Home | History | Annotate | Download | only in Scalar
      1 //===- DeadStoreElimination.cpp - Fast Dead Store Elimination -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements a trivial dead store elimination that only considers
     11 // basic-block local redundant stores.
     12 //
     13 // FIXME: This should eventually be extended to be a post-dominator tree
     14 // traversal.  Doing so would be pretty trivial.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "dse"
     19 #include "llvm/Transforms/Scalar.h"
     20 #include "llvm/Constants.h"
     21 #include "llvm/Function.h"
     22 #include "llvm/GlobalVariable.h"
     23 #include "llvm/Instructions.h"
     24 #include "llvm/IntrinsicInst.h"
     25 #include "llvm/Pass.h"
     26 #include "llvm/Analysis/AliasAnalysis.h"
     27 #include "llvm/Analysis/Dominators.h"
     28 #include "llvm/Analysis/MemoryBuiltins.h"
     29 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/Target/TargetData.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 #include "llvm/Support/Debug.h"
     34 #include "llvm/ADT/SmallPtrSet.h"
     35 #include "llvm/ADT/Statistic.h"
     36 using namespace llvm;
     37 
     38 STATISTIC(NumFastStores, "Number of stores deleted");
     39 STATISTIC(NumFastOther , "Number of other instrs removed");
     40 
     41 namespace {
     42   struct DSE : public FunctionPass {
     43     AliasAnalysis *AA;
     44     MemoryDependenceAnalysis *MD;
     45 
     46     static char ID; // Pass identification, replacement for typeid
     47     DSE() : FunctionPass(ID), AA(0), MD(0) {
     48       initializeDSEPass(*PassRegistry::getPassRegistry());
     49     }
     50 
     51     virtual bool runOnFunction(Function &F) {
     52       AA = &getAnalysis<AliasAnalysis>();
     53       MD = &getAnalysis<MemoryDependenceAnalysis>();
     54       DominatorTree &DT = getAnalysis<DominatorTree>();
     55 
     56       bool Changed = false;
     57       for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
     58         // Only check non-dead blocks.  Dead blocks may have strange pointer
     59         // cycles that will confuse alias analysis.
     60         if (DT.isReachableFromEntry(I))
     61           Changed |= runOnBasicBlock(*I);
     62 
     63       AA = 0; MD = 0;
     64       return Changed;
     65     }
     66 
     67     bool runOnBasicBlock(BasicBlock &BB);
     68     bool HandleFree(CallInst *F);
     69     bool handleEndBlock(BasicBlock &BB);
     70     void RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
     71                                SmallPtrSet<Value*, 16> &DeadStackObjects);
     72 
     73     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     74       AU.setPreservesCFG();
     75       AU.addRequired<DominatorTree>();
     76       AU.addRequired<AliasAnalysis>();
     77       AU.addRequired<MemoryDependenceAnalysis>();
     78       AU.addPreserved<AliasAnalysis>();
     79       AU.addPreserved<DominatorTree>();
     80       AU.addPreserved<MemoryDependenceAnalysis>();
     81     }
     82   };
     83 }
     84 
     85 char DSE::ID = 0;
     86 INITIALIZE_PASS_BEGIN(DSE, "dse", "Dead Store Elimination", false, false)
     87 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     88 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
     89 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     90 INITIALIZE_PASS_END(DSE, "dse", "Dead Store Elimination", false, false)
     91 
     92 FunctionPass *llvm::createDeadStoreEliminationPass() { return new DSE(); }
     93 
     94 //===----------------------------------------------------------------------===//
     95 // Helper functions
     96 //===----------------------------------------------------------------------===//
     97 
     98 /// DeleteDeadInstruction - Delete this instruction.  Before we do, go through
     99 /// and zero out all the operands of this instruction.  If any of them become
    100 /// dead, delete them and the computation tree that feeds them.
    101 ///
    102 /// If ValueSet is non-null, remove any deleted instructions from it as well.
