1 //===- InstCombinePHI.cpp -------------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitPHINode function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Target/TargetData.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 using namespace llvm; 20 21 /// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(a,c)] 22 /// and if a/b/c and the add's all have a single use, turn this into a phi 23 /// and a single binop. 24 Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) { 25 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 26 assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); 27 unsigned Opc = FirstInst->getOpcode(); 28 Value *LHSVal = FirstInst->getOperand(0); 29 Value *RHSVal = FirstInst->getOperand(1); 30 31 Type *LHSType = LHSVal->getType(); 32 Type *RHSType = RHSVal->getType(); 33 34 bool isNUW = false, isNSW = false, isExact = false; 35 if (OverflowingBinaryOperator *BO = 36 dyn_cast<OverflowingBinaryOperator>(FirstInst)) { 37 isNUW = BO->hasNoUnsignedWrap(); 38 isNSW = BO->hasNoSignedWrap(); 39 } else if (PossiblyExactOperator *PEO = 40 dyn_cast<PossiblyExactOperator>(FirstInst)) 41 isExact = PEO->isExact(); 42 43 // Scan to see if all operands are the same opcode, and all have one use. 44 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 45 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 46 if (!I || I->getOpcode() != Opc || !I->hasOneUse() || 47 // Verify type of the LHS matches so we don't fold cmp's of different 48 // types. 49 I->getOperand(0)->getType() != LHSType || 50 I->getOperand(1)->getType() != RHSType) 51 return 0; 52 53 // If they are CmpInst instructions, check their predicates 54 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 55 if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) 56 return 0; 57 58 if (isNUW) 59 isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap(); 60 if (isNSW) 61 isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 62 if (isExact) 63 isExact = cast<PossiblyExactOperator>(I)->isExact(); 64 65 // Keep track of which operand needs a phi node. 66 if (I->getOperand(0) != LHSVal) LHSVal = 0; 67 if (I->getOperand(1) != RHSVal) RHSVal = 0; 68 } 69 70 // If both LHS and RHS would need a PHI, don't do this transformation, 71 // because it would increase the number of PHIs entering the block, 72 // which leads to higher register pressure. This is especially 73 // bad when the PHIs are in the header of a loop. 74 if (!LHSVal && !RHSVal) 75 return 0; 76 77 // Otherwise, this is safe to transform! 78 79 Value *InLHS = FirstInst->getOperand(0); 80 Value *InRHS = FirstInst->getOperand(1); 81 PHINode *NewLHS = 0, *NewRHS = 0; 82 if (LHSVal == 0) { 83 NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), 84 FirstInst->getOperand(0)->getName() + ".pn"); 85 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); 86 InsertNewInstBefore(NewLHS, PN); 87 LHSVal = NewLHS; 88 } 89 90 if (RHSVal == 0) { 91 NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), 92 FirstInst->getOperand(1)->getName() + ".pn"); 93 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); 94 InsertNewInstBefore(NewRHS, PN); 95 RHSVal = NewRHS; 96 } 97 98 // Add all operands to the new PHIs. 99 if (NewLHS || NewRHS) { 100 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 101 Instruction *InInst = cast<Instruction>(PN.getIncomingValue(i)); 102 if (NewLHS) { 103 Value *NewInLHS = InInst->getOperand(0); 104 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i)); 105 } 106 if (NewRHS) { 107 Value *NewInRHS = InInst->getOperand(1); 108 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i)); 109 } 110 } 111 } 112 113 if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { 114 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 115 LHSVal, RHSVal); 116 NewCI->setDebugLoc(FirstInst->getDebugLoc()); 117 return NewCI; 118 } 119 120 BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); 121 BinaryOperator *NewBinOp = 122 BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); 123 if (isNUW) NewBinOp->setHasNoUnsignedWrap(); 124 if (isNSW) NewBinOp->setHasNoSignedWrap(); 125 if (isExact) NewBinOp->setIsExact(); 126 NewBinOp->setDebugLoc(FirstInst->getDebugLoc()); 127 return NewBinOp; 128 } 129 130 Instruction *InstCombiner::FoldPHIArgGEPIntoPHI(PHINode &PN) { 131 GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); 132 133 SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), 134 FirstInst->op_end()); 135 // This is true if all GEP bases are allocas and if all indices into them are 136 // constants. 