1 //===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file transforms calls of the current function (self recursion) followed 11 // by a return instruction with a branch to the entry of the function, creating 12 // a loop. This pass also implements the following extensions to the basic 13 // algorithm: 14 // 15 // 1. Trivial instructions between the call and return do not prevent the 16 // transformation from taking place, though currently the analysis cannot 17 // support moving any really useful instructions (only dead ones). 18 // 2. This pass transforms functions that are prevented from being tail 19 // recursive by an associative and commutative expression to use an 20 // accumulator variable, thus compiling the typical naive factorial or 21 // 'fib' implementation into efficient code. 22 // 3. TRE is performed if the function returns void, if the return 23 // returns the result returned by the call, or if the function returns a 24 // run-time constant on all exits from the function. It is possible, though 25 // unlikely, that the return returns something else (like constant 0), and 26 // can still be TRE'd. It can be TRE'd if ALL OTHER return instructions in 27 // the function return the exact same value. 28 // 4. If it can prove that callees do not access their caller stack frame, 29 // they are marked as eligible for tail call elimination (by the code 30 // generator). 31 // 32 // There are several improvements that could be made: 33 // 34 // 1. If the function has any alloca instructions, these instructions will be 35 // moved out of the entry block of the function, causing them to be 36 // evaluated each time through the tail recursion. Safely keeping allocas 37 // in the entry block requires analysis to proves that the tail-called 38 // function does not read or write the stack object. 39 // 2. Tail recursion is only performed if the call immediately precedes the 40 // return instruction. It's possible that there could be a jump between 41 // the call and the return. 42 // 3. There can be intervening operations between the call and the return that 43 // prevent the TRE from occurring. For example, there could be GEP's and 44 // stores to memory that will not be read or written by the call. This 45 // requires some substantial analysis (such as with DSA) to prove safe to 46 // move ahead of the call, but doing so could allow many more TREs to be 47 // performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark. 48 // 4. The algorithm we use to detect if callees access their caller stack 49 // frames is very primitive. 50 // 51 //===----------------------------------------------------------------------===// 52 53 #define DEBUG_TYPE "tailcallelim" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 56 #include "llvm/Transforms/Utils/Local.h" 57 #include "llvm/Constants.h" 58 #include "llvm/DerivedTypes.h" 59 #include "llvm/Function.h" 60 #include "llvm/Instructions.h" 61 #include "llvm/IntrinsicInst.h" 62 #include "llvm/Module.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Analysis/CaptureTracking.h" 65 #include "llvm/Analysis/InlineCost.h" 66 #include "llvm/Analysis/InstructionSimplify.h" 67 #include "llvm/Analysis/Loads.h" 68 #include "llvm/Support/CallSite.h" 69 #include "llvm/Support/CFG.h" 70 #include "llvm/Support/Debug.h" 71 #include "llvm/Support/raw_ostream.h" 72 #include "llvm/ADT/Statistic.h" 73 #include "llvm/ADT/STLExtras.h" 74 using namespace llvm; 75 76 STATISTIC(NumEliminated, "Number of tail calls removed"); 77 STATISTIC(NumRetDuped, "Number of return duplicated"); 78 STATISTIC(NumAccumAdded, "Number of accumulators introduced"); 79 80 namespace { 81 struct TailCallElim : public FunctionPass { 82 static char ID; // Pass identification, replacement for typeid 83 TailCallElim() : FunctionPass(ID) { 84 initializeTailCallElimPass(*PassRegistry::getPassRegistry()); 85 } 86 87 virtual bool runOnFunction(Function &F); 88 89 private: 90 CallInst *FindTRECandidate(Instruction *I, 91 bool CannotTailCallElimCallsMarkedTail); 92 bool EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 93 BasicBlock *&OldEntry, 94 bool &TailCallsAreMarkedTail, 95 SmallVector<PHINode*, 8> &ArgumentPHIs, 96 bool CannotTailCallElimCallsMarkedTail); 97 bool FoldReturnAndProcessPred(BasicBlock *BB, 98 ReturnInst *Ret, BasicBlock *&OldEntry, 99 bool &TailCallsAreMarkedTail, 100 SmallVector<PHINode*, 8> &ArgumentPHIs, 101 bool CannotTailCallElimCallsMarkedTail); 102 bool ProcessReturningBlock(ReturnInst *RI, BasicBlock *&OldEntry, 