Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #include <ctype.h>
     50 #include <string.h>
     51 #include <iomanip>
     52 #include <limits>
     53 #include <set>
     54 
     55 #include "gtest/internal/gtest-string.h"
     56 #include "gtest/internal/gtest-filepath.h"
     57 #include "gtest/internal/gtest-type-util.h"
     58 
     59 #include "llvm/Support/raw_os_ostream.h"
     60 
     61 // Due to C++ preprocessor weirdness, we need double indirection to
     62 // concatenate two tokens when one of them is __LINE__.  Writing
     63 //
     64 //   foo ## __LINE__
     65 //
     66 // will result in the token foo__LINE__, instead of foo followed by
     67 // the current line number.  For more details, see
     68 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     69 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     70 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     71 
     72 // Google Test defines the testing::Message class to allow construction of
     73 // test messages via the << operator.  The idea is that anything
     74 // streamable to std::ostream can be streamed to a testing::Message.
     75 // This allows a user to use his own types in Google Test assertions by
     76 // overloading the << operator.
     77 //
     78 // util/gtl/stl_logging-inl.h overloads << for STL containers.  These
     79 // overloads cannot be defined in the std namespace, as that will be
     80 // undefined behavior.  Therefore, they are defined in the global
     81 // namespace instead.
     82 //
     83 // C++'s symbol lookup rule (i.e. Koenig lookup) says that these
     84 // overloads are visible in either the std namespace or the global
     85 // namespace, but not other namespaces, including the testing
     86 // namespace which Google Test's Message class is in.
     87 //
     88 // To allow STL containers (and other types that has a << operator
     89 // defined in the global namespace) to be used in Google Test assertions,
     90 // testing::Message must access the custom << operator from the global
     91 // namespace.  Hence this helper function.
     92 //
     93 // Note: Jeffrey Yasskin suggested an alternative fix by "using
     94 // ::operator<<;" in the definition of Message's operator<<.  That fix
     95 // doesn't require a helper function, but unfortunately doesn't
     96 // compile with MSVC.
     97 
     98 // LLVM INTERNAL CHANGE: To allow operator<< to work with both
     99 // std::ostreams and LLVM's raw_ostreams, we define a special
    100 // std::ostream with an implicit conversion to raw_ostream& and stream
    101 // to that.  This causes the compiler to prefer std::ostream overloads
    102 // but still find raw_ostream& overloads.
    103 namespace llvm {
    104 class convertible_fwd_ostream : public std::ostream {
    105   std::ostream& os_;
    106   raw_os_ostream ros_;
    107 
    108 public:
    109   convertible_fwd_ostream(std::ostream& os)
    110     : std::ostream(os.rdbuf()), os_(os), ros_(*this) {}
    111   operator raw_ostream&() { return ros_; }
    112 };
    113 }
    114 template <typename T>
    115 inline void GTestStreamToHelper(std::ostream* os, const T& val) {
    116   llvm::convertible_fwd_ostream cos(*os);
    117   cos << val;
    118 }
    119 
    120 class ProtocolMessage;
    121 namespace proto2 { class Message; }
    122 
    123 namespace testing {
    124 
    125 // Forward declarations.
    126 
    127 class AssertionResult;                 // Result of an assertion.
    128 class Message;                         // Represents a failure message.
    129 class Test;                            // Represents a test.
    130 class TestInfo;                        // Information about a test.
    131 class TestPartResult;                  // Result of a test part.
    132 class UnitTest;                        // A collection of test cases.
    133 
    134 template <typename T>
    135 ::std::string PrintToString(const T& value);
    136 
    137 namespace internal {
    138 
    139 struct TraceInfo;                      // Information about a trace point.
    140 class ScopedTrace;                     // Implements scoped trace.
    141 class TestInfoImpl;                    // Opaque implementation of TestInfo
    142 class UnitTestImpl;                    // Opaque implementation of UnitTest
    143 
    144 // How many times InitGoogleTest() has been called.
    145 extern int g_init_gtest_count;
    146 
    147 // The text used in failure messages to indicate the start of the
    148 // stack trace.
    149 GTEST_API_ extern const char kStackTraceMarker[];
    150 
    151 // A secret type that Google Test users don't know about.  It has no
    152 // definition on purpose.  Therefore it's impossible to create a
    153 // Secret object, which is what we want.
    154 class Secret;
    155 
    156 // Two overloaded helpers for checking at compile time whether an
    157 // expression is a null pointer literal (i.e. NULL or any 0-valued
    158 // compile-time integral constant).  Their return values have
    159 // different sizes, so we can use sizeof() to test which version is
    160 // picked by the compiler.  These helpers have no implementations, as
    161 // we only need their signatures.
    162 //
    163 // Given IsNullLiteralHelper(x), the compiler will pick the first
    164 // version if x can be implicitly converted to Secret*, and pick the
    165 // second version otherwise.  Since Secret is a secret and incomplete
    166 // type, the only expression a user can write that has type Secret* is
    167 // a null pointer literal.  Therefore, we know that x is a null
    168 // pointer literal if and only if the first version is picked by the
    169 // compiler.
    170 char IsNullLiteralHelper(Secret* p);
    171 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    172 
    173 // A compile-time bool constant that is true if and only if x is a
    174 // null pointer literal (i.e. NULL or any 0-valued compile-time
    175 // integral constant).
    176 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    177 // We lose support for NULL detection where the compiler doesn't like
    178 // passing non-POD classes through ellipsis (...).