137 bool AllBasePointersAreAllocas = true; 138 139 // We don't want to replace this phi if the replacement would require 140 // more than one phi, which leads to higher register pressure. This is 141 // especially bad when the PHIs are in the header of a loop. 142 bool NeededPhi = false; 143 144 bool AllInBounds = true; 145 146 // Scan to see if all operands are the same opcode, and all have one use. 147 for (unsigned i = 1; i != PN.getNumIncomingValues(); ++i) { 148 GetElementPtrInst *GEP= dyn_cast<GetElementPtrInst>(PN.getIncomingValue(i)); 149 if (!GEP || !GEP->hasOneUse() || GEP->getType() != FirstInst->getType() || 150 GEP->getNumOperands() != FirstInst->getNumOperands()) 151 return 0; 152 153 AllInBounds &= GEP->isInBounds(); 154 155 // Keep track of whether or not all GEPs are of alloca pointers. 156 if (AllBasePointersAreAllocas && 157 (!isa<AllocaInst>(GEP->getOperand(0)) || 158 !GEP->hasAllConstantIndices())) 159 AllBasePointersAreAllocas = false; 160 161 // Compare the operand lists. 162 for (unsigned op = 0, e = FirstInst->getNumOperands(); op != e; ++op) { 163 if (FirstInst->getOperand(op) == GEP->getOperand(op)) 164 continue; 165 166 // Don't merge two GEPs when two operands differ (introducing phi nodes) 167 // if one of the PHIs has a constant for the index. The index may be 168 // substantially cheaper to compute for the constants, so making it a 169 // variable index could pessimize the path. This also handles the case 170 // for struct indices, which must always be constant. 171 if (isa<ConstantInt>(FirstInst->getOperand(op)) || 172 isa<ConstantInt>(GEP->getOperand(op))) 173 return 0; 174 175 if (FirstInst->getOperand(op)->getType() !=GEP->getOperand(op)->getType()) 176 return 0; 177 178 // If we already needed a PHI for an earlier operand, and another operand 179 // also requires a PHI, we'd be introducing more PHIs than we're 180 // eliminating, which increases register pressure on entry to the PHI's 181 // block. 182 if (NeededPhi) 183 return 0; 184 185 FixedOperands[op] = 0; // Needs a PHI. 186 NeededPhi = true; 187 } 188 } 189 190 // If all of the base pointers of the PHI'd GEPs are from allocas, don't 191 // bother doing this transformation. At best, this will just save a bit of 192 // offset calculation, but all the predecessors will have to materialize the 193 // stack address into a register anyway. We'd actually rather *clone* the 194 // load up into the predecessors so that we have a load of a gep of an alloca, 195 // which can usually all be folded into the load. 196 if (AllBasePointersAreAllocas) 197 return 0; 198 199 // Otherwise, this is safe to transform. Insert PHI nodes for each operand 200 // that is variable. 201 SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); 202 203 bool HasAnyPHIs = false; 204 for (unsigned i = 0, e = FixedOperands.size(); i != e; ++i) { 205 if (FixedOperands[i]) continue; // operand doesn't need a phi. 206 Value *FirstOp = FirstInst->getOperand(i); 207 PHINode *NewPN = PHINode::Create(FirstOp->getType(), e, 208 FirstOp->getName()+".pn"); 209 InsertNewInstBefore(NewPN, PN); 210 211 NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); 212 OperandPhis[i] = NewPN; 213 FixedOperands[i] = NewPN; 214 HasAnyPHIs = true; 215 } 216 217 218 // Add all operands to the new PHIs. 219 if (HasAnyPHIs) { 220 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 221 GetElementPtrInst *InGEP =cast<GetElementPtrInst>(PN.getIncomingValue(i)); 222 BasicBlock *InBB = PN.getIncomingBlock(i); 223 224 for (unsigned op = 0, e = OperandPhis.size(); op != e; ++op) 225 if (PHINode *OpPhi = OperandPhis[op]) 226 OpPhi->addIncoming(InGEP->getOperand(op), InBB); 227 } 228 } 229 230 Value *Base = FixedOperands[0]; 231 GetElementPtrInst *NewGEP = 232 GetElementPtrInst::Create(Base, makeArrayRef(FixedOperands).slice(1)); 233 if (AllInBounds) NewGEP->setIsInBounds(); 234 NewGEP->setDebugLoc(FirstInst->getDebugLoc()); 235 return NewGEP; 236 } 237 238 239 /// isSafeAndProfitableToSinkLoad - Return true if we know that it is safe to 240 /// sink the load out of the block that defines it. This means that it must be 241 /// obvious the value of the load is not changed from the point of the load to 242 /// the end of the block it is in. 243 /// 244 /// Finally, it is safe, but not profitable, to sink a load targeting a 245 /// non-address-taken alloca. Doing so will cause us to not promote the alloca 246 /// to a register. 