Home | History | Annotate | Download | only in VMCore
      1 //===-- Value.cpp - Implement the Value class -----------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Value, ValueHandle, and User classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "LLVMContextImpl.h"
     15 #include "llvm/Constant.h"
     16 #include "llvm/Constants.h"
     17 #include "llvm/DerivedTypes.h"
     18 #include "llvm/InstrTypes.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/Operator.h"
     21 #include "llvm/Module.h"
     22 #include "llvm/ValueSymbolTable.h"
     23 #include "llvm/ADT/SmallString.h"
     24 #include "llvm/Support/Debug.h"
     25 #include "llvm/Support/GetElementPtrTypeIterator.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/LeakDetector.h"
     28 #include "llvm/Support/ManagedStatic.h"
     29 #include "llvm/Support/ValueHandle.h"
     30 #include "llvm/ADT/DenseMap.h"
     31 #include <algorithm>
     32 using namespace llvm;
     33 
     34 //===----------------------------------------------------------------------===//
     35 //                                Value Class
     36 //===----------------------------------------------------------------------===//
     37 
     38 static inline Type *checkType(Type *Ty) {
     39   assert(Ty && "Value defined with a null type: Error!");
     40   return const_cast<Type*>(Ty);
     41 }
     42 
     43 Value::Value(Type *ty, unsigned scid)
     44   : SubclassID(scid), HasValueHandle(0),
     45     SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)),
     46     UseList(0), Name(0) {
     47   // FIXME: Why isn't this in the subclass gunk??
     48   if (isa<CallInst>(this) || isa<InvokeInst>(this))
     49     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
     50            "invalid CallInst type!");
     51   else if (!isa<Constant>(this) && !isa<BasicBlock>(this))
     52     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
     53            "Cannot create non-first-class values except for constants!");
     54 }
     55 
     56 Value::~Value() {
     57   // Notify all ValueHandles (if present) that this value is going away.
     58   if (HasValueHandle)
     59     ValueHandleBase::ValueIsDeleted(this);
     60 
     61 #ifndef NDEBUG      // Only in -g mode...
     62   // Check to make sure that there are no uses of this value that are still
     63   // around when the value is destroyed.  If there are, then we have a dangling
     64   // reference and something is wrong.  This code is here to print out what is
     65   // still being referenced.  The value in question should be printed as
     66   // a <badref>
     67   //
     68   if (!use_empty()) {
     69     dbgs() << "While deleting: " << *VTy << " %" << getNameStr() << "\n";
     70     for (use_iterator I = use_begin(), E = use_end(); I != E; ++I)
     71       dbgs() << "Use still stuck around after Def is destroyed:"
     72            << **I << "\n";
     73   }
     74 #endif
     75   assert(use_empty() && "Uses remain when a value is destroyed!");
     76 
     77   // If this value is named, destroy the name.  This should not be in a symtab
     78   // at this point.
     79   if (Name)
     80     Name->Destroy();
     81 
     82   // There should be no uses of this object anymore, remove it.
     83   LeakDetector::removeGarbageObject(this);
     84 }
     85 
     86 /// hasNUses - Return true if this Value has exactly N users.
     87 ///
     88 bool Value::hasNUses(unsigned N) const {
     89   const_use_iterator UI = use_begin(), E = use_end();
     90 
     91   for (; N; --N, ++UI)
     92     if (UI == E) return false;  // Too few.
     93   return UI == E;
     94 }
     95 
     96 /// hasNUsesOrMore - Return true if this value has N users or more.  This is
     97 /// logically equivalent to getNumUses() >= N.
     98 ///
     99 bool Value::hasNUsesOrMore(unsigned N) const {
    100   const_use_iterator UI = use_begin(), E = use_end();
    101 
    102   for (; N; --N, ++UI)
    103     if (UI == E) return false;  // Too few.
    104 
    105   return true;
    106 }
    107 
    108 /// isUsedInBasicBlock - Return true if this value is used in the specified
    109 /// basic block.
    110 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
    111   for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) {
    112     const Instruction *User = dyn_cast<Instruction>(*I);
    113     if (User && User->getParent() == BB)
    114       return true;
    115   }
    116   return false;
    117 }
    118 
    119 
    120 /// getNumUses - This method computes the number of uses of this Value.  This
    121 /// is a linear time operation.  Use hasOneUse or hasNUses to check for specific
    122 /// values.