    103 ///
    104 static void DeleteDeadInstruction(Instruction *I,
    105                                   MemoryDependenceAnalysis &MD,
    106                                   SmallPtrSet<Value*, 16> *ValueSet = 0) {
    107   SmallVector<Instruction*, 32> NowDeadInsts;
    108 
    109   NowDeadInsts.push_back(I);
    110   --NumFastOther;
    111 
    112   // Before we touch this instruction, remove it from memdep!
    113   do {
    114     Instruction *DeadInst = NowDeadInsts.pop_back_val();
    115     ++NumFastOther;
    116 
    117     // This instruction is dead, zap it, in stages.  Start by removing it from
    118     // MemDep, which needs to know the operands and needs it to be in the
    119     // function.
    120     MD.removeInstruction(DeadInst);
    121 
    122     for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) {
    123       Value *Op = DeadInst->getOperand(op);
    124       DeadInst->setOperand(op, 0);
    125 
    126       // If this operand just became dead, add it to the NowDeadInsts list.
    127       if (!Op->use_empty()) continue;
    128 
    129       if (Instruction *OpI = dyn_cast<Instruction>(Op))
    130         if (isInstructionTriviallyDead(OpI))
    131           NowDeadInsts.push_back(OpI);
    132     }
    133 
    134     DeadInst->eraseFromParent();
    135 
    136     if (ValueSet) ValueSet->erase(DeadInst);
    137   } while (!NowDeadInsts.empty());
    138 }
    139 
    140 
    141 /// hasMemoryWrite - Does this instruction write some memory?  This only returns
    142 /// true for things that we can analyze with other helpers below.
    143 static bool hasMemoryWrite(Instruction *I) {
    144   if (isa<StoreInst>(I))
    145     return true;
    146   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
    147     switch (II->getIntrinsicID()) {
    148     default:
    149       return false;
    150     case Intrinsic::memset:
    151     case Intrinsic::memmove:
    152     case Intrinsic::memcpy:
    153     case Intrinsic::init_trampoline:
    154     case Intrinsic::lifetime_end:
    155       return true;
    156     }
    157   }
    158   return false;
    159 }
    160 
    161 /// getLocForWrite - Return a Location stored to by the specified instruction.
    162 /// If isRemovable returns true, this function and getLocForRead completely
    163 /// describe the memory operations for this instruction.
    164 static AliasAnalysis::Location
    165 getLocForWrite(Instruction *Inst, AliasAnalysis &AA) {
    166   if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    167     return AA.getLocation(SI);
    168 
    169   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(Inst)) {
    170     // memcpy/memmove/memset.
    171     AliasAnalysis::Location Loc = AA.getLocationForDest(MI);
    172     // If we don't have target data around, an unknown size in Location means
    173     // that we should use the size of the pointee type.  This isn't valid for
    174     // memset/memcpy, which writes more than an i8.
    175     if (Loc.Size == AliasAnalysis::UnknownSize && AA.getTargetData() == 0)
    176       return AliasAnalysis::Location();
    177     return Loc;
    178   }
    179 
    180   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst);
    181   if (II == 0) return AliasAnalysis::Location();
    182 
    183   switch (II->getIntrinsicID()) {
    184   default: return AliasAnalysis::Location(); // Unhandled intrinsic.
    185   case Intrinsic::init_trampoline:
    186     // If we don't have target data around, an unknown size in Location means
    187     // that we should use the size of the pointee type.  This isn't valid for
    188     // init.trampoline, which writes more than an i8.
    189     if (AA.getTargetData() == 0) return AliasAnalysis::Location();
    190 
    191     // FIXME: We don't know the size of the trampoline, so we can't really
    192     // handle it here.
    193     return AliasAnalysis::Location(II->getArgOperand(0));
    194   case Intrinsic::lifetime_end: {
    195     uint64_t Len = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    196     return AliasAnalysis::Location(II->getArgOperand(1), Len);
    197   }
    198   }
    199 }
    200 
    201 /// getLocForRead - Return the location read by the specified "hasMemoryWrite"
    202 /// instruction if any.