247 static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { 248 BasicBlock::iterator BBI = L, E = L->getParent()->end(); 249 250 for (++BBI; BBI != E; ++BBI) 251 if (BBI->mayWriteToMemory()) 252 return false; 253 254 // Check for non-address taken alloca. If not address-taken already, it isn't 255 // profitable to do this xform. 256 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { 257 bool isAddressTaken = false; 258 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end(); 259 UI != E; ++UI) { 260 User *U = *UI; 261 if (isa<LoadInst>(U)) continue; 262 if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 263 // If storing TO the alloca, then the address isn't taken. 264 if (SI->getOperand(1) == AI) continue; 265 } 266 isAddressTaken = true; 267 break; 268 } 269 270 if (!isAddressTaken && AI->isStaticAlloca()) 271 return false; 272 } 273 274 // If this load is a load from a GEP with a constant offset from an alloca, 275 // then we don't want to sink it. In its present form, it will be 276 // load [constant stack offset]. Sinking it will cause us to have to 277 // materialize the stack addresses in each predecessor in a register only to 278 // do a shared load from register in the successor. 279 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) 280 if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) 281 if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) 282 return false; 283 284 return true; 285 } 286 287 Instruction *InstCombiner::FoldPHIArgLoadIntoPHI(PHINode &PN) { 288 LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); 289 290 // FIXME: This is overconservative; this transform is allowed in some cases 291 // for atomic operations. 292 if (FirstLI->isAtomic()) 293 return 0; 294 295 // When processing loads, we need to propagate two bits of information to the 296 // sunk load: whether it is volatile, and what its alignment is. We currently 297 // don't sink loads when some have their alignment specified and some don't. 298 // visitLoadInst will propagate an alignment onto the load when TD is around, 299 // and if TD isn't around, we can't handle the mixed case. 300 bool isVolatile = FirstLI->isVolatile(); 301 unsigned LoadAlignment = FirstLI->getAlignment(); 302 unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); 303 304 // We can't sink the load if the loaded value could be modified between the 305 // load and the PHI. 306 if (FirstLI->getParent() != PN.getIncomingBlock(0) || 307 !isSafeAndProfitableToSinkLoad(FirstLI)) 308 return 0; 309 310 // If the PHI is of volatile loads and the load block has multiple 311 // successors, sinking it would remove a load of the volatile value from 312 // the path through the other successor. 313 if (isVolatile && 314 FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) 315 return 0; 316 317 // Check to see if all arguments are the same operation. 318 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 319 LoadInst *LI = dyn_cast<LoadInst>(PN.getIncomingValue(i)); 320 if (!LI || !LI->hasOneUse()) 321 return 0; 322 323 // We can't sink the load if the loaded value could be modified between 324 // the load and the PHI. 325 if (LI->isVolatile() != isVolatile || 326 LI->getParent() != PN.getIncomingBlock(i) || 327 LI->getPointerAddressSpace() != LoadAddrSpace || 328 !isSafeAndProfitableToSinkLoad(LI)) 329 return 0; 330 331 // If some of the loads have an alignment specified but not all of them, 332 // we can't do the transformation. 333 if ((LoadAlignment != 0) != (LI->getAlignment() != 0)) 334 return 0; 335 336 LoadAlignment = std::min(LoadAlignment, LI->getAlignment()); 337 338 // If the PHI is of volatile loads and the load block has multiple 339 // successors, sinking it would remove a load of the volatile value from 340 // the path through the other successor. 