInt::get(Op1->getType(), Op1Min));
   1944 
   1945     // Based on the range information we know about the LHS, see if we can
   1946     // simplify this comparison.  For example, (x&4) < 8 is always true.
   1947     switch (I.getPredicate()) {
   1948     default: llvm_unreachable("Unknown icmp opcode!");
   1949     case ICmpInst::ICMP_EQ: {
   1950       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   1951         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   1952 
   1953       // If all bits are known zero except for one, then we know at most one
   1954       // bit is set.   If the comparison is against zero, then this is a check
   1955       // to see if *that* bit is set.
   1956       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   1957       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   1958         // If the LHS is an AND with the same constant, look through it.
   1959         Value *LHS = 0;
   1960         ConstantInt *LHSC = 0;
   1961         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   1962             LHSC->getValue() != Op0KnownZeroInverted)
   1963           LHS = Op0;
   1964 
   1965         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   1966         // then turn "((1 << x)&8) == 0" into "x != 3".
   1967         Value *X = 0;
   1968         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   1969           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   1970           return new ICmpInst(ICmpInst::ICMP_NE, X,
   1971                               ConstantInt::get(X->getType(), CmpVal));
   1972         }
   1973 
   1974         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   1975         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   1976         const APInt *CI;
   1977         if (Op0KnownZeroInverted == 1 &&
   1978             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   1979           return new ICmpInst(ICmpInst::ICMP_NE, X,
   1980                               ConstantInt::get(X->getType(),
   1981                                                CI->countTrailingZeros()));
   1982       }
   1983 
   1984       break;
   1985     }
   1986     case ICmpInst::ICMP_NE: {
   1987       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   1988         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   1989 
   1990       // If all bits are known zero except for one, then we know at most one
   1991       // bit is set.   If the comparison is against zero, then this is a check
   1992       // to see if *that* bit is set.
   1993       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   1994       if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
   1995         // If the LHS is an AND with the same constant, look through it.
   1996         Value *LHS = 0;
   1997         ConstantInt *LHSC = 0;
   1998         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   1999             LHSC->getValue() != Op0KnownZeroInverted)
   2000           LHS = Op0;
   2001 
   2002         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2003         // then turn "((1 << x)&8) != 0" into "x == 3".
   2004         Value *X = 0;
   2005         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2006           unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
   2007           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2008                               ConstantInt::get(X->getType(), CmpVal));
   2009         }
   2010 
   2011         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2012         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   2013         const APInt *CI;
   2014         if (Op0KnownZeroInverted == 1 &&
   2015             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2016           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2017                               ConstantInt::get(X->getType(),
   2018                                                CI->countTrailingZeros()));
   2019       }
   2020 
   2021       break;
   2022     }
   2023     case ICmpInst::ICMP_ULT:
   2024       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   2025         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2026       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   2027         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2028       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   2029         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2030       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2031         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   2032           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2033                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2034 
   2035         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   2036         if (CI->isMinValue(true))
   2037           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2038                            Constant::getAllOnesValue(Op0->getType()));
   2039       }
   2040       break;
   2041     case ICmpInst::ICMP_UGT:
   2042       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   2043         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2044       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   2045         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2046 
   2047       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   2048         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2049       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2050         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   2051           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2052                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2053 
   2054         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   2055         if (CI->isMaxValue(true))
   2056           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2057                               Constant::getNullValue(Op0->getType()));
   2058       }
   2059       break;
   2060     case ICmpInst::ICMP_SLT:
   2061       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   2062         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2063       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   2064         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2065       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   2066         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2067       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2068         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   2069           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2070                           ConstantInt::get(CI->getContext(), CI->getValue()-1));
   2071       }
   2072       break;
   2073     case ICmpInst::ICMP_SGT:
   2074       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   2075         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2076       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   2077         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2078 
   2079       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   2080         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2081       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2082         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   2083           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2084                           ConstantInt::get(CI->getContext(), CI->getValue()+1));
   2085       }
   2086       break;
   2087     case ICmpInst::ICMP_SGE:
   2088       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   2089       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   2090         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2091       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   2092         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2093       break;
   2094     case ICmpInst::ICMP_SLE:
   2095       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   2096       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   2097         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2098       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   2099         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2100       break;
   2101     case ICmpInst::ICMP_UGE:
   2102       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   2103       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   2104         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2105       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   2106         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2107       break;
   2108     case ICmpInst::ICMP_ULE:
   2109       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   2110       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   2111         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2112       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   2113         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2114       break;
   2115     }
   2116 
   2117     // Turn a signed comparison into an unsigned one if both operands
   2118     // are known to have the same sign.
