1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include <climits> 26 #include <cmath> 27 #include <cstdlib> 28 #include <cstring> 29 using namespace llvm; 30 31 #define DEBUG_TYPE "apint" 32 33 /// A utility function for allocating memory, checking for allocation failures, 34 /// and ensuring the contents are zeroed. 35 inline static uint64_t* getClearedMemory(unsigned numWords) { 36 uint64_t * result = new uint64_t[numWords]; 37 assert(result && "APInt memory allocation fails!"); 38 memset(result, 0, numWords * sizeof(uint64_t)); 39 return result; 40 } 41 42 /// A utility function for allocating memory and checking for allocation 43 /// failure. The content is not zeroed. 44 inline static uint64_t* getMemory(unsigned numWords) { 45 uint64_t * result = new uint64_t[numWords]; 46 assert(result && "APInt memory allocation fails!"); 47 return result; 48 } 49 50 /// A utility function that converts a character to a digit. 51 inline static unsigned getDigit(char cdigit, uint8_t radix) { 52 unsigned r; 53 54 if (radix == 16 || radix == 36) { 55 r = cdigit - '0'; 56 if (r <= 9) 57 return r; 58 59 r = cdigit - 'A'; 60 if (r <= radix - 11U) 61 return r + 10; 62 63 r = cdigit - 'a'; 64 if (r <= radix - 11U) 65 return r + 10; 66 67 radix = 10; 68 } 69 70 r = cdigit - '0'; 71 if (r < radix) 72 return r; 73 74 return -1U; 75 } 76 77 78 void APInt::initSlowCase(uint64_t val, bool isSigned) { 79 pVal = getClearedMemory(getNumWords()); 80 pVal[0] = val; 81 if (isSigned && int64_t(val) < 0) 82 for (unsigned i = 1; i < getNumWords(); ++i) 83 pVal[i] = -1ULL; 84 } 85 86 void APInt::initSlowCase(const APInt& that) { 87 pVal = getMemory(getNumWords()); 88 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); 89 } 90 91 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 92 assert(BitWidth && "Bitwidth too small"); 93 assert(bigVal.data() && "Null pointer detected!"); 94 if (isSingleWord()) 95 VAL = bigVal[0]; 96 else { 97 // Get memory, cleared to 0 98 pVal = getClearedMemory(getNumWords()); 99 // Calculate the number of words to copy 100 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 101 // Copy the words from bigVal to pVal 102 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); 103 } 104 // Make sure unused high bits are cleared 105 clearUnusedBits(); 106 } 107 108 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 109 : BitWidth(numBits), VAL(0) { 110 initFromArray(bigVal); 111 } 112 113 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 114 : BitWidth(numBits), VAL(0) { 115 initFromArray(makeArrayRef(bigVal, numWords)); 116 } 117 118 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 119 : BitWidth(numbits), VAL(0) { 120 assert(BitWidth && "Bitwidth too small"); 121 fromString(numbits, Str, radix); 122 } 123 124 APInt& APInt::AssignSlowCase(const APInt& RHS) { 125 // Don't do anything for X = X 126 if (this == &RHS) 127 return *this; 128 129 if (BitWidth == RHS.getBitWidth()) { 130 // assume same bit-width single-word case is already handled 131 assert(!isSingleWord()); 132 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); 133 return *this; 134 } 135 136 if (isSingleWord()) { 137 // assume case where both are single words is already handled 138 assert(!RHS.isSingleWord()); 139 VAL = 0; 140 pVal = getMemory(RHS.getNumWords()); 141 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 142 } else if (getNumWords() == RHS.getNumWords()) 143 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 144 else if (RHS.isSingleWord()) { 145 delete [] pVal; 146 VAL = RHS.VAL; 147 } else { 148 delete [] pVal; 149 pVal = getMemory(RHS.getNumWords()); 150 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 151 } 152 BitWidth = RHS.BitWidth; 153 return clearUnusedBits(); 154 } 155 156 APInt& APInt::operator=(uint64_t RHS) { 157 if (isSingleWord()) 158 VAL = RHS; 159 else { 160 pVal[0] = RHS; 161 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 162 } 163 return clearUnusedBits(); 164 } 165 166 /// This method 'profiles' an APInt for use with FoldingSet. 167 void APInt::Profile(FoldingSetNodeID& ID) const { 168 ID.AddInteger(BitWidth); 169 170 if (isSingleWord()) { 171 ID.AddInteger(VAL); 172 return; 173 } 174 175 unsigned NumWords = getNumWords(); 176 for (unsigned i = 0; i < NumWords; ++i) 177 ID.AddInteger(pVal[i]); 178 } 179 180 /// This function adds a single "digit" integer, y, to the multiple 181 /// "digit" integer array, x[]. x[] is modified to reflect the addition and 182 /// 1 is returned if there is a carry out, otherwise 0 is returned. 183 /// @returns the carry of the addition. 184 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 185 for (unsigned i = 0; i < len; ++i) { 186 dest[i] = y + x[i]; 187 if (dest[i] < y) 188 y = 1; // Carry one to next digit. 189 else { 190 y = 0; // No need to carry so exit early 191 break; 192 } 193 } 194 return y; 195 } 196 197 /// @brief Prefix increment operator. Increments the APInt by one. 198 APInt& APInt::operator++() { 199 if (isSingleWord()) 200 ++VAL; 201 else 202 add_1(pVal, pVal, getNumWords(), 1); 203 return clearUnusedBits(); 204 } 205 206 /// This function subtracts a single "digit" (64-bit word), y, from 207 /// the multi-digit integer array, x[], propagating the borrowed 1 value until 208 /// no further borrowing is neeeded or it runs out of "digits" in x. The result 209 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. 210 /// In other words, if y > x then this function returns 1, otherwise 0. 211 /// @returns the borrow out of the subtraction 212 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { 213 for (unsigned i = 0; i < len; ++i) { 214 uint64_t X = x[i]; 215 x[i] -= y; 216 if (y > X) 217 y = 1; // We have to "borrow 1" from next "digit" 218 else { 219 y = 0; // No need to borrow 220 break; // Remaining digits are unchanged so exit early 221 } 222 } 223 return bool(y); 224 } 225 226 /// @brief Prefix decrement operator. Decrements the APInt by one. 227 APInt& APInt::operator--() { 228 if (isSingleWord()) 229 --VAL; 230 else 231 sub_1(pVal, getNumWords(), 1); 232 return clearUnusedBits(); 233 } 234 235 /// This function adds the integer array x to the integer array Y and 236 /// places the result in dest. 237 /// @returns the carry out from the addition 238 /// @brief General addition of 64-bit integer arrays 239 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, 240 unsigned len) { 241 bool carry = false; 242 for (unsigned i = 0; i< len; ++i) { 243 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x 244 dest[i] = x[i] + y[i] + carry; 245 carry = dest[i] < limit || (carry && dest[i] == limit); 246 } 247 return carry; 248 } 249 250 /// Adds the RHS APint to this APInt. 251 /// @returns this, after addition of RHS. 252 /// @brief Addition assignment operator. 253 APInt& APInt::operator+=(const APInt& RHS) { 254 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 255 if (isSingleWord()) 256 VAL += RHS.VAL; 257 else { 258 add(pVal, pVal, RHS.pVal, getNumWords()); 259 } 260 return clearUnusedBits(); 261 } 262 263 APInt& APInt::operator+=(uint64_t RHS) { 264 if (isSingleWord()) 265 VAL += RHS; 266 else 267 add_1(pVal, pVal, getNumWords(), RHS); 268 return clearUnusedBits(); 269 } 270 271 /// Subtracts the integer array y from the integer array x 272 /// @returns returns the borrow out. 273 /// @brief Generalized subtraction of 64-bit integer arrays. 274 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 275 unsigned len) { 276 bool borrow = false; 277 for (unsigned i = 0; i < len; ++i) { 278 uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; 279 borrow = y[i] > x_tmp || (borrow && x[i] == 0); 280 dest[i] = x_tmp - y[i]; 281 } 282 return borrow; 283 } 284 285 /// Subtracts the RHS APInt from this APInt 286 /// @returns this, after subtraction 287 /// @brief Subtraction assignment operator. 288 APInt& APInt::operator-=(const APInt& RHS) { 289 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 290 if (isSingleWord()) 291 VAL -= RHS.VAL; 292 else 293 sub(pVal, pVal, RHS.pVal, getNumWords()); 294 return clearUnusedBits(); 295 } 296 297 APInt& APInt::operator-=(uint64_t RHS) { 298 if (isSingleWord()) 299 VAL -= RHS; 300 else 301 sub_1(pVal, getNumWords(), RHS); 302 return clearUnusedBits(); 303 } 304 305 /// Multiplies an integer array, x, by a uint64_t integer and places the result 306 /// into dest. 307 /// @returns the carry out of the multiplication. 308 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. 309 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 310 // Split y into high 32-bit part (hy) and low 32-bit part (ly) 311 uint64_t ly = y & 0xffffffffULL, hy = y >> 32; 312 uint64_t carry = 0; 313 314 // For each digit of x. 315 for (unsigned i = 0; i < len; ++i) { 316 // Split x into high and low words 317 uint64_t lx = x[i] & 0xffffffffULL; 318 uint64_t hx = x[i] >> 32; 319 // hasCarry - A flag to indicate if there is a carry to the next digit. 