    203 static AliasAnalysis::Location
    204 getLocForRead(Instruction *Inst, AliasAnalysis &AA) {
    205   assert(hasMemoryWrite(Inst) && "Unknown instruction case");
    206 
    207   // The only instructions that both read and write are the mem transfer
    208   // instructions (memcpy/memmove).
    209   if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(Inst))
    210     return AA.getLocationForSource(MTI);
    211   return AliasAnalysis::Location();
    212 }
    213 
    214 
    215 /// isRemovable - If the value of this instruction and the memory it writes to
    216 /// is unused, may we delete this instruction?
    217 static bool isRemovable(Instruction *I) {
    218   // Don't remove volatile/atomic stores.
    219   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    220     return SI->isUnordered();
    221 
    222   IntrinsicInst *II = cast<IntrinsicInst>(I);
    223   switch (II->getIntrinsicID()) {
    224   default: assert(0 && "doesn't pass 'hasMemoryWrite' predicate");
    225   case Intrinsic::lifetime_end:
    226     // Never remove dead lifetime_end's, e.g. because it is followed by a
    227     // free.
    228     return false;
    229   case Intrinsic::init_trampoline:
    230     // Always safe to remove init_trampoline.
    231     return true;
    232 
    233   case Intrinsic::memset:
    234   case Intrinsic::memmove:
    235   case Intrinsic::memcpy:
    236     // Don't remove volatile memory intrinsics.
    237     return !cast<MemIntrinsic>(II)->isVolatile();
    238   }
    239 }
    240 
    241 /// getStoredPointerOperand - Return the pointer that is being written to.
    242 static Value *getStoredPointerOperand(Instruction *I) {
    243   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    244     return SI->getPointerOperand();
    245   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
    246     return MI->getDest();
    247 
    248   IntrinsicInst *II = cast<IntrinsicInst>(I);
    249   switch (II->getIntrinsicID()) {
    250   default: assert(false && "Unexpected intrinsic!");
    251   case Intrinsic::init_trampoline:
    252     return II->getArgOperand(0);
    253   }
    254 }
    255 
    256 static uint64_t getPointerSize(Value *V, AliasAnalysis &AA) {
    257   const TargetData *TD = AA.getTargetData();
    258   if (TD == 0)
    259     return AliasAnalysis::UnknownSize;
    260 
    261   if (AllocaInst *A = dyn_cast<AllocaInst>(V)) {
    262     // Get size information for the alloca
    263     if (ConstantInt *C = dyn_cast<ConstantInt>(A->getArraySize()))
    264       return C->getZExtValue() * TD->getTypeAllocSize(A->getAllocatedType());
    265     return AliasAnalysis::UnknownSize;
    266   }
    267 
    268   assert(isa<Argument>(V) && "Expected AllocaInst or Argument!");
    269   PointerType *PT = cast<PointerType>(V->getType());
    270   return TD->getTypeAllocSize(PT->getElementType());
    271 }
    272 
    273 /// isObjectPointerWithTrustworthySize - Return true if the specified Value* is
    274 /// pointing to an object with a pointer size we can trust.
    275 static bool isObjectPointerWithTrustworthySize(const Value *V) {
    276   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
    277     return !AI->isArrayAllocation();
    278   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
    279     return !GV->mayBeOverridden();
    280   if (const Argument *A = dyn_cast<Argument>(V))
    281     return A->hasByValAttr();
    282   return false;
    283 }
    284 
    285 /// isCompleteOverwrite - Return true if a store to the 'Later' location
    286 /// completely overwrites a store to the 'Earlier' location.
    287 static bool isCompleteOverwrite(const AliasAnalysis::Location &Later,
    288                                 const AliasAnalysis::Location &Earlier,
    289                                 AliasAnalysis &AA) {
    290   const Value *P1 = Earlier.Ptr->stripPointerCasts();
    291   const Value *P2 = Later.Ptr->stripPointerCasts();
    292 
    293   // If the start pointers are the same, we just have to compare sizes to see if
    294   // the later store was larger than the earlier store.