   2119     if (I.isSigned() &&
   2120         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   2121          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   2122       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   2123   }
   2124 
   2125   // Test if the ICmpInst instruction is used exclusively by a select as
   2126   // part of a minimum or maximum operation. If so, refrain from doing
   2127   // any other folding. This helps out other analyses which understand
   2128   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   2129   // and CodeGen. And in this case, at least one of the comparison
   2130   // operands has at least one user besides the compare (the select),
   2131   // which would often largely negate the benefit of folding anyway.
   2132   if (I.hasOneUse())
   2133     if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
   2134       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   2135           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   2136         return 0;
   2137 
   2138   // See if we are doing a comparison between a constant and an instruction that
   2139   // can be folded into the comparison.
   2140   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2141     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   2142     // instruction, see if that instruction also has constants so that the
   2143     // instruction can be folded into the icmp
   2144     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2145       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   2146         return Res;
   2147   }
   2148 
   2149   // Handle icmp with constant (but not simple integer constant) RHS
   2150   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2151     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2152       switch (LHSI->getOpcode()) {
   2153       case Instruction::GetElementPtr:
   2154           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   2155         if (RHSC->isNullValue() &&
   2156             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   2157           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2158                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2159         break;
   2160       case Instruction::PHI:
   2161         // Only fold icmp into the PHI if the phi and icmp are in the same
   2162         // block.  If in the same block, we're encouraging jump threading.  If
   2163         // not, we are just pessimizing the code by making an i1 phi.
   2164         if (LHSI->getParent() == I.getParent())
   2165           if (Instruction *NV = FoldOpIntoPhi(I))
   2166             return NV;
   2167         break;
   2168       case Instruction::Select: {
   2169         // If either operand of the select is a constant, we can fold the
   2170         // comparison into the select arms, which will cause one to be
   2171         // constant folded and the select turned into a bitwise or.
   2172         Value *Op1 = 0, *Op2 = 0;
   2173         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
   2174           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2175         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
   2176           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   2177 
   2178         // We only want to perform this transformation if it will not lead to
   2179         // additional code. This is true if either both sides of the select
   2180         // fold to a constant (in which case the icmp is replaced with a select
   2181         // which will usually simplify) or this is the only user of the
   2182         // select (in which case we are trading a select+icmp for a simpler
   2183         // select+icmp).
   2184         if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
   2185           if (!Op1)
   2186             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   2187                                       RHSC, I.getName());
   2188           if (!Op2)
   2189             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   2190                                       RHSC, I.getName());
   2191           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2192         }
   2193         break;
   2194       }
   2195       case Instruction::IntToPtr:
   2196         // icmp pred inttoptr(X), null -> icmp pred X, 0
   2197         if (RHSC->isNullValue() && TD &&
   2198             TD->getIntPtrType(RHSC->getContext()) ==
   2199                LHSI->getOperand(0)->getType())
   2200           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   2201                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   2202         break;
   2203 
   2204       case Instruction::Load:
   2205         // Try to optimize things like "A[i] > 4" to index computations.
   2206         if (GetElementPtrInst *GEP =
   2207               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2208           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2209             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2210                 !cast<LoadInst>(LHSI)->isVolatile())
   2211               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2212                 return Res;
   2213         }
   2214         break;
   2215       }
   2216   }
   2217 
   2218   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   2219   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   2220     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   2221       return NI;
   2222   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   2223     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   2224                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   2225       return NI;
   2226 
   2227   // Test to see if the operands of the icmp are casted versions of other
   2228   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   2229   // now.