341 if (isVolatile && 342 LI->getParent()->getTerminator()->getNumSuccessors() != 1) 343 return 0; 344 } 345 346 // Okay, they are all the same operation. Create a new PHI node of the 347 // correct type, and PHI together all of the LHS's of the instructions. 348 PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), 349 PN.getNumIncomingValues(), 350 PN.getName()+".in"); 351 352 Value *InVal = FirstLI->getOperand(0); 353 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 354 355 // Add all operands to the new PHI. 356 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 357 Value *NewInVal = cast<LoadInst>(PN.getIncomingValue(i))->getOperand(0); 358 if (NewInVal != InVal) 359 InVal = 0; 360 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 361 } 362 363 Value *PhiVal; 364 if (InVal) { 365 // The new PHI unions all of the same values together. This is really 366 // common, so we handle it intelligently here for compile-time speed. 367 PhiVal = InVal; 368 delete NewPN; 369 } else { 370 InsertNewInstBefore(NewPN, PN); 371 PhiVal = NewPN; 372 } 373 374 // If this was a volatile load that we are merging, make sure to loop through 375 // and mark all the input loads as non-volatile. If we don't do this, we will 376 // insert a new volatile load and the old ones will not be deletable. 377 if (isVolatile) 378 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) 379 cast<LoadInst>(PN.getIncomingValue(i))->setVolatile(false); 380 381 LoadInst *NewLI = new LoadInst(PhiVal, "", isVolatile, LoadAlignment); 382 NewLI->setDebugLoc(FirstLI->getDebugLoc()); 383 return NewLI; 384 } 385 386 387 388 /// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary" 389 /// operator and they all are only used by the PHI, PHI together their 390 /// inputs, and do the operation once, to the result of the PHI. 391 Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) { 392 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); 393 394 if (isa<GetElementPtrInst>(FirstInst)) 395 return FoldPHIArgGEPIntoPHI(PN); 396 if (isa<LoadInst>(FirstInst)) 397 return FoldPHIArgLoadIntoPHI(PN); 398 399 // Scan the instruction, looking for input operations that can be folded away. 400 // If all input operands to the phi are the same instruction (e.g. a cast from 401 // the same type or "+42") we can pull the operation through the PHI, reducing 402 // code size and simplifying code. 403 Constant *ConstantOp = 0; 404 Type *CastSrcTy = 0; 405 bool isNUW = false, isNSW = false, isExact = false; 406 407 if (isa<CastInst>(FirstInst)) { 408 CastSrcTy = FirstInst->getOperand(0)->getType(); 409 410 // Be careful about transforming integer PHIs. We don't want to pessimize 411 // the code by turning an i32 into an i1293. 412 if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { 413 if (!ShouldChangeType(PN.getType(), CastSrcTy)) 414 return 0; 415 } 416 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { 417 // Can fold binop, compare or shift here if the RHS is a constant, 418 // otherwise call FoldPHIArgBinOpIntoPHI. 419 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); 420 if (ConstantOp == 0) 421 return FoldPHIArgBinOpIntoPHI(PN); 422 423 if (OverflowingBinaryOperator *BO = 424 dyn_cast<OverflowingBinaryOperator>(FirstInst)) { 425 isNUW = BO->hasNoUnsignedWrap(); 426 isNSW = BO->hasNoSignedWrap(); 427 } else if (PossiblyExactOperator *PEO = 428 dyn_cast<PossiblyExactOperator>(FirstInst)) 429 isExact = PEO->isExact(); 430 } else { 431 return 0; // Cannot fold this operation. 432 } 433 434 // Check to see if all arguments are the same operation. 435 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 436 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i)); 437 if (I == 0 || !I->hasOneUse() || !I->isSameOperationAs(FirstInst)) 438 return 0; 439 if (CastSrcTy) { 440 if (I->getOperand(0)->getType() != CastSrcTy) 441 return 0; // Cast operation must match. 442 } else if (I->getOperand(1) != ConstantOp) { 443 return 0; 444 } 445 446 if (isNUW) 447 isNUW = cast<OverflowingBinaryOperator>(I)->hasNoUnsignedWrap(); 448 if (isNSW) 449 isNSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 450 if (isExact) 451 isExact = cast<PossiblyExactOperator>(I)->isExact(); 452 } 453 454 // Okay, they are all the same operation. Create a new PHI node of the 455 // correct type, and PHI together all of the LHS's of the instructions. 