    295   if (P1 == P2) {
    296     // If we don't know the sizes of either access, then we can't do a
    297     // comparison.
    298     if (Later.Size == AliasAnalysis::UnknownSize ||
    299         Earlier.Size == AliasAnalysis::UnknownSize) {
    300       // If we have no TargetData information around, then the size of the store
    301       // is inferrable from the pointee type.  If they are the same type, then
    302       // we know that the store is safe.
    303       if (AA.getTargetData() == 0)
    304         return Later.Ptr->getType() == Earlier.Ptr->getType();
    305       return false;
    306     }
    307 
    308     // Make sure that the Later size is >= the Earlier size.
    309     if (Later.Size < Earlier.Size)
    310       return false;
    311     return true;
    312   }
    313 
    314   // Otherwise, we have to have size information, and the later store has to be
    315   // larger than the earlier one.
    316   if (Later.Size == AliasAnalysis::UnknownSize ||
    317       Earlier.Size == AliasAnalysis::UnknownSize ||
    318       Later.Size <= Earlier.Size || AA.getTargetData() == 0)
    319     return false;
    320 
    321   // Check to see if the later store is to the entire object (either a global,
    322   // an alloca, or a byval argument).  If so, then it clearly overwrites any
    323   // other store to the same object.
    324   const TargetData &TD = *AA.getTargetData();
    325 
    326   const Value *UO1 = GetUnderlyingObject(P1, &TD),
    327               *UO2 = GetUnderlyingObject(P2, &TD);
    328 
    329   // If we can't resolve the same pointers to the same object, then we can't
    330   // analyze them at all.
    331   if (UO1 != UO2)
    332     return false;
    333 
    334   // If the "Later" store is to a recognizable object, get its size.
    335   if (isObjectPointerWithTrustworthySize(UO2)) {
    336     uint64_t ObjectSize =
    337       TD.getTypeAllocSize(cast<PointerType>(UO2->getType())->getElementType());
    338     if (ObjectSize == Later.Size)
    339       return true;
    340   }
    341 
    342   // Okay, we have stores to two completely different pointers.  Try to
    343   // decompose the pointer into a "base + constant_offset" form.  If the base
    344   // pointers are equal, then we can reason about the two stores.
    345   int64_t EarlierOff = 0, LaterOff = 0;
    346   const Value *BP1 = GetPointerBaseWithConstantOffset(P1, EarlierOff, TD);
    347   const Value *BP2 = GetPointerBaseWithConstantOffset(P2, LaterOff, TD);
    348 
    349   // If the base pointers still differ, we have two completely different stores.
    350   if (BP1 != BP2)
    351     return false;
    352 
    353   // The later store completely overlaps the earlier store if:
    354   //
    355   // 1. Both start at the same offset and the later one's size is greater than
    356   //    or equal to the earlier one's, or
    357   //
    358   //      |--earlier--|
    359   //      |--   later   --|
    360   //
    361   // 2. The earlier store has an offset greater than the later offset, but which
    362   //    still lies completely within the later store.
    363   //
    364   //        |--earlier--|
    365   //    |-----  later  ------|
    366   //
    367   // We have to be careful here as *Off is signed while *.Size is unsigned.
    368   if (EarlierOff >= LaterOff &&
    369       uint64_t(EarlierOff - LaterOff) + Earlier.Size <= Later.Size)
    370     return true;
    371 
    372   // Otherwise, they don't completely overlap.
    373   return false;
    374 }
    375 
    376 /// isPossibleSelfRead - If 'Inst' might be a self read (i.e. a noop copy of a
    377 /// memory region into an identical pointer) then it doesn't actually make its
    378 /// input dead in the traditional sense.  Consider this case:
    379 ///
    380 ///   memcpy(A <- B)
    381 ///   memcpy(A <- A)
    382 ///
    383 /// In this case, the second store to A does not make the first store to A dead.