   2230   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   2231     if (Op0->getType()->isPointerTy() &&
   2232         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   2233       // We keep moving the cast from the left operand over to the right
   2234       // operand, where it can often be eliminated completely.
   2235       Op0 = CI->getOperand(0);
   2236 
   2237       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   2238       // so eliminate it as well.
   2239       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   2240         Op1 = CI2->getOperand(0);
   2241 
   2242       // If Op1 is a constant, we can fold the cast into the constant.
   2243       if (Op0->getType() != Op1->getType()) {
   2244         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   2245           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   2246         } else {
   2247           // Otherwise, cast the RHS right before the icmp
   2248           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   2249         }
   2250       }
   2251       return new ICmpInst(I.getPredicate(), Op0, Op1);
   2252     }
   2253   }
   2254 
   2255   if (isa<CastInst>(Op0)) {
   2256     // Handle the special case of: icmp (cast bool to X), <cst>
   2257     // This comes up when you have code like
   2258     //   int X = A < B;
   2259     //   if (X) ...
   2260     // For generality, we handle any zero-extension of any operand comparison
   2261     // with a constant or another cast from the same type.
   2262     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   2263       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   2264         return R;
   2265   }
   2266 
   2267   // Special logic for binary operators.
   2268   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   2269   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   2270   if (BO0 || BO1) {
   2271     CmpInst::Predicate Pred = I.getPredicate();
   2272     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   2273     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   2274       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   2275         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   2276         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   2277     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   2278       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   2279         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   2280         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   2281 
   2282     // Analyze the case when either Op0 or Op1 is an add instruction.
   2283     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   2284     Value *A = 0, *B = 0, *C = 0, *D = 0;
   2285     if (BO0 && BO0->getOpcode() == Instruction::Add)
   2286       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2287     if (BO1 && BO1->getOpcode() == Instruction::Add)
   2288       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2289 
   2290     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   2291     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   2292       return new ICmpInst(Pred, A == Op1 ? B : A,
   2293                           Constant::getNullValue(Op1->getType()));
   2294 
   2295     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   2296     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   2297       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   2298                           C == Op0 ? D : C);
   2299 
   2300     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   2301     if (A && C && (A == C || A == D || B == C || B == D) &&
   2302         NoOp0WrapProblem && NoOp1WrapProblem &&
   2303         // Try not to increase register pressure.
   2304         BO0->hasOneUse() && BO1->hasOneUse()) {
   2305       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   2306       Value *Y = (A == C || A == D) ? B : A;
   2307       Value *Z = (C == A || C == B) ? D : C;
   2308       return new ICmpInst(Pred, Y, Z);
   2309     }
   2310 
   2311     // Analyze the case when either Op0 or Op1 is a sub instruction.
   2312     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   2313     A = 0; B = 0; C = 0; D = 0;
   2314     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   2315       A = BO0->getOperand(0), B = BO0->getOperand(1);
   2316     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   2317       C = BO1->getOperand(0), D = BO1->getOperand(1);
   2318 
   2319     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   2320     if (A == Op1 && NoOp0WrapProblem)
   2321       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   2322 
   2323     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   2324     if (C == Op0 && NoOp1WrapProblem)
   2325       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   2326 
   2327     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   2328     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   2329         // Try not to increase register pressure.
   2330         BO0->hasOneUse() && BO1->hasOneUse())
   2331       return new ICmpInst(Pred, A, C);
   2332 
   2333     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   2334     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   2335         // Try not to increase register pressure.
   2336         BO0->hasOneUse() && BO1->hasOneUse())
   2337       return new ICmpInst(Pred, D, B);
   2338 
   2339     BinaryOperator *SRem = NULL;
   2340     // icmp (srem X, Y), Y
   2341     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   2342         Op1 == BO0->getOperand(1))
   2343       SRem = BO0;
   2344     // icmp Y, (srem X, Y)
   2345     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   2346              Op0 == BO1->getOperand(1))
   2347       SRem = BO1;
   2348     if (SRem) {
   2349       // We don't check hasOneUse to avoid increasing register pressure because
   2350       // the value we use is the same value this instruction was already using.