456 PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), 457 PN.getNumIncomingValues(), 458 PN.getName()+".in"); 459 460 Value *InVal = FirstInst->getOperand(0); 461 NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); 462 463 // Add all operands to the new PHI. 464 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) { 465 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0); 466 if (NewInVal != InVal) 467 InVal = 0; 468 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i)); 469 } 470 471 Value *PhiVal; 472 if (InVal) { 473 // The new PHI unions all of the same values together. This is really 474 // common, so we handle it intelligently here for compile-time speed. 475 PhiVal = InVal; 476 delete NewPN; 477 } else { 478 InsertNewInstBefore(NewPN, PN); 479 PhiVal = NewPN; 480 } 481 482 // Insert and return the new operation. 483 if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { 484 CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, 485 PN.getType()); 486 NewCI->setDebugLoc(FirstInst->getDebugLoc()); 487 return NewCI; 488 } 489 490 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { 491 BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); 492 if (isNUW) BinOp->setHasNoUnsignedWrap(); 493 if (isNSW) BinOp->setHasNoSignedWrap(); 494 if (isExact) BinOp->setIsExact(); 495 BinOp->setDebugLoc(FirstInst->getDebugLoc()); 496 return BinOp; 497 } 498 499 CmpInst *CIOp = cast<CmpInst>(FirstInst); 500 CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), 501 PhiVal, ConstantOp); 502 NewCI->setDebugLoc(FirstInst->getDebugLoc()); 503 return NewCI; 504 } 505 506 /// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle 507 /// that is dead. 508 static bool DeadPHICycle(PHINode *PN, 509 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) { 510 if (PN->use_empty()) return true; 511 if (!PN->hasOneUse()) return false; 512 513 // Remember this node, and if we find the cycle, return. 514 if (!PotentiallyDeadPHIs.insert(PN)) 515 return true; 516 517 // Don't scan crazily complex things. 518 if (PotentiallyDeadPHIs.size() == 16) 519 return false; 520 521 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back())) 522 return DeadPHICycle(PU, PotentiallyDeadPHIs); 523 524 return false; 525 } 526 527 /// PHIsEqualValue - Return true if this phi node is always equal to 528 /// NonPhiInVal. This happens with mutually cyclic phi nodes like: 529 /// z = some value; x = phi (y, z); y = phi (x, z) 530 static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal, 531 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) { 532 // See if we already saw this PHI node. 533 if (!ValueEqualPHIs.insert(PN)) 534 return true; 535 536 // Don't scan crazily complex things. 537 if (ValueEqualPHIs.size() == 16) 538 return false; 539 540 // Scan the operands to see if they are either phi nodes or are equal to 541 // the value. 542 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 543 Value *Op = PN->getIncomingValue(i); 544 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { 545 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) 546 return false; 547 } else if (Op != NonPhiInVal) 548 return false; 549 } 550 551 return true; 552 } 553 554 555 namespace { 556 struct PHIUsageRecord { 557 unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) 558 unsigned Shift; // The amount shifted. 559 Instruction *Inst; // The trunc instruction. 560 561 PHIUsageRecord(unsigned pn, unsigned Sh, Instruction *User) 562 : PHIId(pn), Shift(Sh), Inst(User) {} 563 564 bool operator<(const PHIUsageRecord &RHS) const { 565 if (PHIId < RHS.PHIId) return true; 566 if (PHIId > RHS.PHIId) return false; 567 if (Shift < RHS.Shift) return true; 568 if (Shift > RHS.Shift) return false; 569 return Inst->getType()->getPrimitiveSizeInBits() < 570 RHS.Inst->getType()->getPrimitiveSizeInBits(); 571 } 572 }; 573 574 struct LoweredPHIRecord { 575 PHINode *PN; // The PHI that was lowered. 576 unsigned Shift; // The amount shifted. 577 unsigned Width; // The width extracted. 578 579 LoweredPHIRecord(PHINode *pn, unsigned Sh, Type *Ty) 580 : PN(pn), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} 581 582 // Ctor form used by DenseMap. 