    384 /// The usual situation isn't an explicit A<-A store like this (which can be
    385 /// trivially removed) but a case where two pointers may alias.
    386 ///
    387 /// This function detects when it is unsafe to remove a dependent instruction
    388 /// because the DSE inducing instruction may be a self-read.
    389 static bool isPossibleSelfRead(Instruction *Inst,
    390                                const AliasAnalysis::Location &InstStoreLoc,
    391                                Instruction *DepWrite, AliasAnalysis &AA) {
    392   // Self reads can only happen for instructions that read memory.  Get the
    393   // location read.
    394   AliasAnalysis::Location InstReadLoc = getLocForRead(Inst, AA);
    395   if (InstReadLoc.Ptr == 0) return false;  // Not a reading instruction.
    396 
    397   // If the read and written loc obviously don't alias, it isn't a read.
    398   if (AA.isNoAlias(InstReadLoc, InstStoreLoc)) return false;
    399 
    400   // Okay, 'Inst' may copy over itself.  However, we can still remove a the
    401   // DepWrite instruction if we can prove that it reads from the same location
    402   // as Inst.  This handles useful cases like:
    403   //   memcpy(A <- B)
    404   //   memcpy(A <- B)
    405   // Here we don't know if A/B may alias, but we do know that B/B are must
    406   // aliases, so removing the first memcpy is safe (assuming it writes <= #
    407   // bytes as the second one.
    408   AliasAnalysis::Location DepReadLoc = getLocForRead(DepWrite, AA);
    409 
    410   if (DepReadLoc.Ptr && AA.isMustAlias(InstReadLoc.Ptr, DepReadLoc.Ptr))
    411     return false;
    412 
    413   // If DepWrite doesn't read memory or if we can't prove it is a must alias,
    414   // then it can't be considered dead.
    415   return true;
    416 }
    417 
    418 
    419 //===----------------------------------------------------------------------===//
    420 // DSE Pass
    421 //===----------------------------------------------------------------------===//
    422 
    423 bool DSE::runOnBasicBlock(BasicBlock &BB) {
    424   bool MadeChange = false;
    425 
    426   // Do a top-down walk on the BB.
    427   for (BasicBlock::iterator BBI = BB.begin(), BBE = BB.end(); BBI != BBE; ) {
    428     Instruction *Inst = BBI++;
    429 
    430     // Handle 'free' calls specially.
    431     if (CallInst *F = isFreeCall(Inst)) {
    432       MadeChange |= HandleFree(F);
    433       continue;
    434     }
    435 
    436     // If we find something that writes memory, get its memory dependence.
    437     if (!hasMemoryWrite(Inst))
    438       continue;
    439 
    440     MemDepResult InstDep = MD->getDependency(Inst);
    441 
    442     // Ignore any store where we can't find a local dependence.
    443     // FIXME: cross-block DSE would be fun. :)
    444     if (!InstDep.isDef() && !InstDep.isClobber())
    445       continue;
    446 
    447     // If we're storing the same value back to a pointer that we just
    448     // loaded from, then the store can be removed.
    449     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    450       if (LoadInst *DepLoad = dyn_cast<LoadInst>(InstDep.getInst())) {
    451         if (SI->getPointerOperand() == DepLoad->getPointerOperand() &&
    452             SI->getOperand(0) == DepLoad && isRemovable(SI)) {
    453           DEBUG(dbgs() << "DSE: Remove Store Of Load from same pointer:\n  "
    454                        << "LOAD: " << *DepLoad << "\n  STORE: " << *SI << '\n');
    455 
    456           // DeleteDeadInstruction can delete the current instruction.  Save BBI
    457           // in case we need it.
    458           WeakVH NextInst(BBI);
    459 
    460           DeleteDeadInstruction(SI, *MD);
    461 
    462           if (NextInst == 0)  // Next instruction deleted.