   2351       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   2352         default: break;
   2353         case ICmpInst::ICMP_EQ:
   2354           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2355         case ICmpInst::ICMP_NE:
   2356           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2357         case ICmpInst::ICMP_SGT:
   2358         case ICmpInst::ICMP_SGE:
   2359           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   2360                               Constant::getAllOnesValue(SRem->getType()));
   2361         case ICmpInst::ICMP_SLT:
   2362         case ICmpInst::ICMP_SLE:
   2363           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   2364                               Constant::getNullValue(SRem->getType()));
   2365       }
   2366     }
   2367 
   2368     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   2369         BO0->hasOneUse() && BO1->hasOneUse() &&
   2370         BO0->getOperand(1) == BO1->getOperand(1)) {
   2371       switch (BO0->getOpcode()) {
   2372       default: break;
   2373       case Instruction::Add:
   2374       case Instruction::Sub:
   2375       case Instruction::Xor:
   2376         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   2377           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2378                               BO1->getOperand(0));
   2379         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   2380         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2381           if (CI->getValue().isSignBit()) {
   2382             ICmpInst::Predicate Pred = I.isSigned()
   2383                                            ? I.getUnsignedPredicate()
   2384                                            : I.getSignedPredicate();
   2385             return new ICmpInst(Pred, BO0->getOperand(0),
   2386                                 BO1->getOperand(0));
   2387           }
   2388 
   2389           if (CI->isMaxValue(true)) {
   2390             ICmpInst::Predicate Pred = I.isSigned()
   2391                                            ? I.getUnsignedPredicate()
   2392                                            : I.getSignedPredicate();
   2393             Pred = I.getSwappedPredicate(Pred);
   2394             return new ICmpInst(Pred, BO0->getOperand(0),
   2395                                 BO1->getOperand(0));
   2396           }
   2397         }
   2398         break;
   2399       case Instruction::Mul:
   2400         if (!I.isEquality())
   2401           break;
   2402 
   2403         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   2404           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   2405           // Mask = -1 >> count-trailing-zeros(Cst).
   2406           if (!CI->isZero() && !CI->isOne()) {
   2407             const APInt &AP = CI->getValue();
   2408             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   2409                                     APInt::getLowBitsSet(AP.getBitWidth(),
   2410                                                          AP.getBitWidth() -
   2411                                                     AP.countTrailingZeros()));
   2412             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   2413             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   2414             return new ICmpInst(I.getPredicate(), And1, And2);
   2415           }
   2416         }
   2417         break;
   2418       case Instruction::UDiv:
   2419       case Instruction::LShr:
   2420         if (I.isSigned())
   2421           break;
   2422         // fall-through
   2423       case Instruction::SDiv:
   2424       case Instruction::AShr:
   2425         if (!BO0->isExact() || !BO1->isExact())
   2426           break;
   2427         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2428                             BO1->getOperand(0));
   2429       case Instruction::Shl: {
   2430         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   2431         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   2432         if (!NUW && !NSW)
   2433           break;
   2434         if (!NSW && I.isSigned())
   2435           break;
   2436         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   2437                             BO1->getOperand(0));
   2438       }
   2439       }
   2440     }
   2441   }
   2442 
   2443   { Value *A, *B;
   2444     // ~x < ~y --> y < x
   2445     // ~x < cst --> ~cst < x
   2446     if (match(Op0, m_Not(m_Value(A)))) {
   2447       if (match(Op1, m_Not(m_Value(B))))
   2448         return new ICmpInst(I.getPredicate(), B, A);
   2449       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   2450         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   2451     }
   2452 
   2453     // (a+b) <u a  --> llvm.uadd.with.overflow.
