Home | History | Annotate | Download | only in Scalar
      1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file transforms calls of the current function (self recursion) followed
     11 // by a return instruction with a branch to the entry of the function, creating
     12 // a loop.  This pass also implements the following extensions to the basic
     13 // algorithm:
     14 //
     15 //  1. Trivial instructions between the call and return do not prevent the
     16 //     transformation from taking place, though currently the analysis cannot
     17 //     support moving any really useful instructions (only dead ones).
     18 //  2. This pass transforms functions that are prevented from being tail
     19 //     recursive by an associative and commutative expression to use an
     20 //     accumulator variable, thus compiling the typical naive factorial or
     21 //     'fib' implementation into efficient code.
     22 //  3. TRE is performed if the function returns void, if the return
     23 //     returns the result returned by the call, or if the function returns a
     24 //     run-time constant on all exits from the function.  It is possible, though
     25 //     unlikely, that the return returns something else (like constant 0), and
     26 //     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
     27 //     the function return the exact same value.
     28 //  4. If it can prove that callees do not access their caller stack frame,
     29 //     they are marked as eligible for tail call elimination (by the code
     30 //     generator).
     31 //
     32 // There are several improvements that could be made:
     33 //
     34 //  1. If the function has any alloca instructions, these instructions will be
     35 //     moved out of the entry block of the function, causing them to be
     36 //     evaluated each time through the tail recursion.  Safely keeping allocas
     37 //     in the entry block requires analysis to proves that the tail-called
     38 //     function does not read or write the stack object.
     39 //  2. Tail recursion is only performed if the call immediately precedes the
     40 //     return instruction.  It's possible that there could be a jump between
     41 //     the call and the return.
     42 //  3. There can be intervening operations between the call and the return that
     43 //     prevent the TRE from occurring.  For example, there could be GEP's and
     44 //     stores to memory that will not be read or written by the call.  This
     45 //     requires some substantial analysis (such as with DSA) to prove safe to
     46 //     move ahead of the call, but doing so could allow many more TREs to be
     47 //     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
     48 //  4. The algorithm we use to detect if callees access their caller stack
     49 //     frames is very primitive.
     50 //
     51 //===----------------------------------------------------------------------===//
     52 
     53 #define DEBUG_TYPE "tailcallelim"
     54 #include "llvm/Transforms/Scalar.h"
     55 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     56 #include "llvm/Transforms/Utils/Local.h"
     57 #include "llvm/Constants.h"
     58 #include "llvm/DerivedTypes.h"
     59 #include "llvm/Function.h"
     60 #include "llvm/Instructions.h"
     61 #include "llvm/IntrinsicInst.h"
     62 #include "llvm/Module.h"
     63 #include "llvm/Pass.h"
     64 #include "llvm/Analysis/CaptureTracking.h"
     65 #include "llvm/Analysis/InlineCost.h"
     66 #include "llvm/Analysis/InstructionSimplify.h"
     67 #include "llvm/Analysis/Loads.h"
     68 #include "llvm/Support/CallSite.h"
     69 #include "llvm/Support/CFG.h"
     70 #include "llvm/Support/Debug.h"
     71 #include "llvm/Support/raw_ostream.h"
     72 #include "llvm/ADT/Statistic.h"
     73 #include "llvm/ADT/STLExtras.h"
     74 using namespace llvm;
     75 
     76 STATISTIC(NumEliminated, "Number of tail calls removed");
     77 STATISTIC(NumRetDuped,   "Number of return duplicated");
     78 STATISTIC(NumAccumAdded, "Number of accumulators introduced");
     79 
     80 namespace {
     81   struct TailCallElim : public FunctionPass {
     82     static char ID; // Pass identification, replacement for typeid
     83     TailCallElim() : FunctionPass(ID) {
     84       initializeTailCallElimPass(*PassRegistry::getPassRegistry());
     85     }
     86 
     87     virtual bool runOnFunction(Function &F);
     88 
     89   private:
     90     CallInst *FindTRECandidate(Instruction *I,
     91                                bool CannotTailCallElimCallsMarkedTail);
     92     bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
     93                                     BasicBlock *&OldEntry,
     94                                     bool &TailCallsAreMarkedTail,
     95                                     SmallVector<PHINode*, 8> &ArgumentPHIs,
     96                                     bool CannotTailCallElimCallsMarkedTail);
     97     bool FoldReturnAndProcessPred(BasicBlock *BB,
     98                                   ReturnInst *Ret, BasicBlock *&OldEntry,
     99                                   bool &TailCallsAreMarkedTail,
    100                                   SmallVector<PHINode*, 8> &ArgumentPHIs,
    101                                   bool CannotTailCallElimCallsMarkedTail);
    102     bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry,
    103                                bool &TailCallsAreMarkedTail,
    104                                SmallVector<PHINode*, 8> &ArgumentPHIs,
    105                                bool CannotTailCallElimCallsMarkedTail);
    106     bool CanMoveAboveCall(Instruction *I, CallInst *CI);
    107     Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI);
    108   };
    109 }
    110 
    111 char TailCallElim::ID = 0;
    112 INITIALIZE_PASS(TailCallElim, "tailcallelim",
    113                 "Tail Call Elimination", false, false)
    114 
    115 // Public interface to the TailCallElimination pass
    116 FunctionPass *llvm::createTailCallEliminationPass() {
    117   return new TailCallElim();
    118 }
    119 
    120 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by
    121 /// callees of this function.  We only do very simple analysis right now, this
    122 /// could be expanded in the future to use mod/ref information for particular
    123 /// call sites if desired.