    463             BBI = BB.begin();
    464           else if (BBI != BB.begin())  // Revisit this instruction if possible.
    465             --BBI;
    466           ++NumFastStores;
    467           MadeChange = true;
    468           continue;
    469         }
    470       }
    471     }
    472 
    473     // Figure out what location is being stored to.
    474     AliasAnalysis::Location Loc = getLocForWrite(Inst, *AA);
    475 
    476     // If we didn't get a useful location, fail.
    477     if (Loc.Ptr == 0)
    478       continue;
    479 
    480     while (InstDep.isDef() || InstDep.isClobber()) {
    481       // Get the memory clobbered by the instruction we depend on.  MemDep will
    482       // skip any instructions that 'Loc' clearly doesn't interact with.  If we
    483       // end up depending on a may- or must-aliased load, then we can't optimize
    484       // away the store and we bail out.  However, if we depend on on something
    485       // that overwrites the memory location we *can* potentially optimize it.
    486       //
    487       // Find out what memory location the dependent instruction stores.
    488       Instruction *DepWrite = InstDep.getInst();
    489       AliasAnalysis::Location DepLoc = getLocForWrite(DepWrite, *AA);
    490       // If we didn't get a useful location, or if it isn't a size, bail out.
    491       if (DepLoc.Ptr == 0)
    492         break;
    493 
    494       // If we find a write that is a) removable (i.e., non-volatile), b) is
    495       // completely obliterated by the store to 'Loc', and c) which we know that
    496       // 'Inst' doesn't load from, then we can remove it.
    497       if (isRemovable(DepWrite) && isCompleteOverwrite(Loc, DepLoc, *AA) &&
    498           !isPossibleSelfRead(Inst, Loc, DepWrite, *AA)) {
    499         DEBUG(dbgs() << "DSE: Remove Dead Store:\n  DEAD: "
    500               << *DepWrite << "\n  KILLER: " << *Inst << '\n');
    501 
    502         // Delete the store and now-dead instructions that feed it.
    503         DeleteDeadInstruction(DepWrite, *MD);
    504         ++NumFastStores;
    505         MadeChange = true;
    506 
    507         // DeleteDeadInstruction can delete the current instruction in loop
    508         // cases, reset BBI.
    509         BBI = Inst;
    510         if (BBI != BB.begin())
    511           --BBI;
    512         break;
    513       }
    514 
    515       // If this is a may-aliased store that is clobbering the store value, we
    516       // can keep searching past it for another must-aliased pointer that stores
    517       // to the same location.  For example, in:
    518       //   store -> P
    519       //   store -> Q
    520       //   store -> P
    521       // we can remove the first store to P even though we don't know if P and Q
    522       // alias.
    523       if (DepWrite == &BB.front()) break;
    524 
    525       // Can't look past this instruction if it might read 'Loc'.
    526       if (AA->getModRefInfo(DepWrite, Loc) & AliasAnalysis::Ref)
    527         break;
    528 
    529       InstDep = MD->getPointerDependencyFrom(Loc, false, DepWrite, &BB);
    530     }
    531   }
    532 
    533   // If this block ends in a return, unwind, or unreachable, all allocas are
    534   // dead at its end, which means stores to them are also dead.
    535   if (BB.getTerminator()->getNumSuccessors() == 0)
    536     MadeChange |= handleEndBlock(BB);
    537 
    538   return MadeChange;
    539 }
    540 
    541 /// HandleFree - Handle frees of entire structures whose dependency is a store
    542 /// to a field of that structure.
    543 bool DSE::HandleFree(CallInst *F) {
    544   bool MadeChange = false;
    545 
    546   MemDepResult Dep = MD->getDependency(F);
    547 
    548   while (Dep.isDef() || Dep.isClobber()) {
    549     Instruction *Dependency = Dep.getInst();
    550     if (!hasMemoryWrite(Dependency) || !isRemovable(Dependency))
    551       return MadeChange;
    552 
    553     Value *DepPointer =
    554       GetUnderlyingObject(getStoredPointerOperand(Dependency));
    555 
    556     // Check for aliasing.