    179 # define GTEST_IS_NULL_LITERAL_(x) false
    180 #else
    181 # define GTEST_IS_NULL_LITERAL_(x) \
    182     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    183 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    184 
    185 // Appends the user-supplied message to the Google-Test-generated message.
    186 GTEST_API_ String AppendUserMessage(const String& gtest_msg,
    187                                     const Message& user_msg);
    188 
    189 // A helper class for creating scoped traces in user programs.
    190 class GTEST_API_ ScopedTrace {
    191  public:
    192   // The c'tor pushes the given source file location and message onto
    193   // a trace stack maintained by Google Test.
    194   ScopedTrace(const char* file, int line, const Message& message);
    195 
    196   // The d'tor pops the info pushed by the c'tor.
    197   //
    198   // Note that the d'tor is not virtual in order to be efficient.
    199   // Don't inherit from ScopedTrace!
    200   ~ScopedTrace();
    201 
    202  private:
    203   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    204 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    205                             // c'tor and d'tor.  Therefore it doesn't
    206                             // need to be used otherwise.
    207 
    208 // Converts a streamable value to a String.  A NULL pointer is
    209 // converted to "(null)".  When the input value is a ::string,
    210 // ::std::string, ::wstring, or ::std::wstring object, each NUL
    211 // character in it is replaced with "\\0".
    212 // Declared here but defined in gtest.h, so that it has access
    213 // to the definition of the Message class, required by the ARM
    214 // compiler.
    215 template <typename T>
    216 String StreamableToString(const T& streamable);
    217 
    218 // The Symbian compiler has a bug that prevents it from selecting the
    219 // correct overload of FormatForComparisonFailureMessage (see below)
    220 // unless we pass the first argument by reference.  If we do that,
    221 // however, Visual Age C++ 10.1 generates a compiler error.  Therefore
    222 // we only apply the work-around for Symbian.
    223 #if defined(__SYMBIAN32__)
    224 # define GTEST_CREF_WORKAROUND_ const&
    225 #else
    226 # define GTEST_CREF_WORKAROUND_
    227 #endif
    228 
    229 // When this operand is a const char* or char*, if the other operand
    230 // is a ::std::string or ::string, we print this operand as a C string
    231 // rather than a pointer (we do the same for wide strings); otherwise
    232 // we print it as a pointer to be safe.
    233 
    234 // This internal macro is used to avoid duplicated code.
    235 #define GTEST_FORMAT_IMPL_(operand2_type, operand1_printer)\
    236 inline String FormatForComparisonFailureMessage(\
    237     operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
    238     const operand2_type& /*operand2*/) {\
    239   return operand1_printer(str);\
    240 }\
    241 inline String FormatForComparisonFailureMessage(\
    242     const operand2_type::value_type* GTEST_CREF_WORKAROUND_ str, \
    243     const operand2_type& /*operand2*/) {\
    244   return operand1_printer(str);\
    245 }
    246 
    247 GTEST_FORMAT_IMPL_(::std::string, String::ShowCStringQuoted)
    248 #if GTEST_HAS_STD_WSTRING
    249 GTEST_FORMAT_IMPL_(::std::wstring, String::ShowWideCStringQuoted)
    250 #endif  // GTEST_HAS_STD_WSTRING
    251 
    252 #if GTEST_HAS_GLOBAL_STRING
    253 GTEST_FORMAT_IMPL_(::string, String::ShowCStringQuoted)
    254 #endif  // GTEST_HAS_GLOBAL_STRING
    255 #if GTEST_HAS_GLOBAL_WSTRING
    256 GTEST_FORMAT_IMPL_(::wstring, String::ShowWideCStringQuoted)
    257 #endif  // GTEST_HAS_GLOBAL_WSTRING
    258 
    259 #undef GTEST_FORMAT_IMPL_
    260 
    261 // The next four overloads handle the case where the operand being
    262 // printed is a char/wchar_t pointer and the other operand is not a
    263 // string/wstring object.  In such cases, we just print the operand as
    264 // a pointer to be safe.
    265 #define GTEST_FORMAT_CHAR_PTR_IMPL_(CharType)                       \
    266   template <typename T>                                             \
    267   String FormatForComparisonFailureMessage(CharType* GTEST_CREF_WORKAROUND_ p, \
    268                                            const T&) { \
    269     return PrintToString(static_cast<const void*>(p));              \
    270   }
    271 
    272 GTEST_FORMAT_CHAR_PTR_IMPL_(char)
    273 GTEST_FORMAT_CHAR_PTR_IMPL_(const char)
    274 GTEST_FORMAT_CHAR_PTR_IMPL_(wchar_t)
    275 GTEST_FORMAT_CHAR_PTR_IMPL_(const wchar_t)
    276 
    277 #undef GTEST_FORMAT_CHAR_PTR_IMPL_
    278 
    279 // Constructs and returns the message for an equality assertion
    280 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    281 //
    282 // The first four parameters are the expressions used in the assertion
    283 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    284 // where foo is 5 and bar is 6, we have:
    285 //
    286 //   expected_expression: "foo"
    287 //   actual_expression:   "bar"
    288 //   expected_value:      "5"
    289 //   actual_value:        "6"
    290 //
    291 // The ignoring_case parameter is true iff the assertion is a
    292 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    293 // be inserted into the message.