   2454     // (a+b) <u b  --> llvm.uadd.with.overflow.
   2455     if (I.getPredicate() == ICmpInst::ICMP_ULT &&
   2456         match(Op0, m_Add(m_Value(A), m_Value(B))) &&
   2457         (Op1 == A || Op1 == B))
   2458       if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
   2459         return R;
   2460 
   2461     // a >u (a+b)  --> llvm.uadd.with.overflow.
   2462     // b >u (a+b)  --> llvm.uadd.with.overflow.
   2463     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2464         match(Op1, m_Add(m_Value(A), m_Value(B))) &&
   2465         (Op0 == A || Op0 == B))
   2466       if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
   2467         return R;
   2468   }
   2469 
   2470   if (I.isEquality()) {
   2471     Value *A, *B, *C, *D;
   2472 
   2473     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   2474       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   2475         Value *OtherVal = A == Op1 ? B : A;
   2476         return new ICmpInst(I.getPredicate(), OtherVal,
   2477                             Constant::getNullValue(A->getType()));
   2478       }
   2479 
   2480       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   2481         // A^c1 == C^c2 --> A == C^(c1^c2)
   2482         ConstantInt *C1, *C2;
   2483         if (match(B, m_ConstantInt(C1)) &&
   2484             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   2485           Constant *NC = ConstantInt::get(I.getContext(),
   2486                                           C1->getValue() ^ C2->getValue());
   2487           Value *Xor = Builder->CreateXor(C, NC);
   2488           return new ICmpInst(I.getPredicate(), A, Xor);
   2489         }
   2490 
   2491         // A^B == A^D -> B == D
   2492         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   2493         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   2494         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   2495         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   2496       }
   2497     }
   2498 
   2499     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   2500         (A == Op0 || B == Op0)) {
   2501       // A == (A^B)  ->  B == 0
   2502       Value *OtherVal = A == Op0 ? B : A;
   2503       return new ICmpInst(I.getPredicate(), OtherVal,
   2504                           Constant::getNullValue(A->getType()));
   2505     }
   2506 
   2507     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   2508     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   2509         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   2510       Value *X = 0, *Y = 0, *Z = 0;
   2511 
   2512       if (A == C) {
   2513         X = B; Y = D; Z = A;
   2514       } else if (A == D) {
   2515         X = B; Y = C; Z = A;
   2516       } else if (B == C) {
   2517         X = A; Y = D; Z = B;
   2518       } else if (B == D) {
   2519         X = A; Y = C; Z = B;
   2520       }
   2521 
   2522       if (X) {   // Build (X^Y) & Z
   2523         Op1 = Builder->CreateXor(X, Y);
   2524         Op1 = Builder->CreateAnd(Op1, Z);
   2525         I.setOperand(0, Op1);
   2526         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   2527         return &I;
   2528       }
   2529     }
   2530 
   2531     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   2532     // "icmp (and X, mask), cst"
   2533     uint64_t ShAmt = 0;
   2534     ConstantInt *Cst1;
   2535     if (Op0->hasOneUse() &&
   2536         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   2537                                            m_ConstantInt(ShAmt))))) &&
   2538         match(Op1, m_ConstantInt(Cst1)) &&
   2539         // Only do this when A has multiple uses.  This is most important to do
   2540         // when it exposes other optimizations.
   2541         !A->hasOneUse()) {
   2542       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   2543 
   2544       if (ShAmt < ASize) {
   2545         APInt MaskV =
   2546           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   2547         MaskV <<= ShAmt;
   2548 
   2549         APInt CmpV = Cst1->getValue().zext(ASize);
   2550         CmpV <<= ShAmt;
   2551 
   2552         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   2553         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   2554       }
   2555     }
   2556   }
   2557 
   2558   {
   2559     Value *X; ConstantInt *Cst;
   2560     // icmp X+Cst, X
   2561     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   2562       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
   2563 
   2564     // icmp X, X+Cst
   2565     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   2566       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
   2567   }
   2568   return Changed ? &I : 0;
   2569 }
   2570 
   2571 
   2572 
   2573 
   2574 
   2575 
   2576 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   2577 ///
   2578 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   2579                                                 Instruction *LHSI,
   2580                                                 Constant *RHSC) {
   2581   if (!isa<ConstantFP>(RHSC)) return 0;
   2582   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   2583 
   2584   // Get the width of the mantissa.  We don't want to hack on conversions that
   2585   // might lose information from the integer, e.g. "i64 -> float"
   2586   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   2587   if (MantissaWidth == -1) return 0;  // Unknown.
