Home | History | Annotate | Download | only in TableGen
      1 //===- X86RecognizableInstr.cpp - Disassembler instruction spec --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is part of the X86 Disassembler Emitter.
     11 // It contains the implementation of a single recognizable instruction.
     12 // Documentation for the disassembler emitter in general can be found in
     13 //  X86DisasemblerEmitter.h.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #include "X86DisassemblerShared.h"
     18 #include "X86RecognizableInstr.h"
     19 #include "X86ModRMFilters.h"
     20 
     21 #include "llvm/Support/ErrorHandling.h"
     22 
     23 #include <string>
     24 
     25 using namespace llvm;
     26 
     27 #define MRM_MAPPING     \
     28   MAP(C1, 33)           \
     29   MAP(C2, 34)           \
     30   MAP(C3, 35)           \
     31   MAP(C4, 36)           \
     32   MAP(C8, 37)           \
     33   MAP(C9, 38)           \
     34   MAP(E8, 39)           \
     35   MAP(F0, 40)           \
     36   MAP(F8, 41)           \
     37   MAP(F9, 42)           \
     38   MAP(D0, 45)           \
     39   MAP(D1, 46)
     40 
     41 // A clone of X86 since we can't depend on something that is generated.
     42 namespace X86Local {
     43   enum {
     44     Pseudo      = 0,
     45     RawFrm      = 1,
     46     AddRegFrm   = 2,
     47     MRMDestReg  = 3,
     48     MRMDestMem  = 4,
     49     MRMSrcReg   = 5,
     50     MRMSrcMem   = 6,
     51     MRM0r = 16, MRM1r = 17, MRM2r = 18, MRM3r = 19,
     52     MRM4r = 20, MRM5r = 21, MRM6r = 22, MRM7r = 23,
     53     MRM0m = 24, MRM1m = 25, MRM2m = 26, MRM3m = 27,
     54     MRM4m = 28, MRM5m = 29, MRM6m = 30, MRM7m = 31,
     55     MRMInitReg  = 32,
     56 #define MAP(from, to) MRM_##from = to,
     57     MRM_MAPPING
     58 #undef MAP
     59     RawFrmImm8  = 43,
     60     RawFrmImm16 = 44,
     61     lastMRM
     62   };
     63 
     64   enum {
     65     TB  = 1,
     66     REP = 2,
     67     D8 = 3, D9 = 4, DA = 5, DB = 6,
     68     DC = 7, DD = 8, DE = 9, DF = 10,
     69     XD = 11,  XS = 12,
     70     T8 = 13,  P_TA = 14,
     71     A6 = 15,  A7 = 16, TF = 17
     72   };
     73 }
     74 
     75 // If rows are added to the opcode extension tables, then corresponding entries
     76 // must be added here.
     77 //
     78 // If the row corresponds to a single byte (i.e., 8f), then add an entry for
     79 // that byte to ONE_BYTE_EXTENSION_TABLES.
     80 //
     81 // If the row corresponds to two bytes where the first is 0f, add an entry for
     82 // the second byte to TWO_BYTE_EXTENSION_TABLES.
     83 //
     84 // If the row corresponds to some other set of bytes, you will need to modify
     85 // the code in RecognizableInstr::emitDecodePath() as well, and add new prefixes
     86 // to the X86 TD files, except in two cases: if the first two bytes of such a
     87 // new combination are 0f 38 or 0f 3a, you just have to add maps called
     88 // THREE_BYTE_38_EXTENSION_TABLES and THREE_BYTE_3A_EXTENSION_TABLES and add a
     89 // switch(Opcode) just below the case X86Local::T8: or case X86Local::TA: line
     90 // in RecognizableInstr::emitDecodePath().
     91 
     92 #define ONE_BYTE_EXTENSION_TABLES \
     93   EXTENSION_TABLE(80)             \
     94   EXTENSION_TABLE(81)             \
     95   EXTENSION_TABLE(82)             \
     96   EXTENSION_TABLE(83)             \
     97   EXTENSION_TABLE(8f)             \
     98   EXTENSION_TABLE(c0)             \
     99   EXTENSION_TABLE(c1)             \
    100   EXTENSION_TABLE(c6)             \
    101   EXTENSION_TABLE(c7)             \
    102   EXTENSION_TABLE(d0)             \
    103   EXTENSION_TABLE(d1)             \
    104   EXTENSION_TABLE(d2)             \
    105   EXTENSION_TABLE(d3)             \
    106   EXTENSION_TABLE(f6)             \
    107   EXTENSION_TABLE(f7)             \
    108   EXTENSION_TABLE(fe)             \
    109   EXTENSION_TABLE(ff)
    110 
    111 #define TWO_BYTE_EXTENSION_TABLES \
    112   EXTENSION_TABLE(00)             \
    113   EXTENSION_TABLE(01)             \
    114   EXTENSION_TABLE(18)             \
    115   EXTENSION_TABLE(71)             \
    116   EXTENSION_TABLE(72)             \
    117   EXTENSION_TABLE(73)             \
    118   EXTENSION_TABLE(ae)             \
    119   EXTENSION_TABLE(ba)             \
    120   EXTENSION_TABLE(c7)
    121 
    122 using namespace X86Disassembler;
    123 
    124 /// needsModRMForDecode - Indicates whether a particular instruction requires a
    125 ///   ModR/M byte for the instruction to be properly decoded.  For example, a
    126 ///   MRMDestReg instruction needs the Mod field in the ModR/M byte to be set to
    127 ///   0b11.
    128 ///
    129 /// @param form - The form of the instruction.
    130 /// @return     - true if the form implies that a ModR/M byte is required, false
    131 ///               otherwise.
    132 static bool needsModRMForDecode(uint8_t form) {
    133   if (form == X86Local::MRMDestReg    ||
    134      form == X86Local::MRMDestMem    ||
    135      form == X86Local::MRMSrcReg     ||
    136      form == X86Local::MRMSrcMem     ||
    137      (form >= X86Local::MRM0r && form <= X86Local::MRM7r) ||
    138      (form >= X86Local::MRM0m && form <= X86Local::MRM7m))
    139     return true;
    140   else
    141     return false;
    142 }
    143 
    144 /// isRegFormat - Indicates whether a particular form requires the Mod field of
    145 ///   the ModR/M byte to be 0b11.
    146 ///
    147 /// @param form - The form of the instruction.
    148 /// @return     - true if the form implies that Mod must be 0b11, false
    149 ///               otherwise.
    150 static bool isRegFormat(uint8_t form) {
    151   if (form == X86Local::MRMDestReg ||
    152      form == X86Local::MRMSrcReg  ||
    153      (form >= X86Local::MRM0r && form <= X86Local::MRM7r))
    154     return true;
    155   else
    156     return false;
    157 }
    158 
    159 /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit.
    160 ///   Useful for switch statements and the like.
