Home | History | Annotate | Download | only in Utils
      1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CloneFunctionInto interface, which is used as the
     11 // low-level function cloner.  This is used by the CloneFunction and function
     12 // inliner to do the dirty work of copying the body of a function around.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/Utils/Cloning.h"
     17 #include "llvm/Constants.h"
     18 #include "llvm/DerivedTypes.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/GlobalVariable.h"
     22 #include "llvm/Function.h"
     23 #include "llvm/LLVMContext.h"
     24 #include "llvm/Metadata.h"
     25 #include "llvm/Support/CFG.h"
     26 #include "llvm/Transforms/Utils/ValueMapper.h"
     27 #include "llvm/Analysis/ConstantFolding.h"
     28 #include "llvm/Analysis/DebugInfo.h"
     29 #include "llvm/ADT/SmallVector.h"
     30 #include <map>
     31 using namespace llvm;
     32 
     33 // CloneBasicBlock - See comments in Cloning.h
     34 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB,
     35                                   ValueToValueMapTy &VMap,
     36                                   const Twine &NameSuffix, Function *F,
     37                                   ClonedCodeInfo *CodeInfo) {
     38   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
     39   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
     40 
     41   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
     42 
     43   // Loop over all instructions, and copy them over.
     44   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
     45        II != IE; ++II) {
     46     Instruction *NewInst = II->clone();
     47     if (II->hasName())
     48       NewInst->setName(II->getName()+NameSuffix);
     49     NewBB->getInstList().push_back(NewInst);
     50     VMap[II] = NewInst;                // Add instruction map to value.
     51 
     52     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
     53     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
     54       if (isa<ConstantInt>(AI->getArraySize()))
     55         hasStaticAllocas = true;
     56       else
     57         hasDynamicAllocas = true;
     58     }
     59   }
     60 
     61   if (CodeInfo) {
     62     CodeInfo->ContainsCalls          |= hasCalls;
     63     CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(BB->getTerminator());
     64     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
     65     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
     66                                         BB != &BB->getParent()->getEntryBlock();
     67   }
     68   return NewBB;
     69 }
     70 
     71 // Clone OldFunc into NewFunc, transforming the old arguments into references to
     72 // VMap values.
     73 //
     74 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
     75                              ValueToValueMapTy &VMap,
     76                              bool ModuleLevelChanges,
     77                              SmallVectorImpl<ReturnInst*> &Returns,
     78                              const char *NameSuffix, ClonedCodeInfo *CodeInfo) {
     79   assert(NameSuffix && "NameSuffix cannot be null!");
     80 
     81 #ifndef NDEBUG
     82   for (Function::const_arg_iterator I = OldFunc->arg_begin(),
     83        E = OldFunc->arg_end(); I != E; ++I)
     84     assert(VMap.count(I) && "No mapping from source argument specified!");
     85 #endif
     86 
     87   // Clone any attributes.
     88   if (NewFunc->arg_size() == OldFunc->arg_size())
     89     NewFunc->copyAttributesFrom(OldFunc);
     90   else {
     91     //Some arguments were deleted with the VMap. Copy arguments one by one
     92     for (Function::const_arg_iterator I = OldFunc->arg_begin(),
     93            E = OldFunc->arg_end(); I != E; ++I)
     94       if (Argument* Anew = dyn_cast<Argument>(VMap[I]))
     95         Anew->addAttr( OldFunc->getAttributes()
     96                        .getParamAttributes(I->getArgNo() + 1));
     97     NewFunc->setAttributes(NewFunc->getAttributes()
     98                            .addAttr(0, OldFunc->getAttributes()
     99                                      .getRetAttributes()));
    100     NewFunc->setAttributes(NewFunc->getAttributes()
    101                            .addAttr(~0, OldFunc->getAttributes()
    102                                      .getFnAttributes()));
    103 
    104   }
    105 
    106   // Loop over all of the basic blocks in the function, cloning them as
    107   // appropriate.  Note that we save BE this way in order to handle cloning of
    108   // recursive functions into themselves.
    109   //
    110   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    111        BI != BE; ++BI) {
    112     const BasicBlock &BB = *BI;
    113 
    114     // Create a new basic block and copy instructions into it!