320 // hasCarry == 0, no carry 321 // hasCarry == 1, has carry 322 // hasCarry == 2, no carry and the calculation result == 0. 323 uint8_t hasCarry = 0; 324 dest[i] = carry + lx * ly; 325 // Determine if the add above introduces carry. 326 hasCarry = (dest[i] < carry) ? 1 : 0; 327 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); 328 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 329 // (2^32 - 1) + 2^32 = 2^64. 330 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 331 332 carry += (lx * hy) & 0xffffffffULL; 333 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); 334 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 335 (carry >> 32) + ((lx * hy) >> 32) + hx * hy; 336 } 337 return carry; 338 } 339 340 /// Multiplies integer array x by integer array y and stores the result into 341 /// the integer array dest. Note that dest's size must be >= xlen + ylen. 342 /// @brief Generalized multiplicate of integer arrays. 343 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], 344 unsigned ylen) { 345 dest[xlen] = mul_1(dest, x, xlen, y[0]); 346 for (unsigned i = 1; i < ylen; ++i) { 347 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; 348 uint64_t carry = 0, lx = 0, hx = 0; 349 for (unsigned j = 0; j < xlen; ++j) { 350 lx = x[j] & 0xffffffffULL; 351 hx = x[j] >> 32; 352 // hasCarry - A flag to indicate if has carry. 353 // hasCarry == 0, no carry 354 // hasCarry == 1, has carry 355 // hasCarry == 2, no carry and the calculation result == 0. 356 uint8_t hasCarry = 0; 357 uint64_t resul = carry + lx * ly; 358 hasCarry = (resul < carry) ? 1 : 0; 359 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); 360 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 361 362 carry += (lx * hy) & 0xffffffffULL; 363 resul = (carry << 32) | (resul & 0xffffffffULL); 364 dest[i+j] += resul; 365 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ 366 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 367 ((lx * hy) >> 32) + hx * hy; 368 } 369 dest[i+xlen] = carry; 370 } 371 } 372 373 APInt& APInt::operator*=(const APInt& RHS) { 374 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 375 if (isSingleWord()) { 376 VAL *= RHS.VAL; 377 clearUnusedBits(); 378 return *this; 379 } 380 381 // Get some bit facts about LHS and check for zero 382 unsigned lhsBits = getActiveBits(); 383 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; 384 if (!lhsWords) 385 // 0 * X ===> 0 386 return *this; 387 388 // Get some bit facts about RHS and check for zero 389 unsigned rhsBits = RHS.getActiveBits(); 390 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; 391 if (!rhsWords) { 392 // X * 0 ===> 0 393 clearAllBits(); 394 return *this; 395 } 396 397 // Allocate space for the result 398 unsigned destWords = rhsWords + lhsWords; 399 uint64_t *dest = getMemory(destWords); 400 401 // Perform the long multiply 402 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); 403 404 // Copy result back into *this 405 clearAllBits(); 406 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; 407 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); 408 clearUnusedBits(); 409 410 // delete dest array and return 411 delete[] dest; 412 return *this; 413 } 414 415 APInt& APInt::operator&=(const APInt& RHS) { 416 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 417 if (isSingleWord()) { 418 VAL &= RHS.VAL; 419 return *this; 420 } 421 unsigned numWords = getNumWords(); 422 for (unsigned i = 0; i < numWords; ++i) 423 pVal[i] &= RHS.pVal[i]; 424 return *this; 425 } 426 427 APInt& APInt::operator|=(const APInt& RHS) { 428 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 429 if (isSingleWord()) { 430 VAL |= RHS.VAL; 431 return *this; 432 } 433 unsigned numWords = getNumWords(); 434 for (unsigned i = 0; i < numWords; ++i) 435 pVal[i] |= RHS.pVal[i]; 436 return *this; 437 } 438 439 APInt& APInt::operator^=(const APInt& RHS) { 440 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 441 if (isSingleWord()) { 442 VAL ^= RHS.VAL; 443 this->clearUnusedBits(); 444 return *this; 445 } 446 unsigned numWords = getNumWords(); 447 for (unsigned i = 0; i < numWords; ++i) 448 pVal[i] ^= RHS.pVal[i]; 449 return clearUnusedBits(); 450 } 451 452 APInt APInt::AndSlowCase(const APInt& RHS) const { 453 unsigned numWords = getNumWords(); 454 uint64_t* val = getMemory(numWords); 455 for (unsigned i = 0; i < numWords; ++i) 456 val[i] = pVal[i] & RHS.pVal[i]; 457 return APInt(val, getBitWidth()); 458 } 459 460 APInt APInt::OrSlowCase(const APInt& RHS) const { 461 unsigned numWords = getNumWords(); 462 uint64_t *val = getMemory(numWords); 463 for (unsigned i = 0; i < numWords; ++i) 464 val[i] = pVal[i] | RHS.pVal[i]; 465 return APInt(val, getBitWidth()); 466 } 467 468 APInt APInt::XorSlowCase(const APInt& RHS) const { 469 unsigned numWords = getNumWords(); 470 uint64_t *val = getMemory(numWords); 471 for (unsigned i = 0; i < numWords; ++i) 472 val[i] = pVal[i] ^ RHS.pVal[i]; 473 474 APInt Result(val, getBitWidth()); 475 // 0^0==1 so clear the high bits in case they got set. 476 Result.clearUnusedBits(); 477 return Result; 478 } 479 480 APInt APInt::operator*(const APInt& RHS) const { 481 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 482 if (isSingleWord()) 483 return APInt(BitWidth, VAL * RHS.VAL); 484 APInt Result(*this); 485 Result *= RHS; 486 return Result; 487 } 488 489 bool APInt::EqualSlowCase(const APInt& RHS) const { 490 return std::equal(pVal, pVal + getNumWords(), RHS.pVal); 491 } 492 493 bool APInt::EqualSlowCase(uint64_t Val) const { 494 unsigned n = getActiveBits(); 495 if (n <= APINT_BITS_PER_WORD) 496 return pVal[0] == Val; 497 else 498 return false; 499 } 500 501 bool APInt::ult(const APInt& RHS) const { 502 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 503 if (isSingleWord()) 504 return VAL < RHS.VAL; 505 506 // Get active bit length of both operands 507 unsigned n1 = getActiveBits(); 508 unsigned n2 = RHS.getActiveBits(); 509 510 // If magnitude of LHS is less than RHS, return true. 511 if (n1 < n2) 512 return true; 513 514 // If magnitude of RHS is greather than LHS, return false. 515 if (n2 < n1) 516 return false; 517 518 // If they bot fit in a word, just compare the low order word 519 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) 520 return pVal[0] < RHS.pVal[0]; 521 522 // Otherwise, compare all words 523 unsigned topWord = whichWord(std::max(n1,n2)-1); 524 for (int i = topWord; i >= 0; --i) { 525 if (pVal[i] > RHS.pVal[i]) 526 return false; 527 if (pVal[i] < RHS.pVal[i]) 528 return true; 529 } 530 return false; 531 } 532 533 bool APInt::slt(const APInt& RHS) const { 534 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 535 if (isSingleWord()) { 536 int64_t lhsSext = SignExtend64(VAL, BitWidth); 537 int64_t rhsSext = SignExtend64(RHS.VAL, BitWidth); 538 return lhsSext < rhsSext; 539 } 540 541 bool lhsNeg = isNegative(); 542 bool rhsNeg = RHS.isNegative(); 543 544 // If the sign bits don't match, then (LHS < RHS) if LHS is negative 545 if (lhsNeg != rhsNeg) 546 return lhsNeg; 547 548 // Otherwise we can just use an unsigned comparision, because even negative 549 // numbers compare correctly this way if both have the same signed-ness. 550 return ult(RHS); 551 } 552 553 void APInt::setBit(unsigned bitPosition) { 554 if (isSingleWord()) 555 VAL |= maskBit(bitPosition); 556 else 557 pVal[whichWord(bitPosition)] |= maskBit(bitPosition); 558 } 559 560 /// Set the given bit to 0 whose position is given as "bitPosition". 561 /// @brief Set a given bit to 0. 562 void APInt::clearBit(unsigned bitPosition) { 563 if (isSingleWord()) 564 VAL &= ~maskBit(bitPosition); 565 else 566 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); 567 } 568 569 /// @brief Toggle every bit to its opposite value. 570 571 /// Toggle a given bit to its opposite value whose position is given 572 /// as "bitPosition". 573 /// @brief Toggles a given bit to its opposite value. 574 void APInt::flipBit(unsigned bitPosition) { 575 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 576 if ((*this)[bitPosition]) clearBit(bitPosition); 577 else setBit(bitPosition); 578 } 579 580 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 581 assert(!str.empty() && "Invalid string length"); 582 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 583 radix == 36) && 584 "Radix should be 2, 8, 10, 16, or 36!"); 585 586 size_t slen = str.size(); 587 588 // Each computation below needs to know if it's negative. 