    161 ///
    162 /// @param init - A reference to the BitsInit to be decoded.
    163 /// @return     - The field, with the first bit in the BitsInit as the lowest
    164 ///               order bit.
    165 static uint8_t byteFromBitsInit(BitsInit &init) {
    166   int width = init.getNumBits();
    167 
    168   assert(width <= 8 && "Field is too large for uint8_t!");
    169 
    170   int     index;
    171   uint8_t mask = 0x01;
    172 
    173   uint8_t ret = 0;
    174 
    175   for (index = 0; index < width; index++) {
    176     if (static_cast<BitInit*>(init.getBit(index))->getValue())
    177       ret |= mask;
    178 
    179     mask <<= 1;
    180   }
    181 
    182   return ret;
    183 }
    184 
    185 /// byteFromRec - Extract a value at most 8 bits in with from a Record given the
    186 ///   name of the field.
    187 ///
    188 /// @param rec  - The record from which to extract the value.
    189 /// @param name - The name of the field in the record.
    190 /// @return     - The field, as translated by byteFromBitsInit().
    191 static uint8_t byteFromRec(const Record* rec, const std::string &name) {
    192   BitsInit* bits = rec->getValueAsBitsInit(name);
    193   return byteFromBitsInit(*bits);
    194 }
    195 
    196 RecognizableInstr::RecognizableInstr(DisassemblerTables &tables,
    197                                      const CodeGenInstruction &insn,
    198                                      InstrUID uid) {
    199   UID = uid;
    200 
    201   Rec = insn.TheDef;
    202   Name = Rec->getName();
    203   Spec = &tables.specForUID(UID);
    204 
    205   if (!Rec->isSubClassOf("X86Inst")) {
    206     ShouldBeEmitted = false;
    207     return;
    208   }
    209 
    210   Prefix   = byteFromRec(Rec, "Prefix");
    211   Opcode   = byteFromRec(Rec, "Opcode");
    212   Form     = byteFromRec(Rec, "FormBits");
    213   SegOvr   = byteFromRec(Rec, "SegOvrBits");
    214 
    215   HasOpSizePrefix  = Rec->getValueAsBit("hasOpSizePrefix");
    216   HasREX_WPrefix   = Rec->getValueAsBit("hasREX_WPrefix");
    217   HasVEXPrefix     = Rec->getValueAsBit("hasVEXPrefix");
    218   HasVEX_4VPrefix  = Rec->getValueAsBit("hasVEX_4VPrefix");
    219   HasVEX_WPrefix   = Rec->getValueAsBit("hasVEX_WPrefix");
    220   IgnoresVEX_L     = Rec->getValueAsBit("ignoresVEX_L");
    221   HasLockPrefix    = Rec->getValueAsBit("hasLockPrefix");
    222   IsCodeGenOnly    = Rec->getValueAsBit("isCodeGenOnly");
    223 
    224   Name      = Rec->getName();
    225   AsmString = Rec->getValueAsString("AsmString");
    226 
    227   Operands = &insn.Operands.OperandList;
    228 
    229   IsSSE            = (HasOpSizePrefix && (Name.find("16") == Name.npos)) ||
    230                      (Name.find("CRC32") != Name.npos);
    231   HasFROperands    = hasFROperands();
    232   HasVEX_LPrefix   = has256BitOperands() || Rec->getValueAsBit("hasVEX_L");
    233 
    234   // Check for 64-bit inst which does not require REX
    235   Is32Bit = false;
    236   Is64Bit = false;
    237   // FIXME: Is there some better way to check for In64BitMode?
    238   std::vector<Record*> Predicates = Rec->getValueAsListOfDefs("Predicates");
    239   for (unsigned i = 0, e = Predicates.size(); i != e; ++i) {
    240     if (Predicates[i]->getName().find("32Bit") != Name.npos) {
    241       Is32Bit = true;
    242       break;
    243     }
    244     if (Predicates[i]->getName().find("64Bit") != Name.npos) {
    245       Is64Bit = true;
    246       break;
    247     }
    248   }
    249   // FIXME: These instructions aren't marked as 64-bit in any way
    250   Is64Bit |= Rec->getName() == "JMP64pcrel32" ||
    251              Rec->getName() == "MASKMOVDQU64" ||
    252              Rec->getName() == "POPFS64" ||
    253              Rec->getName() == "POPGS64" ||
    254              Rec->getName() == "PUSHFS64" ||
    255              Rec->getName() == "PUSHGS64" ||
    256              Rec->getName() == "REX64_PREFIX" ||
    257              Rec->getName().find("VMREAD64") != Name.npos ||
    258              Rec->getName().find("VMWRITE64") != Name.npos ||
    259              Rec->getName().find("INVEPT64") != Name.npos ||
    260              Rec->getName().find("INVVPID64") != Name.npos ||
    261              Rec->getName().find("MOV64") != Name.npos ||
    262              Rec->getName().find("PUSH64") != Name.npos ||
    263              Rec->getName().find("POP64") != Name.npos;
    264 
    265   ShouldBeEmitted  = true;
    266 }
    267 
    268 void RecognizableInstr::processInstr(DisassemblerTables &tables,
    269 	const CodeGenInstruction &insn,
    270                                    InstrUID uid)
    271 {
    272   // Ignore "asm parser only" instructions.