    124 static bool AllocaMightEscapeToCalls(AllocaInst *AI) {
    125   // FIXME: do simple 'address taken' analysis.
    126   return true;
    127 }
    128 
    129 /// CheckForEscapingAllocas - Scan the specified basic block for alloca
    130 /// instructions.  If it contains any that might be accessed by calls, return
    131 /// true.
    132 static bool CheckForEscapingAllocas(BasicBlock *BB,
    133                                     bool &CannotTCETailMarkedCall) {
    134   bool RetVal = false;
    135   for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    136     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
    137       RetVal |= AllocaMightEscapeToCalls(AI);
    138 
    139       // If this alloca is in the body of the function, or if it is a variable
    140       // sized allocation, we cannot tail call eliminate calls marked 'tail'
    141       // with this mechanism.
    142       if (BB != &BB->getParent()->getEntryBlock() ||
    143           !isa<ConstantInt>(AI->getArraySize()))
    144         CannotTCETailMarkedCall = true;
    145     }
    146   return RetVal;
    147 }
    148 
    149 bool TailCallElim::runOnFunction(Function &F) {
    150   // If this function is a varargs function, we won't be able to PHI the args
    151   // right, so don't even try to convert it...
    152   if (F.getFunctionType()->isVarArg()) return false;
    153 
    154   BasicBlock *OldEntry = 0;
    155   bool TailCallsAreMarkedTail = false;
    156   SmallVector<PHINode*, 8> ArgumentPHIs;
    157   bool MadeChange = false;
    158   bool FunctionContainsEscapingAllocas = false;
    159 
    160   // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls
    161   // marked with the 'tail' attribute, because doing so would cause the stack
    162   // size to increase (real TCE would deallocate variable sized allocas, TCE
    163   // doesn't).
    164   bool CannotTCETailMarkedCall = false;
    165 
    166   // Loop over the function, looking for any returning blocks, and keeping track
    167   // of whether this function has any non-trivially used allocas.
    168   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    169     if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall)
    170       break;
    171 
    172     FunctionContainsEscapingAllocas |=
    173       CheckForEscapingAllocas(BB, CannotTCETailMarkedCall);
    174   }
    175 
    176   /// FIXME: The code generator produces really bad code when an 'escaping
    177   /// alloca' is changed from being a static alloca to being a dynamic alloca.
    178   /// Until this is resolved, disable this transformation if that would ever
    179   /// happen.  This bug is PR962.
    180   if (FunctionContainsEscapingAllocas)
    181     return false;
    182 
    183   // Second pass, change any tail calls to loops.
    184   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
    185     if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
    186       bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
    187                                           ArgumentPHIs,CannotTCETailMarkedCall);
    188       if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
    189         Change = FoldReturnAndProcessPred(BB, Ret, OldEntry,
    190                                           TailCallsAreMarkedTail, ArgumentPHIs,
    191                                           CannotTCETailMarkedCall);
    192       MadeChange |= Change;
    193     }
    194   }
    195 
    196   // If we eliminated any tail recursions, it's possible that we inserted some
    197   // silly PHI nodes which just merge an initial value (the incoming operand)
    198   // with themselves.  Check to see if we did and clean up our mess if so.  This
    199   // occurs when a function passes an argument straight through to its tail
    200   // call.