589 StringRef::iterator p = str.begin(); 590 unsigned isNegative = *p == '-'; 591 if (*p == '-' || *p == '+') { 592 p++; 593 slen--; 594 assert(slen && "String is only a sign, needs a value."); 595 } 596 597 // For radixes of power-of-two values, the bits required is accurately and 598 // easily computed 599 if (radix == 2) 600 return slen + isNegative; 601 if (radix == 8) 602 return slen * 3 + isNegative; 603 if (radix == 16) 604 return slen * 4 + isNegative; 605 606 // FIXME: base 36 607 608 // This is grossly inefficient but accurate. We could probably do something 609 // with a computation of roughly slen*64/20 and then adjust by the value of 610 // the first few digits. But, I'm not sure how accurate that could be. 611 612 // Compute a sufficient number of bits that is always large enough but might 613 // be too large. This avoids the assertion in the constructor. This 614 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 615 // bits in that case. 616 unsigned sufficient 617 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 618 : (slen == 1 ? 7 : slen * 16/3); 619 620 // Convert to the actual binary value. 621 APInt tmp(sufficient, StringRef(p, slen), radix); 622 623 // Compute how many bits are required. If the log is infinite, assume we need 624 // just bit. 625 unsigned log = tmp.logBase2(); 626 if (log == (unsigned)-1) { 627 return isNegative + 1; 628 } else { 629 return isNegative + log + 1; 630 } 631 } 632 633 hash_code llvm::hash_value(const APInt &Arg) { 634 if (Arg.isSingleWord()) 635 return hash_combine(Arg.VAL); 636 637 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); 638 } 639 640 bool APInt::isSplat(unsigned SplatSizeInBits) const { 641 assert(getBitWidth() % SplatSizeInBits == 0 && 642 "SplatSizeInBits must divide width!"); 643 // We can check that all parts of an integer are equal by making use of a 644 // little trick: rotate and check if it's still the same value. 645 return *this == rotl(SplatSizeInBits); 646 } 647 648 /// This function returns the high "numBits" bits of this APInt. 649 APInt APInt::getHiBits(unsigned numBits) const { 650 return APIntOps::lshr(*this, BitWidth - numBits); 651 } 652 653 /// This function returns the low "numBits" bits of this APInt. 654 APInt APInt::getLoBits(unsigned numBits) const { 655 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 656 BitWidth - numBits); 657 } 658 659 unsigned APInt::countLeadingZerosSlowCase() const { 660 unsigned Count = 0; 661 for (int i = getNumWords()-1; i >= 0; --i) { 662 integerPart V = pVal[i]; 663 if (V == 0) 664 Count += APINT_BITS_PER_WORD; 665 else { 666 Count += llvm::countLeadingZeros(V); 667 break; 668 } 669 } 670 // Adjust for unused bits in the most significant word (they are zero). 671 unsigned Mod = BitWidth % APINT_BITS_PER_WORD; 672 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; 673 return Count; 674 } 675 676 unsigned APInt::countLeadingOnes() const { 677 if (isSingleWord()) 678 return llvm::countLeadingOnes(VAL << (APINT_BITS_PER_WORD - BitWidth)); 679 680 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 681 unsigned shift; 682 if (!highWordBits) { 683 highWordBits = APINT_BITS_PER_WORD; 684 shift = 0; 685 } else { 686 shift = APINT_BITS_PER_WORD - highWordBits; 687 } 688 int i = getNumWords() - 1; 689 unsigned Count = llvm::countLeadingOnes(pVal[i] << shift); 690 if (Count == highWordBits) { 691 for (i--; i >= 0; --i) { 692 if (pVal[i] == -1ULL) 693 Count += APINT_BITS_PER_WORD; 694 else { 695 Count += llvm::countLeadingOnes(pVal[i]); 696 break; 697 } 698 } 699 } 700 return Count; 701 } 702 703 unsigned APInt::countTrailingZeros() const { 704 if (isSingleWord()) 705 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth); 706 unsigned Count = 0; 707 unsigned i = 0; 708 for (; i < getNumWords() && pVal[i] == 0; ++i) 709 Count += APINT_BITS_PER_WORD; 710 if (i < getNumWords()) 711 Count += llvm::countTrailingZeros(pVal[i]); 712 return std::min(Count, BitWidth); 713 } 714 715 unsigned APInt::countTrailingOnesSlowCase() const { 716 unsigned Count = 0; 717 unsigned i = 0; 718 for (; i < getNumWords() && pVal[i] == -1ULL; ++i) 719 Count += APINT_BITS_PER_WORD; 720 if (i < getNumWords()) 721 Count += llvm::countTrailingOnes(pVal[i]); 722 return std::min(Count, BitWidth); 723 } 724 725 unsigned APInt::countPopulationSlowCase() const { 726 unsigned Count = 0; 727 for (unsigned i = 0; i < getNumWords(); ++i) 728 Count += llvm::countPopulation(pVal[i]); 729 return Count; 730 } 731 732 /// Perform a logical right-shift from Src to Dst, which must be equal or 733 /// non-overlapping, of Words words, by Shift, which must be less than 64. 734 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, 735 unsigned Shift) { 736 uint64_t Carry = 0; 737 for (int I = Words - 1; I >= 0; --I) { 738 uint64_t Tmp = Src[I]; 739 Dst[I] = (Tmp >> Shift) | Carry; 740 Carry = Tmp << (64 - Shift); 741 } 742 } 743 744 APInt APInt::byteSwap() const { 745 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 746 if (BitWidth == 16) 747 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); 748 if (BitWidth == 32) 749 return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); 750 if (BitWidth == 48) { 751 unsigned Tmp1 = unsigned(VAL >> 16); 752 Tmp1 = ByteSwap_32(Tmp1); 753 uint16_t Tmp2 = uint16_t(VAL); 754 Tmp2 = ByteSwap_16(Tmp2); 755 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 756 } 757 if (BitWidth == 64) 758 return APInt(BitWidth, ByteSwap_64(VAL)); 759 760 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 761 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 762 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); 763 if (Result.BitWidth != BitWidth) { 764 lshrNear(Result.pVal, Result.pVal, getNumWords(), 765 Result.BitWidth - BitWidth); 766 Result.BitWidth = BitWidth; 767 } 768 return Result; 769 } 770 771 APInt APInt::reverseBits() const { 772 switch (BitWidth) { 773 case 64: 774 return APInt(BitWidth, llvm::reverseBits<uint64_t>(VAL)); 775 case 32: 776 return APInt(BitWidth, llvm::reverseBits<uint32_t>(VAL)); 777 case 16: 778 return APInt(BitWidth, llvm::reverseBits<uint16_t>(VAL)); 779 case 8: 780 return APInt(BitWidth, llvm::reverseBits<uint8_t>(VAL)); 781 default: 782 break; 783 } 784 785 APInt Val(*this); 786 APInt Reversed(*this); 787 int S = BitWidth - 1; 788 789 const APInt One(BitWidth, 1); 790 791 for ((Val = Val.lshr(1)); Val != 0; (Val = Val.lshr(1))) { 792 Reversed <<= 1; 793 Reversed |= (Val & One); 794 --S; 795 } 796 797 Reversed <<= S; 798 return Reversed; 799 } 800 801 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 802 const APInt& API2) { 803 APInt A = API1, B = API2; 804 while (!!B) { 805 APInt T = B; 806 B = APIntOps::urem(A, B); 807 A = T; 808 } 809 return A; 810 } 811 812 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 813 union { 814 double D; 815 uint64_t I; 816 } T; 817 T.D = Double; 818 819 // Get the sign bit from the highest order bit 820 bool isNeg = T.I >> 63; 821 822 // Get the 11-bit exponent and adjust for the 1023 bit bias 823 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 824 825 // If the exponent is negative, the value is < 0 so just return 0. 826 if (exp < 0) 827 return APInt(width, 0u); 828 829 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 830 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 831 832 // If the exponent doesn't shift all bits out of the mantissa 833 if (exp < 52) 834 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 835 APInt(width, mantissa >> (52 - exp)); 836 837 // If the client didn't provide enough bits for us to shift the mantissa into 838 // then the result is undefined, just return 0 839 if (width <= exp - 52) 840 return APInt(width, 0); 841 842 // Otherwise, we have to shift the mantissa bits up to the right location 843 APInt Tmp(width, mantissa); 844 Tmp = Tmp.shl((unsigned)exp - 52); 845 return isNeg ? -Tmp : Tmp; 846 } 847 848 /// This function converts this APInt to a double. 849 /// The layout for double is as following (IEEE Standard 754): 850 /// -------------------------------------- 851 /// | Sign Exponent Fraction Bias | 852 /// |-------------------------------------- | 853 /// | 1[63] 11[62-52] 52[51-00] 1023 | 854 /// -------------------------------------- 855 double APInt::roundToDouble(bool isSigned) const { 856 857 // Handle the simple case where the value is contained in one uint64_t. 858 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 859 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 860 if (isSigned) { 861 int64_t sext = SignExtend64(getWord(0), BitWidth); 862 return double(sext); 863 } else 864 return double(getWord(0)); 865 } 866 867 // Determine if the value is negative. 868 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 869 870 // Construct the absolute value if we're negative. 871 APInt Tmp(isNeg ? -(*this) : (*this)); 872 873 // Figure out how many bits we're using. 874 unsigned n = Tmp.getActiveBits(); 875 876 // The exponent (without bias normalization) is just the number of bits 877 // we are using. Note that the sign bit is gone since we constructed the 878 // absolute value. 