    273   if (insn.TheDef->getValueAsBit("isAsmParserOnly"))
    274     return;
    275 
    276   RecognizableInstr recogInstr(tables, insn, uid);
    277 
    278   recogInstr.emitInstructionSpecifier(tables);
    279 
    280   if (recogInstr.shouldBeEmitted())
    281     recogInstr.emitDecodePath(tables);
    282 }
    283 
    284 InstructionContext RecognizableInstr::insnContext() const {
    285   InstructionContext insnContext;
    286 
    287   if (HasVEX_4VPrefix || HasVEXPrefix) {
    288     if (HasVEX_LPrefix && HasVEX_WPrefix)
    289       llvm_unreachable("Don't support VEX.L and VEX.W together");
    290     else if (HasOpSizePrefix && HasVEX_LPrefix)
    291       insnContext = IC_VEX_L_OPSIZE;
    292     else if (HasOpSizePrefix && HasVEX_WPrefix)
    293       insnContext = IC_VEX_W_OPSIZE;
    294     else if (HasOpSizePrefix)
    295       insnContext = IC_VEX_OPSIZE;
    296     else if (HasVEX_LPrefix && Prefix == X86Local::XS)
    297       insnContext = IC_VEX_L_XS;
    298     else if (HasVEX_LPrefix && Prefix == X86Local::XD)
    299       insnContext = IC_VEX_L_XD;
    300     else if (HasVEX_WPrefix && Prefix == X86Local::XS)
    301       insnContext = IC_VEX_W_XS;
    302     else if (HasVEX_WPrefix && Prefix == X86Local::XD)
    303       insnContext = IC_VEX_W_XD;
    304     else if (HasVEX_WPrefix)
    305       insnContext = IC_VEX_W;
    306     else if (HasVEX_LPrefix)
    307       insnContext = IC_VEX_L;
    308     else if (Prefix == X86Local::XD)
    309       insnContext = IC_VEX_XD;
    310     else if (Prefix == X86Local::XS)
    311       insnContext = IC_VEX_XS;
    312     else
    313       insnContext = IC_VEX;
    314   } else if (Is64Bit || HasREX_WPrefix) {
    315     if (HasREX_WPrefix && HasOpSizePrefix)
    316       insnContext = IC_64BIT_REXW_OPSIZE;
    317     else if (HasOpSizePrefix &&
    318              (Prefix == X86Local::XD || Prefix == X86Local::TF))
    319       insnContext = IC_64BIT_XD_OPSIZE;
    320     else if (HasOpSizePrefix && Prefix == X86Local::XS)
    321       insnContext = IC_64BIT_XS_OPSIZE;
    322     else if (HasOpSizePrefix)
    323       insnContext = IC_64BIT_OPSIZE;
    324     else if (HasREX_WPrefix && Prefix == X86Local::XS)
    325       insnContext = IC_64BIT_REXW_XS;
    326     else if (HasREX_WPrefix &&
    327              (Prefix == X86Local::XD || Prefix == X86Local::TF))
    328       insnContext = IC_64BIT_REXW_XD;
    329     else if (Prefix == X86Local::XD || Prefix == X86Local::TF)
    330       insnContext = IC_64BIT_XD;
    331     else if (Prefix == X86Local::XS)
    332       insnContext = IC_64BIT_XS;
    333     else if (HasREX_WPrefix)
    334       insnContext = IC_64BIT_REXW;
    335     else
    336       insnContext = IC_64BIT;
    337   } else {
    338     if (HasOpSizePrefix &&
    339         (Prefix == X86Local::XD || Prefix == X86Local::TF))
    340       insnContext = IC_XD_OPSIZE;
    341     else if (HasOpSizePrefix && Prefix == X86Local::XS)
    342       insnContext = IC_XS_OPSIZE;
    343     else if (HasOpSizePrefix)
    344       insnContext = IC_OPSIZE;
    345     else if (Prefix == X86Local::XD || Prefix == X86Local::TF)
    346       insnContext = IC_XD;
    347     else if (Prefix == X86Local::XS || Prefix == X86Local::REP)
    348       insnContext = IC_XS;
    349     else
    350       insnContext = IC;
    351   }
    352 
    353   return insnContext;
    354 }
    355 
    356 RecognizableInstr::filter_ret RecognizableInstr::filter() const {
    357   ///////////////////
    358   // FILTER_STRONG
    359   //
    360 
    361   // Filter out intrinsics
    362 
    363   if (!Rec->isSubClassOf("X86Inst"))
    364     return FILTER_STRONG;
    365 
    366   if (Form == X86Local::Pseudo ||
    367       (IsCodeGenOnly && Name.find("_REV") == Name.npos))
    368     return FILTER_STRONG;
    369 
    370   if (Form == X86Local::MRMInitReg)
    371     return FILTER_STRONG;
    372 
    373 
    374   // Filter out artificial instructions
    375 
    376   if (Name.find("TAILJMP") != Name.npos    ||
    377       Name.find("_Int") != Name.npos       ||
    378       Name.find("_int") != Name.npos       ||
    379       Name.find("Int_") != Name.npos       ||
    380       Name.find("_NOREX") != Name.npos     ||
    381       Name.find("_TC") != Name.npos        ||
    382       Name.find("EH_RETURN") != Name.npos  ||
    383       Name.find("V_SET") != Name.npos      ||
    384       Name.find("LOCK_") != Name.npos      ||
    385       Name.find("WIN") != Name.npos        ||
    386       Name.find("_AVX") != Name.npos       ||
    387       Name.find("2SDL") != Name.npos)
    388     return FILTER_STRONG;
    389 
    390   // Filter out instructions with segment override prefixes.
    391   // They're too messy to handle now and we'll special case them if needed.
    392 
    393   if (SegOvr)
    394     return FILTER_STRONG;
    395 
    396   // Filter out instructions that can't be printed.
    397 
    398   if (AsmString.size() == 0)
    399     return FILTER_STRONG;
    400 
    401   // Filter out instructions with subreg operands.
    402 
    403   if (AsmString.find("subreg") != AsmString.npos)
    404     return FILTER_STRONG;
    405 
    406   /////////////////
    407   // FILTER_WEAK
    408   //
    409 
    410 
    411   // Filter out instructions with a LOCK prefix;
    412   //   prefer forms that do not have the prefix
    413   if (HasLockPrefix)
    414     return FILTER_WEAK;
    415 
    416   // Filter out alternate forms of AVX instructions
    417   if (Name.find("_alt") != Name.npos ||
    418       Name.find("XrYr") != Name.npos ||
    419       (Name.find("r64r") != Name.npos && Name.find("r64r64") == Name.npos) ||
    420       Name.find("_64mr") != Name.npos ||
    421       Name.find("Xrr") != Name.npos ||
    422       Name.find("rr64") != Name.npos)
    423     return FILTER_WEAK;
    424 
    425   if (Name == "VMASKMOVDQU64"  ||
    426       Name == "VEXTRACTPSrr64" ||
    427       Name == "VMOVQd64rr"     ||
    428       Name == "VMOVQs64rr")
    429     return FILTER_WEAK;
    430 
    431   // Special cases.