    201   if (!ArgumentPHIs.empty()) {
    202     for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) {
    203       PHINode *PN = ArgumentPHIs[i];
    204 
    205       // If the PHI Node is a dynamic constant, replace it with the value it is.
    206       if (Value *PNV = SimplifyInstruction(PN)) {
    207         PN->replaceAllUsesWith(PNV);
    208         PN->eraseFromParent();
    209       }
    210     }
    211   }
    212 
    213   // Finally, if this function contains no non-escaping allocas, or calls
    214   // setjmp, mark all calls in the function as eligible for tail calls
    215   //(there is no stack memory for them to access).
    216   if (!FunctionContainsEscapingAllocas && !F.callsFunctionThatReturnsTwice())
    217     for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    218       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    219         if (CallInst *CI = dyn_cast<CallInst>(I)) {
    220           CI->setTailCall();
    221           MadeChange = true;
    222         }
    223 
    224   return MadeChange;
    225 }
    226 
    227 
    228 /// CanMoveAboveCall - Return true if it is safe to move the specified
    229 /// instruction from after the call to before the call, assuming that all
    230 /// instructions between the call and this instruction are movable.
    231 ///
    232 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) {
    233   // FIXME: We can move load/store/call/free instructions above the call if the
    234   // call does not mod/ref the memory location being processed.
    235   if (I->mayHaveSideEffects())  // This also handles volatile loads.
    236     return false;
    237 
    238   if (LoadInst *L = dyn_cast<LoadInst>(I)) {
    239     // Loads may always be moved above calls without side effects.
    240     if (CI->mayHaveSideEffects()) {
    241       // Non-volatile loads may be moved above a call with side effects if it
    242       // does not write to memory and the load provably won't trap.
    243       // FIXME: Writes to memory only matter if they may alias the pointer
    244       // being loaded from.
    245       if (CI->mayWriteToMemory() ||
    246           !isSafeToLoadUnconditionally(L->getPointerOperand(), L,
    247                                        L->getAlignment()))
    248         return false;
    249     }
    250   }
    251 
    252   // Otherwise, if this is a side-effect free instruction, check to make sure
    253   // that it does not use the return value of the call.  If it doesn't use the
    254   // return value of the call, it must only use things that are defined before
    255   // the call, or movable instructions between the call and the instruction
    256   // itself.
    257   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    258     if (I->getOperand(i) == CI)
    259       return false;
    260   return true;
    261 }
    262 
    263 // isDynamicConstant - Return true if the specified value is the same when the
    264 // return would exit as it was when the initial iteration of the recursive
    265 // function was executed.
    266 //
    267 // We currently handle static constants and arguments that are not modified as
    268 // part of the recursion.
    269 //
    270 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
    271   if (isa<Constant>(V)) return true; // Static constants are always dyn consts
    272 
    273   // Check to see if this is an immutable argument, if so, the value
    274   // will be available to initialize the accumulator.
    275   if (Argument *Arg = dyn_cast<Argument>(V)) {
    276     // Figure out which argument number this is...
    277     unsigned ArgNo = 0;
    278     Function *F = CI->getParent()->getParent();
    279     for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
    280       ++ArgNo;
    281 
    282     // If we are passing this argument into call as the corresponding
    283     // argument operand, then the argument is dynamically constant.
    284     // Otherwise, we cannot transform this function safely.
    285     if (CI->getArgOperand(ArgNo) == Arg)
    286       return true;
    287   }
    288 
    289   // Switch cases are always constant integers. If the value is being switched
    290   // on and the return is only reachable from one of its cases, it's
    291   // effectively constant.
    292   if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
    293     if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
    294       if (SI->getCondition() == V)
    295         return SI->getDefaultDest() != RI->getParent();
    296 
    297   // Not a constant or immutable argument, we can't safely transform.
    298   return false;
    299 }
    300 
    301 // getCommonReturnValue - Check to see if the function containing the specified
    302 // tail call consistently returns the same runtime-constant value at all exit
    303 // points except for IgnoreRI.  If so, return the returned value.
    304 //
    305 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
    306   Function *F = CI->getParent()->getParent();
    307   Value *ReturnedValue = 0;
    308 
    309   for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) {
    310     ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator());
    311     if (RI == 0 || RI == IgnoreRI) continue;
    312 
    313     // We can only perform this transformation if the value returned is
    314     // evaluatable at the start of the initial invocation of the function,
    315     // instead of at the end of the evaluation.