    123 unsigned Value::getNumUses() const {
    124   return (unsigned)std::distance(use_begin(), use_end());
    125 }
    126 
    127 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
    128   ST = 0;
    129   if (Instruction *I = dyn_cast<Instruction>(V)) {
    130     if (BasicBlock *P = I->getParent())
    131       if (Function *PP = P->getParent())
    132         ST = &PP->getValueSymbolTable();
    133   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
    134     if (Function *P = BB->getParent())
    135       ST = &P->getValueSymbolTable();
    136   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
    137     if (Module *P = GV->getParent())
    138       ST = &P->getValueSymbolTable();
    139   } else if (Argument *A = dyn_cast<Argument>(V)) {
    140     if (Function *P = A->getParent())
    141       ST = &P->getValueSymbolTable();
    142   } else if (isa<MDString>(V))
    143     return true;
    144   else {
    145     assert(isa<Constant>(V) && "Unknown value type!");
    146     return true;  // no name is setable for this.
    147   }
    148   return false;
    149 }
    150 
    151 StringRef Value::getName() const {
    152   // Make sure the empty string is still a C string. For historical reasons,
    153   // some clients want to call .data() on the result and expect it to be null
    154   // terminated.
    155   if (!Name) return StringRef("", 0);
    156   return Name->getKey();
    157 }
    158 
    159 std::string Value::getNameStr() const {
    160   return getName().str();
    161 }
    162 
    163 void Value::setName(const Twine &NewName) {
    164   // Fast path for common IRBuilder case of setName("") when there is no name.
    165   if (NewName.isTriviallyEmpty() && !hasName())
    166     return;
    167 
    168   SmallString<256> NameData;
    169   StringRef NameRef = NewName.toStringRef(NameData);
    170 
    171   // Name isn't changing?
    172   if (getName() == NameRef)
    173     return;
    174 
    175   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
    176 
    177   // Get the symbol table to update for this object.
    178   ValueSymbolTable *ST;
    179   if (getSymTab(this, ST))
    180     return;  // Cannot set a name on this value (e.g. constant).
    181 
    182   if (!ST) { // No symbol table to update?  Just do the change.
    183     if (NameRef.empty()) {
    184       // Free the name for this value.
    185       Name->Destroy();
    186       Name = 0;
    187       return;
    188     }
    189 
    190     if (Name)
    191       Name->Destroy();
    192 
    193     // NOTE: Could optimize for the case the name is shrinking to not deallocate
    194     // then reallocated.
    195 
    196     // Create the new name.
    197     Name = ValueName::Create(NameRef.begin(), NameRef.end());
    198     Name->setValue(this);
    199     return;
    200   }
    201 
    202   // NOTE: Could optimize for the case the name is shrinking to not deallocate
    203   // then reallocated.
    204   if (hasName()) {
    205     // Remove old name.
    206     ST->removeValueName(Name);
    207     Name->Destroy();
    208     Name = 0;
    209 
    210     if (NameRef.empty())
    211       return;
    212   }
    213 
    214   // Name is changing to something new.
    215   Name = ST->createValueName(NameRef, this);
    216 }
    217 
    218 
    219 /// takeName - transfer the name from V to this value, setting V's name to
    220 /// empty.  It is an error to call V->takeName(V).
    221 void Value::takeName(Value *V) {
    222   ValueSymbolTable *ST = 0;
    223   // If this value has a name, drop it.
    224   if (hasName()) {
    225     // Get the symtab this is in.
    226     if (getSymTab(this, ST)) {
    227       // We can't set a name on this value, but we need to clear V's name if
    228       // it has one.
    229       if (V->hasName()) V->setName("");
    230       return;  // Cannot set a name on this value (e.g. constant).
    231     }
    232 
    233     // Remove old name.
    234     if (ST)
    235       ST->removeValueName(Name);
    236     Name->Destroy();
    237     Name = 0;
    238   }
    239 
    240   // Now we know that this has no name.
    241 
    242   // If V has no name either, we're done.
    243   if (!V->hasName()) return;
    244 
    245   // Get this's symtab if we didn't before.
    246   if (!ST) {
    247     if (getSymTab(this, ST)) {
    248       // Clear V's name.
    249       V->setName("");
    250       return;  // Cannot set a name on this value (e.g. constant).
    251     }
    252   }
    253 
    254   // Get V's ST, this should always succed, because V has a name.
    255   ValueSymbolTable *VST;
    256   bool Failure = getSymTab(V, VST);
    257   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
    258 
    259   // If these values are both in the same symtab, we can do this very fast.
    260   // This works even if both values have no symtab yet.
