Home | History | Annotate | Download | only in Utils
      1 //===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements some loop unrolling utilities. It does not define any
     11 // actual pass or policy, but provides a single function to perform loop
     12 // unrolling.
     13 //
     14 // The process of unrolling can produce extraneous basic blocks linked with
     15 // unconditional branches.  This will be corrected in the future.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 
     19 #define DEBUG_TYPE "loop-unroll"
     20 #include "llvm/Transforms/Utils/UnrollLoop.h"
     21 #include "llvm/BasicBlock.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/InstructionSimplify.h"
     24 #include "llvm/Analysis/LoopIterator.h"
     25 #include "llvm/Analysis/LoopPass.h"
     26 #include "llvm/Analysis/ScalarEvolution.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     30 #include "llvm/Transforms/Utils/Cloning.h"
     31 #include "llvm/Transforms/Utils/Local.h"
     32 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     33 using namespace llvm;
     34 
     35 // TODO: Should these be here or in LoopUnroll?
     36 STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
     37 STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
     38 
     39 /// RemapInstruction - Convert the instruction operands from referencing the
     40 /// current values into those specified by VMap.
     41 static inline void RemapInstruction(Instruction *I,
     42                                     ValueToValueMapTy &VMap) {
     43   for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
     44     Value *Op = I->getOperand(op);
     45     ValueToValueMapTy::iterator It = VMap.find(Op);
     46     if (It != VMap.end())
     47       I->setOperand(op, It->second);
     48   }
     49 
     50   if (PHINode *PN = dyn_cast<PHINode>(I)) {
     51     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
     52       ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
     53       if (It != VMap.end())
     54         PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
     55     }
     56   }
     57 }
     58 
     59 /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
     60 /// only has one predecessor, and that predecessor only has one successor.
     61 /// The LoopInfo Analysis that is passed will be kept consistent.
     62 /// Returns the new combined block.
     63 static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI,
     64                                             LPPassManager *LPM) {
     65   // Merge basic blocks into their predecessor if there is only one distinct
     66   // pred, and if there is only one distinct successor of the predecessor, and
     67   // if there are no PHI nodes.
     68   BasicBlock *OnlyPred = BB->getSinglePredecessor();
     69   if (!OnlyPred) return 0;
     70 
     71   if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
     72     return 0;
     73 
     74   DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred);
     75 
     76   // Resolve any PHI nodes at the start of the block.  They are all
     77   // guaranteed to have exactly one entry if they exist, unless there are
     78   // multiple duplicate (but guaranteed to be equal) entries for the
     79   // incoming edges.  This occurs when there are multiple edges from
     80   // OnlyPred to OnlySucc.
     81   FoldSingleEntryPHINodes(BB);
     82 
     83   // Delete the unconditional branch from the predecessor...
     84   OnlyPred->getInstList().pop_back();
     85 
     86   // Make all PHI nodes that referred to BB now refer to Pred as their
     87   // source...
     88   BB->replaceAllUsesWith(OnlyPred);
     89 
     90   // Move all definitions in the successor to the predecessor...
     91   OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
     92 
     93   std::string OldName = BB->getName();
     94 
     95   // Erase basic block from the function...
     96 
     97   // ScalarEvolution holds references to loop exit blocks.
     98   if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) {
     99     if (Loop *L = LI->getLoopFor(BB))
    100       SE->forgetLoop(L);
    101   }
    102   LI->removeBlock(BB);
    103   BB->eraseFromParent();
    104 
    105   // Inherit predecessor's name if it exists...
    106   if (!OldName.empty() && !OnlyPred->hasName())
    107     OnlyPred->setName(OldName);
    108 
    109   return OnlyPred;
    110 }
    111 
    112 /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
    113 /// if unrolling was successful, or false if the loop was unmodified. Unrolling
    114 /// can only fail when the loop's latch block is not terminated by a conditional
    115 /// branch instruction. However, if the trip count (and multiple) are not known,
    116 /// loop unrolling will mostly produce more code that is no faster.