    316     //
    317     Value *RetOp = RI->getOperand(0);
    318     if (!isDynamicConstant(RetOp, CI, RI))
    319       return 0;
    320 
    321     if (ReturnedValue && RetOp != ReturnedValue)
    322       return 0;     // Cannot transform if differing values are returned.
    323     ReturnedValue = RetOp;
    324   }
    325   return ReturnedValue;
    326 }
    327 
    328 /// CanTransformAccumulatorRecursion - If the specified instruction can be
    329 /// transformed using accumulator recursion elimination, return the constant
    330 /// which is the start of the accumulator value.  Otherwise return null.
    331 ///
    332 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I,
    333                                                       CallInst *CI) {
    334   if (!I->isAssociative() || !I->isCommutative()) return 0;
    335   assert(I->getNumOperands() == 2 &&
    336          "Associative/commutative operations should have 2 args!");
    337 
    338   // Exactly one operand should be the result of the call instruction.
    339   if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
    340       (I->getOperand(0) != CI && I->getOperand(1) != CI))
    341     return 0;
    342 
    343   // The only user of this instruction we allow is a single return instruction.
    344   if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back()))
    345     return 0;
    346 
    347   // Ok, now we have to check all of the other return instructions in this
    348   // function.  If they return non-constants or differing values, then we cannot
    349   // transform the function safely.
    350   return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI);
    351 }
    352 
    353 static Instruction *FirstNonDbg(BasicBlock::iterator I) {
    354   while (isa<DbgInfoIntrinsic>(I))
    355     ++I;
    356   return &*I;
    357 }
    358 
    359 CallInst*
    360 TailCallElim::FindTRECandidate(Instruction *TI,
    361                                bool CannotTailCallElimCallsMarkedTail) {
    362   BasicBlock *BB = TI->getParent();
    363   Function *F = BB->getParent();
    364 
    365   if (&BB->front() == TI) // Make sure there is something before the terminator.
    366     return 0;
    367 
    368   // Scan backwards from the return, checking to see if there is a tail call in
    369   // this block.  If so, set CI to it.
    370   CallInst *CI = 0;
    371   BasicBlock::iterator BBI = TI;
    372   while (true) {
    373     CI = dyn_cast<CallInst>(BBI);
    374     if (CI && CI->getCalledFunction() == F)
    375       break;
    376 
    377     if (BBI == BB->begin())
    378       return 0;          // Didn't find a potential tail call.
    379     --BBI;
    380   }
    381 
    382   // If this call is marked as a tail call, and if there are dynamic allocas in
    383   // the function, we cannot perform this optimization.
    384   if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
    385     return 0;
    386 
    387   // As a special case, detect code like this:
    388   //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
    389   // and disable this xform in this case, because the code generator will
    390   // lower the call to fabs into inline code.
    391   if (BB == &F->getEntryBlock() &&
    392       FirstNonDbg(BB->front()) == CI &&
    393       FirstNonDbg(llvm::next(BB->begin())) == TI &&
    394       callIsSmall(F)) {
    395     // A single-block function with just a call and a return. Check that
    396     // the arguments match.
    397     CallSite::arg_iterator I = CallSite(CI).arg_begin(),
    398                            E = CallSite(CI).arg_end();
    399     Function::arg_iterator FI = F->arg_begin(),
    400                            FE = F->arg_end();
    401     for (; I != E && FI != FE; ++I, ++FI)
    402       if (*I != &*FI) break;
    403     if (I == E && FI == FE)
    404       return 0;
    405   }
    406 
    407   return CI;
    408 }
    409 
    410 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret,
    411                                        BasicBlock *&OldEntry,
    412                                        bool &TailCallsAreMarkedTail,
    413                                        SmallVector<PHINode*, 8> &ArgumentPHIs,
    414                                        bool CannotTailCallElimCallsMarkedTail) {
    415   // If we are introducing accumulator recursion to eliminate operations after
    416   // the call instruction that are both associative and commutative, the initial
    417   // value for the accumulator is placed in this variable.  If this value is set
    418   // then we actually perform accumulator recursion elimination instead of
    419   // simple tail recursion elimination.  If the operation is an LLVM instruction
    420   // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
    421   // we are handling the case when the return instruction returns a constant C
    422   // which is different to the constant returned by other return instructions
    423   // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
    424   // special case of accumulator recursion, the operation being "return C".