    261   if (ST == VST) {
    262     // Take the name!
    263     Name = V->Name;
    264     V->Name = 0;
    265     Name->setValue(this);
    266     return;
    267   }
    268 
    269   // Otherwise, things are slightly more complex.  Remove V's name from VST and
    270   // then reinsert it into ST.
    271 
    272   if (VST)
    273     VST->removeValueName(V->Name);
    274   Name = V->Name;
    275   V->Name = 0;
    276   Name->setValue(this);
    277 
    278   if (ST)
    279     ST->reinsertValue(this);
    280 }
    281 
    282 
    283 void Value::replaceAllUsesWith(Value *New) {
    284   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
    285   assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!");
    286   assert(New->getType() == getType() &&
    287          "replaceAllUses of value with new value of different type!");
    288 
    289   // Notify all ValueHandles (if present) that this value is going away.
    290   if (HasValueHandle)
    291     ValueHandleBase::ValueIsRAUWd(this, New);
    292 
    293   while (!use_empty()) {
    294     Use &U = *UseList;
    295     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
    296     // constant because they are uniqued.
    297     if (Constant *C = dyn_cast<Constant>(U.getUser())) {
    298       if (!isa<GlobalValue>(C)) {
    299         C->replaceUsesOfWithOnConstant(this, New, &U);
    300         continue;
    301       }
    302     }
    303 
    304     U.set(New);
    305   }
    306 
    307   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
    308     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
    309 }
    310 
    311 Value *Value::stripPointerCasts() {
    312   if (!getType()->isPointerTy())
    313     return this;
    314 
    315   // Even though we don't look through PHI nodes, we could be called on an
    316   // instruction in an unreachable block, which may be on a cycle.
    317   SmallPtrSet<Value *, 4> Visited;
    318 
    319   Value *V = this;
    320   Visited.insert(V);
    321   do {
    322     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
    323       if (!GEP->hasAllZeroIndices())
    324         return V;
    325       V = GEP->getPointerOperand();
    326     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
    327       V = cast<Operator>(V)->getOperand(0);
    328     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    329       if (GA->mayBeOverridden())
    330         return V;
    331       V = GA->getAliasee();
    332     } else {
    333       return V;
    334     }
    335     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
    336   } while (Visited.insert(V));
    337 
    338   return V;
    339 }
    340 
    341 /// isDereferenceablePointer - Test if this value is always a pointer to
    342 /// allocated and suitably aligned memory for a simple load or store.
    343 bool Value::isDereferenceablePointer() const {
    344   // Note that it is not safe to speculate into a malloc'd region because
    345   // malloc may return null.
    346   // It's also not always safe to follow a bitcast, for example:
    347   //   bitcast i8* (alloca i8) to i32*
    348   // would result in a 4-byte load from a 1-byte alloca. Some cases could
    349   // be handled using TargetData to check sizes and alignments though.
    350 
    351   // These are obviously ok.
    352   if (isa<AllocaInst>(this)) return true;
    353 
    354   // Global variables which can't collapse to null are ok.
    355   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(this))
    356     return !GV->hasExternalWeakLinkage();
    357 
    358   // byval arguments are ok.
    359   if (const Argument *A = dyn_cast<Argument>(this))
    360     return A->hasByValAttr();
    361 
    362   // For GEPs, determine if the indexing lands within the allocated object.
    363   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(this)) {
    364     // Conservatively require that the base pointer be fully dereferenceable.
    365     if (!GEP->getOperand(0)->isDereferenceablePointer())
    366       return false;
    367     // Check the indices.
    368     gep_type_iterator GTI = gep_type_begin(GEP);
    369     for (User::const_op_iterator I = GEP->op_begin()+1,
    370          E = GEP->op_end(); I != E; ++I) {
    371       Value *Index = *I;
    372       Type *Ty = *GTI++;
    373       // Struct indices can't be out of bounds.
    374       if (isa<StructType>(Ty))
    375         continue;
    376       ConstantInt *CI = dyn_cast<ConstantInt>(Index);
    377       if (!CI)
    378         return false;
    379       // Zero is always ok.
    380       if (CI->isZero())
    381         continue;
    382       // Check to see that it's within the bounds of an array.
    383       ArrayType *ATy = dyn_cast<ArrayType>(Ty);
    384       if (!ATy)
    385         return false;
    386       if (CI->getValue().getActiveBits() > 64)
    387         return false;
    388       if (CI->getZExtValue() >= ATy->getNumElements())
    389         return false;
    390     }
    391     // Indices check out; this is dereferenceable.