103 bool &TailCallsAreMarkedTail, 104 SmallVector<PHINode*, 8> &ArgumentPHIs, 105 bool CannotTailCallElimCallsMarkedTail); 106 bool CanMoveAboveCall(Instruction *I, CallInst *CI); 107 Value *CanTransformAccumulatorRecursion(Instruction *I, CallInst *CI); 108 }; 109 } 110 111 char TailCallElim::ID = 0; 112 INITIALIZE_PASS(TailCallElim, "tailcallelim", 113 "Tail Call Elimination", false, false) 114 115 // Public interface to the TailCallElimination pass 116 FunctionPass *llvm::createTailCallEliminationPass() { 117 return new TailCallElim(); 118 } 119 120 /// AllocaMightEscapeToCalls - Return true if this alloca may be accessed by 121 /// callees of this function. We only do very simple analysis right now, this 122 /// could be expanded in the future to use mod/ref information for particular 123 /// call sites if desired. 124 static bool AllocaMightEscapeToCalls(AllocaInst *AI) { 125 // FIXME: do simple 'address taken' analysis. 126 return true; 127 } 128 129 /// CheckForEscapingAllocas - Scan the specified basic block for alloca 130 /// instructions. If it contains any that might be accessed by calls, return 131 /// true. 132 static bool CheckForEscapingAllocas(BasicBlock *BB, 133 bool &CannotTCETailMarkedCall) { 134 bool RetVal = false; 135 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 136 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) { 137 RetVal |= AllocaMightEscapeToCalls(AI); 138 139 // If this alloca is in the body of the function, or if it is a variable 140 // sized allocation, we cannot tail call eliminate calls marked 'tail' 141 // with this mechanism. 142 if (BB != &BB->getParent()->getEntryBlock() || 143 !isa<ConstantInt>(AI->getArraySize())) 144 CannotTCETailMarkedCall = true; 145 } 146 return RetVal; 147 } 148 149 bool TailCallElim::runOnFunction(Function &F) { 150 // If this function is a varargs function, we won't be able to PHI the args 151 // right, so don't even try to convert it... 152 if (F.getFunctionType()->isVarArg()) return false; 153 154 BasicBlock *OldEntry = 0; 155 bool TailCallsAreMarkedTail = false; 156 SmallVector<PHINode*, 8> ArgumentPHIs; 157 bool MadeChange = false; 158 bool FunctionContainsEscapingAllocas = false; 159 160 // CannotTCETailMarkedCall - If true, we cannot perform TCE on tail calls 161 // marked with the 'tail' attribute, because doing so would cause the stack 162 // size to increase (real TCE would deallocate variable sized allocas, TCE 163 // doesn't). 164 bool CannotTCETailMarkedCall = false; 165 166 // Loop over the function, looking for any returning blocks, and keeping track 167 // of whether this function has any non-trivially used allocas. 168 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 169 if (FunctionContainsEscapingAllocas && CannotTCETailMarkedCall) 170 break; 171 172 FunctionContainsEscapingAllocas |= 173 CheckForEscapingAllocas(BB, CannotTCETailMarkedCall); 174 } 175 176 /// FIXME: The code generator produces really bad code when an 'escaping 177 /// alloca' is changed from being a static alloca to being a dynamic alloca. 178 /// Until this is resolved, disable this transformation if that would ever 179 /// happen. This bug is PR962. 180 if (FunctionContainsEscapingAllocas) 181 return false; 182 183 // Second pass, change any tail calls to loops. 184 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { 185 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) { 186 bool Change = ProcessReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail, 187 ArgumentPHIs,CannotTCETailMarkedCall); 188 if (!Change && BB->getFirstNonPHIOrDbg() == Ret) 189 Change = FoldReturnAndProcessPred(BB, Ret, OldEntry, 190 TailCallsAreMarkedTail, ArgumentPHIs, 191 CannotTCETailMarkedCall); 192 MadeChange |= Change; 193 } 194 } 195 196 // If we eliminated any tail recursions, it's possible that we inserted some 197 // silly PHI nodes which just merge an initial value (the incoming operand) 198 // with themselves. Check to see if we did and clean up our mess if so. This 199 // occurs when a function passes an argument straight through to its tail 200 // call. 201 if (!ArgumentPHIs.empty()) { 202 for (unsigned i = 0, e = ArgumentPHIs.size(); i != e; ++i) { 203 PHINode *PN = ArgumentPHIs[i]; 204 205 // If the PHI Node is a dynamic constant, replace it with the value it is. 206 if (Value *PNV = SimplifyInstruction(PN)) { 207 PN->replaceAllUsesWith(PNV); 208 PN->eraseFromParent(); 209 } 210 } 211 } 212 213 // Finally, if this function contains no non-escaping allocas, or calls 214 // setjmp, mark all calls in the function as eligible for tail calls 215 //(there is no stack memory for them to access). 