    294 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    295                                      const char* actual_expression,
    296                                      const String& expected_value,
    297                                      const String& actual_value,
    298                                      bool ignoring_case);
    299 
    300 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    301 GTEST_API_ String GetBoolAssertionFailureMessage(
    302     const AssertionResult& assertion_result,
    303     const char* expression_text,
    304     const char* actual_predicate_value,
    305     const char* expected_predicate_value);
    306 
    307 // This template class represents an IEEE floating-point number
    308 // (either single-precision or double-precision, depending on the
    309 // template parameters).
    310 //
    311 // The purpose of this class is to do more sophisticated number
    312 // comparison.  (Due to round-off error, etc, it's very unlikely that
    313 // two floating-points will be equal exactly.  Hence a naive
    314 // comparison by the == operation often doesn't work.)
    315 //
    316 // Format of IEEE floating-point:
    317 //
    318 //   The most-significant bit being the leftmost, an IEEE
    319 //   floating-point looks like
    320 //
    321 //     sign_bit exponent_bits fraction_bits
    322 //
    323 //   Here, sign_bit is a single bit that designates the sign of the
    324 //   number.
    325 //
    326 //   For float, there are 8 exponent bits and 23 fraction bits.
    327 //
    328 //   For double, there are 11 exponent bits and 52 fraction bits.
    329 //
    330 //   More details can be found at
    331 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    332 //
    333 // Template parameter:
    334 //
    335 //   RawType: the raw floating-point type (either float or double)
    336 template <typename RawType>
    337 class FloatingPoint {
    338  public:
    339   // Defines the unsigned integer type that has the same size as the
    340   // floating point number.
    341   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    342 
    343   // Constants.
    344 
    345   // # of bits in a number.
    346   static const size_t kBitCount = 8*sizeof(RawType);
    347 
    348   // # of fraction bits in a number.
    349   static const size_t kFractionBitCount =
    350     std::numeric_limits<RawType>::digits - 1;
    351 
    352   // # of exponent bits in a number.
    353   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    354 
    355   // The mask for the sign bit.
    356   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    357 
    358   // The mask for the fraction bits.
    359   static const Bits kFractionBitMask =
    360     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    361 
    362   // The mask for the exponent bits.
    363   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    364 
    365   // How many ULP's (Units in the Last Place) we want to tolerate when
    366   // comparing two numbers.  The larger the value, the more error we
    367   // allow.  A 0 value means that two numbers must be exactly the same
    368   // to be considered equal.
    369   //
    370   // The maximum error of a single floating-point operation is 0.5
    371   // units in the last place.  On Intel CPU's, all floating-point
    372   // calculations are done with 80-bit precision, while double has 64
    373   // bits.  Therefore, 4 should be enough for ordinary use.
    374   //
    375   // See the following article for more details on ULP:
    376   // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm.
    377   static const size_t kMaxUlps = 4;
    378 
    379   // Constructs a FloatingPoint from a raw floating-point number.
    380   //
    381   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    382   // around may change its bits, although the new value is guaranteed
    383   // to be also a NAN.  Therefore, don't expect this constructor to
    384   // preserve the bits in x when x is a NAN.
    385   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    386 
    387   // Static methods
    388 
    389   // Reinterprets a bit pattern as a floating-point number.
    390   //
    391   // This function is needed to test the AlmostEquals() method.
    392   static RawType ReinterpretBits(const Bits bits) {
    393     FloatingPoint fp(0);
    394     fp.u_.bits_ = bits;
    395     return fp.u_.value_;
    396   }
    397 
    398   // Returns the floating-point number that represent positive infinity.
    399   static RawType Infinity() {
    400     return ReinterpretBits(kExponentBitMask);
    401   }
    402 
    403   // Non-static methods
    404 
    405   // Returns the bits that represents this number.
    406   const Bits &bits() const { return u_.bits_; }
    407 
    408   // Returns the exponent bits of this number.
    409   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    410 
    411   // Returns the fraction bits of this number.
    412   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    413 
    414   // Returns the sign bit of this number.
    415   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    416 
    417   // Returns true iff this is NAN (not a number).
    418   bool is_nan() const {
    419     // It's a NAN if the exponent bits are all ones and the fraction
    420     // bits are not entirely zeros.
    421     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    422   }
    423 
    424   // Returns true iff this number is at most kMaxUlps ULP's away from
    425   // rhs.  In particular, this function:
    426   //
    427   //   - returns false if either number is (or both are) NAN.
    428   //   - treats really large numbers as almost equal to infinity.
    429   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    430   bool AlmostEquals(const FloatingPoint& rhs) const {
    431     // The IEEE standard says that any comparison operation involving
    432     // a NAN must return false.
    433     if (is_nan() || rhs.is_nan()) return false;
    434 
    435     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    436         <= kMaxUlps;
    437   }
    438 
    439  private:
    440   // The data type used to store the actual floating-point number.
    441   union FloatingPointUnion {
    442     RawType value_;  // The raw floating-point number.
    443     Bits bits_;      // The bits that represent the number.
    444   };
    445 
    446   // Converts an integer from the sign-and-magnitude representation to
    447   // the biased representation.  More precisely, let N be 2 to the
    448   // power of (kBitCount - 1), an integer x is represented by the
    449   // unsigned number x + N.
    450   //
    451   // For instance,
    452   //
    453   //   -N + 1 (the most negative number representable using
    454   //          sign-and-magnitude) is represented by 1;
    455   //   0      is represented by N; and
    456   //   N - 1  (the biggest number representable using
    457   //          sign-and-magnitude) is represented by 2N - 1.
    458   //
    459   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    460   // for more details on signed number representations.