    392     return true;
    393   }
    394 
    395   // If we don't know, assume the worst.
    396   return false;
    397 }
    398 
    399 /// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
    400 /// return the value in the PHI node corresponding to PredBB.  If not, return
    401 /// ourself.  This is useful if you want to know the value something has in a
    402 /// predecessor block.
    403 Value *Value::DoPHITranslation(const BasicBlock *CurBB,
    404                                const BasicBlock *PredBB) {
    405   PHINode *PN = dyn_cast<PHINode>(this);
    406   if (PN && PN->getParent() == CurBB)
    407     return PN->getIncomingValueForBlock(PredBB);
    408   return this;
    409 }
    410 
    411 LLVMContext &Value::getContext() const { return VTy->getContext(); }
    412 
    413 //===----------------------------------------------------------------------===//
    414 //                             ValueHandleBase Class
    415 //===----------------------------------------------------------------------===//
    416 
    417 /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where
    418 /// List is known to point into the existing use list.
    419 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
    420   assert(List && "Handle list is null?");
    421 
    422   // Splice ourselves into the list.
    423   Next = *List;
    424   *List = this;
    425   setPrevPtr(List);
    426   if (Next) {
    427     Next->setPrevPtr(&Next);
    428     assert(VP == Next->VP && "Added to wrong list?");
    429   }
    430 }
    431 
    432 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
    433   assert(List && "Must insert after existing node");
    434 
    435   Next = List->Next;
    436   setPrevPtr(&List->Next);
    437   List->Next = this;
    438   if (Next)
    439     Next->setPrevPtr(&Next);
    440 }
    441 
    442 /// AddToUseList - Add this ValueHandle to the use list for VP.
    443 void ValueHandleBase::AddToUseList() {
    444   assert(VP && "Null pointer doesn't have a use list!");
    445 
    446   LLVMContextImpl *pImpl = VP->getContext().pImpl;
    447 
    448   if (VP->HasValueHandle) {
    449     // If this value already has a ValueHandle, then it must be in the
    450     // ValueHandles map already.
    451     ValueHandleBase *&Entry = pImpl->ValueHandles[VP];
    452     assert(Entry != 0 && "Value doesn't have any handles?");
    453     AddToExistingUseList(&Entry);
    454     return;
    455   }
    456 
    457   // Ok, it doesn't have any handles yet, so we must insert it into the
    458   // DenseMap.  However, doing this insertion could cause the DenseMap to
    459   // reallocate itself, which would invalidate all of the PrevP pointers that
    460   // point into the old table.  Handle this by checking for reallocation and
    461   // updating the stale pointers only if needed.
    462   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    463   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
    464 
    465   ValueHandleBase *&Entry = Handles[VP];
    466   assert(Entry == 0 && "Value really did already have handles?");
    467   AddToExistingUseList(&Entry);
    468   VP->HasValueHandle = true;
    469 
    470   // If reallocation didn't happen or if this was the first insertion, don't
    471   // walk the table.
    472   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
    473       Handles.size() == 1) {
    474     return;
    475   }
    476 
    477   // Okay, reallocation did happen.  Fix the Prev Pointers.
    478   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
    479        E = Handles.end(); I != E; ++I) {
    480     assert(I->second && I->first == I->second->VP && "List invariant broken!");
    481     I->second->setPrevPtr(&I->second);
    482   }
    483 }
    484 
    485 /// RemoveFromUseList - Remove this ValueHandle from its current use list.
    486 void ValueHandleBase::RemoveFromUseList() {
    487   assert(VP && VP->HasValueHandle && "Pointer doesn't have a use list!");
    488 
    489   // Unlink this from its use list.
    490   ValueHandleBase **PrevPtr = getPrevPtr();
    491   assert(*PrevPtr == this && "List invariant broken");
    492 
    493   *PrevPtr = Next;
    494   if (Next) {
    495     assert(Next->getPrevPtr() == &Next && "List invariant broken");
    496     Next->setPrevPtr(PrevPtr);
    497     return;
    498   }
    499 
    500   // If the Next pointer was null, then it is possible that this was the last
    501   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
    502   // map.
    503   LLVMContextImpl *pImpl = VP->getContext().pImpl;
    504   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
    505   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
    506     Handles.erase(VP);
    507     VP->HasValueHandle = false;
    508   }
    509 }
    510 
    511 
    512 void ValueHandleBase::ValueIsDeleted(Value *V) {
    513   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
    514 
    515   // Get the linked list base, which is guaranteed to exist since the
    516   // HasValueHandle flag is set.