216 if (!FunctionContainsEscapingAllocas && !F.callsFunctionThatReturnsTwice()) 217 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) 218 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) 219 if (CallInst *CI = dyn_cast<CallInst>(I)) { 220 CI->setTailCall(); 221 MadeChange = true; 222 } 223 224 return MadeChange; 225 } 226 227 228 /// CanMoveAboveCall - Return true if it is safe to move the specified 229 /// instruction from after the call to before the call, assuming that all 230 /// instructions between the call and this instruction are movable. 231 /// 232 bool TailCallElim::CanMoveAboveCall(Instruction *I, CallInst *CI) { 233 // FIXME: We can move load/store/call/free instructions above the call if the 234 // call does not mod/ref the memory location being processed. 235 if (I->mayHaveSideEffects()) // This also handles volatile loads. 236 return false; 237 238 if (LoadInst *L = dyn_cast<LoadInst>(I)) { 239 // Loads may always be moved above calls without side effects. 240 if (CI->mayHaveSideEffects()) { 241 // Non-volatile loads may be moved above a call with side effects if it 242 // does not write to memory and the load provably won't trap. 243 // FIXME: Writes to memory only matter if they may alias the pointer 244 // being loaded from. 245 if (CI->mayWriteToMemory() || 246 !isSafeToLoadUnconditionally(L->getPointerOperand(), L, 247 L->getAlignment())) 248 return false; 249 } 250 } 251 252 // Otherwise, if this is a side-effect free instruction, check to make sure 253 // that it does not use the return value of the call. If it doesn't use the 254 // return value of the call, it must only use things that are defined before 255 // the call, or movable instructions between the call and the instruction 256 // itself. 257 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) 258 if (I->getOperand(i) == CI) 259 return false; 260 return true; 261 } 262 263 // isDynamicConstant - Return true if the specified value is the same when the 264 // return would exit as it was when the initial iteration of the recursive 265 // function was executed. 266 // 267 // We currently handle static constants and arguments that are not modified as 268 // part of the recursion. 269 // 270 static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) { 271 if (isa<Constant>(V)) return true; // Static constants are always dyn consts 272 273 // Check to see if this is an immutable argument, if so, the value 274 // will be available to initialize the accumulator. 275 if (Argument *Arg = dyn_cast<Argument>(V)) { 276 // Figure out which argument number this is... 277 unsigned ArgNo = 0; 278 Function *F = CI->getParent()->getParent(); 279 for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI) 280 ++ArgNo; 281 282 // If we are passing this argument into call as the corresponding 283 // argument operand, then the argument is dynamically constant. 284 // Otherwise, we cannot transform this function safely. 285 if (CI->getArgOperand(ArgNo) == Arg) 286 return true; 287 } 288 289 // Switch cases are always constant integers. If the value is being switched 290 // on and the return is only reachable from one of its cases, it's 291 // effectively constant. 292 if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor()) 293 if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator())) 294 if (SI->getCondition() == V) 295 return SI->getDefaultDest() != RI->getParent(); 296 297 // Not a constant or immutable argument, we can't safely transform. 298 return false; 299 } 300 301 // getCommonReturnValue - Check to see if the function containing the specified 302 // tail call consistently returns the same runtime-constant value at all exit 303 // points except for IgnoreRI. If so, return the returned value. 304 // 305 static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) { 306 Function *F = CI->getParent()->getParent(); 307 Value *ReturnedValue = 0; 308 309 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) { 310 ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator()); 311 if (RI == 0 || RI == IgnoreRI) continue; 312 313 // We can only perform this transformation if the value returned is 314 // evaluatable at the start of the initial invocation of the function, 315 // instead of at the end of the evaluation. 