    117 ///
    118 /// TripCount is generally defined as the number of times the loop header
    119 /// executes. UnrollLoop relaxes the definition to permit early exits: here
    120 /// TripCount is the iteration on which control exits LatchBlock if no early
    121 /// exits were taken. Note that UnrollLoop assumes that the loop counter test
    122 /// terminates LatchBlock in order to remove unnecesssary instances of the
    123 /// test. In other words, control may exit the loop prior to TripCount
    124 /// iterations via an early branch, but control may not exit the loop from the
    125 /// LatchBlock's terminator prior to TripCount iterations.
    126 ///
    127 /// Similarly, TripMultiple divides the number of times that the LatchBlock may
    128 /// execute without exiting the loop.
    129 ///
    130 /// The LoopInfo Analysis that is passed will be kept consistent.
    131 ///
    132 /// If a LoopPassManager is passed in, and the loop is fully removed, it will be
    133 /// removed from the LoopPassManager as well. LPM can also be NULL.
    134 ///
    135 /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are
    136 /// available it must also preserve those analyses.
    137 bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount,
    138                       unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) {
    139   BasicBlock *Preheader = L->getLoopPreheader();
    140   if (!Preheader) {
    141     DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
    142     return false;
    143   }
    144 
    145   BasicBlock *LatchBlock = L->getLoopLatch();
    146   if (!LatchBlock) {
    147     DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
    148     return false;
    149   }
    150 
    151   BasicBlock *Header = L->getHeader();
    152   BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
    153 
    154   if (!BI || BI->isUnconditional()) {
    155     // The loop-rotate pass can be helpful to avoid this in many cases.
    156     DEBUG(dbgs() <<
    157              "  Can't unroll; loop not terminated by a conditional branch.\n");
    158     return false;
    159   }
    160 
    161   if (Header->hasAddressTaken()) {
    162     // The loop-rotate pass can be helpful to avoid this in many cases.
    163     DEBUG(dbgs() <<
    164           "  Won't unroll loop: address of header block is taken.\n");
    165     return false;
    166   }
    167 
    168   // Notify ScalarEvolution that the loop will be substantially changed,
    169   // if not outright eliminated.
    170   ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>();
    171   if (SE)
    172     SE->forgetLoop(L);
    173 
    174   if (TripCount != 0)
    175     DEBUG(dbgs() << "  Trip Count = " << TripCount << "\n");
    176   if (TripMultiple != 1)
    177     DEBUG(dbgs() << "  Trip Multiple = " << TripMultiple << "\n");
    178 
    179   // Effectively "DCE" unrolled iterations that are beyond the tripcount
    180   // and will never be executed.
    181   if (TripCount != 0 && Count > TripCount)
    182     Count = TripCount;
    183 
    184   assert(Count > 0);
    185   assert(TripMultiple > 0);
    186   assert(TripCount == 0 || TripCount % TripMultiple == 0);
    187 
    188   // Are we eliminating the loop control altogether?
    189   bool CompletelyUnroll = Count == TripCount;
    190 
    191   // If we know the trip count, we know the multiple...
    192   unsigned BreakoutTrip = 0;
    193   if (TripCount != 0) {
    194     BreakoutTrip = TripCount % Count;
    195     TripMultiple = 0;
    196   } else {
    197     // Figure out what multiple to use.
    198     BreakoutTrip = TripMultiple =
    199       (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
    200   }
    201 
    202   if (CompletelyUnroll) {
    203     DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
    204           << " with trip count " << TripCount << "!\n");
    205   } else {
    206     DEBUG(dbgs() << "UNROLLING loop %" << Header->getName()
    207           << " by " << Count);
    208     if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
    209       DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
    210     } else if (TripMultiple != 1) {
    211       DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
    212     }
    213     DEBUG(dbgs() << "!\n");
    214   }
    215 
    216   std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
    217 
    218   bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
    219   BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
    220 
    221   // For the first iteration of the loop, we should use the precloned values for
    222   // PHI nodes.  Insert associations now.