    517   LLVMContextImpl *pImpl = V->getContext().pImpl;
    518   ValueHandleBase *Entry = pImpl->ValueHandles[V];
    519   assert(Entry && "Value bit set but no entries exist");
    520 
    521   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
    522   // and remove themselves from the list without breaking our iteration.  This
    523   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
    524   // Note that we deliberately do not the support the case when dropping a value
    525   // handle results in a new value handle being permanently added to the list
    526   // (as might occur in theory for CallbackVH's): the new value handle will not
    527   // be processed and the checking code will mete out righteous punishment if
    528   // the handle is still present once we have finished processing all the other
    529   // value handles (it is fine to momentarily add then remove a value handle).
    530   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    531     Iterator.RemoveFromUseList();
    532     Iterator.AddToExistingUseListAfter(Entry);
    533     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    534 
    535     switch (Entry->getKind()) {
    536     case Assert:
    537       break;
    538     case Tracking:
    539       // Mark that this value has been deleted by setting it to an invalid Value
    540       // pointer.
    541       Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey());
    542       break;
    543     case Weak:
    544       // Weak just goes to null, which will unlink it from the list.
    545       Entry->operator=(0);
    546       break;
    547     case Callback:
    548       // Forward to the subclass's implementation.
    549       static_cast<CallbackVH*>(Entry)->deleted();
    550       break;
    551     }
    552   }
    553 
    554   // All callbacks, weak references, and assertingVHs should be dropped by now.
    555   if (V->HasValueHandle) {
    556 #ifndef NDEBUG      // Only in +Asserts mode...
    557     dbgs() << "While deleting: " << *V->getType() << " %" << V->getNameStr()
    558            << "\n";
    559     if (pImpl->ValueHandles[V]->getKind() == Assert)
    560       llvm_unreachable("An asserting value handle still pointed to this"
    561                        " value!");
    562 
    563 #endif
    564     llvm_unreachable("All references to V were not removed?");
    565   }
    566 }
    567 
    568 
    569 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
    570   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
    571   assert(Old != New && "Changing value into itself!");
    572 
    573   // Get the linked list base, which is guaranteed to exist since the
    574   // HasValueHandle flag is set.
    575   LLVMContextImpl *pImpl = Old->getContext().pImpl;
    576   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
    577 
    578   assert(Entry && "Value bit set but no entries exist");
    579 
    580   // We use a local ValueHandleBase as an iterator so that
    581   // ValueHandles can add and remove themselves from the list without
    582   // breaking our iteration.  This is not really an AssertingVH; we
    583   // just have to give ValueHandleBase some kind.
    584   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
    585     Iterator.RemoveFromUseList();
    586     Iterator.AddToExistingUseListAfter(Entry);
    587     assert(Entry->Next == &Iterator && "Loop invariant broken.");
    588 
    589     switch (Entry->getKind()) {
    590     case Assert:
    591       // Asserting handle does not follow RAUW implicitly.
    592       break;
    593     case Tracking:
    594       // Tracking goes to new value like a WeakVH. Note that this may make it
    595       // something incompatible with its templated type. We don't want to have a
    596       // virtual (or inline) interface to handle this though, so instead we make
    597       // the TrackingVH accessors guarantee that a client never sees this value.
    598 
    599       // FALLTHROUGH
    600     case Weak:
    601       // Weak goes to the new value, which will unlink it from Old's list.
    602       Entry->operator=(New);
    603       break;
    604     case Callback:
    605       // Forward to the subclass's implementation.
    606       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
    607       break;
    608     }
    609   }
    610 
    611 #ifndef NDEBUG
    612   // If any new tracking or weak value handles were added while processing the
    613   // list, then complain about it now.
    614   if (Old->HasValueHandle)
    615     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
    616       switch (Entry->getKind()) {
    617       case Tracking:
    618       case Weak:
    619         dbgs() << "After RAUW from " << *Old->getType() << " %"
    620           << Old->getNameStr() << " to " << *New->getType() << " %"
    621           << New->getNameStr() << "\n";
    622         llvm_unreachable("A tracking or weak value handle still pointed to the"
    623                          " old value!\n");
    624       default:
    625         break;
    626       }
    627 #endif
    628 }
    629 
    630 /// ~CallbackVH. Empty, but defined here to avoid emitting the vtable
    631 /// more than once.
    632 CallbackVH::~CallbackVH() {}
    633