316 // 317 Value *RetOp = RI->getOperand(0); 318 if (!isDynamicConstant(RetOp, CI, RI)) 319 return 0; 320 321 if (ReturnedValue && RetOp != ReturnedValue) 322 return 0; // Cannot transform if differing values are returned. 323 ReturnedValue = RetOp; 324 } 325 return ReturnedValue; 326 } 327 328 /// CanTransformAccumulatorRecursion - If the specified instruction can be 329 /// transformed using accumulator recursion elimination, return the constant 330 /// which is the start of the accumulator value. Otherwise return null. 331 /// 332 Value *TailCallElim::CanTransformAccumulatorRecursion(Instruction *I, 333 CallInst *CI) { 334 if (!I->isAssociative() || !I->isCommutative()) return 0; 335 assert(I->getNumOperands() == 2 && 336 "Associative/commutative operations should have 2 args!"); 337 338 // Exactly one operand should be the result of the call instruction. 339 if ((I->getOperand(0) == CI && I->getOperand(1) == CI) || 340 (I->getOperand(0) != CI && I->getOperand(1) != CI)) 341 return 0; 342 343 // The only user of this instruction we allow is a single return instruction. 344 if (!I->hasOneUse() || !isa<ReturnInst>(I->use_back())) 345 return 0; 346 347 // Ok, now we have to check all of the other return instructions in this 348 // function. If they return non-constants or differing values, then we cannot 349 // transform the function safely. 350 return getCommonReturnValue(cast<ReturnInst>(I->use_back()), CI); 351 } 352 353 static Instruction *FirstNonDbg(BasicBlock::iterator I) { 354 while (isa<DbgInfoIntrinsic>(I)) 355 ++I; 356 return &*I; 357 } 358 359 CallInst* 360 TailCallElim::FindTRECandidate(Instruction *TI, 361 bool CannotTailCallElimCallsMarkedTail) { 362 BasicBlock *BB = TI->getParent(); 363 Function *F = BB->getParent(); 364 365 if (&BB->front() == TI) // Make sure there is something before the terminator. 366 return 0; 367 368 // Scan backwards from the return, checking to see if there is a tail call in 369 // this block. If so, set CI to it. 370 CallInst *CI = 0; 371 BasicBlock::iterator BBI = TI; 372 while (true) { 373 CI = dyn_cast<CallInst>(BBI); 374 if (CI && CI->getCalledFunction() == F) 375 break; 376 377 if (BBI == BB->begin()) 378 return 0; // Didn't find a potential tail call. 379 --BBI; 380 } 381 382 // If this call is marked as a tail call, and if there are dynamic allocas in 383 // the function, we cannot perform this optimization. 384 if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail) 385 return 0; 386 387 // As a special case, detect code like this: 388 // double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call 389 // and disable this xform in this case, because the code generator will 390 // lower the call to fabs into inline code. 391 if (BB == &F->getEntryBlock() && 392 FirstNonDbg(BB->front()) == CI && 393 FirstNonDbg(llvm::next(BB->begin())) == TI && 394 callIsSmall(F)) { 395 // A single-block function with just a call and a return. Check that 396 // the arguments match. 397 CallSite::arg_iterator I = CallSite(CI).arg_begin(), 398 E = CallSite(CI).arg_end(); 399 Function::arg_iterator FI = F->arg_begin(), 400 FE = F->arg_end(); 401 for (; I != E && FI != FE; ++I, ++FI) 402 if (*I != &*FI) break; 403 if (I == E && FI == FE) 404 return 0; 405 } 406 407 return CI; 408 } 409 410 bool TailCallElim::EliminateRecursiveTailCall(CallInst *CI, ReturnInst *Ret, 411 BasicBlock *&OldEntry, 412 bool &TailCallsAreMarkedTail, 413 SmallVector<PHINode*, 8> &ArgumentPHIs, 414 bool CannotTailCallElimCallsMarkedTail) { 415 // If we are introducing accumulator recursion to eliminate operations after 416 // the call instruction that are both associative and commutative, the initial 417 // value for the accumulator is placed in this variable. If this value is set 418 // then we actually perform accumulator recursion elimination instead of 419 // simple tail recursion elimination. If the operation is an LLVM instruction 420 // (eg: "add") then it is recorded in AccumulatorRecursionInstr. If not, then 421 // we are handling the case when the return instruction returns a constant C 422 // which is different to the constant returned by other return instructions 423 // (which is recorded in AccumulatorRecursionEliminationInitVal). This is a 424 // special case of accumulator recursion, the operation being "return C". 425 Value *AccumulatorRecursionEliminationInitVal = 0; 426 Instruction *AccumulatorRecursionInstr = 0; 427 428 // Ok, we found a potential tail call. We can currently only transform the 429 // tail call if all of the instructions between the call and the return are 430 // movable to above the call itself, leaving the call next to the return. 