879 uint64_t exp = n; 880 881 // Return infinity for exponent overflow 882 if (exp > 1023) { 883 if (!isSigned || !isNeg) 884 return std::numeric_limits<double>::infinity(); 885 else 886 return -std::numeric_limits<double>::infinity(); 887 } 888 exp += 1023; // Increment for 1023 bias 889 890 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 891 // extract the high 52 bits from the correct words in pVal. 892 uint64_t mantissa; 893 unsigned hiWord = whichWord(n-1); 894 if (hiWord == 0) { 895 mantissa = Tmp.pVal[0]; 896 if (n > 52) 897 mantissa >>= n - 52; // shift down, we want the top 52 bits. 898 } else { 899 assert(hiWord > 0 && "huh?"); 900 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 901 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 902 mantissa = hibits | lobits; 903 } 904 905 // The leading bit of mantissa is implicit, so get rid of it. 906 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 907 union { 908 double D; 909 uint64_t I; 910 } T; 911 T.I = sign | (exp << 52) | mantissa; 912 return T.D; 913 } 914 915 // Truncate to new width. 916 APInt APInt::trunc(unsigned width) const { 917 assert(width < BitWidth && "Invalid APInt Truncate request"); 918 assert(width && "Can't truncate to 0 bits"); 919 920 if (width <= APINT_BITS_PER_WORD) 921 return APInt(width, getRawData()[0]); 922 923 APInt Result(getMemory(getNumWords(width)), width); 924 925 // Copy full words. 926 unsigned i; 927 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 928 Result.pVal[i] = pVal[i]; 929 930 // Truncate and copy any partial word. 931 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 932 if (bits != 0) 933 Result.pVal[i] = pVal[i] << bits >> bits; 934 935 return Result; 936 } 937 938 // Sign extend to a new width. 939 APInt APInt::sext(unsigned width) const { 940 assert(width > BitWidth && "Invalid APInt SignExtend request"); 941 942 if (width <= APINT_BITS_PER_WORD) { 943 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); 944 val = (int64_t)val >> (width - BitWidth); 945 return APInt(width, val >> (APINT_BITS_PER_WORD - width)); 946 } 947 948 APInt Result(getMemory(getNumWords(width)), width); 949 950 // Copy full words. 951 unsigned i; 952 uint64_t word = 0; 953 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { 954 word = getRawData()[i]; 955 Result.pVal[i] = word; 956 } 957 958 // Read and sign-extend any partial word. 959 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; 960 if (bits != 0) 961 word = (int64_t)getRawData()[i] << bits >> bits; 962 else 963 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 964 965 // Write remaining full words. 966 for (; i != width / APINT_BITS_PER_WORD; i++) { 967 Result.pVal[i] = word; 968 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 969 } 970 971 // Write any partial word. 972 bits = (0 - width) % APINT_BITS_PER_WORD; 973 if (bits != 0) 974 Result.pVal[i] = word << bits >> bits; 975 976 return Result; 977 } 978 979 // Zero extend to a new width. 980 APInt APInt::zext(unsigned width) const { 981 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 982 983 if (width <= APINT_BITS_PER_WORD) 984 return APInt(width, VAL); 985 986 APInt Result(getMemory(getNumWords(width)), width); 987 988 // Copy words. 989 unsigned i; 990 for (i = 0; i != getNumWords(); i++) 991 Result.pVal[i] = getRawData()[i]; 992 993 // Zero remaining words. 994 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); 995 996 return Result; 997 } 998 999 APInt APInt::zextOrTrunc(unsigned width) const { 1000 if (BitWidth < width) 1001 return zext(width); 1002 if (BitWidth > width) 1003 return trunc(width); 1004 return *this; 1005 } 1006 1007 APInt APInt::sextOrTrunc(unsigned width) const { 1008 if (BitWidth < width) 1009 return sext(width); 1010 if (BitWidth > width) 1011 return trunc(width); 1012 return *this; 1013 } 1014 1015 APInt APInt::zextOrSelf(unsigned width) const { 1016 if (BitWidth < width) 1017 return zext(width); 1018 return *this; 1019 } 1020 1021 APInt APInt::sextOrSelf(unsigned width) const { 1022 if (BitWidth < width) 1023 return sext(width); 1024 return *this; 1025 } 1026 1027 /// Arithmetic right-shift this APInt by shiftAmt. 1028 /// @brief Arithmetic right-shift function. 1029 APInt APInt::ashr(const APInt &shiftAmt) const { 1030 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1031 } 1032 1033 /// Arithmetic right-shift this APInt by shiftAmt. 1034 /// @brief Arithmetic right-shift function. 1035 APInt APInt::ashr(unsigned shiftAmt) const { 1036 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 1037 // Handle a degenerate case 1038 if (shiftAmt == 0) 1039 return *this; 1040 1041 // Handle single word shifts with built-in ashr 1042 if (isSingleWord()) { 1043 if (shiftAmt == BitWidth) 1044 return APInt(BitWidth, 0); // undefined 1045 return APInt(BitWidth, SignExtend64(VAL, BitWidth) >> shiftAmt); 1046 } 1047 1048 // If all the bits were shifted out, the result is, technically, undefined. 1049 // We return -1 if it was negative, 0 otherwise. We check this early to avoid 1050 // issues in the algorithm below. 1051 if (shiftAmt == BitWidth) { 1052 if (isNegative()) 1053 return APInt(BitWidth, -1ULL, true); 1054 else 1055 return APInt(BitWidth, 0); 1056 } 1057 1058 // Create some space for the result. 1059 uint64_t * val = new uint64_t[getNumWords()]; 1060 1061 // Compute some values needed by the following shift algorithms 1062 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word 1063 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift 1064 unsigned breakWord = getNumWords() - 1 - offset; // last word affected 1065 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? 1066 if (bitsInWord == 0) 1067 bitsInWord = APINT_BITS_PER_WORD; 1068 1069 // If we are shifting whole words, just move whole words 1070 if (wordShift == 0) { 1071 // Move the words containing significant bits 1072 for (unsigned i = 0; i <= breakWord; ++i) 1073 val[i] = pVal[i+offset]; // move whole word 1074 1075 // Adjust the top significant word for sign bit fill, if negative 1076 if (isNegative()) 1077 if (bitsInWord < APINT_BITS_PER_WORD) 1078 val[breakWord] |= ~0ULL << bitsInWord; // set high bits 1079 } else { 1080 // Shift the low order words 1081 for (unsigned i = 0; i < breakWord; ++i) { 1082 // This combines the shifted corresponding word with the low bits from 1083 // the next word (shifted into this word's high bits). 1084 val[i] = (pVal[i+offset] >> wordShift) | 1085 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1086 } 1087 1088 // Shift the break word. In this case there are no bits from the next word 1089 // to include in this word. 1090 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1091 1092 // Deal with sign extension in the break word, and possibly the word before 1093 // it. 1094 if (isNegative()) { 1095 if (wordShift > bitsInWord) { 1096 if (breakWord > 0) 1097 val[breakWord-1] |= 1098 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); 1099 val[breakWord] |= ~0ULL; 1100 } else 1101 val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); 1102 } 1103 } 1104 1105 // Remaining words are 0 or -1, just assign them. 1106 uint64_t fillValue = (isNegative() ? -1ULL : 0); 1107 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1108 val[i] = fillValue; 1109 APInt Result(val, BitWidth); 1110 Result.clearUnusedBits(); 1111 return Result; 1112 } 1113 1114 /// Logical right-shift this APInt by shiftAmt. 1115 /// @brief Logical right-shift function. 1116 APInt APInt::lshr(const APInt &shiftAmt) const { 1117 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1118 } 1119 1120 /// Logical right-shift this APInt by shiftAmt. 1121 /// @brief Logical right-shift function. 1122 APInt APInt::lshr(unsigned shiftAmt) const { 1123 if (isSingleWord()) { 1124 if (shiftAmt >= BitWidth) 1125 return APInt(BitWidth, 0); 1126 else 1127 return APInt(BitWidth, this->VAL >> shiftAmt); 1128 } 1129 1130 // If all the bits were shifted out, the result is 0. This avoids issues 1131 // with shifting by the size of the integer type, which produces undefined 1132 // results. We define these "undefined results" to always be 0. 1133 if (shiftAmt >= BitWidth) 1134 return APInt(BitWidth, 0); 1135 1136 // If none of the bits are shifted out, the result is *this. This avoids 1137 // issues with shifting by the size of the integer type, which produces 1138 // undefined results in the code below. This is also an optimization. 1139 if (shiftAmt == 0) 1140 return *this; 1141 1142 // Create some space for the result. 