   2588 
   2589   // Check to see that the input is converted from an integer type that is small
   2590   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   2591   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   2592   unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
   2593 
   2594   // If this is a uitofp instruction, we need an extra bit to hold the sign.
   2595   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   2596   if (LHSUnsigned)
   2597     ++InputSize;
   2598 
   2599   // If the conversion would lose info, don't hack on this.
   2600   if ((int)InputSize > MantissaWidth)
   2601     return 0;
   2602 
   2603   // Otherwise, we can potentially simplify the comparison.  We know that it
   2604   // will always come through as an integer value and we know the constant is
   2605   // not a NAN (it would have been previously simplified).
   2606   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   2607 
   2608   ICmpInst::Predicate Pred;
   2609   switch (I.getPredicate()) {
   2610   default: llvm_unreachable("Unexpected predicate!");
   2611   case FCmpInst::FCMP_UEQ:
   2612   case FCmpInst::FCMP_OEQ:
   2613     Pred = ICmpInst::ICMP_EQ;
   2614     break;
   2615   case FCmpInst::FCMP_UGT:
   2616   case FCmpInst::FCMP_OGT:
   2617     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   2618     break;
   2619   case FCmpInst::FCMP_UGE:
   2620   case FCmpInst::FCMP_OGE:
   2621     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   2622     break;
   2623   case FCmpInst::FCMP_ULT:
   2624   case FCmpInst::FCMP_OLT:
   2625     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   2626     break;
   2627   case FCmpInst::FCMP_ULE:
   2628   case FCmpInst::FCMP_OLE:
   2629     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   2630     break;
   2631   case FCmpInst::FCMP_UNE:
   2632   case FCmpInst::FCMP_ONE:
   2633     Pred = ICmpInst::ICMP_NE;
   2634     break;
   2635   case FCmpInst::FCMP_ORD:
   2636     return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2637   case FCmpInst::FCMP_UNO:
   2638     return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2639   }
   2640 
   2641   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   2642 
   2643   // Now we know that the APFloat is a normal number, zero or inf.
   2644 
   2645   // See if the FP constant is too large for the integer.  For example,
   2646   // comparing an i8 to 300.0.
   2647   unsigned IntWidth = IntTy->getScalarSizeInBits();
   2648 
   2649   if (!LHSUnsigned) {
   2650     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   2651     // and large values.
   2652     APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
   2653     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   2654                           APFloat::rmNearestTiesToEven);
   2655     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   2656       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   2657           Pred == ICmpInst::ICMP_SLE)
   2658         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2659       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2660     }
   2661   } else {
   2662     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   2663     // +INF and large values.
   2664     APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
   2665     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   2666                           APFloat::rmNearestTiesToEven);
   2667     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   2668       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   2669           Pred == ICmpInst::ICMP_ULE)
   2670         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2671       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2672     }
   2673   }
   2674 
   2675   if (!LHSUnsigned) {
   2676     // See if the RHS value is < SignedMin.
   2677     APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
   2678     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   2679                           APFloat::rmNearestTiesToEven);
   2680     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   2681       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   2682           Pred == ICmpInst::ICMP_SGE)
   2683         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2684       return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2685     }
   2686   }
   2687 
   2688   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   2689   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   2690   // casting the FP value to the integer value and back, checking for equality.
   2691   // Don't do this for zero, because -0.0 is not fractional.