    115     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo);
    116     VMap[&BB] = CBB;                       // Add basic block mapping.
    117 
    118     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
    119       Returns.push_back(RI);
    120   }
    121 
    122   // Loop over all of the instructions in the function, fixing up operand
    123   // references as we go.  This uses VMap to do all the hard work.
    124   for (Function::iterator BB = cast<BasicBlock>(VMap[OldFunc->begin()]),
    125          BE = NewFunc->end(); BB != BE; ++BB)
    126     // Loop over all instructions, fixing each one as we find it...
    127     for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II)
    128       RemapInstruction(II, VMap,
    129                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    130 }
    131 
    132 /// CloneFunction - Return a copy of the specified function, but without
    133 /// embedding the function into another module.  Also, any references specified
    134 /// in the VMap are changed to refer to their mapped value instead of the
    135 /// original one.  If any of the arguments to the function are in the VMap,
    136 /// the arguments are deleted from the resultant function.  The VMap is
    137 /// updated to include mappings from all of the instructions and basicblocks in
    138 /// the function from their old to new values.
    139 ///
    140 Function *llvm::CloneFunction(const Function *F, ValueToValueMapTy &VMap,
    141                               bool ModuleLevelChanges,
    142                               ClonedCodeInfo *CodeInfo) {
    143   std::vector<Type*> ArgTypes;
    144 
    145   // The user might be deleting arguments to the function by specifying them in
    146   // the VMap.  If so, we need to not add the arguments to the arg ty vector
    147   //
    148   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    149        I != E; ++I)
    150     if (VMap.count(I) == 0)  // Haven't mapped the argument to anything yet?
    151       ArgTypes.push_back(I->getType());
    152 
    153   // Create a new function type...
    154   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
    155                                     ArgTypes, F->getFunctionType()->isVarArg());
    156 
    157   // Create the new function...
    158   Function *NewF = Function::Create(FTy, F->getLinkage(), F->getName());
    159 
    160   // Loop over the arguments, copying the names of the mapped arguments over...
    161   Function::arg_iterator DestI = NewF->arg_begin();
    162   for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
    163        I != E; ++I)
    164     if (VMap.count(I) == 0) {   // Is this argument preserved?
    165       DestI->setName(I->getName()); // Copy the name over...
    166       VMap[I] = DestI++;        // Add mapping to VMap
    167     }
    168 
    169   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
    170   CloneFunctionInto(NewF, F, VMap, ModuleLevelChanges, Returns, "", CodeInfo);
    171   return NewF;
    172 }
    173 
    174 
    175 
    176 namespace {
    177   /// PruningFunctionCloner - This class is a private class used to implement
    178   /// the CloneAndPruneFunctionInto method.
    179   struct PruningFunctionCloner {
    180     Function *NewFunc;
    181     const Function *OldFunc;
    182     ValueToValueMapTy &VMap;
    183     bool ModuleLevelChanges;
    184     SmallVectorImpl<ReturnInst*> &Returns;
    185     const char *NameSuffix;
    186     ClonedCodeInfo *CodeInfo;
    187     const TargetData *TD;
    188   public:
    189     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
    190                           ValueToValueMapTy &valueMap,
    191                           bool moduleLevelChanges,
    192                           SmallVectorImpl<ReturnInst*> &returns,
    193                           const char *nameSuffix,
    194                           ClonedCodeInfo *codeInfo,
    195                           const TargetData *td)
    196     : NewFunc(newFunc), OldFunc(oldFunc),
    197       VMap(valueMap), ModuleLevelChanges(moduleLevelChanges),
    198       Returns(returns), NameSuffix(nameSuffix), CodeInfo(codeInfo), TD(td) {
    199     }
    200 
    201     /// CloneBlock - The specified block is found to be reachable, clone it and
    202     /// anything that it can reach.
    203     void CloneBlock(const BasicBlock *BB,
    204                     std::vector<const BasicBlock*> &ToClone);
    205 
    206   public:
    207     /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
    208     /// mapping its operands through VMap if they are available.
    209     Constant *ConstantFoldMappedInstruction(const Instruction *I);
    210   };
    211 }
    212 
    213 /// CloneBlock - The specified block is found to be reachable, clone it and
    214 /// anything that it can reach.
    215 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
    216                                        std::vector<const BasicBlock*> &ToClone){
    217   TrackingVH<Value> &BBEntry = VMap[BB];
    218 
    219   // Have we already cloned this block?