    223   ValueToValueMapTy LastValueMap;
    224   std::vector<PHINode*> OrigPHINode;
    225   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
    226     OrigPHINode.push_back(cast<PHINode>(I));
    227   }
    228 
    229   std::vector<BasicBlock*> Headers;
    230   std::vector<BasicBlock*> Latches;
    231   Headers.push_back(Header);
    232   Latches.push_back(LatchBlock);
    233 
    234   // The current on-the-fly SSA update requires blocks to be processed in
    235   // reverse postorder so that LastValueMap contains the correct value at each
    236   // exit.
    237   LoopBlocksDFS DFS(L);
    238   DFS.perform(LI);
    239 
    240   // Stash the DFS iterators before adding blocks to the loop.
    241   LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
    242   LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
    243 
    244   for (unsigned It = 1; It != Count; ++It) {
    245     std::vector<BasicBlock*> NewBlocks;
    246 
    247     for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
    248       ValueToValueMapTy VMap;
    249       BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
    250       Header->getParent()->getBasicBlockList().push_back(New);
    251 
    252       // Loop over all of the PHI nodes in the block, changing them to use the
    253       // incoming values from the previous block.
    254       if (*BB == Header)
    255         for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    256           PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]);
    257           Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
    258           if (Instruction *InValI = dyn_cast<Instruction>(InVal))
    259             if (It > 1 && L->contains(InValI))
    260               InVal = LastValueMap[InValI];
    261           VMap[OrigPHINode[i]] = InVal;
    262           New->getInstList().erase(NewPHI);
    263         }
    264 
    265       // Update our running map of newest clones
    266       LastValueMap[*BB] = New;
    267       for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
    268            VI != VE; ++VI)
    269         LastValueMap[VI->first] = VI->second;
    270 
    271       L->addBasicBlockToLoop(New, LI->getBase());
    272 
    273       // Add phi entries for newly created values to all exit blocks.
    274       for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB);
    275            SI != SE; ++SI) {
    276         if (L->contains(*SI))
    277           continue;
    278         for (BasicBlock::iterator BBI = (*SI)->begin();
    279              PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) {
    280           Value *Incoming = phi->getIncomingValueForBlock(*BB);
    281           ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
    282           if (It != LastValueMap.end())
    283             Incoming = It->second;
    284           phi->addIncoming(Incoming, New);
    285         }
    286       }
    287       // Keep track of new headers and latches as we create them, so that
    288       // we can insert the proper branches later.
    289       if (*BB == Header)
    290         Headers.push_back(New);
    291       if (*BB == LatchBlock)
    292         Latches.push_back(New);
    293 
    294       NewBlocks.push_back(New);
    295     }
    296 
    297     // Remap all instructions in the most recent iteration
    298     for (unsigned i = 0; i < NewBlocks.size(); ++i)
    299       for (BasicBlock::iterator I = NewBlocks[i]->begin(),
    300            E = NewBlocks[i]->end(); I != E; ++I)
    301         ::RemapInstruction(I, LastValueMap);
    302   }
    303 
    304   // Loop over the PHI nodes in the original block, setting incoming values.
    305   for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
    306     PHINode *PN = OrigPHINode[i];
    307     if (CompletelyUnroll) {
    308       PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
    309       Header->getInstList().erase(PN);
    310     }
    311     else if (Count > 1) {
    312       Value *InVal = PN->removeIncomingValue(LatchBlock, false);
    313       // If this value was defined in the loop, take the value defined by the
    314       // last iteration of the loop.