583 LoweredPHIRecord(PHINode *pn, unsigned Sh) 584 : PN(pn), Shift(Sh), Width(0) {} 585 }; 586 } 587 588 namespace llvm { 589 template<> 590 struct DenseMapInfo<LoweredPHIRecord> { 591 static inline LoweredPHIRecord getEmptyKey() { 592 return LoweredPHIRecord(0, 0); 593 } 594 static inline LoweredPHIRecord getTombstoneKey() { 595 return LoweredPHIRecord(0, 1); 596 } 597 static unsigned getHashValue(const LoweredPHIRecord &Val) { 598 return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ 599 (Val.Width>>3); 600 } 601 static bool isEqual(const LoweredPHIRecord &LHS, 602 const LoweredPHIRecord &RHS) { 603 return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && 604 LHS.Width == RHS.Width; 605 } 606 }; 607 template <> 608 struct isPodLike<LoweredPHIRecord> { static const bool value = true; }; 609 } 610 611 612 /// SliceUpIllegalIntegerPHI - This is an integer PHI and we know that it has an 613 /// illegal type: see if it is only used by trunc or trunc(lshr) operations. If 614 /// so, we split the PHI into the various pieces being extracted. This sort of 615 /// thing is introduced when SROA promotes an aggregate to large integer values. 616 /// 617 /// TODO: The user of the trunc may be an bitcast to float/double/vector or an 618 /// inttoptr. We should produce new PHIs in the right type. 619 /// 620 Instruction *InstCombiner::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { 621 // PHIUsers - Keep track of all of the truncated values extracted from a set 622 // of PHIs, along with their offset. These are the things we want to rewrite. 623 SmallVector<PHIUsageRecord, 16> PHIUsers; 624 625 // PHIs are often mutually cyclic, so we keep track of a whole set of PHI 626 // nodes which are extracted from. PHIsToSlice is a set we use to avoid 627 // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to 628 // check the uses of (to ensure they are all extracts). 629 SmallVector<PHINode*, 8> PHIsToSlice; 630 SmallPtrSet<PHINode*, 8> PHIsInspected; 631 632 PHIsToSlice.push_back(&FirstPhi); 633 PHIsInspected.insert(&FirstPhi); 634 635 for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { 636 PHINode *PN = PHIsToSlice[PHIId]; 637 638 // Scan the input list of the PHI. If any input is an invoke, and if the 639 // input is defined in the predecessor, then we won't be split the critical 640 // edge which is required to insert a truncate. Because of this, we have to 641 // bail out. 642 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 643 InvokeInst *II = dyn_cast<InvokeInst>(PN->getIncomingValue(i)); 644 if (II == 0) continue; 645 if (II->getParent() != PN->getIncomingBlock(i)) 646 continue; 647 648 // If we have a phi, and if it's directly in the predecessor, then we have 649 // a critical edge where we need to put the truncate. Since we can't 650 // split the edge in instcombine, we have to bail out. 651 return 0; 652 } 653 654 655 for (Value::use_iterator UI = PN->use_begin(), E = PN->use_end(); 656 UI != E; ++UI) { 657 Instruction *User = cast<Instruction>(*UI); 658 659 // If the user is a PHI, inspect its uses recursively. 660 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 661 if (PHIsInspected.insert(UserPN)) 662 PHIsToSlice.push_back(UserPN); 663 continue; 664 } 665 666 // Truncates are always ok. 667 if (isa<TruncInst>(User)) { 668 PHIUsers.push_back(PHIUsageRecord(PHIId, 0, User)); 669 continue; 670 } 671 672 // Otherwise it must be a lshr which can only be used by one trunc. 673 if (User->getOpcode() != Instruction::LShr || 674 !User->hasOneUse() || !isa<TruncInst>(User->use_back()) || 675 !isa<ConstantInt>(User->getOperand(1))) 676 return 0; 677 678 unsigned Shift = cast<ConstantInt>(User->getOperand(1))->getZExtValue(); 679 PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, User->use_back())); 680 } 681 } 682 683 // If we have no users, they must be all self uses, just nuke the PHI. 684 if (PHIUsers.empty()) 685 return ReplaceInstUsesWith(FirstPhi, UndefValue::get(FirstPhi.getType())); 686 687 // If this phi node is transformable, create new PHIs for all the pieces 688 // extracted out of it. First, sort the users by their offset and size. 689 array_pod_sort(PHIUsers.begin(), PHIUsers.end()); 690 691 DEBUG(errs() << "SLICING UP PHI: " << FirstPhi << '\n'; 692 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 693 errs() << "AND USER PHI #" << i << ": " << *PHIsToSlice[i] <<'\n'; 694 ); 695 696 // PredValues - This is a temporary used when rewriting PHI nodes. It is 697 // hoisted out here to avoid construction/destruction thrashing. 