    220   if (BBEntry) return;
    221 
    222   // Nope, clone it now.
    223   BasicBlock *NewBB;
    224   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
    225   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
    226 
    227   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
    228 
    229   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
    230   // loop doesn't include the terminator.
    231   for (BasicBlock::const_iterator II = BB->begin(), IE = --BB->end();
    232        II != IE; ++II) {
    233     // If this instruction constant folds, don't bother cloning the instruction,
    234     // instead, just add the constant to the value map.
    235     if (Constant *C = ConstantFoldMappedInstruction(II)) {
    236       VMap[II] = C;
    237       continue;
    238     }
    239 
    240     Instruction *NewInst = II->clone();
    241     if (II->hasName())
    242       NewInst->setName(II->getName()+NameSuffix);
    243     NewBB->getInstList().push_back(NewInst);
    244     VMap[II] = NewInst;                // Add instruction map to value.
    245 
    246     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
    247     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
    248       if (isa<ConstantInt>(AI->getArraySize()))
    249         hasStaticAllocas = true;
    250       else
    251         hasDynamicAllocas = true;
    252     }
    253   }
    254 
    255   // Finally, clone over the terminator.
    256   const TerminatorInst *OldTI = BB->getTerminator();
    257   bool TerminatorDone = false;
    258   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
    259     if (BI->isConditional()) {
    260       // If the condition was a known constant in the callee...
    261       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
    262       // Or is a known constant in the caller...
    263       if (Cond == 0) {
    264         Value *V = VMap[BI->getCondition()];
    265         Cond = dyn_cast_or_null<ConstantInt>(V);
    266       }
    267 
    268       // Constant fold to uncond branch!
    269       if (Cond) {
    270         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
    271         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    272         ToClone.push_back(Dest);
    273         TerminatorDone = true;
    274       }
    275     }
    276   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
    277     // If switching on a value known constant in the caller.
    278     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
    279     if (Cond == 0) { // Or known constant after constant prop in the callee...
    280       Value *V = VMap[SI->getCondition()];
    281       Cond = dyn_cast_or_null<ConstantInt>(V);
    282     }
    283     if (Cond) {     // Constant fold to uncond branch!
    284       BasicBlock *Dest = SI->getSuccessor(SI->findCaseValue(Cond));
    285       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
    286       ToClone.push_back(Dest);
    287       TerminatorDone = true;
    288     }
    289   }
    290 
    291   if (!TerminatorDone) {
    292     Instruction *NewInst = OldTI->clone();
    293     if (OldTI->hasName())
    294       NewInst->setName(OldTI->getName()+NameSuffix);
    295     NewBB->getInstList().push_back(NewInst);
    296     VMap[OldTI] = NewInst;             // Add instruction map to value.
    297 
    298     // Recursively clone any reachable successor blocks.
    299     const TerminatorInst *TI = BB->getTerminator();
    300     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    301       ToClone.push_back(TI->getSuccessor(i));
    302   }
    303 
    304   if (CodeInfo) {
    305     CodeInfo->ContainsCalls          |= hasCalls;
    306     CodeInfo->ContainsUnwinds        |= isa<UnwindInst>(OldTI);
    307     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
    308     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
    309       BB != &BB->getParent()->front();
    310   }
    311 
    312   if (ReturnInst *RI = dyn_cast<ReturnInst>(NewBB->getTerminator()))
    313     Returns.push_back(RI);
    314 }
    315 
    316 /// ConstantFoldMappedInstruction - Constant fold the specified instruction,
    317 /// mapping its operands through VMap if they are available.
    318 Constant *PruningFunctionCloner::
    319 ConstantFoldMappedInstruction(const Instruction *I) {
    320   SmallVector<Constant*, 8> Ops;
    321   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
    322     if (Constant *Op = dyn_cast_or_null<Constant>(MapValue(I->getOperand(i),
    323                                                            VMap,
    324                   ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges)))
    325       Ops.push_back(Op);
    326     else
    327       return 0;  // All operands not constant!
    328 
    329   if (const CmpInst *CI = dyn_cast<CmpInst>(I))
    330     return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
    331                                            TD);
    332 
    333   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
    334     if (!LI->isVolatile())
    335       return ConstantFoldLoadFromConstPtr(Ops[0], TD);
    336 
    337   return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD);
    338 }
    339 
    340 /// CloneAndPruneFunctionInto - This works exactly like CloneFunctionInto,
    341 /// except that it does some simple constant prop and DCE on the fly.  The
    342 /// effect of this is to copy significantly less code in cases where (for
    343 /// example) a function call with constant arguments is inlined, and those
    344 /// constant arguments cause a significant amount of code in the callee to be
    345 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
    346 /// used for things like CloneFunction or CloneModule.