    461   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    462     if (kSignBitMask & sam) {
    463       // sam represents a negative number.
    464       return ~sam + 1;
    465     } else {
    466       // sam represents a positive number.
    467       return kSignBitMask | sam;
    468     }
    469   }
    470 
    471   // Given two numbers in the sign-and-magnitude representation,
    472   // returns the distance between them as an unsigned number.
    473   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    474                                                      const Bits &sam2) {
    475     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    476     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    477     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    478   }
    479 
    480   FloatingPointUnion u_;
    481 };
    482 
    483 // Typedefs the instances of the FloatingPoint template class that we
    484 // care to use.
    485 typedef FloatingPoint<float> Float;
    486 typedef FloatingPoint<double> Double;
    487 
    488 // In order to catch the mistake of putting tests that use different
    489 // test fixture classes in the same test case, we need to assign
    490 // unique IDs to fixture classes and compare them.  The TypeId type is
    491 // used to hold such IDs.  The user should treat TypeId as an opaque
    492 // type: the only operation allowed on TypeId values is to compare
    493 // them for equality using the == operator.
    494 typedef const void* TypeId;
    495 
    496 template <typename T>
    497 class TypeIdHelper {
    498  public:
    499   // dummy_ must not have a const type.  Otherwise an overly eager
    500   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    501   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    502   static bool dummy_;
    503 };
    504 
    505 template <typename T>
    506 bool TypeIdHelper<T>::dummy_ = false;
    507 
    508 // GetTypeId<T>() returns the ID of type T.  Different values will be
    509 // returned for different types.  Calling the function twice with the
    510 // same type argument is guaranteed to return the same ID.
    511 template <typename T>
    512 TypeId GetTypeId() {
    513   // The compiler is required to allocate a different
    514   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    515   // the template.  Therefore, the address of dummy_ is guaranteed to
    516   // be unique.
    517   return &(TypeIdHelper<T>::dummy_);
    518 }
    519 
    520 // Returns the type ID of ::testing::Test.  Always call this instead
    521 // of GetTypeId< ::testing::Test>() to get the type ID of
    522 // ::testing::Test, as the latter may give the wrong result due to a
    523 // suspected linker bug when compiling Google Test as a Mac OS X
    524 // framework.
    525 GTEST_API_ TypeId GetTestTypeId();
    526 
    527 // Defines the abstract factory interface that creates instances
    528 // of a Test object.
    529 class TestFactoryBase {
    530  public:
    531   virtual ~TestFactoryBase() {}
    532 
    533   // Creates a test instance to run. The instance is both created and destroyed
    534   // within TestInfoImpl::Run()
    535   virtual Test* CreateTest() = 0;
    536 
    537  protected:
    538   TestFactoryBase() {}
    539 
    540  private:
    541   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    542 };
    543 
    544 // This class provides implementation of TeastFactoryBase interface.
    545 // It is used in TEST and TEST_F macros.
    546 template <class TestClass>
    547 class TestFactoryImpl : public TestFactoryBase {
    548  public:
    549   virtual Test* CreateTest() { return new TestClass; }
    550 };
    551 
    552 #if GTEST_OS_WINDOWS
    553 
    554 // Predicate-formatters for implementing the HRESULT checking macros
    555 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    556 // We pass a long instead of HRESULT to avoid causing an
    557 // include dependency for the HRESULT type.
    558 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    559                                             long hr);  // NOLINT
    560 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    561                                             long hr);  // NOLINT
    562 
    563 #endif  // GTEST_OS_WINDOWS
    564 
    565 // Types of SetUpTestCase() and TearDownTestCase() functions.
    566 typedef void (*SetUpTestCaseFunc)();
    567 typedef void (*TearDownTestCaseFunc)();
    568 
    569 // Creates a new TestInfo object and registers it with Google Test;
    570 // returns the created object.
    571 //
    572 // Arguments:
    573 //
    574 //   test_case_name:   name of the test case
    575 //   name:             name of the test
    576 //   type_param        the name of the test's type parameter, or NULL if
    577 //                     this is not  a typed or a type-parameterized test.
    578 //   value_param       text representation of the test's value parameter,
    579 //                     or NULL if this is not a type-parameterized test.
    580 //   fixture_class_id: ID of the test fixture class
    581 //   set_up_tc:        pointer to the function that sets up the test case
    582 //   tear_down_tc:     pointer to the function that tears down the test case
    583 //   factory:          pointer to the factory that creates a test object.
    584 //                     The newly created TestInfo instance will assume
    585 //                     ownership of the factory object.
    586 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    587     const char* test_case_name, const char* name,
    588     const char* type_param,
    589     const char* value_param,
    590     TypeId fixture_class_id,
    591     SetUpTestCaseFunc set_up_tc,
    592     TearDownTestCaseFunc tear_down_tc,
    593     TestFactoryBase* factory);
    594 
    595 // If *pstr starts with the given prefix, modifies *pstr to be right
    596 // past the prefix and returns true; otherwise leaves *pstr unchanged
    597 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    598 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    599 
    600 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    601 
    602 // State of the definition of a type-parameterized test case.
    603 class GTEST_API_ TypedTestCasePState {
    604  public:
    605   TypedTestCasePState() : registered_(false) {}
    606 
    607   // Adds the given test name to defined_test_names_ and return true
    608   // if the test case hasn't been registered; otherwise aborts the
    609   // program.