698 DenseMap<BasicBlock*, Value*> PredValues; 699 700 // ExtractedVals - Each new PHI we introduce is saved here so we don't 701 // introduce redundant PHIs. 702 DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; 703 704 for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { 705 unsigned PHIId = PHIUsers[UserI].PHIId; 706 PHINode *PN = PHIsToSlice[PHIId]; 707 unsigned Offset = PHIUsers[UserI].Shift; 708 Type *Ty = PHIUsers[UserI].Inst->getType(); 709 710 PHINode *EltPHI; 711 712 // If we've already lowered a user like this, reuse the previously lowered 713 // value. 714 if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == 0) { 715 716 // Otherwise, Create the new PHI node for this user. 717 EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), 718 PN->getName()+".off"+Twine(Offset), PN); 719 assert(EltPHI->getType() != PN->getType() && 720 "Truncate didn't shrink phi?"); 721 722 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 723 BasicBlock *Pred = PN->getIncomingBlock(i); 724 Value *&PredVal = PredValues[Pred]; 725 726 // If we already have a value for this predecessor, reuse it. 727 if (PredVal) { 728 EltPHI->addIncoming(PredVal, Pred); 729 continue; 730 } 731 732 // Handle the PHI self-reuse case. 733 Value *InVal = PN->getIncomingValue(i); 734 if (InVal == PN) { 735 PredVal = EltPHI; 736 EltPHI->addIncoming(PredVal, Pred); 737 continue; 738 } 739 740 if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { 741 // If the incoming value was a PHI, and if it was one of the PHIs we 742 // already rewrote it, just use the lowered value. 743 if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { 744 PredVal = Res; 745 EltPHI->addIncoming(PredVal, Pred); 746 continue; 747 } 748 } 749 750 // Otherwise, do an extract in the predecessor. 751 Builder->SetInsertPoint(Pred, Pred->getTerminator()); 752 Value *Res = InVal; 753 if (Offset) 754 Res = Builder->CreateLShr(Res, ConstantInt::get(InVal->getType(), 755 Offset), "extract"); 756 Res = Builder->CreateTrunc(Res, Ty, "extract.t"); 757 PredVal = Res; 758 EltPHI->addIncoming(Res, Pred); 759 760 // If the incoming value was a PHI, and if it was one of the PHIs we are 761 // rewriting, we will ultimately delete the code we inserted. This 762 // means we need to revisit that PHI to make sure we extract out the 763 // needed piece. 764 if (PHINode *OldInVal = dyn_cast<PHINode>(PN->getIncomingValue(i))) 765 if (PHIsInspected.count(OldInVal)) { 766 unsigned RefPHIId = std::find(PHIsToSlice.begin(),PHIsToSlice.end(), 767 OldInVal)-PHIsToSlice.begin(); 768 PHIUsers.push_back(PHIUsageRecord(RefPHIId, Offset, 769 cast<Instruction>(Res))); 770 ++UserE; 771 } 772 } 773 PredValues.clear(); 774 775 DEBUG(errs() << " Made element PHI for offset " << Offset << ": " 776 << *EltPHI << '\n'); 777 ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; 778 } 779 780 // Replace the use of this piece with the PHI node. 781 ReplaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); 782 } 783 784 // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) 785 // with undefs. 786 Value *Undef = UndefValue::get(FirstPhi.getType()); 787 for (unsigned i = 1, e = PHIsToSlice.size(); i != e; ++i) 788 ReplaceInstUsesWith(*PHIsToSlice[i], Undef); 789 return ReplaceInstUsesWith(FirstPhi, Undef); 790 } 791 792 // PHINode simplification 793 // 794 Instruction *InstCombiner::visitPHINode(PHINode &PN) { 795 if (Value *V = SimplifyInstruction(&PN, TD)) 796 return ReplaceInstUsesWith(PN, V); 797 798 // If all PHI operands are the same operation, pull them through the PHI, 799 // reducing code size. 800 if (isa<Instruction>(PN.getIncomingValue(0)) && 801 isa<Instruction>(PN.getIncomingValue(1)) && 802 cast<Instruction>(PN.getIncomingValue(0))->getOpcode() == 803 cast<Instruction>(PN.getIncomingValue(1))->getOpcode() && 804 // FIXME: The hasOneUse check will fail for PHIs that use the value more 805 // than themselves more than once. 806 PN.getIncomingValue(0)->hasOneUse()) 807 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN)) 808 return Result; 809 810 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if 811 // this PHI only has a single use (a PHI), and if that PHI only has one use (a 812 // PHI)... break the cycle. 