    432 
    433   if (Name.find("PCMPISTRI") != Name.npos && Name != "PCMPISTRI")
    434     return FILTER_WEAK;
    435   if (Name.find("PCMPESTRI") != Name.npos && Name != "PCMPESTRI")
    436     return FILTER_WEAK;
    437 
    438   if (Name.find("MOV") != Name.npos && Name.find("r0") != Name.npos)
    439     return FILTER_WEAK;
    440   if (Name.find("MOVZ") != Name.npos && Name.find("MOVZX") == Name.npos)
    441     return FILTER_WEAK;
    442   if (Name.find("Fs") != Name.npos)
    443     return FILTER_WEAK;
    444   if (Name == "MOVLPDrr"          ||
    445       Name == "MOVLPSrr"          ||
    446       Name == "PUSHFQ"            ||
    447       Name == "BSF16rr"           ||
    448       Name == "BSF16rm"           ||
    449       Name == "BSR16rr"           ||
    450       Name == "BSR16rm"           ||
    451       Name == "MOVSX16rm8"        ||
    452       Name == "MOVSX16rr8"        ||
    453       Name == "MOVZX16rm8"        ||
    454       Name == "MOVZX16rr8"        ||
    455       Name == "PUSH32i16"         ||
    456       Name == "PUSH64i16"         ||
    457       Name == "MOVPQI2QImr"       ||
    458       Name == "VMOVPQI2QImr"      ||
    459       Name == "MOVSDmr"           ||
    460       Name == "MOVSDrm"           ||
    461       Name == "MOVSSmr"           ||
    462       Name == "MOVSSrm"           ||
    463       Name == "MMX_MOVD64rrv164"  ||
    464       Name == "CRC32m16"          ||
    465       Name == "MOV64ri64i32"      ||
    466       Name == "CRC32r16")
    467     return FILTER_WEAK;
    468 
    469   if (HasFROperands && Name.find("MOV") != Name.npos &&
    470      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
    471       (Name.find("to") != Name.npos)))
    472     return FILTER_WEAK;
    473 
    474   return FILTER_NORMAL;
    475 }
    476 
    477 bool RecognizableInstr::hasFROperands() const {
    478   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    479   unsigned numOperands = OperandList.size();
    480 
    481   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    482     const std::string &recName = OperandList[operandIndex].Rec->getName();
    483 
    484     if (recName.find("FR") != recName.npos)
    485       return true;
    486   }
    487   return false;
    488 }
    489 
    490 bool RecognizableInstr::has256BitOperands() const {
    491   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    492   unsigned numOperands = OperandList.size();
    493 
    494   for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    495     const std::string &recName = OperandList[operandIndex].Rec->getName();
    496 
    497     if (!recName.compare("VR256") || !recName.compare("f256mem")) {
    498       return true;
    499     }
    500   }
    501   return false;
    502 }
    503 
    504 void RecognizableInstr::handleOperand(
    505   bool optional,
    506   unsigned &operandIndex,
    507   unsigned &physicalOperandIndex,
    508   unsigned &numPhysicalOperands,
    509   unsigned *operandMapping,
    510   OperandEncoding (*encodingFromString)(const std::string&, bool hasOpSizePrefix)) {
    511   if (optional) {
    512     if (physicalOperandIndex >= numPhysicalOperands)
    513       return;
    514   } else {
    515     assert(physicalOperandIndex < numPhysicalOperands);
    516   }
    517 
    518   while (operandMapping[operandIndex] != operandIndex) {
    519     Spec->operands[operandIndex].encoding = ENCODING_DUP;
    520     Spec->operands[operandIndex].type =
    521       (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]);
    522     ++operandIndex;
    523   }
    524 
    525   const std::string &typeName = (*Operands)[operandIndex].Rec->getName();
    526 
    527   Spec->operands[operandIndex].encoding = encodingFromString(typeName,
    528                                                               HasOpSizePrefix);
    529   Spec->operands[operandIndex].type = typeFromString(typeName,
    530                                                      IsSSE,
    531                                                      HasREX_WPrefix,
    532                                                      HasOpSizePrefix);
    533 
    534   ++operandIndex;
    535   ++physicalOperandIndex;
    536 }
    537 
    538 void RecognizableInstr::emitInstructionSpecifier(DisassemblerTables &tables) {
    539   Spec->name       = Name;
    540 
    541   if (!Rec->isSubClassOf("X86Inst"))
    542     return;
    543 
    544   switch (filter()) {
    545   case FILTER_WEAK:
    546     Spec->filtered = true;
    547     break;
    548   case FILTER_STRONG:
    549     ShouldBeEmitted = false;
    550     return;
    551   case FILTER_NORMAL:
    552     break;
    553   }
    554 
    555   Spec->insnContext = insnContext();
    556 
    557   const std::vector<CGIOperandList::OperandInfo> &OperandList = *Operands;
    558 
    559   unsigned operandIndex;
    560   unsigned numOperands = OperandList.size();
    561   unsigned numPhysicalOperands = 0;
    562 
    563   // operandMapping maps from operands in OperandList to their originals.
    564   // If operandMapping[i] != i, then the entry is a duplicate.
    565   unsigned operandMapping[X86_MAX_OPERANDS];
    566 
    567   bool hasFROperands = false;
    568 
    569   assert(numOperands < X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough");
    570 
    571   for (operandIndex = 0; operandIndex < numOperands; ++operandIndex) {
    572     if (OperandList[operandIndex].Constraints.size()) {
    573       const CGIOperandList::ConstraintInfo &Constraint =
    574         OperandList[operandIndex].Constraints[0];
    575       if (Constraint.isTied()) {
    576         operandMapping[operandIndex] = Constraint.getTiedOperand();
    577       } else {
    578         ++numPhysicalOperands;
    579         operandMapping[operandIndex] = operandIndex;
    580       }
    581     } else {
    582       ++numPhysicalOperands;
    583       operandMapping[operandIndex] = operandIndex;
    584     }
    585 
    586     const std::string &recName = OperandList[operandIndex].Rec->getName();
    587 
    588     if (recName.find("FR") != recName.npos)
    589       hasFROperands = true;
    590   }
    591 
    592   if (hasFROperands && Name.find("MOV") != Name.npos &&
    593      ((Name.find("2") != Name.npos && Name.find("32") == Name.npos) ||
    594       (Name.find("to") != Name.npos)))
    595     ShouldBeEmitted = false;
    596 
    597   if (!ShouldBeEmitted)
    598     return;
    599 
    600 #define HANDLE_OPERAND(class)               \
    601   handleOperand(false,                      \
    602                 operandIndex,               \
    603                 physicalOperandIndex,       \
    604                 numPhysicalOperands,        \
    605                 operandMapping,             \
    606                 class##EncodingFromString);
    607 
    608 #define HANDLE_OPTIONAL(class)              \
    609   handleOperand(true,                       \
    610                 operandIndex,               \
    611                 physicalOperandIndex,       \
    612                 numPhysicalOperands,        \
    613                 operandMapping,             \
    614                 class##EncodingFromString);
    615 
    616   // operandIndex should always be < numOperands
    617   operandIndex = 0;
    618   // physicalOperandIndex should always be < numPhysicalOperands
    619   unsigned physicalOperandIndex = 0;
    620 
    621   switch (Form) {
    622   case X86Local::RawFrm:
    623     // Operand 1 (optional) is an address or immediate.
    624     // Operand 2 (optional) is an immediate.
    625     assert(numPhysicalOperands <= 2 &&
    626            "Unexpected number of operands for RawFrm");
    627     HANDLE_OPTIONAL(relocation)
    628     HANDLE_OPTIONAL(immediate)
    629     break;
    630   case X86Local::AddRegFrm:
    631     // Operand 1 is added to the opcode.
    632     // Operand 2 (optional) is an address.
    633     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    634            "Unexpected number of operands for AddRegFrm");
    635     HANDLE_OPERAND(opcodeModifier)
    636     HANDLE_OPTIONAL(relocation)
    637     break;
    638   case X86Local::MRMDestReg:
    639     // Operand 1 is a register operand in the R/M field.
    640     // Operand 2 is a register operand in the Reg/Opcode field.