431 // Check that this is the case now. 432 BasicBlock::iterator BBI = CI; 433 for (++BBI; &*BBI != Ret; ++BBI) { 434 if (CanMoveAboveCall(BBI, CI)) continue; 435 436 // If we can't move the instruction above the call, it might be because it 437 // is an associative and commutative operation that could be transformed 438 // using accumulator recursion elimination. Check to see if this is the 439 // case, and if so, remember the initial accumulator value for later. 440 if ((AccumulatorRecursionEliminationInitVal = 441 CanTransformAccumulatorRecursion(BBI, CI))) { 442 // Yes, this is accumulator recursion. Remember which instruction 443 // accumulates. 444 AccumulatorRecursionInstr = BBI; 445 } else { 446 return false; // Otherwise, we cannot eliminate the tail recursion! 447 } 448 } 449 450 // We can only transform call/return pairs that either ignore the return value 451 // of the call and return void, ignore the value of the call and return a 452 // constant, return the value returned by the tail call, or that are being 453 // accumulator recursion variable eliminated. 454 if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI && 455 !isa<UndefValue>(Ret->getReturnValue()) && 456 AccumulatorRecursionEliminationInitVal == 0 && 457 !getCommonReturnValue(0, CI)) { 458 // One case remains that we are able to handle: the current return 459 // instruction returns a constant, and all other return instructions 460 // return a different constant. 461 if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret)) 462 return false; // Current return instruction does not return a constant. 463 // Check that all other return instructions return a common constant. If 464 // so, record it in AccumulatorRecursionEliminationInitVal. 465 AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI); 466 if (!AccumulatorRecursionEliminationInitVal) 467 return false; 468 } 469 470 BasicBlock *BB = Ret->getParent(); 471 Function *F = BB->getParent(); 472 473 // OK! We can transform this tail call. If this is the first one found, 474 // create the new entry block, allowing us to branch back to the old entry. 475 if (OldEntry == 0) { 476 OldEntry = &F->getEntryBlock(); 477 BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry); 478 NewEntry->takeName(OldEntry); 479 OldEntry->setName("tailrecurse"); 480 BranchInst::Create(OldEntry, NewEntry); 481 482 // If this tail call is marked 'tail' and if there are any allocas in the 483 // entry block, move them up to the new entry block. 484 TailCallsAreMarkedTail = CI->isTailCall(); 485 if (TailCallsAreMarkedTail) 486 // Move all fixed sized allocas from OldEntry to NewEntry. 487 for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(), 488 NEBI = NewEntry->begin(); OEBI != E; ) 489 if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++)) 490 if (isa<ConstantInt>(AI->getArraySize())) 491 AI->moveBefore(NEBI); 492 493 // Now that we have created a new block, which jumps to the entry 494 // block, insert a PHI node for each argument of the function. 495 // For now, we initialize each PHI to only have the real arguments 496 // which are passed in. 497 Instruction *InsertPos = OldEntry->begin(); 498 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); 499 I != E; ++I) { 500 PHINode *PN = PHINode::Create(I->getType(), 2, 501 I->getName() + ".tr", InsertPos); 502 I->replaceAllUsesWith(PN); // Everyone use the PHI node now! 503 PN->addIncoming(I, NewEntry); 504 ArgumentPHIs.push_back(PN); 505 } 506 } 507 508 // If this function has self recursive calls in the tail position where some 509 // are marked tail and some are not, only transform one flavor or another. We 510 // have to choose whether we move allocas in the entry block to the new entry 511 // block or not, so we can't make a good choice for both. NOTE: We could do 512 // slightly better here in the case that the function has no entry block 513 // allocas. 514 if (TailCallsAreMarkedTail && !CI->isTailCall()) 515 return false; 516 517 // Ok, now that we know we have a pseudo-entry block WITH all of the 518 // required PHI nodes, add entries into the PHI node for the actual 519 // parameters passed into the tail-recursive call. 520 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 521 ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB); 522 523 // If we are introducing an accumulator variable to eliminate the recursion, 524 // do so now. Note that we _know_ that no subsequent tail recursion 525 // eliminations will happen on this function because of the way the 526 // accumulator recursion predicate is set up. 527 // 528 if (AccumulatorRecursionEliminationInitVal) { 529 Instruction *AccRecInstr = AccumulatorRecursionInstr; 530 // Start by inserting a new PHI node for the accumulator. 