    610   bool AddTestName(const char* file, int line, const char* case_name,
    611                    const char* test_name) {
    612     if (registered_) {
    613       fprintf(stderr, "%s Test %s must be defined before "
    614               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    615               FormatFileLocation(file, line).c_str(), test_name, case_name);
    616       fflush(stderr);
    617       posix::Abort();
    618     }
    619     defined_test_names_.insert(test_name);
    620     return true;
    621   }
    622 
    623   // Verifies that registered_tests match the test names in
    624   // defined_test_names_; returns registered_tests if successful, or
    625   // aborts the program otherwise.
    626   const char* VerifyRegisteredTestNames(
    627       const char* file, int line, const char* registered_tests);
    628 
    629  private:
    630   bool registered_;
    631   ::std::set<const char*> defined_test_names_;
    632 };
    633 
    634 // Skips to the first non-space char after the first comma in 'str';
    635 // returns NULL if no comma is found in 'str'.
    636 inline const char* SkipComma(const char* str) {
    637   const char* comma = strchr(str, ',');
    638   if (comma == NULL) {
    639     return NULL;
    640   }
    641   while (IsSpace(*(++comma))) {}
    642   return comma;
    643 }
    644 
    645 // Returns the prefix of 'str' before the first comma in it; returns
    646 // the entire string if it contains no comma.
    647 inline String GetPrefixUntilComma(const char* str) {
    648   const char* comma = strchr(str, ',');
    649   return comma == NULL ? String(str) : String(str, comma - str);
    650 }
    651 
    652 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    653 // registers a list of type-parameterized tests with Google Test.  The
    654 // return value is insignificant - we just need to return something
    655 // such that we can call this function in a namespace scope.
    656 //
    657 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    658 // template parameter.  It's defined in gtest-type-util.h.
    659 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    660 class TypeParameterizedTest {
    661  public:
    662   // 'index' is the index of the test in the type list 'Types'
    663   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    664   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    665   // length of Types.
    666   static bool Register(const char* prefix, const char* case_name,
    667                        const char* test_names, int index) {
    668     typedef typename Types::Head Type;
    669     typedef Fixture<Type> FixtureClass;
    670     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    671 
    672     // First, registers the first type-parameterized test in the type
    673     // list.
    674     MakeAndRegisterTestInfo(
    675         String::Format("%s%s%s/%d", prefix, prefix[0] == '\0' ? "" : "/",
    676                        case_name, index).c_str(),
    677         GetPrefixUntilComma(test_names).c_str(),
    678         GetTypeName<Type>().c_str(),
    679         NULL,  // No value parameter.
    680         GetTypeId<FixtureClass>(),
    681         TestClass::SetUpTestCase,
    682         TestClass::TearDownTestCase,
    683         new TestFactoryImpl<TestClass>);
    684 
    685     // Next, recurses (at compile time) with the tail of the type list.
    686     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    687         ::Register(prefix, case_name, test_names, index + 1);
    688   }
    689 };
    690 
    691 // The base case for the compile time recursion.
    692 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    693 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    694  public:
    695   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    696                        const char* /*test_names*/, int /*index*/) {
    697     return true;
    698   }
    699 };
    700 
    701 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    702 // registers *all combinations* of 'Tests' and 'Types' with Google
    703 // Test.  The return value is insignificant - we just need to return
    704 // something such that we can call this function in a namespace scope.
    705 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    706 class TypeParameterizedTestCase {
    707  public:
    708   static bool Register(const char* prefix, const char* case_name,
    709                        const char* test_names) {
    710     typedef typename Tests::Head Head;
    711 
    712     // First, register the first test in 'Test' for each type in 'Types'.
    713     TypeParameterizedTest<Fixture, Head, Types>::Register(
    714         prefix, case_name, test_names, 0);
    715 
    716     // Next, recurses (at compile time) with the tail of the test list.
    717     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    718         ::Register(prefix, case_name, SkipComma(test_names));
    719   }
    720 };
    721 
    722 // The base case for the compile time recursion.
    723 template <GTEST_TEMPLATE_ Fixture, typename Types>
    724 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    725  public:
    726   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    727                        const char* /*test_names*/) {
    728     return true;
    729   }
    730 };
    731 
    732 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    733 
    734 // Returns the current OS stack trace as a String.
    735 //
    736 // The maximum number of stack frames to be included is specified by
    737 // the gtest_stack_trace_depth flag.  The skip_count parameter
    738 // specifies the number of top frames to be skipped, which doesn't
    739 // count against the number of frames to be included.
    740 //
    741 // For example, if Foo() calls Bar(), which in turn calls
    742 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    743 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    744 GTEST_API_ String GetCurrentOsStackTraceExceptTop(UnitTest* unit_test,
    745                                                   int skip_count);
    746 
    747 // Helpers for suppressing warnings on unreachable code or constant
    748 // condition.
    749 
    750 // Always returns true.
    751 GTEST_API_ bool AlwaysTrue();
    752 
    753 // Always returns false.
    754 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    755 
    756 // Helper for suppressing false warning from Clang on a const char*
    757 // variable declared in a conditional expression always being NULL in
    758 // the else branch.
    759 struct GTEST_API_ ConstCharPtr {
    760   ConstCharPtr(const char* str) : value(str) {}
    761   operator bool() const { return true; }
    762   const char* value;
    763 };
    764 
    765 // A simple Linear Congruential Generator for generating random
    766 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    767 // doesn't use global state (and therefore can't interfere with user
    768 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    769 // but it's good enough for our purposes.