    347 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
    348                                      ValueToValueMapTy &VMap,
    349                                      bool ModuleLevelChanges,
    350                                      SmallVectorImpl<ReturnInst*> &Returns,
    351                                      const char *NameSuffix,
    352                                      ClonedCodeInfo *CodeInfo,
    353                                      const TargetData *TD,
    354                                      Instruction *TheCall) {
    355   assert(NameSuffix && "NameSuffix cannot be null!");
    356 
    357 #ifndef NDEBUG
    358   for (Function::const_arg_iterator II = OldFunc->arg_begin(),
    359        E = OldFunc->arg_end(); II != E; ++II)
    360     assert(VMap.count(II) && "No mapping from source argument specified!");
    361 #endif
    362 
    363   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
    364                             Returns, NameSuffix, CodeInfo, TD);
    365 
    366   // Clone the entry block, and anything recursively reachable from it.
    367   std::vector<const BasicBlock*> CloneWorklist;
    368   CloneWorklist.push_back(&OldFunc->getEntryBlock());
    369   while (!CloneWorklist.empty()) {
    370     const BasicBlock *BB = CloneWorklist.back();
    371     CloneWorklist.pop_back();
    372     PFC.CloneBlock(BB, CloneWorklist);
    373   }
    374 
    375   // Loop over all of the basic blocks in the old function.  If the block was
    376   // reachable, we have cloned it and the old block is now in the value map:
    377   // insert it into the new function in the right order.  If not, ignore it.
    378   //
    379   // Defer PHI resolution until rest of function is resolved.
    380   SmallVector<const PHINode*, 16> PHIToResolve;
    381   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
    382        BI != BE; ++BI) {
    383     Value *V = VMap[BI];
    384     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
    385     if (NewBB == 0) continue;  // Dead block.
    386 
    387     // Add the new block to the new function.
    388     NewFunc->getBasicBlockList().push_back(NewBB);
    389 
    390     // Loop over all of the instructions in the block, fixing up operand
    391     // references as we go.  This uses VMap to do all the hard work.
    392     //
    393     BasicBlock::iterator I = NewBB->begin();
    394 
    395     DebugLoc TheCallDL;
    396     if (TheCall)
    397       TheCallDL = TheCall->getDebugLoc();
    398 
    399     // Handle PHI nodes specially, as we have to remove references to dead
    400     // blocks.
    401     if (PHINode *PN = dyn_cast<PHINode>(I)) {
    402       // Skip over all PHI nodes, remembering them for later.
    403       BasicBlock::const_iterator OldI = BI->begin();
    404       for (; (PN = dyn_cast<PHINode>(I)); ++I, ++OldI)
    405         PHIToResolve.push_back(cast<PHINode>(OldI));
    406     }
    407 
    408     // Otherwise, remap the rest of the instructions normally.
    409     for (; I != NewBB->end(); ++I)
    410       RemapInstruction(I, VMap,
    411                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    412   }
    413 
    414   // Defer PHI resolution until rest of function is resolved, PHI resolution
    415   // requires the CFG to be up-to-date.
    416   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
    417     const PHINode *OPN = PHIToResolve[phino];
    418     unsigned NumPreds = OPN->getNumIncomingValues();
    419     const BasicBlock *OldBB = OPN->getParent();
    420     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
    421 
    422     // Map operands for blocks that are live and remove operands for blocks
    423     // that are dead.
    424     for (; phino != PHIToResolve.size() &&
    425          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
    426       OPN = PHIToResolve[phino];
    427       PHINode *PN = cast<PHINode>(VMap[OPN]);
    428       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
    429         Value *V = VMap[PN->getIncomingBlock(pred)];
    430         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
    431           Value *InVal = MapValue(PN->getIncomingValue(pred),
    432                                   VMap,
    433                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
    434           assert(InVal && "Unknown input value?");
    435           PN->setIncomingValue(pred, InVal);
    436           PN->setIncomingBlock(pred, MappedBlock);
    437         } else {
    438           PN->removeIncomingValue(pred, false);
    439           --pred, --e;  // Revisit the next entry.