    641     // - In AVX, there is a register operand in the VEX.vvvv field here -
    642     // Operand 3 (optional) is an immediate.
    643     if (HasVEX_4VPrefix)
    644       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    645              "Unexpected number of operands for MRMDestRegFrm with VEX_4V");
    646     else
    647       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    648              "Unexpected number of operands for MRMDestRegFrm");
    649 
    650     HANDLE_OPERAND(rmRegister)
    651 
    652     if (HasVEX_4VPrefix)
    653       // FIXME: In AVX, the register below becomes the one encoded
    654       // in ModRMVEX and the one above the one in the VEX.VVVV field
    655       HANDLE_OPERAND(vvvvRegister)
    656 
    657     HANDLE_OPERAND(roRegister)
    658     HANDLE_OPTIONAL(immediate)
    659     break;
    660   case X86Local::MRMDestMem:
    661     // Operand 1 is a memory operand (possibly SIB-extended)
    662     // Operand 2 is a register operand in the Reg/Opcode field.
    663     // - In AVX, there is a register operand in the VEX.vvvv field here -
    664     // Operand 3 (optional) is an immediate.
    665     if (HasVEX_4VPrefix)
    666       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    667              "Unexpected number of operands for MRMDestMemFrm with VEX_4V");
    668     else
    669       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    670              "Unexpected number of operands for MRMDestMemFrm");
    671     HANDLE_OPERAND(memory)
    672 
    673     if (HasVEX_4VPrefix)
    674       // FIXME: In AVX, the register below becomes the one encoded
    675       // in ModRMVEX and the one above the one in the VEX.VVVV field
    676       HANDLE_OPERAND(vvvvRegister)
    677 
    678     HANDLE_OPERAND(roRegister)
    679     HANDLE_OPTIONAL(immediate)
    680     break;
    681   case X86Local::MRMSrcReg:
    682     // Operand 1 is a register operand in the Reg/Opcode field.
    683     // Operand 2 is a register operand in the R/M field.
    684     // - In AVX, there is a register operand in the VEX.vvvv field here -
    685     // Operand 3 (optional) is an immediate.
    686 
    687     if (HasVEX_4VPrefix)
    688       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    689              "Unexpected number of operands for MRMSrcRegFrm with VEX_4V");
    690     else
    691       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    692              "Unexpected number of operands for MRMSrcRegFrm");
    693 
    694     HANDLE_OPERAND(roRegister)
    695 
    696     if (HasVEX_4VPrefix)
    697       // FIXME: In AVX, the register below becomes the one encoded
    698       // in ModRMVEX and the one above the one in the VEX.VVVV field
    699       HANDLE_OPERAND(vvvvRegister)
    700 
    701     HANDLE_OPERAND(rmRegister)
    702     HANDLE_OPTIONAL(immediate)
    703     break;
    704   case X86Local::MRMSrcMem:
    705     // Operand 1 is a register operand in the Reg/Opcode field.
    706     // Operand 2 is a memory operand (possibly SIB-extended)
    707     // - In AVX, there is a register operand in the VEX.vvvv field here -
    708     // Operand 3 (optional) is an immediate.
    709 
    710     if (HasVEX_4VPrefix)
    711       assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 &&
    712              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
    713     else
    714       assert(numPhysicalOperands >= 2 && numPhysicalOperands <= 3 &&
    715              "Unexpected number of operands for MRMSrcMemFrm");
    716 
    717     HANDLE_OPERAND(roRegister)
    718 
    719     if (HasVEX_4VPrefix)
    720       // FIXME: In AVX, the register below becomes the one encoded
    721       // in ModRMVEX and the one above the one in the VEX.VVVV field
    722       HANDLE_OPERAND(vvvvRegister)
    723 
    724     HANDLE_OPERAND(memory)
    725     HANDLE_OPTIONAL(immediate)
    726     break;
    727   case X86Local::MRM0r:
    728   case X86Local::MRM1r:
    729   case X86Local::MRM2r:
    730   case X86Local::MRM3r:
    731   case X86Local::MRM4r:
    732   case X86Local::MRM5r:
    733   case X86Local::MRM6r:
    734   case X86Local::MRM7r:
    735     // Operand 1 is a register operand in the R/M field.
    736     // Operand 2 (optional) is an immediate or relocation.
    737     if (HasVEX_4VPrefix)
    738       assert(numPhysicalOperands <= 3 &&
    739              "Unexpected number of operands for MRMSrcMemFrm with VEX_4V");
    740     else
    741       assert(numPhysicalOperands <= 2 &&
    742              "Unexpected number of operands for MRMnRFrm");
    743     if (HasVEX_4VPrefix)
    744       HANDLE_OPERAND(vvvvRegister);
    745     HANDLE_OPTIONAL(rmRegister)
    746     HANDLE_OPTIONAL(relocation)
    747     break;
    748   case X86Local::MRM0m:
    749   case X86Local::MRM1m:
    750   case X86Local::MRM2m:
    751   case X86Local::MRM3m:
    752   case X86Local::MRM4m:
    753   case X86Local::MRM5m:
    754   case X86Local::MRM6m:
    755   case X86Local::MRM7m:
    756     // Operand 1 is a memory operand (possibly SIB-extended)
    757     // Operand 2 (optional) is an immediate or relocation.
    758     assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 &&
    759            "Unexpected number of operands for MRMnMFrm");
    760     HANDLE_OPERAND(memory)
    761     HANDLE_OPTIONAL(relocation)
    762     break;
    763   case X86Local::RawFrmImm8:
    764     // operand 1 is a 16-bit immediate
    765     // operand 2 is an 8-bit immediate
    766     assert(numPhysicalOperands == 2 &&
    767            "Unexpected number of operands for X86Local::RawFrmImm8");
    768     HANDLE_OPERAND(immediate)
    769     HANDLE_OPERAND(immediate)
    770     break;
    771   case X86Local::RawFrmImm16:
    772     // operand 1 is a 16-bit immediate
    773     // operand 2 is a 16-bit immediate
    774     HANDLE_OPERAND(immediate)
    775     HANDLE_OPERAND(immediate)
    776     break;
    777   case X86Local::MRMInitReg:
    778     // Ignored.