    770 class GTEST_API_ Random {
    771  public:
    772   static const UInt32 kMaxRange = 1u << 31;
    773 
    774   explicit Random(UInt32 seed) : state_(seed) {}
    775 
    776   void Reseed(UInt32 seed) { state_ = seed; }
    777 
    778   // Generates a random number from [0, range).  Crashes if 'range' is
    779   // 0 or greater than kMaxRange.
    780   UInt32 Generate(UInt32 range);
    781 
    782  private:
    783   UInt32 state_;
    784   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    785 };
    786 
    787 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    788 // compiler error iff T1 and T2 are different types.
    789 template <typename T1, typename T2>
    790 struct CompileAssertTypesEqual;
    791 
    792 template <typename T>
    793 struct CompileAssertTypesEqual<T, T> {
    794 };
    795 
    796 // Removes the reference from a type if it is a reference type,
    797 // otherwise leaves it unchanged.  This is the same as
    798 // tr1::remove_reference, which is not widely available yet.
    799 template <typename T>
    800 struct RemoveReference { typedef T type; };  // NOLINT
    801 template <typename T>
    802 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    803 
    804 // A handy wrapper around RemoveReference that works when the argument
    805 // T depends on template parameters.
    806 #define GTEST_REMOVE_REFERENCE_(T) \
    807     typename ::testing::internal::RemoveReference<T>::type
    808 
    809 // Removes const from a type if it is a const type, otherwise leaves
    810 // it unchanged.  This is the same as tr1::remove_const, which is not
    811 // widely available yet.
    812 template <typename T>
    813 struct RemoveConst { typedef T type; };  // NOLINT
    814 template <typename T>
    815 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    816 
    817 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    818 // definition to fail to remove the const in 'const int[3]' and 'const
    819 // char[3][4]'.  The following specialization works around the bug.
    820 // However, it causes trouble with GCC and thus needs to be
    821 // conditionally compiled.
    822 #if defined(_MSC_VER) || defined(__SUNPRO_CC) || defined(__IBMCPP__)
    823 template <typename T, size_t N>
    824 struct RemoveConst<const T[N]> {
    825   typedef typename RemoveConst<T>::type type[N];
    826 };
    827 #endif
    828 
    829 // A handy wrapper around RemoveConst that works when the argument
    830 // T depends on template parameters.
    831 #define GTEST_REMOVE_CONST_(T) \
    832     typename ::testing::internal::RemoveConst<T>::type
    833 
    834 // Turns const U&, U&, const U, and U all into U.
    835 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    836     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    837 
    838 // Adds reference to a type if it is not a reference type,
    839 // otherwise leaves it unchanged.  This is the same as
    840 // tr1::add_reference, which is not widely available yet.
    841 template <typename T>
    842 struct AddReference { typedef T& type; };  // NOLINT
    843 template <typename T>
    844 struct AddReference<T&> { typedef T& type; };  // NOLINT
    845 
    846 // A handy wrapper around AddReference that works when the argument T
    847 // depends on template parameters.
    848 #define GTEST_ADD_REFERENCE_(T) \
    849     typename ::testing::internal::AddReference<T>::type
    850 
    851 // Adds a reference to const on top of T as necessary.  For example,
    852 // it transforms
    853 //
    854 //   char         ==> const char&
    855 //   const char   ==> const char&
    856 //   char&        ==> const char&
    857 //   const char&  ==> const char&
    858 //
    859 // The argument T must depend on some template parameters.
    860 #define GTEST_REFERENCE_TO_CONST_(T) \
    861     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    862 
    863 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    864 // constant that's true iff type From can be implicitly converted to
    865 // type To.
    866 template <typename From, typename To>
    867 class ImplicitlyConvertible {
    868  private:
    869   // We need the following helper functions only for their types.
    870   // They have no implementations.
    871 
    872   // MakeFrom() is an expression whose type is From.  We cannot simply
    873   // use From(), as the type From may not have a public default
    874   // constructor.
    875   static From MakeFrom();
    876 
    877   // These two functions are overloaded.  Given an expression
    878   // Helper(x), the compiler will pick the first version if x can be
    879   // implicitly converted to type To; otherwise it will pick the
    880   // second version.
    881   //
    882   // The first version returns a value of size 1, and the second
    883   // version returns a value of size 2.  Therefore, by checking the
    884   // size of Helper(x), which can be done at compile time, we can tell
    885   // which version of Helper() is used, and hence whether x can be
    886   // implicitly converted to type To.
    887   static char Helper(To);
    888   static char (&Helper(...))[2];  // NOLINT
    889 
    890   // We have to put the 'public' section after the 'private' section,
    891   // or MSVC refuses to compile the code.
    892  public:
    893   // MSVC warns about implicitly converting from double to int for
    894   // possible loss of data, so we need to temporarily disable the
    895   // warning.
    896 #ifdef _MSC_VER
    897 # pragma warning(push)          // Saves the current warning state.
    898 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
    899 
    900   static const bool value =
    901       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    902 # pragma warning(pop)           // Restores the warning state.
    903 #elif defined(__BORLANDC__)
    904   // C++Builder cannot use member overload resolution during template
    905   // instantiation.  The simplest workaround is to use its C++0x type traits
    906   // functions (C++Builder 2009 and above only).
    907   static const bool value = __is_convertible(From, To);
    908 #else
    909   static const bool value =
    910       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    911 #endif  // _MSV_VER
    912 };
    913 template <typename From, typename To>
    914 const bool ImplicitlyConvertible<From, To>::value;
    915 
    916 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    917 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    918 // of those.