1143 uint64_t * val = new uint64_t[getNumWords()]; 1144 1145 // If we are shifting less than a word, compute the shift with a simple carry 1146 if (shiftAmt < APINT_BITS_PER_WORD) { 1147 lshrNear(val, pVal, getNumWords(), shiftAmt); 1148 APInt Result(val, BitWidth); 1149 Result.clearUnusedBits(); 1150 return Result; 1151 } 1152 1153 // Compute some values needed by the remaining shift algorithms 1154 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1155 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1156 1157 // If we are shifting whole words, just move whole words 1158 if (wordShift == 0) { 1159 for (unsigned i = 0; i < getNumWords() - offset; ++i) 1160 val[i] = pVal[i+offset]; 1161 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) 1162 val[i] = 0; 1163 APInt Result(val, BitWidth); 1164 Result.clearUnusedBits(); 1165 return Result; 1166 } 1167 1168 // Shift the low order words 1169 unsigned breakWord = getNumWords() - offset -1; 1170 for (unsigned i = 0; i < breakWord; ++i) 1171 val[i] = (pVal[i+offset] >> wordShift) | 1172 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1173 // Shift the break word. 1174 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1175 1176 // Remaining words are 0 1177 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1178 val[i] = 0; 1179 APInt Result(val, BitWidth); 1180 Result.clearUnusedBits(); 1181 return Result; 1182 } 1183 1184 /// Left-shift this APInt by shiftAmt. 1185 /// @brief Left-shift function. 1186 APInt APInt::shl(const APInt &shiftAmt) const { 1187 // It's undefined behavior in C to shift by BitWidth or greater. 1188 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1189 } 1190 1191 APInt APInt::shlSlowCase(unsigned shiftAmt) const { 1192 // If all the bits were shifted out, the result is 0. This avoids issues 1193 // with shifting by the size of the integer type, which produces undefined 1194 // results. We define these "undefined results" to always be 0. 1195 if (shiftAmt == BitWidth) 1196 return APInt(BitWidth, 0); 1197 1198 // If none of the bits are shifted out, the result is *this. This avoids a 1199 // lshr by the words size in the loop below which can produce incorrect 1200 // results. It also avoids the expensive computation below for a common case. 1201 if (shiftAmt == 0) 1202 return *this; 1203 1204 // Create some space for the result. 1205 uint64_t * val = new uint64_t[getNumWords()]; 1206 1207 // If we are shifting less than a word, do it the easy way 1208 if (shiftAmt < APINT_BITS_PER_WORD) { 1209 uint64_t carry = 0; 1210 for (unsigned i = 0; i < getNumWords(); i++) { 1211 val[i] = pVal[i] << shiftAmt | carry; 1212 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); 1213 } 1214 APInt Result(val, BitWidth); 1215 Result.clearUnusedBits(); 1216 return Result; 1217 } 1218 1219 // Compute some values needed by the remaining shift algorithms 1220 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1221 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1222 1223 // If we are shifting whole words, just move whole words 1224 if (wordShift == 0) { 1225 for (unsigned i = 0; i < offset; i++) 1226 val[i] = 0; 1227 for (unsigned i = offset; i < getNumWords(); i++) 1228 val[i] = pVal[i-offset]; 1229 APInt Result(val, BitWidth); 1230 Result.clearUnusedBits(); 1231 return Result; 1232 } 1233 1234 // Copy whole words from this to Result. 1235 unsigned i = getNumWords() - 1; 1236 for (; i > offset; --i) 1237 val[i] = pVal[i-offset] << wordShift | 1238 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); 1239 val[offset] = pVal[0] << wordShift; 1240 for (i = 0; i < offset; ++i) 1241 val[i] = 0; 1242 APInt Result(val, BitWidth); 1243 Result.clearUnusedBits(); 1244 return Result; 1245 } 1246 1247 APInt APInt::rotl(const APInt &rotateAmt) const { 1248 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1249 } 1250 1251 APInt APInt::rotl(unsigned rotateAmt) const { 1252 rotateAmt %= BitWidth; 1253 if (rotateAmt == 0) 1254 return *this; 1255 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1256 } 1257 1258 APInt APInt::rotr(const APInt &rotateAmt) const { 1259 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1260 } 1261 1262 APInt APInt::rotr(unsigned rotateAmt) const { 1263 rotateAmt %= BitWidth; 1264 if (rotateAmt == 0) 1265 return *this; 1266 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1267 } 1268 1269 // Square Root - this method computes and returns the square root of "this". 1270 // Three mechanisms are used for computation. For small values (<= 5 bits), 1271 // a table lookup is done. This gets some performance for common cases. For 1272 // values using less than 52 bits, the value is converted to double and then 1273 // the libc sqrt function is called. The result is rounded and then converted 1274 // back to a uint64_t which is then used to construct the result. Finally, 1275 // the Babylonian method for computing square roots is used. 1276 APInt APInt::sqrt() const { 1277 1278 // Determine the magnitude of the value. 1279 unsigned magnitude = getActiveBits(); 1280 1281 // Use a fast table for some small values. This also gets rid of some 1282 // rounding errors in libc sqrt for small values. 1283 if (magnitude <= 5) { 1284 static const uint8_t results[32] = { 1285 /* 0 */ 0, 1286 /* 1- 2 */ 1, 1, 1287 /* 3- 6 */ 2, 2, 2, 2, 1288 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1289 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1290 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1291 /* 31 */ 6 1292 }; 1293 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); 1294 } 1295 1296 // If the magnitude of the value fits in less than 52 bits (the precision of 1297 // an IEEE double precision floating point value), then we can use the 1298 // libc sqrt function which will probably use a hardware sqrt computation. 1299 // This should be faster than the algorithm below. 1300 if (magnitude < 52) { 1301 return APInt(BitWidth, 1302 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); 1303 } 1304 1305 // Okay, all the short cuts are exhausted. We must compute it. The following 1306 // is a classical Babylonian method for computing the square root. This code 1307 // was adapted to APInt from a wikipedia article on such computations. 1308 // See http://www.wikipedia.org/ and go to the page named 1309 // Calculate_an_integer_square_root. 1310 unsigned nbits = BitWidth, i = 4; 1311 APInt testy(BitWidth, 16); 1312 APInt x_old(BitWidth, 1); 1313 APInt x_new(BitWidth, 0); 1314 APInt two(BitWidth, 2); 1315 1316 // Select a good starting value using binary logarithms. 1317 for (;; i += 2, testy = testy.shl(2)) 1318 if (i >= nbits || this->ule(testy)) { 1319 x_old = x_old.shl(i / 2); 1320 break; 1321 } 1322 1323 // Use the Babylonian method to arrive at the integer square root: 1324 for (;;) { 1325 x_new = (this->udiv(x_old) + x_old).udiv(two); 1326 if (x_old.ule(x_new)) 1327 break; 1328 x_old = x_new; 1329 } 1330 1331 // Make sure we return the closest approximation 1332 // NOTE: The rounding calculation below is correct. It will produce an 1333 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1334 // determined to be a rounding issue with pari/gp as it begins to use a 1335 // floating point representation after 192 bits. There are no discrepancies 1336 // between this algorithm and pari/gp for bit widths < 192 bits. 1337 APInt square(x_old * x_old); 1338 APInt nextSquare((x_old + 1) * (x_old +1)); 1339 if (this->ult(square)) 1340 return x_old; 1341 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1342 APInt midpoint((nextSquare - square).udiv(two)); 1343 APInt offset(*this - square); 1344 if (offset.ult(midpoint)) 1345 return x_old; 1346 return x_old + 1; 1347 } 1348 1349 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1350 /// iterative extended Euclidean algorithm is used to solve for this value, 1351 /// however we simplify it to speed up calculating only the inverse, and take 1352 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1353 /// (potentially large) APInts around. 1354 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1355 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1356 1357 // Using the properties listed at the following web page (accessed 06/21/08): 1358 // http://www.numbertheory.org/php/euclid.html 1359 // (especially the properties numbered 3, 4 and 9) it can be proved that 1360 // BitWidth bits suffice for all the computations in the algorithm implemented 1361 // below. More precisely, this number of bits suffice if the multiplicative 1362 // inverse exists, but may not suffice for the general extended Euclidean 1363 // algorithm. 1364 1365 APInt r[2] = { modulo, *this }; 1366 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1367 APInt q(BitWidth, 0); 1368 1369 unsigned i; 1370 for (i = 0; r[i^1] != 0; i ^= 1) { 1371 // An overview of the math without the confusing bit-flipping: 1372 // q = r[i-2] / r[i-1] 1373 // r[i] = r[i-2] % r[i-1] 1374 // t[i] = t[i-2] - t[i-1] * q 1375 udivrem(r[i], r[i^1], q, r[i]); 1376 t[i] -= t[i^1] * q; 1377 } 1378 1379 // If this APInt and the modulo are not coprime, there is no multiplicative 1380 // inverse, so return 0. We check this by looking at the next-to-last 1381 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1382 // algorithm. 1383 if (r[i] != 1) 1384 return APInt(BitWidth, 0); 1385 1386 // The next-to-last t is the multiplicative inverse. However, we are 1387 // interested in a positive inverse. Calcuate a positive one from a negative 1388 // one if necessary. A simple addition of the modulo suffices because 1389 // abs(t[i]) is known to be less than *this/2 (see the link above). 