531 pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry); 532 PHINode *AccPN = 533 PHINode::Create(AccumulatorRecursionEliminationInitVal->getType(), 534 std::distance(PB, PE) + 1, 535 "accumulator.tr", OldEntry->begin()); 536 537 // Loop over all of the predecessors of the tail recursion block. For the 538 // real entry into the function we seed the PHI with the initial value, 539 // computed earlier. For any other existing branches to this block (due to 540 // other tail recursions eliminated) the accumulator is not modified. 541 // Because we haven't added the branch in the current block to OldEntry yet, 542 // it will not show up as a predecessor. 543 for (pred_iterator PI = PB; PI != PE; ++PI) { 544 BasicBlock *P = *PI; 545 if (P == &F->getEntryBlock()) 546 AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P); 547 else 548 AccPN->addIncoming(AccPN, P); 549 } 550 551 if (AccRecInstr) { 552 // Add an incoming argument for the current block, which is computed by 553 // our associative and commutative accumulator instruction. 554 AccPN->addIncoming(AccRecInstr, BB); 555 556 // Next, rewrite the accumulator recursion instruction so that it does not 557 // use the result of the call anymore, instead, use the PHI node we just 558 // inserted. 559 AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN); 560 } else { 561 // Add an incoming argument for the current block, which is just the 562 // constant returned by the current return instruction. 563 AccPN->addIncoming(Ret->getReturnValue(), BB); 564 } 565 566 // Finally, rewrite any return instructions in the program to return the PHI 567 // node instead of the "initval" that they do currently. This loop will 568 // actually rewrite the return value we are destroying, but that's ok. 569 for (Function::iterator BBI = F->begin(), E = F->end(); BBI != E; ++BBI) 570 if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI->getTerminator())) 571 RI->setOperand(0, AccPN); 572 ++NumAccumAdded; 573 } 574 575 // Now that all of the PHI nodes are in place, remove the call and 576 // ret instructions, replacing them with an unconditional branch. 577 BranchInst *NewBI = BranchInst::Create(OldEntry, Ret); 578 NewBI->setDebugLoc(CI->getDebugLoc()); 579 580 BB->getInstList().erase(Ret); // Remove return. 581 BB->getInstList().erase(CI); // Remove call. 582 ++NumEliminated; 583 return true; 584 } 585 586 bool TailCallElim::FoldReturnAndProcessPred(BasicBlock *BB, 587 ReturnInst *Ret, BasicBlock *&OldEntry, 588 bool &TailCallsAreMarkedTail, 589 SmallVector<PHINode*, 8> &ArgumentPHIs, 590 bool CannotTailCallElimCallsMarkedTail) { 591 bool Change = false; 592 593 // If the return block contains nothing but the return and PHI's, 594 // there might be an opportunity to duplicate the return in its 595 // predecessors and perform TRC there. Look for predecessors that end 596 // in unconditional branch and recursive call(s). 597 SmallVector<BranchInst*, 8> UncondBranchPreds; 598 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 599 BasicBlock *Pred = *PI; 600 TerminatorInst *PTI = Pred->getTerminator(); 601 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) 602 if (BI->isUnconditional()) 603 UncondBranchPreds.push_back(BI); 604 } 605 606 while (!UncondBranchPreds.empty()) { 607 BranchInst *BI = UncondBranchPreds.pop_back_val(); 608 BasicBlock *Pred = BI->getParent(); 609 if (CallInst *CI = FindTRECandidate(BI, CannotTailCallElimCallsMarkedTail)){ 610 DEBUG(dbgs() << "FOLDING: " << *BB 611 << "INTO UNCOND BRANCH PRED: " << *Pred); 612 EliminateRecursiveTailCall(CI, FoldReturnIntoUncondBranch(Ret, BB, Pred), 613 OldEntry, TailCallsAreMarkedTail, ArgumentPHIs, 614 CannotTailCallElimCallsMarkedTail); 615 ++NumRetDuped; 616 Change = true; 617 } 618 } 619 620 return Change; 621 } 622 623 bool TailCallElim::ProcessReturningBlock(ReturnInst *Ret, BasicBlock *&OldEntry, 624 bool &TailCallsAreMarkedTail, 625 SmallVector<PHINode*, 8> &ArgumentPHIs, 626 bool CannotTailCallElimCallsMarkedTail) { 627 CallInst *CI = FindTRECandidate(Ret, CannotTailCallElimCallsMarkedTail); 628 if (!CI) 629 return false; 630 631 return EliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail, 632 ArgumentPHIs, 633 CannotTailCallElimCallsMarkedTail); 634 } 635