    315       if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
    316         if (L->contains(InValI))
    317           InVal = LastValueMap[InVal];
    318       }
    319       assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
    320       PN->addIncoming(InVal, Latches.back());
    321     }
    322   }
    323 
    324   // Now that all the basic blocks for the unrolled iterations are in place,
    325   // set up the branches to connect them.
    326   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    327     // The original branch was replicated in each unrolled iteration.
    328     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
    329 
    330     // The branch destination.
    331     unsigned j = (i + 1) % e;
    332     BasicBlock *Dest = Headers[j];
    333     bool NeedConditional = true;
    334 
    335     // For a complete unroll, make the last iteration end with a branch
    336     // to the exit block.
    337     if (CompletelyUnroll && j == 0) {
    338       Dest = LoopExit;
    339       NeedConditional = false;
    340     }
    341 
    342     // If we know the trip count or a multiple of it, we can safely use an
    343     // unconditional branch for some iterations.
    344     if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
    345       NeedConditional = false;
    346     }
    347 
    348     if (NeedConditional) {
    349       // Update the conditional branch's successor for the following
    350       // iteration.
    351       Term->setSuccessor(!ContinueOnTrue, Dest);
    352     } else {
    353       // Remove phi operands at this loop exit
    354       if (Dest != LoopExit) {
    355         BasicBlock *BB = Latches[i];
    356         for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
    357              SI != SE; ++SI) {
    358           if (*SI == Headers[i])
    359             continue;
    360           for (BasicBlock::iterator BBI = (*SI)->begin();
    361                PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) {
    362             Phi->removeIncomingValue(BB, false);
    363           }
    364         }
    365       }
    366       // Replace the conditional branch with an unconditional one.
    367       BranchInst::Create(Dest, Term);
    368       Term->eraseFromParent();
    369     }
    370   }
    371 
    372   // Merge adjacent basic blocks, if possible.
    373   for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
    374     BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
    375     if (Term->isUnconditional()) {
    376       BasicBlock *Dest = Term->getSuccessor(0);
    377       if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM))
    378         std::replace(Latches.begin(), Latches.end(), Dest, Fold);
    379     }
    380   }
    381 
    382   // FIXME: Reconstruct dom info, because it is not preserved properly.
    383   // Incrementally updating domtree after loop unrolling would be easy.
    384   if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>())
    385     DT->runOnFunction(*L->getHeader()->getParent());
    386 
    387   // Simplify any new induction variables in the partially unrolled loop.
    388   if (SE && !CompletelyUnroll) {
    389     SmallVector<WeakVH, 16> DeadInsts;
    390     simplifyLoopIVs(L, SE, LPM, DeadInsts);
    391 
    392     // Aggressively clean up dead instructions that simplifyLoopIVs already
    393     // identified. Any remaining should be cleaned up below.
    394     while (!DeadInsts.empty())
    395       if (Instruction *Inst =
    396           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
    397         RecursivelyDeleteTriviallyDeadInstructions(Inst);
    398   }
    399 
    400   // At this point, the code is well formed.  We now do a quick sweep over the
    401   // inserted code, doing constant propagation and dead code elimination as we
    402   // go.
    403   const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
    404   for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
    405        BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
    406     for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
    407       Instruction *Inst = I++;
    408 
    409       if (isInstructionTriviallyDead(Inst))
    410         (*BB)->getInstList().erase(Inst);
    411       else if (Value *V = SimplifyInstruction(Inst))
    412         if (LI->replacementPreservesLCSSAForm(Inst, V)) {
    413           Inst->replaceAllUsesWith(V);
    414           (*BB)->getInstList().erase(Inst);
    415         }
    416     }
    417 
    418   NumCompletelyUnrolled += CompletelyUnroll;
    419   ++NumUnrolled;
    420   // Remove the loop from the LoopPassManager if it's completely removed.
    421   if (CompletelyUnroll && LPM != NULL)
    422     LPM->deleteLoopFromQueue(L);
    423 
    424   return true;
    425 }
    426