   2692   Constant *RHSInt = LHSUnsigned
   2693     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   2694     : ConstantExpr::getFPToSI(RHSC, IntTy);
   2695   if (!RHS.isZero()) {
   2696     bool Equal = LHSUnsigned
   2697       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   2698       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   2699     if (!Equal) {
   2700       // If we had a comparison against a fractional value, we have to adjust
   2701       // the compare predicate and sometimes the value.  RHSC is rounded towards
   2702       // zero at this point.
   2703       switch (Pred) {
   2704       default: llvm_unreachable("Unexpected integer comparison!");
   2705       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   2706         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2707       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   2708         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2709       case ICmpInst::ICMP_ULE:
   2710         // (float)int <= 4.4   --> int <= 4
   2711         // (float)int <= -4.4  --> false
   2712         if (RHS.isNegative())
   2713           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2714         break;
   2715       case ICmpInst::ICMP_SLE:
   2716         // (float)int <= 4.4   --> int <= 4
   2717         // (float)int <= -4.4  --> int < -4
   2718         if (RHS.isNegative())
   2719           Pred = ICmpInst::ICMP_SLT;
   2720         break;
   2721       case ICmpInst::ICMP_ULT:
   2722         // (float)int < -4.4   --> false
   2723         // (float)int < 4.4    --> int <= 4
   2724         if (RHS.isNegative())
   2725           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
   2726         Pred = ICmpInst::ICMP_ULE;
   2727         break;
   2728       case ICmpInst::ICMP_SLT:
   2729         // (float)int < -4.4   --> int < -4
   2730         // (float)int < 4.4    --> int <= 4
   2731         if (!RHS.isNegative())
   2732           Pred = ICmpInst::ICMP_SLE;
   2733         break;
   2734       case ICmpInst::ICMP_UGT:
   2735         // (float)int > 4.4    --> int > 4
   2736         // (float)int > -4.4   --> true
   2737         if (RHS.isNegative())
   2738           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2739         break;
   2740       case ICmpInst::ICMP_SGT:
   2741         // (float)int > 4.4    --> int > 4
   2742         // (float)int > -4.4   --> int >= -4
   2743         if (RHS.isNegative())
   2744           Pred = ICmpInst::ICMP_SGE;
   2745         break;
   2746       case ICmpInst::ICMP_UGE:
   2747         // (float)int >= -4.4   --> true
   2748         // (float)int >= 4.4    --> int > 4
   2749         if (!RHS.isNegative())
   2750           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
   2751         Pred = ICmpInst::ICMP_UGT;
   2752         break;
   2753       case ICmpInst::ICMP_SGE:
   2754         // (float)int >= -4.4   --> int >= -4
   2755         // (float)int >= 4.4    --> int > 4
   2756         if (!RHS.isNegative())
   2757           Pred = ICmpInst::ICMP_SGT;
   2758         break;
   2759       }
   2760     }
   2761   }
   2762 
   2763   // Lower this FP comparison into an appropriate integer version of the
   2764   // comparison.
   2765   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   2766 }
   2767 
   2768 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   2769   bool Changed = false;
   2770 
   2771   /// Orders the operands of the compare so that they are listed from most
   2772   /// complex to least complex.  This puts constants before unary operators,
   2773   /// before binary operators.
   2774   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   2775     I.swapOperands();
   2776     Changed = true;
   2777   }
   2778 
   2779   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2780 
   2781   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
   2782     return ReplaceInstUsesWith(I, V);
   2783 
   2784   // Simplify 'fcmp pred X, X'
   2785   if (Op0 == Op1) {
   2786     switch (I.getPredicate()) {
   2787     default: llvm_unreachable("Unknown predicate!");
   2788     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   2789     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   2790     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   2791     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   2792       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   2793       I.setPredicate(FCmpInst::FCMP_UNO);
   2794       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2795       return &I;
   2796 
   2797     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   2798     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   2799     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   2800     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   2801       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   2802       I.setPredicate(FCmpInst::FCMP_ORD);
   2803       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   2804       return &I;
   2805     }
   2806   }
   2807 
   2808   // Handle fcmp with constant RHS
   2809   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   2810     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   2811       switch (LHSI->getOpcode()) {
   2812       case Instruction::FPExt: {
   2813         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   2814         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   2815         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   2816         if (!RHSF)
   2817           break;
   2818 
   2819         // We can't convert a PPC double double.