    919 template <typename T>
    920 struct IsAProtocolMessage
    921     : public bool_constant<
    922   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    923   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    924 };
    925 
    926 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    927 // STL-style container class, the first overload of IsContainerTest
    928 // will be viable (since both C::iterator* and C::const_iterator* are
    929 // valid types and NULL can be implicitly converted to them).  It will
    930 // be picked over the second overload as 'int' is a perfect match for
    931 // the type of argument 0.  If C::iterator or C::const_iterator is not
    932 // a valid type, the first overload is not viable, and the second
    933 // overload will be picked.  Therefore, we can determine whether C is
    934 // a container class by checking the type of IsContainerTest<C>(0).
    935 // The value of the expression is insignificant.
    936 //
    937 // Note that we look for both C::iterator and C::const_iterator.  The
    938 // reason is that C++ injects the name of a class as a member of the
    939 // class itself (e.g. you can refer to class iterator as either
    940 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    941 // only, for example, we would mistakenly think that a class named
    942 // iterator is an STL container.
    943 //
    944 // Also note that the simpler approach of overloading
    945 // IsContainerTest(typename C::const_iterator*) and
    946 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    947 typedef int IsContainer;
    948 template <class C>
    949 IsContainer IsContainerTest(int /* dummy */,
    950                             typename C::iterator* /* it */ = NULL,
    951                             typename C::const_iterator* /* const_it */ = NULL) {
    952   return 0;
    953 }
    954 
    955 typedef char IsNotContainer;
    956 template <class C>
    957 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    958 
    959 // EnableIf<condition>::type is void when 'Cond' is true, and
    960 // undefined when 'Cond' is false.  To use SFINAE to make a function
    961 // overload only apply when a particular expression is true, add
    962 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    963 template<bool> struct EnableIf;
    964 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    965 
    966 // Utilities for native arrays.
    967 
    968 // ArrayEq() compares two k-dimensional native arrays using the
    969 // elements' operator==, where k can be any integer >= 0.  When k is
    970 // 0, ArrayEq() degenerates into comparing a single pair of values.
    971 
    972 template <typename T, typename U>
    973 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    974 
    975 // This generic version is used when k is 0.
    976 template <typename T, typename U>
    977 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    978 
    979 // This overload is used when k >= 1.
    980 template <typename T, typename U, size_t N>
    981 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    982   return internal::ArrayEq(lhs, N, rhs);
    983 }
    984 
    985 // This helper reduces code bloat.  If we instead put its logic inside
    986 // the previous ArrayEq() function, arrays with different sizes would
    987 // lead to different copies of the template code.
    988 template <typename T, typename U>
    989 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    990   for (size_t i = 0; i != size; i++) {
    991     if (!internal::ArrayEq(lhs[i], rhs[i]))
    992       return false;
    993   }
    994   return true;
    995 }
    996 
    997 // Finds the first element in the iterator range [begin, end) that
    998 // equals elem.  Element may be a native array type itself.
    999 template <typename Iter, typename Element>
   1000 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
   1001   for (Iter it = begin; it != end; ++it) {
   1002     if (internal::ArrayEq(*it, elem))
   1003       return it;
   1004   }
   1005   return end;
   1006 }
   1007 
   1008 // CopyArray() copies a k-dimensional native array using the elements'
   1009 // operator=, where k can be any integer >= 0.  When k is 0,
   1010 // CopyArray() degenerates into copying a single value.
   1011 
   1012 template <typename T, typename U>
   1013 void CopyArray(const T* from, size_t size, U* to);
   1014 
   1015 // This generic version is used when k is 0.
   1016 template <typename T, typename U>
   1017 inline void CopyArray(const T& from, U* to) { *to = from; }
   1018 
   1019 // This overload is used when k >= 1.
   1020 template <typename T, typename U, size_t N>
   1021 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
   1022   internal::CopyArray(from, N, *to);
   1023 }
   1024 
   1025 // This helper reduces code bloat.  If we instead put its logic inside
   1026 // the previous CopyArray() function, arrays with different sizes
   1027 // would lead to different copies of the template code.
   1028 template <typename T, typename U>
   1029 void CopyArray(const T* from, size_t size, U* to) {
   1030   for (size_t i = 0; i != size; i++) {
   1031     internal::CopyArray(from[i], to + i);
   1032   }
   1033 }
   1034 
   1035 // The relation between an NativeArray object (see below) and the
   1036 // native array it represents.
   1037 enum RelationToSource {
   1038   kReference,  // The NativeArray references the native array.
   1039   kCopy        // The NativeArray makes a copy of the native array and
   1040                // owns the copy.
   1041 };
   1042 
   1043 // Adapts a native array to a read-only STL-style container.  Instead
   1044 // of the complete STL container concept, this adaptor only implements
   1045 // members useful for Google Mock's container matchers.  New members
   1046 // should be added as needed.  To simplify the implementation, we only
   1047 // support Element being a raw type (i.e. having no top-level const or
   1048 // reference modifier).  It's the client's responsibility to satisfy
   1049 // this requirement.  Element can be an array type itself (hence
   1050 // multi-dimensional arrays are supported).
   1051 template <typename Element>
   1052 class NativeArray {
   1053  public:
   1054   // STL-style container typedefs.
   1055   typedef Element value_type;
   1056   typedef Element* iterator;
   1057   typedef const Element* const_iterator;
   1058 
   1059   // Constructs from a native array.