    557     if (!AA->isMustAlias(F->getArgOperand(0), DepPointer))
    558       return MadeChange;
    559 
    560     // DCE instructions only used to calculate that store
    561     DeleteDeadInstruction(Dependency, *MD);
    562     ++NumFastStores;
    563     MadeChange = true;
    564 
    565     // Inst's old Dependency is now deleted. Compute the next dependency,
    566     // which may also be dead, as in
    567     //    s[0] = 0;
    568     //    s[1] = 0; // This has just been deleted.
    569     //    free(s);
    570     Dep = MD->getDependency(F);
    571   };
    572 
    573   return MadeChange;
    574 }
    575 
    576 /// handleEndBlock - Remove dead stores to stack-allocated locations in the
    577 /// function end block.  Ex:
    578 /// %A = alloca i32
    579 /// ...
    580 /// store i32 1, i32* %A
    581 /// ret void
    582 bool DSE::handleEndBlock(BasicBlock &BB) {
    583   bool MadeChange = false;
    584 
    585   // Keep track of all of the stack objects that are dead at the end of the
    586   // function.
    587   SmallPtrSet<Value*, 16> DeadStackObjects;
    588 
    589   // Find all of the alloca'd pointers in the entry block.
    590   BasicBlock *Entry = BB.getParent()->begin();
    591   for (BasicBlock::iterator I = Entry->begin(), E = Entry->end(); I != E; ++I)
    592     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
    593       DeadStackObjects.insert(AI);
    594 
    595   // Treat byval arguments the same, stores to them are dead at the end of the
    596   // function.
    597   for (Function::arg_iterator AI = BB.getParent()->arg_begin(),
    598        AE = BB.getParent()->arg_end(); AI != AE; ++AI)
    599     if (AI->hasByValAttr())
    600       DeadStackObjects.insert(AI);
    601 
    602   // Scan the basic block backwards
    603   for (BasicBlock::iterator BBI = BB.end(); BBI != BB.begin(); ){
    604     --BBI;
    605 
    606     // If we find a store, check to see if it points into a dead stack value.
    607     if (hasMemoryWrite(BBI) && isRemovable(BBI)) {
    608       // See through pointer-to-pointer bitcasts
    609       Value *Pointer = GetUnderlyingObject(getStoredPointerOperand(BBI));
    610 
    611       // Stores to stack values are valid candidates for removal.
    612       if (DeadStackObjects.count(Pointer)) {
    613         Instruction *Dead = BBI++;
    614 
    615         DEBUG(dbgs() << "DSE: Dead Store at End of Block:\n  DEAD: "
    616                      << *Dead << "\n  Object: " << *Pointer << '\n');
    617 
    618         // DCE instructions only used to calculate that store.
    619         DeleteDeadInstruction(Dead, *MD, &DeadStackObjects);
    620         ++NumFastStores;
    621         MadeChange = true;
    622         continue;
    623       }
    624     }
    625 
    626     // Remove any dead non-memory-mutating instructions.
    627     if (isInstructionTriviallyDead(BBI)) {
    628       Instruction *Inst = BBI++;
    629       DeleteDeadInstruction(Inst, *MD, &DeadStackObjects);
    630       ++NumFastOther;
    631       MadeChange = true;
    632       continue;
    633     }
    634 
    635     if (AllocaInst *A = dyn_cast<AllocaInst>(BBI)) {
    636       DeadStackObjects.erase(A);
    637       continue;
    638     }
    639 
    640     if (CallSite CS = cast<Value>(BBI)) {
    641       // If this call does not access memory, it can't be loading any of our
    642       // pointers.
    643       if (AA->doesNotAccessMemory(CS))
    644         continue;
    645 
    646       // If the call might load from any of our allocas, then any store above
    647       // the call is live.