1390 return t[i].isNegative() ? t[i] + modulo : t[i]; 1391 } 1392 1393 /// Calculate the magic numbers required to implement a signed integer division 1394 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1395 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1396 /// Warren, Jr., chapter 10. 1397 APInt::ms APInt::magic() const { 1398 const APInt& d = *this; 1399 unsigned p; 1400 APInt ad, anc, delta, q1, r1, q2, r2, t; 1401 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1402 struct ms mag; 1403 1404 ad = d.abs(); 1405 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1406 anc = t - 1 - t.urem(ad); // absolute value of nc 1407 p = d.getBitWidth() - 1; // initialize p 1408 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1409 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1410 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1411 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1412 do { 1413 p = p + 1; 1414 q1 = q1<<1; // update q1 = 2p/abs(nc) 1415 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1416 if (r1.uge(anc)) { // must be unsigned comparison 1417 q1 = q1 + 1; 1418 r1 = r1 - anc; 1419 } 1420 q2 = q2<<1; // update q2 = 2p/abs(d) 1421 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1422 if (r2.uge(ad)) { // must be unsigned comparison 1423 q2 = q2 + 1; 1424 r2 = r2 - ad; 1425 } 1426 delta = ad - r2; 1427 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1428 1429 mag.m = q2 + 1; 1430 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1431 mag.s = p - d.getBitWidth(); // resulting shift 1432 return mag; 1433 } 1434 1435 /// Calculate the magic numbers required to implement an unsigned integer 1436 /// division by a constant as a sequence of multiplies, adds and shifts. 1437 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1438 /// S. Warren, Jr., chapter 10. 1439 /// LeadingZeros can be used to simplify the calculation if the upper bits 1440 /// of the divided value are known zero. 1441 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1442 const APInt& d = *this; 1443 unsigned p; 1444 APInt nc, delta, q1, r1, q2, r2; 1445 struct mu magu; 1446 magu.a = 0; // initialize "add" indicator 1447 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1448 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1449 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1450 1451 nc = allOnes - (allOnes - d).urem(d); 1452 p = d.getBitWidth() - 1; // initialize p 1453 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1454 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1455 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1456 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1457 do { 1458 p = p + 1; 1459 if (r1.uge(nc - r1)) { 1460 q1 = q1 + q1 + 1; // update q1 1461 r1 = r1 + r1 - nc; // update r1 1462 } 1463 else { 1464 q1 = q1+q1; // update q1 1465 r1 = r1+r1; // update r1 1466 } 1467 if ((r2 + 1).uge(d - r2)) { 1468 if (q2.uge(signedMax)) magu.a = 1; 1469 q2 = q2+q2 + 1; // update q2 1470 r2 = r2+r2 + 1 - d; // update r2 1471 } 1472 else { 1473 if (q2.uge(signedMin)) magu.a = 1; 1474 q2 = q2+q2; // update q2 1475 r2 = r2+r2 + 1; // update r2 1476 } 1477 delta = d - 1 - r2; 1478 } while (p < d.getBitWidth()*2 && 1479 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1480 magu.m = q2 + 1; // resulting magic number 1481 magu.s = p - d.getBitWidth(); // resulting shift 1482 return magu; 1483 } 1484 1485 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1486 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1487 /// variables here have the same names as in the algorithm. Comments explain 1488 /// the algorithm and any deviation from it. 1489 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, 1490 unsigned m, unsigned n) { 1491 assert(u && "Must provide dividend"); 1492 assert(v && "Must provide divisor"); 1493 assert(q && "Must provide quotient"); 1494 assert(u != v && u != q && v != q && "Must use different memory"); 1495 assert(n>1 && "n must be > 1"); 1496 1497 // b denotes the base of the number system. In our case b is 2^32. 1498 const uint64_t b = uint64_t(1) << 32; 1499 1500 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1501 DEBUG(dbgs() << "KnuthDiv: original:"); 1502 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1503 DEBUG(dbgs() << " by"); 1504 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1505 DEBUG(dbgs() << '\n'); 1506 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1507 // u and v by d. Note that we have taken Knuth's advice here to use a power 1508 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1509 // 2 allows us to shift instead of multiply and it is easy to determine the 1510 // shift amount from the leading zeros. We are basically normalizing the u 1511 // and v so that its high bits are shifted to the top of v's range without 1512 // overflow. Note that this can require an extra word in u so that u must 1513 // be of length m+n+1. 1514 unsigned shift = countLeadingZeros(v[n-1]); 1515 unsigned v_carry = 0; 1516 unsigned u_carry = 0; 1517 if (shift) { 1518 for (unsigned i = 0; i < m+n; ++i) { 1519 unsigned u_tmp = u[i] >> (32 - shift); 1520 u[i] = (u[i] << shift) | u_carry; 1521 u_carry = u_tmp; 1522 } 1523 for (unsigned i = 0; i < n; ++i) { 1524 unsigned v_tmp = v[i] >> (32 - shift); 1525 v[i] = (v[i] << shift) | v_carry; 1526 v_carry = v_tmp; 1527 } 1528 } 1529 u[m+n] = u_carry; 1530 1531 DEBUG(dbgs() << "KnuthDiv: normal:"); 1532 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1533 DEBUG(dbgs() << " by"); 1534 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1535 DEBUG(dbgs() << '\n'); 1536 1537 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1538 int j = m; 1539 do { 1540 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1541 // D3. [Calculate q'.]. 1542 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1543 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1544 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1545 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test 1546 // on v[n-2] determines at high speed most of the cases in which the trial 1547 // value qp is one too large, and it eliminates all cases where qp is two 1548 // too large. 1549 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); 1550 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1551 uint64_t qp = dividend / v[n-1]; 1552 uint64_t rp = dividend % v[n-1]; 1553 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1554 qp--; 1555 rp += v[n-1]; 1556 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1557 qp--; 1558 } 1559 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1560 1561 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1562 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1563 // consists of a simple multiplication by a one-place number, combined with 1564 // a subtraction. 1565 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1566 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1567 // true value plus b**(n+1), namely as the b's complement of 1568 // the true value, and a "borrow" to the left should be remembered. 1569 int64_t borrow = 0; 1570 for (unsigned i = 0; i < n; ++i) { 1571 uint64_t p = uint64_t(qp) * uint64_t(v[i]); 1572 int64_t subres = int64_t(u[j+i]) - borrow - (unsigned)p; 1573 u[j+i] = (unsigned)subres; 1574 borrow = (p >> 32) - (subres >> 32); 1575 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i] 1576 << ", borrow = " << borrow << '\n'); 1577 } 1578 bool isNeg = u[j+n] < borrow; 1579 u[j+n] -= (unsigned)borrow; 1580 1581 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1582 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1583 DEBUG(dbgs() << '\n'); 1584 1585 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1586 // negative, go to step D6; otherwise go on to step D7. 1587 q[j] = (unsigned)qp; 1588 if (isNeg) { 1589 // D6. [Add back]. The probability that this step is necessary is very 1590 // small, on the order of only 2/b. Make sure that test data accounts for 1591 // this possibility. Decrease q[j] by 1 1592 q[j]--; 1593 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1594 // A carry will occur to the left of u[j+n], and it should be ignored 1595 // since it cancels with the borrow that occurred in D4. 1596 bool carry = false; 1597 for (unsigned i = 0; i < n; i++) { 1598 unsigned limit = std::min(u[j+i],v[i]); 1599 u[j+i] += v[i] + carry; 1600 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1601 } 1602 u[j+n] += carry; 1603 } 1604 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1605 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1606 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1607 1608 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1609 } while (--j >= 0); 1610 1611 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1612 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1613 DEBUG(dbgs() << '\n'); 1614 1615 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1616 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1617 // compute the remainder (urem uses this). 