    779     break;
    780   }
    781 
    782   #undef HANDLE_OPERAND
    783   #undef HANDLE_OPTIONAL
    784 }
    785 
    786 void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const {
    787   // Special cases where the LLVM tables are not complete
    788 
    789 #define MAP(from, to)                     \
    790   case X86Local::MRM_##from:              \
    791     filter = new ExactFilter(0x##from);   \
    792     break;
    793 
    794   OpcodeType    opcodeType  = (OpcodeType)-1;
    795 
    796   ModRMFilter*  filter      = NULL;
    797   uint8_t       opcodeToSet = 0;
    798 
    799   switch (Prefix) {
    800   // Extended two-byte opcodes can start with f2 0f, f3 0f, or 0f
    801   case X86Local::XD:
    802   case X86Local::XS:
    803   case X86Local::TB:
    804     opcodeType = TWOBYTE;
    805 
    806     switch (Opcode) {
    807     default:
    808       if (needsModRMForDecode(Form))
    809         filter = new ModFilter(isRegFormat(Form));
    810       else
    811         filter = new DumbFilter();
    812       break;
    813 #define EXTENSION_TABLE(n) case 0x##n:
    814     TWO_BYTE_EXTENSION_TABLES
    815 #undef EXTENSION_TABLE
    816       switch (Form) {
    817       default:
    818         llvm_unreachable("Unhandled two-byte extended opcode");
    819       case X86Local::MRM0r:
    820       case X86Local::MRM1r:
    821       case X86Local::MRM2r:
    822       case X86Local::MRM3r:
    823       case X86Local::MRM4r:
    824       case X86Local::MRM5r:
    825       case X86Local::MRM6r:
    826       case X86Local::MRM7r:
    827         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    828         break;
    829       case X86Local::MRM0m:
    830       case X86Local::MRM1m:
    831       case X86Local::MRM2m:
    832       case X86Local::MRM3m:
    833       case X86Local::MRM4m:
    834       case X86Local::MRM5m:
    835       case X86Local::MRM6m:
    836       case X86Local::MRM7m:
    837         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    838         break;
    839       MRM_MAPPING
    840       } // switch (Form)
    841       break;
    842     } // switch (Opcode)
    843     opcodeToSet = Opcode;
    844     break;
    845   case X86Local::T8:
    846   case X86Local::TF:
    847     opcodeType = THREEBYTE_38;
    848     if (needsModRMForDecode(Form))
    849       filter = new ModFilter(isRegFormat(Form));
    850     else
    851       filter = new DumbFilter();
    852     opcodeToSet = Opcode;
    853     break;
    854   case X86Local::P_TA:
    855     opcodeType = THREEBYTE_3A;
    856     if (needsModRMForDecode(Form))
    857       filter = new ModFilter(isRegFormat(Form));
    858     else
    859       filter = new DumbFilter();
    860     opcodeToSet = Opcode;
    861     break;
    862   case X86Local::A6:
    863     opcodeType = THREEBYTE_A6;
    864     if (needsModRMForDecode(Form))
    865       filter = new ModFilter(isRegFormat(Form));
    866     else
    867       filter = new DumbFilter();
    868     opcodeToSet = Opcode;
    869     break;
    870   case X86Local::A7:
    871     opcodeType = THREEBYTE_A7;
    872     if (needsModRMForDecode(Form))
    873       filter = new ModFilter(isRegFormat(Form));
    874     else
    875       filter = new DumbFilter();
    876     opcodeToSet = Opcode;
    877     break;
    878   case X86Local::D8:
    879   case X86Local::D9:
    880   case X86Local::DA:
    881   case X86Local::DB:
    882   case X86Local::DC:
    883   case X86Local::DD:
    884   case X86Local::DE:
    885   case X86Local::DF:
    886     assert(Opcode >= 0xc0 && "Unexpected opcode for an escape opcode");
    887     opcodeType = ONEBYTE;
    888     if (Form == X86Local::AddRegFrm) {
    889       Spec->modifierType = MODIFIER_MODRM;
    890       Spec->modifierBase = Opcode;
    891       filter = new AddRegEscapeFilter(Opcode);
    892     } else {
    893       filter = new EscapeFilter(true, Opcode);
    894     }
    895     opcodeToSet = 0xd8 + (Prefix - X86Local::D8);
    896     break;
    897   case X86Local::REP:
    898   default:
    899     opcodeType = ONEBYTE;
    900     switch (Opcode) {
    901 #define EXTENSION_TABLE(n) case 0x##n:
    902     ONE_BYTE_EXTENSION_TABLES
    903 #undef EXTENSION_TABLE
    904       switch (Form) {
    905       default:
    906         llvm_unreachable("Fell through the cracks of a single-byte "
    907                          "extended opcode");
    908       case X86Local::MRM0r:
    909       case X86Local::MRM1r:
    910       case X86Local::MRM2r:
    911       case X86Local::MRM3r:
    912       case X86Local::MRM4r:
    913       case X86Local::MRM5r:
    914       case X86Local::MRM6r:
    915       case X86Local::MRM7r:
    916         filter = new ExtendedFilter(true, Form - X86Local::MRM0r);
    917         break;
    918       case X86Local::MRM0m:
    919       case X86Local::MRM1m:
    920       case X86Local::MRM2m:
    921       case X86Local::MRM3m:
    922       case X86Local::MRM4m:
    923       case X86Local::MRM5m:
    924       case X86Local::MRM6m:
    925       case X86Local::MRM7m:
    926         filter = new ExtendedFilter(false, Form - X86Local::MRM0m);
    927         break;
    928       MRM_MAPPING
    929       } // switch (Form)
    930       break;
    931     case 0xd8:
    932     case 0xd9:
    933     case 0xda:
    934     case 0xdb:
    935     case 0xdc:
    936     case 0xdd:
    937     case 0xde:
    938     case 0xdf:
    939       filter = new EscapeFilter(false, Form - X86Local::MRM0m);
    940       break;
    941     default:
    942       if (needsModRMForDecode(Form))
    943         filter = new ModFilter(isRegFormat(Form));
    944       else
    945         filter = new DumbFilter();
    946       break;
    947     } // switch (Opcode)
    948     opcodeToSet = Opcode;
    949   } // switch (Prefix)
    950 
    951   assert(opcodeType != (OpcodeType)-1 &&
    952          "Opcode type not set");
    953   assert(filter && "Filter not set");
    954 
    955   if (Form == X86Local::AddRegFrm) {
    956     if(Spec->modifierType != MODIFIER_MODRM) {
    957       assert(opcodeToSet < 0xf9 &&
    958              "Not enough room for all ADDREG_FRM operands");
    959 
    960       uint8_t currentOpcode;
    961 
    962       for (currentOpcode = opcodeToSet;
    963            currentOpcode < opcodeToSet + 8;
    964            ++currentOpcode)
    965         tables.setTableFields(opcodeType,
    966                               insnContext(),
    967                               currentOpcode,
    968                               *filter,
    969                               UID, Is32Bit, IgnoresVEX_L);
    970 
    971       Spec->modifierType = MODIFIER_OPCODE;
    972       Spec->modifierBase = opcodeToSet;
    973     } else {
    974       // modifierBase was set where MODIFIER_MODRM was set
    975       tables.setTableFields(opcodeType,
    976                             insnContext(),
    977                             opcodeToSet,
    978                             *filter,
    979                             UID, Is32Bit, IgnoresVEX_L);
    980     }
    981   } else {
    982     tables.setTableFields(opcodeType,
    983                           insnContext(),
    984                           opcodeToSet,
    985                           *filter,
    986                           UID, Is32Bit, IgnoresVEX_L);
    987 
    988     Spec->modifierType = MODIFIER_NONE;
    989     Spec->modifierBase = opcodeToSet;
    990   }
    991 
    992   delete filter;
    993 
    994 #undef MAP
    995 }
    996 
    997 #define TYPE(str, type) if (s == str) return type;
    998 OperandType RecognizableInstr::typeFromString(const std::string &s,
    999                                               bool isSSE,
   1000                                               bool hasREX_WPrefix,
   1001                                               bool hasOpSizePrefix) {
   1002   if (isSSE) {
   1003     // For SSE instructions, we ignore the OpSize prefix and force operand
   1004     // sizes.