    648       SmallVector<Value*, 8> LiveAllocas;
    649       for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
    650            E = DeadStackObjects.end(); I != E; ++I) {
    651         // See if the call site touches it.
    652         AliasAnalysis::ModRefResult A =
    653           AA->getModRefInfo(CS, *I, getPointerSize(*I, *AA));
    654 
    655         if (A == AliasAnalysis::ModRef || A == AliasAnalysis::Ref)
    656           LiveAllocas.push_back(*I);
    657       }
    658 
    659       for (SmallVector<Value*, 8>::iterator I = LiveAllocas.begin(),
    660            E = LiveAllocas.end(); I != E; ++I)
    661         DeadStackObjects.erase(*I);
    662 
    663       // If all of the allocas were clobbered by the call then we're not going
    664       // to find anything else to process.
    665       if (DeadStackObjects.empty())
    666         return MadeChange;
    667 
    668       continue;
    669     }
    670 
    671     AliasAnalysis::Location LoadedLoc;
    672 
    673     // If we encounter a use of the pointer, it is no longer considered dead
    674     if (LoadInst *L = dyn_cast<LoadInst>(BBI)) {
    675       if (!L->isUnordered()) // Be conservative with atomic/volatile load
    676         break;
    677       LoadedLoc = AA->getLocation(L);
    678     } else if (VAArgInst *V = dyn_cast<VAArgInst>(BBI)) {
    679       LoadedLoc = AA->getLocation(V);
    680     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(BBI)) {
    681       LoadedLoc = AA->getLocationForSource(MTI);
    682     } else if (!BBI->mayReadFromMemory()) {
    683       // Instruction doesn't read memory.  Note that stores that weren't removed
    684       // above will hit this case.
    685       continue;
    686     } else {
    687       // Unknown inst; assume it clobbers everything.
    688       break;
    689     }
    690 
    691     // Remove any allocas from the DeadPointer set that are loaded, as this
    692     // makes any stores above the access live.
    693     RemoveAccessedObjects(LoadedLoc, DeadStackObjects);
    694 
    695     // If all of the allocas were clobbered by the access then we're not going
    696     // to find anything else to process.
    697     if (DeadStackObjects.empty())
    698       break;
    699   }
    700 
    701   return MadeChange;
    702 }
    703 
    704 /// RemoveAccessedObjects - Check to see if the specified location may alias any
    705 /// of the stack objects in the DeadStackObjects set.  If so, they become live
    706 /// because the location is being loaded.
    707 void DSE::RemoveAccessedObjects(const AliasAnalysis::Location &LoadedLoc,
    708                                 SmallPtrSet<Value*, 16> &DeadStackObjects) {
    709   const Value *UnderlyingPointer = GetUnderlyingObject(LoadedLoc.Ptr);
    710 
    711   // A constant can't be in the dead pointer set.
    712   if (isa<Constant>(UnderlyingPointer))
    713     return;
    714 
    715   // If the kill pointer can be easily reduced to an alloca, don't bother doing
    716   // extraneous AA queries.
    717   if (isa<AllocaInst>(UnderlyingPointer) || isa<Argument>(UnderlyingPointer)) {
    718     DeadStackObjects.erase(const_cast<Value*>(UnderlyingPointer));
    719     return;
    720   }
    721 
    722   SmallVector<Value*, 16> NowLive;
    723   for (SmallPtrSet<Value*, 16>::iterator I = DeadStackObjects.begin(),
    724        E = DeadStackObjects.end(); I != E; ++I) {
    725     // See if the loaded location could alias the stack location.
    726     AliasAnalysis::Location StackLoc(*I, getPointerSize(*I, *AA));
    727     if (!AA->isNoAlias(StackLoc, LoadedLoc))
    728       NowLive.push_back(*I);
    729   }
    730 
    731   for (SmallVector<Value*, 16>::iterator I = NowLive.begin(), E = NowLive.end();
    732        I != E; ++I)
    733     DeadStackObjects.erase(*I);
    734 }
    735 
    736