1618 if (r) { 1619 // The value d is expressed by the "shift" value above since we avoided 1620 // multiplication by d by using a shift left. So, all we have to do is 1621 // shift right here. In order to mak 1622 if (shift) { 1623 unsigned carry = 0; 1624 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1625 for (int i = n-1; i >= 0; i--) { 1626 r[i] = (u[i] >> shift) | carry; 1627 carry = u[i] << (32 - shift); 1628 DEBUG(dbgs() << " " << r[i]); 1629 } 1630 } else { 1631 for (int i = n-1; i >= 0; i--) { 1632 r[i] = u[i]; 1633 DEBUG(dbgs() << " " << r[i]); 1634 } 1635 } 1636 DEBUG(dbgs() << '\n'); 1637 } 1638 DEBUG(dbgs() << '\n'); 1639 } 1640 1641 void APInt::divide(const APInt &LHS, unsigned lhsWords, const APInt &RHS, 1642 unsigned rhsWords, APInt *Quotient, APInt *Remainder) { 1643 assert(lhsWords >= rhsWords && "Fractional result"); 1644 1645 // First, compose the values into an array of 32-bit words instead of 1646 // 64-bit words. This is a necessity of both the "short division" algorithm 1647 // and the Knuth "classical algorithm" which requires there to be native 1648 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1649 // can't use 64-bit operands here because we don't have native results of 1650 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1651 // work on large-endian machines. 1652 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); 1653 unsigned n = rhsWords * 2; 1654 unsigned m = (lhsWords * 2) - n; 1655 1656 // Allocate space for the temporary values we need either on the stack, if 1657 // it will fit, or on the heap if it won't. 1658 unsigned SPACE[128]; 1659 unsigned *U = nullptr; 1660 unsigned *V = nullptr; 1661 unsigned *Q = nullptr; 1662 unsigned *R = nullptr; 1663 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1664 U = &SPACE[0]; 1665 V = &SPACE[m+n+1]; 1666 Q = &SPACE[(m+n+1) + n]; 1667 if (Remainder) 1668 R = &SPACE[(m+n+1) + n + (m+n)]; 1669 } else { 1670 U = new unsigned[m + n + 1]; 1671 V = new unsigned[n]; 1672 Q = new unsigned[m+n]; 1673 if (Remainder) 1674 R = new unsigned[n]; 1675 } 1676 1677 // Initialize the dividend 1678 memset(U, 0, (m+n+1)*sizeof(unsigned)); 1679 for (unsigned i = 0; i < lhsWords; ++i) { 1680 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); 1681 U[i * 2] = (unsigned)(tmp & mask); 1682 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1683 } 1684 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1685 1686 // Initialize the divisor 1687 memset(V, 0, (n)*sizeof(unsigned)); 1688 for (unsigned i = 0; i < rhsWords; ++i) { 1689 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); 1690 V[i * 2] = (unsigned)(tmp & mask); 1691 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1692 } 1693 1694 // initialize the quotient and remainder 1695 memset(Q, 0, (m+n) * sizeof(unsigned)); 1696 if (Remainder) 1697 memset(R, 0, n * sizeof(unsigned)); 1698 1699 // Now, adjust m and n for the Knuth division. n is the number of words in 1700 // the divisor. m is the number of words by which the dividend exceeds the 1701 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1702 // contain any zero words or the Knuth algorithm fails. 1703 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1704 n--; 1705 m++; 1706 } 1707 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1708 m--; 1709 1710 // If we're left with only a single word for the divisor, Knuth doesn't work 1711 // so we implement the short division algorithm here. This is much simpler 1712 // and faster because we are certain that we can divide a 64-bit quantity 1713 // by a 32-bit quantity at hardware speed and short division is simply a 1714 // series of such operations. This is just like doing short division but we 1715 // are using base 2^32 instead of base 10. 1716 assert(n != 0 && "Divide by zero?"); 1717 if (n == 1) { 1718 unsigned divisor = V[0]; 1719 unsigned remainder = 0; 1720 for (int i = m+n-1; i >= 0; i--) { 1721 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; 1722 if (partial_dividend == 0) { 1723 Q[i] = 0; 1724 remainder = 0; 1725 } else if (partial_dividend < divisor) { 1726 Q[i] = 0; 1727 remainder = (unsigned)partial_dividend; 1728 } else if (partial_dividend == divisor) { 1729 Q[i] = 1; 1730 remainder = 0; 1731 } else { 1732 Q[i] = (unsigned)(partial_dividend / divisor); 1733 remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); 1734 } 1735 } 1736 if (R) 1737 R[0] = remainder; 1738 } else { 1739 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1740 // case n > 1. 1741 KnuthDiv(U, V, Q, R, m, n); 1742 } 1743 1744 // If the caller wants the quotient 1745 if (Quotient) { 1746 // Set up the Quotient value's memory. 1747 if (Quotient->BitWidth != LHS.BitWidth) { 1748 if (Quotient->isSingleWord()) 1749 Quotient->VAL = 0; 1750 else 1751 delete [] Quotient->pVal; 1752 Quotient->BitWidth = LHS.BitWidth; 1753 if (!Quotient->isSingleWord()) 1754 Quotient->pVal = getClearedMemory(Quotient->getNumWords()); 1755 } else 1756 Quotient->clearAllBits(); 1757 1758 // The quotient is in Q. Reconstitute the quotient into Quotient's low 1759 // order words. 1760 // This case is currently dead as all users of divide() handle trivial cases 1761 // earlier. 1762 if (lhsWords == 1) { 1763 uint64_t tmp = 1764 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); 1765 if (Quotient->isSingleWord()) 1766 Quotient->VAL = tmp; 1767 else 1768 Quotient->pVal[0] = tmp; 1769 } else { 1770 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); 1771 for (unsigned i = 0; i < lhsWords; ++i) 1772 Quotient->pVal[i] = 1773 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1774 } 1775 } 1776 1777 // If the caller wants the remainder 1778 if (Remainder) { 1779 // Set up the Remainder value's memory. 1780 if (Remainder->BitWidth != RHS.BitWidth) { 1781 if (Remainder->isSingleWord()) 1782 Remainder->VAL = 0; 1783 else 1784 delete [] Remainder->pVal; 1785 Remainder->BitWidth = RHS.BitWidth; 1786 if (!Remainder->isSingleWord()) 1787 Remainder->pVal = getClearedMemory(Remainder->getNumWords()); 1788 } else 1789 Remainder->clearAllBits(); 1790 1791 // The remainder is in R. Reconstitute the remainder into Remainder's low 1792 // order words. 1793 if (rhsWords == 1) { 1794 uint64_t tmp = 1795 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); 1796 if (Remainder->isSingleWord()) 1797 Remainder->VAL = tmp; 1798 else 1799 Remainder->pVal[0] = tmp; 1800 } else { 1801 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); 1802 for (unsigned i = 0; i < rhsWords; ++i) 1803 Remainder->pVal[i] = 1804 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1805 } 1806 } 1807 1808 // Clean up the memory we allocated. 1809 if (U != &SPACE[0]) { 1810 delete [] U; 1811 delete [] V; 1812 delete [] Q; 1813 delete [] R; 1814 } 1815 } 1816 1817 APInt APInt::udiv(const APInt& RHS) const { 1818 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1819 1820 // First, deal with the easy case 1821 if (isSingleWord()) { 1822 assert(RHS.VAL != 0 && "Divide by zero?"); 1823 return APInt(BitWidth, VAL / RHS.VAL); 1824 } 1825 1826 // Get some facts about the LHS and RHS number of bits and words 1827 unsigned rhsBits = RHS.getActiveBits(); 1828 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1829 assert(rhsWords && "Divided by zero???"); 1830 unsigned lhsBits = this->getActiveBits(); 1831 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1832 1833 // Deal with some degenerate cases 1834 if (!lhsWords) 1835 // 0 / X ===> 0 1836 return APInt(BitWidth, 0); 1837 else if (lhsWords < rhsWords || this->ult(RHS)) { 1838 // X / Y ===> 0, iff X < Y 1839 return APInt(BitWidth, 0); 1840 } else if (*this == RHS) { 1841 // X / X ===> 1 1842 return APInt(BitWidth, 1); 1843 } else if (lhsWords == 1 && rhsWords == 1) { 1844 // All high words are zero, just use native divide 1845 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); 1846 } 1847 1848 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1849 APInt Quotient(1,0); // to hold result. 