   1005     TYPE("GR16",              TYPE_R16)
   1006     TYPE("GR32",              TYPE_R32)
   1007     TYPE("GR64",              TYPE_R64)
   1008   }
   1009   if(hasREX_WPrefix) {
   1010     // For instructions with a REX_W prefix, a declared 32-bit register encoding
   1011     // is special.
   1012     TYPE("GR32",              TYPE_R32)
   1013   }
   1014   if(!hasOpSizePrefix) {
   1015     // For instructions without an OpSize prefix, a declared 16-bit register or
   1016     // immediate encoding is special.
   1017     TYPE("GR16",              TYPE_R16)
   1018     TYPE("i16imm",            TYPE_IMM16)
   1019   }
   1020   TYPE("i16mem",              TYPE_Mv)
   1021   TYPE("i16imm",              TYPE_IMMv)
   1022   TYPE("i16i8imm",            TYPE_IMMv)
   1023   TYPE("GR16",                TYPE_Rv)
   1024   TYPE("i32mem",              TYPE_Mv)
   1025   TYPE("i32imm",              TYPE_IMMv)
   1026   TYPE("i32i8imm",            TYPE_IMM32)
   1027   TYPE("u32u8imm",            TYPE_IMM32)
   1028   TYPE("GR32",                TYPE_Rv)
   1029   TYPE("i64mem",              TYPE_Mv)
   1030   TYPE("i64i32imm",           TYPE_IMM64)
   1031   TYPE("i64i8imm",            TYPE_IMM64)
   1032   TYPE("GR64",                TYPE_R64)
   1033   TYPE("i8mem",               TYPE_M8)
   1034   TYPE("i8imm",               TYPE_IMM8)
   1035   TYPE("GR8",                 TYPE_R8)
   1036   TYPE("VR128",               TYPE_XMM128)
   1037   TYPE("f128mem",             TYPE_M128)
   1038   TYPE("f256mem",             TYPE_M256)
   1039   TYPE("FR64",                TYPE_XMM64)
   1040   TYPE("f64mem",              TYPE_M64FP)
   1041   TYPE("sdmem",               TYPE_M64FP)
   1042   TYPE("FR32",                TYPE_XMM32)
   1043   TYPE("f32mem",              TYPE_M32FP)
   1044   TYPE("ssmem",               TYPE_M32FP)
   1045   TYPE("RST",                 TYPE_ST)
   1046   TYPE("i128mem",             TYPE_M128)
   1047   TYPE("i256mem",             TYPE_M256)
   1048   TYPE("i64i32imm_pcrel",     TYPE_REL64)
   1049   TYPE("i16imm_pcrel",        TYPE_REL16)
   1050   TYPE("i32imm_pcrel",        TYPE_REL32)
   1051   TYPE("SSECC",               TYPE_IMM3)
   1052   TYPE("brtarget",            TYPE_RELv)
   1053   TYPE("uncondbrtarget",      TYPE_RELv)
   1054   TYPE("brtarget8",           TYPE_REL8)
   1055   TYPE("f80mem",              TYPE_M80FP)
   1056   TYPE("lea32mem",            TYPE_LEA)
   1057   TYPE("lea64_32mem",         TYPE_LEA)
   1058   TYPE("lea64mem",            TYPE_LEA)
   1059   TYPE("VR64",                TYPE_MM64)
   1060   TYPE("i64imm",              TYPE_IMMv)
   1061   TYPE("opaque32mem",         TYPE_M1616)
   1062   TYPE("opaque48mem",         TYPE_M1632)
   1063   TYPE("opaque80mem",         TYPE_M1664)
   1064   TYPE("opaque512mem",        TYPE_M512)
   1065   TYPE("SEGMENT_REG",         TYPE_SEGMENTREG)
   1066   TYPE("DEBUG_REG",           TYPE_DEBUGREG)
   1067   TYPE("CONTROL_REG",         TYPE_CONTROLREG)
   1068   TYPE("offset8",             TYPE_MOFFS8)
   1069   TYPE("offset16",            TYPE_MOFFS16)
   1070   TYPE("offset32",            TYPE_MOFFS32)
   1071   TYPE("offset64",            TYPE_MOFFS64)
   1072   TYPE("VR256",               TYPE_XMM256)
   1073   TYPE("GR16_NOAX",           TYPE_Rv)
   1074   TYPE("GR32_NOAX",           TYPE_Rv)
   1075   TYPE("GR64_NOAX",           TYPE_R64)
   1076   errs() << "Unhandled type string " << s << "\n";
   1077   llvm_unreachable("Unhandled type string");
   1078 }
   1079 #undef TYPE
   1080 
   1081 #define ENCODING(str, encoding) if (s == str) return encoding;
   1082 OperandEncoding RecognizableInstr::immediateEncodingFromString
   1083   (const std::string &s,
   1084    bool hasOpSizePrefix) {
   1085   if(!hasOpSizePrefix) {
   1086     // For instructions without an OpSize prefix, a declared 16-bit register or
   1087     // immediate encoding is special.
   1088     ENCODING("i16imm",        ENCODING_IW)
   1089   }
   1090   ENCODING("i32i8imm",        ENCODING_IB)
   1091   ENCODING("u32u8imm",        ENCODING_IB)
   1092   ENCODING("SSECC",           ENCODING_IB)
   1093   ENCODING("i16imm",          ENCODING_Iv)
   1094   ENCODING("i16i8imm",        ENCODING_IB)
   1095   ENCODING("i32imm",          ENCODING_Iv)
   1096   ENCODING("i64i32imm",       ENCODING_ID)
   1097   ENCODING("i64i8imm",        ENCODING_IB)
   1098   ENCODING("i8imm",           ENCODING_IB)
   1099   // This is not a typo.  Instructions like BLENDVPD put
   1100   // register IDs in 8-bit immediates nowadays.