    425   Value *AccumulatorRecursionEliminationInitVal = 0;
    426   Instruction *AccumulatorRecursionInstr = 0;
    427 
    428   // Ok, we found a potential tail call.  We can currently only transform the
    429   // tail call if all of the instructions between the call and the return are
    430   // movable to above the call itself, leaving the call next to the return.
    431   // Check that this is the case now.
    432   BasicBlock::iterator BBI = CI;
    433   for (++BBI; &*BBI != Ret; ++BBI) {
    434     if (CanMoveAboveCall(BBI, CI)) continue;
    435 
    436     // If we can't move the instruction above the call, it might be because it
    437     // is an associative and commutative operation that could be transformed
    438     // using accumulator recursion elimination.  Check to see if this is the
    439     // case, and if so, remember the initial accumulator value for later.
    440     if ((AccumulatorRecursionEliminationInitVal =
    441                            CanTransformAccumulatorRecursion(BBI, CI))) {
    442       // Yes, this is accumulator recursion.  Remember which instruction
    443       // accumulates.
    444       AccumulatorRecursionInstr = BBI;
    445     } else {
    446       return false;   // Otherwise, we cannot eliminate the tail recursion!
    447     }
    448   }
    449 
    450   // We can only transform call/return pairs that either ignore the return value
    451   // of the call and return void, ignore the value of the call and return a
    452   // constant, return the value returned by the tail call, or that are being
    453   // accumulator recursion variable eliminated.
    454   if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
    455       !isa<UndefValue>(Ret->getReturnValue()) &&
    456       AccumulatorRecursionEliminationInitVal == 0 &&
    457       !getCommonReturnValue(0, CI)) {
    458     // One case remains that we are able to handle: the current return
    459     // instruction returns a constant, and all other return instructions
    460     // return a different constant.
    461     if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
    462       return false; // Current return instruction does not return a constant.
    463     // Check that all other return instructions return a common constant.  If
    464     // so, record it in AccumulatorRecursionEliminationInitVal.
    465     AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
    466     if (!AccumulatorRecursionEliminationInitVal)
    467       return false;
    468   }
    469 
    470   BasicBlock *BB = Ret->getParent();
    471   Function *F = BB->getParent();
    472 
    473   // OK! We can transform this tail call.  If this is the first one found,
    474   // create the new entry block, allowing us to branch back to the old entry.
    475   if (OldEntry == 0) {
    476     OldEntry = &F->getEntryBlock();
    477     BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
    478     NewEntry->takeName(OldEntry);
    479     OldEntry->setName("tailrecurse");
    480     BranchInst::Create(OldEntry, NewEntry);
    481 
    482     // If this tail call is marked 'tail' and if there are any allocas in the
    483     // entry block, move them up to the new entry block.
    484     TailCallsAreMarkedTail = CI->isTailCall();
    485     if (TailCallsAreMarkedTail)
    486       // Move all fixed sized allocas from OldEntry to NewEntry.
    487       for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
    488              NEBI = NewEntry->begin(); OEBI != E; )
    489         if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
    490           if (isa<ConstantInt>(AI->getArraySize()))
    491             AI->moveBefore(NEBI);
    492 
    493     // Now that we have created a new block, which jumps to the entry
    494     // block, insert a PHI node for each argument of the function.
    495     // For now, we initialize each PHI to only have the real arguments
    496     // which are passed in.
    497     Instruction *InsertPos = OldEntry->begin();
    498     for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
    499          I != E; ++I) {
    500       PHINode *PN = PHINode::Create(I->getType(), 2,
    501                                     I->getName() + ".tr", InsertPos);
    502       I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
    503       PN->addIncoming(I, NewEntry);
    504       ArgumentPHIs.push_back(PN);
    505     }
    506   }
    507 
    508   // If this function has self recursive calls in the tail position where some
    509   // are marked tail and some are not, only transform one flavor or another.  We
    510   // have to choose whether we move allocas in the entry block to the new entry
    511   // block or not, so we can't make a good choice for both.  NOTE: We could do
    512   // slightly better here in the case that the function has no entry block
    513   // allocas.
    514   if (TailCallsAreMarkedTail && !CI->isTailCall())
    515     return false;
    516 
    517   // Ok, now that we know we have a pseudo-entry block WITH all of the
    518   // required PHI nodes, add entries into the PHI node for the actual
    519   // parameters passed into the tail-recursive call.
    520   for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
    521     ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
    522 
    523   // If we are introducing an accumulator variable to eliminate the recursion,
    524   // do so now.  Note that we _know_ that no subsequent tail recursion
    525   // eliminations will happen on this function because of the way the
    526   // accumulator recursion predicate is set up.