813 if (PN.hasOneUse()) { 814 Instruction *PHIUser = cast<Instruction>(PN.use_back()); 815 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { 816 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; 817 PotentiallyDeadPHIs.insert(&PN); 818 if (DeadPHICycle(PU, PotentiallyDeadPHIs)) 819 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); 820 } 821 822 // If this phi has a single use, and if that use just computes a value for 823 // the next iteration of a loop, delete the phi. This occurs with unused 824 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this 825 // common case here is good because the only other things that catch this 826 // are induction variable analysis (sometimes) and ADCE, which is only run 827 // late. 828 if (PHIUser->hasOneUse() && 829 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) && 830 PHIUser->use_back() == &PN) { 831 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType())); 832 } 833 } 834 835 // We sometimes end up with phi cycles that non-obviously end up being the 836 // same value, for example: 837 // z = some value; x = phi (y, z); y = phi (x, z) 838 // where the phi nodes don't necessarily need to be in the same block. Do a 839 // quick check to see if the PHI node only contains a single non-phi value, if 840 // so, scan to see if the phi cycle is actually equal to that value. 841 { 842 unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); 843 // Scan for the first non-phi operand. 844 while (InValNo != NumIncomingVals && 845 isa<PHINode>(PN.getIncomingValue(InValNo))) 846 ++InValNo; 847 848 if (InValNo != NumIncomingVals) { 849 Value *NonPhiInVal = PN.getIncomingValue(InValNo); 850 851 // Scan the rest of the operands to see if there are any conflicts, if so 852 // there is no need to recursively scan other phis. 853 for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { 854 Value *OpVal = PN.getIncomingValue(InValNo); 855 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) 856 break; 857 } 858 859 // If we scanned over all operands, then we have one unique value plus 860 // phi values. Scan PHI nodes to see if they all merge in each other or 861 // the value. 862 if (InValNo == NumIncomingVals) { 863 SmallPtrSet<PHINode*, 16> ValueEqualPHIs; 864 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) 865 return ReplaceInstUsesWith(PN, NonPhiInVal); 866 } 867 } 868 } 869 870 // If there are multiple PHIs, sort their operands so that they all list 871 // the blocks in the same order. This will help identical PHIs be eliminated 872 // by other passes. Other passes shouldn't depend on this for correctness 873 // however. 874 PHINode *FirstPN = cast<PHINode>(PN.getParent()->begin()); 875 if (&PN != FirstPN) 876 for (unsigned i = 0, e = FirstPN->getNumIncomingValues(); i != e; ++i) { 877 BasicBlock *BBA = PN.getIncomingBlock(i); 878 BasicBlock *BBB = FirstPN->getIncomingBlock(i); 879 if (BBA != BBB) { 880 Value *VA = PN.getIncomingValue(i); 881 unsigned j = PN.getBasicBlockIndex(BBB); 882 Value *VB = PN.getIncomingValue(j); 883 PN.setIncomingBlock(i, BBB); 884 PN.setIncomingValue(i, VB); 885 PN.setIncomingBlock(j, BBA); 886 PN.setIncomingValue(j, VA); 887 // NOTE: Instcombine normally would want us to "return &PN" if we 888 // modified any of the operands of an instruction. However, since we 889 // aren't adding or removing uses (just rearranging them) we don't do 890 // this in this case. 891 } 892 } 893 894 // If this is an integer PHI and we know that it has an illegal type, see if 895 // it is only used by trunc or trunc(lshr) operations. If so, we split the 896 // PHI into the various pieces being extracted. This sort of thing is 897 // introduced when SROA promotes an aggregate to a single large integer type. 898 if (PN.getType()->isIntegerTy() && TD && 899 !TD->isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) 900 if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) 901 return Res; 902 903 return 0; 904 } 905