   1101   ENCODING("VR256",           ENCODING_IB)
   1102   ENCODING("VR128",           ENCODING_IB)
   1103   errs() << "Unhandled immediate encoding " << s << "\n";
   1104   llvm_unreachable("Unhandled immediate encoding");
   1105 }
   1106 
   1107 OperandEncoding RecognizableInstr::rmRegisterEncodingFromString
   1108   (const std::string &s,
   1109    bool hasOpSizePrefix) {
   1110   ENCODING("GR16",            ENCODING_RM)
   1111   ENCODING("GR32",            ENCODING_RM)
   1112   ENCODING("GR64",            ENCODING_RM)
   1113   ENCODING("GR8",             ENCODING_RM)
   1114   ENCODING("VR128",           ENCODING_RM)
   1115   ENCODING("FR64",            ENCODING_RM)
   1116   ENCODING("FR32",            ENCODING_RM)
   1117   ENCODING("VR64",            ENCODING_RM)
   1118   ENCODING("VR256",           ENCODING_RM)
   1119   errs() << "Unhandled R/M register encoding " << s << "\n";
   1120   llvm_unreachable("Unhandled R/M register encoding");
   1121 }
   1122 
   1123 OperandEncoding RecognizableInstr::roRegisterEncodingFromString
   1124   (const std::string &s,
   1125    bool hasOpSizePrefix) {
   1126   ENCODING("GR16",            ENCODING_REG)
   1127   ENCODING("GR32",            ENCODING_REG)
   1128   ENCODING("GR64",            ENCODING_REG)
   1129   ENCODING("GR8",             ENCODING_REG)
   1130   ENCODING("VR128",           ENCODING_REG)
   1131   ENCODING("FR64",            ENCODING_REG)
   1132   ENCODING("FR32",            ENCODING_REG)
   1133   ENCODING("VR64",            ENCODING_REG)
   1134   ENCODING("SEGMENT_REG",     ENCODING_REG)
   1135   ENCODING("DEBUG_REG",       ENCODING_REG)
   1136   ENCODING("CONTROL_REG",     ENCODING_REG)
   1137   ENCODING("VR256",           ENCODING_REG)
   1138   errs() << "Unhandled reg/opcode register encoding " << s << "\n";
   1139   llvm_unreachable("Unhandled reg/opcode register encoding");
   1140 }
   1141 
   1142 OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString
   1143   (const std::string &s,
   1144    bool hasOpSizePrefix) {
   1145   ENCODING("GR32",            ENCODING_VVVV)
   1146   ENCODING("GR64",            ENCODING_VVVV)
   1147   ENCODING("FR32",            ENCODING_VVVV)
   1148   ENCODING("FR64",            ENCODING_VVVV)
   1149   ENCODING("VR128",           ENCODING_VVVV)
   1150   ENCODING("VR256",           ENCODING_VVVV)
   1151   errs() << "Unhandled VEX.vvvv register encoding " << s << "\n";
   1152   llvm_unreachable("Unhandled VEX.vvvv register encoding");
   1153 }
   1154 
   1155 OperandEncoding RecognizableInstr::memoryEncodingFromString
   1156   (const std::string &s,
   1157    bool hasOpSizePrefix) {
   1158   ENCODING("i16mem",          ENCODING_RM)
   1159   ENCODING("i32mem",          ENCODING_RM)
   1160   ENCODING("i64mem",          ENCODING_RM)
   1161   ENCODING("i8mem",           ENCODING_RM)
   1162   ENCODING("ssmem",           ENCODING_RM)
   1163   ENCODING("sdmem",           ENCODING_RM)
   1164   ENCODING("f128mem",         ENCODING_RM)
   1165   ENCODING("f256mem",         ENCODING_RM)
   1166   ENCODING("f64mem",          ENCODING_RM)
   1167   ENCODING("f32mem",          ENCODING_RM)
   1168   ENCODING("i128mem",         ENCODING_RM)
   1169   ENCODING("i256mem",         ENCODING_RM)
   1170   ENCODING("f80mem",          ENCODING_RM)
   1171   ENCODING("lea32mem",        ENCODING_RM)
   1172   ENCODING("lea64_32mem",     ENCODING_RM)
   1173   ENCODING("lea64mem",        ENCODING_RM)
   1174   ENCODING("opaque32mem",     ENCODING_RM)
   1175   ENCODING("opaque48mem",     ENCODING_RM)
   1176   ENCODING("opaque80mem",     ENCODING_RM)
   1177   ENCODING("opaque512mem",    ENCODING_RM)
   1178   errs() << "Unhandled memory encoding " << s << "\n";
   1179   llvm_unreachable("Unhandled memory encoding");
   1180 }
   1181 
   1182 OperandEncoding RecognizableInstr::relocationEncodingFromString
   1183   (const std::string &s,
   1184    bool hasOpSizePrefix) {
   1185   if(!hasOpSizePrefix) {
   1186     // For instructions without an OpSize prefix, a declared 16-bit register or
   1187     // immediate encoding is special.
   1188     ENCODING("i16imm",        ENCODING_IW)
   1189   }
   1190   ENCODING("i16imm",          ENCODING_Iv)
   1191   ENCODING("i16i8imm",        ENCODING_IB)
   1192   ENCODING("i32imm",          ENCODING_Iv)
   1193   ENCODING("i32i8imm",        ENCODING_IB)
   1194   ENCODING("i64i32imm",       ENCODING_ID)
   1195   ENCODING("i64i8imm",        ENCODING_IB)
   1196   ENCODING("i8imm",           ENCODING_IB)
   1197   ENCODING("i64i32imm_pcrel", ENCODING_ID)
   1198   ENCODING("i16imm_pcrel",    ENCODING_IW)
   1199   ENCODING("i32imm_pcrel",    ENCODING_ID)
   1200   ENCODING("brtarget",        ENCODING_Iv)
   1201   ENCODING("brtarget8",       ENCODING_IB)
   1202   ENCODING("i64imm",          ENCODING_IO)
   1203   ENCODING("offset8",         ENCODING_Ia)
   1204   ENCODING("offset16",        ENCODING_Ia)
   1205   ENCODING("offset32",        ENCODING_Ia)
   1206   ENCODING("offset64",        ENCODING_Ia)
   1207   errs() << "Unhandled relocation encoding " << s << "\n";
   1208   llvm_unreachable("Unhandled relocation encoding");
   1209 }
   1210 
   1211 OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString
   1212   (const std::string &s,
   1213    bool hasOpSizePrefix) {
   1214   ENCODING("RST",             ENCODING_I)
   1215   ENCODING("GR32",            ENCODING_Rv)
   1216   ENCODING("GR64",            ENCODING_RO)
   1217   ENCODING("GR16",            ENCODING_Rv)
   1218   ENCODING("GR8",             ENCODING_RB)
   1219   ENCODING("GR16_NOAX",       ENCODING_Rv)
   1220   ENCODING("GR32_NOAX",       ENCODING_Rv)
   1221   ENCODING("GR64_NOAX",       ENCODING_RO)
   1222   errs() << "Unhandled opcode modifier encoding " << s << "\n";
   1223   llvm_unreachable("Unhandled opcode modifier encoding");
   1224 }
   1225 #undef ENCODING
   1226