   1060   NativeArray(const Element* array, size_t count, RelationToSource relation) {
   1061     Init(array, count, relation);
   1062   }
   1063 
   1064   // Copy constructor.
   1065   NativeArray(const NativeArray& rhs) {
   1066     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
   1067   }
   1068 
   1069   ~NativeArray() {
   1070     // Ensures that the user doesn't instantiate NativeArray with a
   1071     // const or reference type.
   1072     static_cast<void>(StaticAssertTypeEqHelper<Element,
   1073         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
   1074     if (relation_to_source_ == kCopy)
   1075       delete[] array_;
   1076   }
   1077 
   1078   // STL-style container methods.
   1079   size_t size() const { return size_; }
   1080   const_iterator begin() const { return array_; }
   1081   const_iterator end() const { return array_ + size_; }
   1082   bool operator==(const NativeArray& rhs) const {
   1083     return size() == rhs.size() &&
   1084         ArrayEq(begin(), size(), rhs.begin());
   1085   }
   1086 
   1087  private:
   1088   // Initializes this object; makes a copy of the input array if
   1089   // 'relation' is kCopy.
   1090   void Init(const Element* array, size_t a_size, RelationToSource relation) {
   1091     if (relation == kReference) {
   1092       array_ = array;
   1093     } else {
   1094       Element* const copy = new Element[a_size];
   1095       CopyArray(array, a_size, copy);
   1096       array_ = copy;
   1097     }
   1098     size_ = a_size;
   1099     relation_to_source_ = relation;
   1100   }
   1101 
   1102   const Element* array_;
   1103   size_t size_;
   1104   RelationToSource relation_to_source_;
   1105 
   1106   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1107 };
   1108 
   1109 }  // namespace internal
   1110 }  // namespace testing
   1111 
   1112 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1113   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1114     = ::testing::Message()
   1115 
   1116 #define GTEST_MESSAGE_(message, result_type) \
   1117   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1118 
   1119 #define GTEST_FATAL_FAILURE_(message) \
   1120   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1121 
   1122 #define GTEST_NONFATAL_FAILURE_(message) \
   1123   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1124 
   1125 #define GTEST_SUCCESS_(message) \
   1126   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1127 
   1128 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1129 // statement if it returns or throws (or doesn't return or throw in some
   1130 // situations).
   1131 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1132   if (::testing::internal::AlwaysTrue()) { statement; }
   1133 
   1134 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1135   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1136   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1137     bool gtest_caught_expected = false; \
   1138     try { \
   1139       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1140     } \
   1141     catch (expected_exception const&) { \
   1142       gtest_caught_expected = true; \
   1143     } \
   1144     catch (...) { \
   1145       gtest_msg.value = \
   1146           "Expected: " #statement " throws an exception of type " \
   1147           #expected_exception ".\n  Actual: it throws a different type."; \
   1148       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1149     } \
   1150     if (!gtest_caught_expected) { \
   1151       gtest_msg.value = \
   1152           "Expected: " #statement " throws an exception of type " \
   1153           #expected_exception ".\n  Actual: it throws nothing."; \
   1154       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1155     } \
   1156   } else \
   1157     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1158       fail(gtest_msg.value)
   1159 
   1160 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1161   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1162   if (::testing::internal::AlwaysTrue()) { \
   1163     try { \
   1164       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1165     } \
   1166     catch (...) { \
   1167       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1168     } \
   1169   } else \
   1170     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1171       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1172            "  Actual: it throws.")
   1173 
   1174 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1175   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1176   if (::testing::internal::AlwaysTrue()) { \
   1177     bool gtest_caught_any = false; \
   1178     try { \
   1179       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1180     } \
   1181     catch (...) { \
   1182       gtest_caught_any = true; \
   1183     } \
   1184     if (!gtest_caught_any) { \
   1185       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1186     } \
   1187   } else \
   1188     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1189       fail("Expected: " #statement " throws an exception.\n" \
   1190            "  Actual: it doesn't.")
   1191 
   1192 
   1193 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1194 // either a boolean expression or an AssertionResult. text is a textual
   1195 // represenation of expression as it was passed into the EXPECT_TRUE.
   1196 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1197   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1198   if (const ::testing::AssertionResult gtest_ar_ = \
   1199       ::testing::AssertionResult(expression)) \
   1200     ; \
   1201   else \
   1202     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1203         gtest_ar_, text, #actual, #expected).c_str())
   1204 
   1205 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1206   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1207   if (::testing::internal::AlwaysTrue()) { \
   1208     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1209     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1210     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1211       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1212     } \
   1213   } else \
   1214     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1215       fail("Expected: " #statement " doesn't generate new fatal " \
   1216            "failures in the current thread.\n" \
   1217            "  Actual: it does.")
   1218 
   1219 // Expands to the name of the class that implements the given test.
   1220 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1221   test_case_name##_##test_name##_Test
   1222 
   1223 // Helper macro for defining tests.
   1224 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1225 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1226  public:\
   1227   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1228  private:\
   1229   virtual void TestBody();\
   1230   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1231   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1232       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1233 };\
   1234 \
   1235 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1236   ::test_info_ =\
   1237     ::testing::internal::MakeAndRegisterTestInfo(\
   1238         #test_case_name, #test_name, NULL, NULL, \
   1239         (parent_id), \
   1240         parent_class::SetUpTestCase, \
   1241         parent_class::TearDownTestCase, \
   1242         new ::testing::internal::TestFactoryImpl<\
   1243             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1244 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1245 
   1246 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1247