    440         }
    441       }
    442     }
    443 
    444     // The loop above has removed PHI entries for those blocks that are dead
    445     // and has updated others.  However, if a block is live (i.e. copied over)
    446     // but its terminator has been changed to not go to this block, then our
    447     // phi nodes will have invalid entries.  Update the PHI nodes in this
    448     // case.
    449     PHINode *PN = cast<PHINode>(NewBB->begin());
    450     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
    451     if (NumPreds != PN->getNumIncomingValues()) {
    452       assert(NumPreds < PN->getNumIncomingValues());
    453       // Count how many times each predecessor comes to this block.
    454       std::map<BasicBlock*, unsigned> PredCount;
    455       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
    456            PI != E; ++PI)
    457         --PredCount[*PI];
    458 
    459       // Figure out how many entries to remove from each PHI.
    460       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    461         ++PredCount[PN->getIncomingBlock(i)];
    462 
    463       // At this point, the excess predecessor entries are positive in the
    464       // map.  Loop over all of the PHIs and remove excess predecessor
    465       // entries.
    466       BasicBlock::iterator I = NewBB->begin();
    467       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
    468         for (std::map<BasicBlock*, unsigned>::iterator PCI =PredCount.begin(),
    469              E = PredCount.end(); PCI != E; ++PCI) {
    470           BasicBlock *Pred     = PCI->first;
    471           for (unsigned NumToRemove = PCI->second; NumToRemove; --NumToRemove)
    472             PN->removeIncomingValue(Pred, false);
    473         }
    474       }
    475     }
    476 
    477     // If the loops above have made these phi nodes have 0 or 1 operand,
    478     // replace them with undef or the input value.  We must do this for
    479     // correctness, because 0-operand phis are not valid.
    480     PN = cast<PHINode>(NewBB->begin());
    481     if (PN->getNumIncomingValues() == 0) {
    482       BasicBlock::iterator I = NewBB->begin();
    483       BasicBlock::const_iterator OldI = OldBB->begin();
    484       while ((PN = dyn_cast<PHINode>(I++))) {
    485         Value *NV = UndefValue::get(PN->getType());
    486         PN->replaceAllUsesWith(NV);
    487         assert(VMap[OldI] == PN && "VMap mismatch");
    488         VMap[OldI] = NV;
    489         PN->eraseFromParent();
    490         ++OldI;
    491       }
    492     }
    493     // NOTE: We cannot eliminate single entry phi nodes here, because of
    494     // VMap.  Single entry phi nodes can have multiple VMap entries
    495     // pointing at them.  Thus, deleting one would require scanning the VMap
    496     // to update any entries in it that would require that.  This would be
    497     // really slow.
    498   }
    499 
    500   // Now that the inlined function body has been fully constructed, go through
    501   // and zap unconditional fall-through branches.  This happen all the time when
    502   // specializing code: code specialization turns conditional branches into
    503   // uncond branches, and this code folds them.
    504   Function::iterator I = cast<BasicBlock>(VMap[&OldFunc->getEntryBlock()]);
    505   while (I != NewFunc->end()) {
    506     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
    507     if (!BI || BI->isConditional()) { ++I; continue; }
    508 
    509     // Note that we can't eliminate uncond branches if the destination has
    510     // single-entry PHI nodes.  Eliminating the single-entry phi nodes would
    511     // require scanning the VMap to update any entries that point to the phi
    512     // node.
    513     BasicBlock *Dest = BI->getSuccessor(0);
    514     if (!Dest->getSinglePredecessor() || isa<PHINode>(Dest->begin())) {
    515       ++I; continue;
    516     }
    517 
    518     // We know all single-entry PHI nodes in the inlined function have been
    519     // removed, so we just need to splice the blocks.
    520     BI->eraseFromParent();
    521 
    522     // Make all PHI nodes that referred to Dest now refer to I as their source.
    523     Dest->replaceAllUsesWith(I);
    524 
    525     // Move all the instructions in the succ to the pred.
    526     I->getInstList().splice(I->end(), Dest->getInstList());
    527 
    528     // Remove the dest block.
    529     Dest->eraseFromParent();
    530 
    531     // Do not increment I, iteratively merge all things this block branches to.
    532   }
    533 }
    534