    527   //
    528   if (AccumulatorRecursionEliminationInitVal) {
    529     Instruction *AccRecInstr = AccumulatorRecursionInstr;
    530     // Start by inserting a new PHI node for the accumulator.
    531     pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
    532     PHINode *AccPN =
    533       PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(),
    534                       std::distance(PB, PE) + 1,
    535                       "accumulator.tr", OldEntry->begin());
    536 
    537     // Loop over all of the predecessors of the tail recursion block.  For the
    538     // real entry into the function we seed the PHI with the initial value,
    539     // computed earlier.  For any other existing branches to this block (due to
    540     // other tail recursions eliminated) the accumulator is not modified.
    541     // Because we haven't added the branch in the current block to OldEntry yet,
    542     // it will not show up as a predecessor.
    543     for (pred_iterator PI = PB; PI != PE; ++PI) {
    544       BasicBlock *P = *PI;
    545       if (P == &F->getEntryBlock())
    546         AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
    547       else
    548         AccPN->addIncoming(AccPN, P);
    549     }
    550 
    551     if (AccRecInstr) {
    552       // Add an incoming argument for the current block, which is computed by
    553       // our associative and commutative accumulator instruction.
    554       AccPN->addIncoming(AccRecInstr, BB);
    555 
    556       // Next, rewrite the accumulator recursion instruction so that it does not
    557       // use the result of the call anymore, instead, use the PHI node we just
    558       // inserted.
    559       AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
    560     } else {
    561       // Add an incoming argument for the current block, which is just the
    562       // constant returned by the current return instruction.
    563       AccPN->addIncoming(Ret->getReturnValue(), BB);
    564     }
    565 
    566     // Finally, rewrite any return instructions in the program to return the PHI
    567     // node instead of the "initval" that they do currently.  This loop will
    568     // actually rewrite the return value we are destroying, but that's ok.
    569     for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI)
    570       if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()))
    571         RI->setOperand(0, AccPN);
    572     ++NumAccumAdded;
    573   }
    574 
    575   // Now that all of the PHI nodes are in place, remove the call and
    576   // ret instructions, replacing them with an unconditional branch.
    577   BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
    578   NewBI->setDebugLoc(CI->getDebugLoc());
    579 
    580   BB->getInstList().erase(Ret);  // Remove return.
    581   BB->getInstList().erase(CI);   // Remove call.
    582   ++NumEliminated;
    583   return true;
    584 }
    585 
    586 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB,
    587                                        ReturnInst *Ret, BasicBlock *&OldEntry,
    588                                        bool &TailCallsAreMarkedTail,
    589                                        SmallVector<PHINode*, 8> &ArgumentPHIs,
    590                                        bool CannotTailCallElimCallsMarkedTail) {
    591   bool Change = false;
    592 
    593   // If the return block contains nothing but the return and PHI's,
    594   // there might be an opportunity to duplicate the return in its
    595   // predecessors and perform TRC there. Look for predecessors that end
    596   // in unconditional branch and recursive call(s).
    597   SmallVector<BranchInst*, 8> UncondBranchPreds;
    598   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
    599     BasicBlock *Pred = *PI;
    600     TerminatorInst *PTI = Pred->getTerminator();
    601     if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
    602       if (BI->isUnconditional())
    603         UncondBranchPreds.push_back(BI);
    604   }
    605 
    606   while (!UncondBranchPreds.empty()) {
    607     BranchInst *BI = UncondBranchPreds.pop_back_val();
    608     BasicBlock *Pred = BI->getParent();
    609     if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){
    610       DEBUG(dbgs() << "FOLDING: " << *BB
    611             << "INTO UNCOND BRANCH PRED: " << *Pred);
    612       EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred),
    613                                  OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
    614                                  CannotTailCallElimCallsMarkedTail);
    615       ++NumRetDuped;
    616       Change = true;
    617     }
    618   }
    619 
    620   return Change;
    621 }
    622 
    623 bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry,
    624                                          bool &TailCallsAreMarkedTail,
    625                                          SmallVector<PHINode*, 8> &ArgumentPHIs,
    626                                        bool CannotTailCallElimCallsMarkedTail) {
    627   CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail);
    628   if (!CI)
    629     return false;
    630 
    631   return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
    632                                     ArgumentPHIs,
    633                                     CannotTailCallElimCallsMarkedTail);
    634 }
    635