   2820         if (RHSF->getType()->isPPC_FP128Ty())
   2821           break;
   2822 
   2823         const fltSemantics *Sem;
   2824         // FIXME: This shouldn't be here.
   2825         if (LHSExt->getSrcTy()->isFloatTy())
   2826           Sem = &APFloat::IEEEsingle;
   2827         else if (LHSExt->getSrcTy()->isDoubleTy())
   2828           Sem = &APFloat::IEEEdouble;
   2829         else if (LHSExt->getSrcTy()->isFP128Ty())
   2830           Sem = &APFloat::IEEEquad;
   2831         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   2832           Sem = &APFloat::x87DoubleExtended;
   2833         else
   2834           break;
   2835 
   2836         bool Lossy;
   2837         APFloat F = RHSF->getValueAPF();
   2838         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   2839 
   2840         // Avoid lossy conversions and denormals. Zero is a special case
   2841         // that's OK to convert.
   2842         APFloat Fabs = F;
   2843         Fabs.clearSign();
   2844         if (!Lossy &&
   2845             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   2846                  APFloat::cmpLessThan) || Fabs.isZero()))
   2847 
   2848           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   2849                               ConstantFP::get(RHSC->getContext(), F));
   2850         break;
   2851       }
   2852       case Instruction::PHI:
   2853         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   2854         // block.  If in the same block, we're encouraging jump threading.  If
   2855         // not, we are just pessimizing the code by making an i1 phi.
   2856         if (LHSI->getParent() == I.getParent())
   2857           if (Instruction *NV = FoldOpIntoPhi(I))
   2858             return NV;
   2859         break;
   2860       case Instruction::SIToFP:
   2861       case Instruction::UIToFP:
   2862         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   2863           return NV;
   2864         break;
   2865       case Instruction::Select: {
   2866         // If either operand of the select is a constant, we can fold the
   2867         // comparison into the select arms, which will cause one to be
   2868         // constant folded and the select turned into a bitwise or.
   2869         Value *Op1 = 0, *Op2 = 0;
   2870         if (LHSI->hasOneUse()) {
   2871           if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   2872             // Fold the known value into the constant operand.
   2873             Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   2874             // Insert a new FCmp of the other select operand.
   2875             Op2 = Builder->CreateFCmp(I.getPredicate(),
   2876                                       LHSI->getOperand(2), RHSC, I.getName());
   2877           } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   2878             // Fold the known value into the constant operand.
   2879             Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
   2880             // Insert a new FCmp of the other select operand.
   2881             Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
   2882                                       RHSC, I.getName());
   2883           }
   2884         }
   2885 
   2886         if (Op1)
   2887           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   2888         break;
   2889       }
   2890       case Instruction::FSub: {
   2891         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   2892         Value *Op;
   2893         if (match(LHSI, m_FNeg(m_Value(Op))))
   2894           return new FCmpInst(I.getSwappedPredicate(), Op,
   2895                               ConstantExpr::getFNeg(RHSC));
   2896         break;
   2897       }
   2898       case Instruction::Load:
   2899         if (GetElementPtrInst *GEP =
   2900             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   2901           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   2902             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   2903                 !cast<LoadInst>(LHSI)->isVolatile())
   2904               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   2905                 return Res;
   2906         }
   2907         break;
   2908       }
   2909   }
   2910 
   2911   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   2912   Value *X, *Y;
   2913   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   2914     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   2915 
   2916   // fcmp (fpext x), (fpext y) -> fcmp x, y
   2917   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   2918     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   2919       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   2920         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   2921                             RHSExt->getOperand(0));
   2922 
   2923   return Changed ? &I : 0;
   2924 }
   2925