1850 divide(*this, lhsWords, RHS, rhsWords, &Quotient, nullptr); 1851 return Quotient; 1852 } 1853 1854 APInt APInt::sdiv(const APInt &RHS) const { 1855 if (isNegative()) { 1856 if (RHS.isNegative()) 1857 return (-(*this)).udiv(-RHS); 1858 return -((-(*this)).udiv(RHS)); 1859 } 1860 if (RHS.isNegative()) 1861 return -(this->udiv(-RHS)); 1862 return this->udiv(RHS); 1863 } 1864 1865 APInt APInt::urem(const APInt& RHS) const { 1866 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1867 if (isSingleWord()) { 1868 assert(RHS.VAL != 0 && "Remainder by zero?"); 1869 return APInt(BitWidth, VAL % RHS.VAL); 1870 } 1871 1872 // Get some facts about the LHS 1873 unsigned lhsBits = getActiveBits(); 1874 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); 1875 1876 // Get some facts about the RHS 1877 unsigned rhsBits = RHS.getActiveBits(); 1878 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1879 assert(rhsWords && "Performing remainder operation by zero ???"); 1880 1881 // Check the degenerate cases 1882 if (lhsWords == 0) { 1883 // 0 % Y ===> 0 1884 return APInt(BitWidth, 0); 1885 } else if (lhsWords < rhsWords || this->ult(RHS)) { 1886 // X % Y ===> X, iff X < Y 1887 return *this; 1888 } else if (*this == RHS) { 1889 // X % X == 0; 1890 return APInt(BitWidth, 0); 1891 } else if (lhsWords == 1) { 1892 // All high words are zero, just use native remainder 1893 return APInt(BitWidth, pVal[0] % RHS.pVal[0]); 1894 } 1895 1896 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1897 APInt Remainder(1,0); 1898 divide(*this, lhsWords, RHS, rhsWords, nullptr, &Remainder); 1899 return Remainder; 1900 } 1901 1902 APInt APInt::srem(const APInt &RHS) const { 1903 if (isNegative()) { 1904 if (RHS.isNegative()) 1905 return -((-(*this)).urem(-RHS)); 1906 return -((-(*this)).urem(RHS)); 1907 } 1908 if (RHS.isNegative()) 1909 return this->urem(-RHS); 1910 return this->urem(RHS); 1911 } 1912 1913 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1914 APInt &Quotient, APInt &Remainder) { 1915 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1916 1917 // First, deal with the easy case 1918 if (LHS.isSingleWord()) { 1919 assert(RHS.VAL != 0 && "Divide by zero?"); 1920 uint64_t QuotVal = LHS.VAL / RHS.VAL; 1921 uint64_t RemVal = LHS.VAL % RHS.VAL; 1922 Quotient = APInt(LHS.BitWidth, QuotVal); 1923 Remainder = APInt(LHS.BitWidth, RemVal); 1924 return; 1925 } 1926 1927 // Get some size facts about the dividend and divisor 1928 unsigned lhsBits = LHS.getActiveBits(); 1929 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1930 unsigned rhsBits = RHS.getActiveBits(); 1931 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1932 1933 // Check the degenerate cases 1934 if (lhsWords == 0) { 1935 Quotient = 0; // 0 / Y ===> 0 1936 Remainder = 0; // 0 % Y ===> 0 1937 return; 1938 } 1939 1940 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1941 Remainder = LHS; // X % Y ===> X, iff X < Y 1942 Quotient = 0; // X / Y ===> 0, iff X < Y 1943 return; 1944 } 1945 1946 if (LHS == RHS) { 1947 Quotient = 1; // X / X ===> 1 1948 Remainder = 0; // X % X ===> 0; 1949 return; 1950 } 1951 1952 if (lhsWords == 1 && rhsWords == 1) { 1953 // There is only one word to consider so use the native versions. 1954 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; 1955 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; 1956 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); 1957 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); 1958 return; 1959 } 1960 1961 // Okay, lets do it the long way 1962 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); 1963 } 1964 1965 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1966 APInt &Quotient, APInt &Remainder) { 1967 if (LHS.isNegative()) { 1968 if (RHS.isNegative()) 1969 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1970 else { 1971 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1972 Quotient = -Quotient; 1973 } 1974 Remainder = -Remainder; 1975 } else if (RHS.isNegative()) { 1976 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1977 Quotient = -Quotient; 1978 } else { 1979 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1980 } 1981 } 1982 1983 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1984 APInt Res = *this+RHS; 1985 Overflow = isNonNegative() == RHS.isNonNegative() && 1986 Res.isNonNegative() != isNonNegative(); 1987 return Res; 1988 } 1989 1990 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 1991 APInt Res = *this+RHS; 1992 Overflow = Res.ult(RHS); 1993 return Res; 1994 } 1995 1996 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 1997 APInt Res = *this - RHS; 1998 Overflow = isNonNegative() != RHS.isNonNegative() && 1999 Res.isNonNegative() != isNonNegative(); 2000 return Res; 2001 } 2002 2003 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 2004 APInt Res = *this-RHS; 2005 Overflow = Res.ugt(*this); 2006 return Res; 2007 } 2008 2009 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 2010 // MININT/-1 --> overflow. 2011 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 2012 return sdiv(RHS); 2013 } 2014 2015 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 2016 APInt Res = *this * RHS; 2017 2018 if (*this != 0 && RHS != 0) 2019 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 2020 else 2021 Overflow = false; 2022 return Res; 2023 } 2024 2025 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 2026 APInt Res = *this * RHS; 2027 2028 if (*this != 0 && RHS != 0) 2029 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 2030 else 2031 Overflow = false; 2032 return Res; 2033 } 2034 2035 APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { 2036 Overflow = ShAmt.uge(getBitWidth()); 2037 if (Overflow) 2038 return APInt(BitWidth, 0); 2039 2040 if (isNonNegative()) // Don't allow sign change. 2041 Overflow = ShAmt.uge(countLeadingZeros()); 2042 else 2043 Overflow = ShAmt.uge(countLeadingOnes()); 2044 2045 return *this << ShAmt; 2046 } 2047 2048 APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { 2049 Overflow = ShAmt.uge(getBitWidth()); 2050 if (Overflow) 2051 return APInt(BitWidth, 0); 2052 2053 Overflow = ShAmt.ugt(countLeadingZeros()); 2054 2055 return *this << ShAmt; 2056 } 2057 2058 2059 2060 2061 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2062 // Check our assumptions here 2063 assert(!str.empty() && "Invalid string length"); 2064 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2065 radix == 36) && 2066 "Radix should be 2, 8, 10, 16, or 36!"); 2067 2068 StringRef::iterator p = str.begin(); 2069 size_t slen = str.size(); 2070 bool isNeg = *p == '-'; 2071 if (*p == '-' || *p == '+') { 2072 p++; 2073 slen--; 2074 assert(slen && "String is only a sign, needs a value."); 2075 } 2076 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2077 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2078 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2079 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2080 "Insufficient bit width"); 2081 2082 // Allocate memory 2083 if (!isSingleWord()) 2084 pVal = getClearedMemory(getNumWords()); 2085 2086 // Figure out if we can shift instead of multiply 2087 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2088 2089 // Set up an APInt for the digit to add outside the loop so we don't 2090 // constantly construct/destruct it. 2091 APInt apdigit(getBitWidth(), 0); 2092 APInt apradix(getBitWidth(), radix); 2093 2094 // Enter digit traversal loop 2095 for (StringRef::iterator e = str.end(); p != e; ++p) { 2096 unsigned digit = getDigit(*p, radix); 2097 assert(digit < radix && "Invalid character in digit string"); 2098 2099 // Shift or multiply the value by the radix 2100 if (slen > 1) { 2101 if (shift) 2102 *this <<= shift; 2103 else 2104 *this *= apradix; 2105 } 2106 2107 // Add in the digit we just interpreted 2108 if (apdigit.isSingleWord()) 2109 apdigit.VAL = digit; 2110 else 2111 apdigit.pVal[0] = digit; 2112 *this += apdigit; 2113 } 2114 // If its negative, put it in two's complement form 2115 if (isNeg) { 2116 --(*this); 2117 this->flipAllBits(); 2118 } 2119 } 2120 2121 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2122 bool Signed, bool formatAsCLiteral) const { 2123 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2124 Radix == 36) && 2125 "Radix should be 2, 8, 10, 16, or 36!"); 2126 2127 const char *Prefix = ""; 2128 if (formatAsCLiteral) { 2129 switch (Radix) { 2130 case 2: 2131 // Binary literals are a non-standard extension added in gcc 4.3: 2132 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2133 Prefix = "0b"; 2134 break; 2135 case 8: 2136 Prefix = "0"; 2137 break; 2138 case 10: 2139 break; // No prefix 2140 case 16: 2141 Prefix = "0x"; 2142 break; 2143 default: 2144 llvm_unreachable("Invalid radix!"); 2145 } 2146 } 2147 2148 // First, check for a zero value and just short circuit the logic below. 2149 if (*this == 0) { 2150 while (*Prefix) { 2151 Str.push_back(*Prefix); 2152 ++Prefix; 2153 }; 2154 Str.push_back('0'); 2155 return; 2156 } 2157 2158 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2159 2160 if (isSingleWord()) { 2161 char Buffer[65]; 2162 char *BufPtr = Buffer+65; 2163 2164 uint64_t N; 2165 if (!Signed) { 2166 N = getZExtValue(); 2167 } else { 2168 int64_t I = getSExtValue(); 2169 if (I >= 0) { 2170 N = I; 2171 } else { 2172 Str.push_back('-'); 2173 N = -(uint64_t)I; 2174 } 2175 } 2176 2177 while (*Prefix) { 2178 Str.push_back(*Prefix); 2179 ++Prefix; 2180 }; 2181 2182 while (N) { 2183 *--BufPtr = Digits[N % Radix]; 2184 N /= Radix; 2185 } 2186 Str.append(BufPtr, Buffer+65); 2187 return; 2188 } 2189 2190 APInt Tmp(*this); 2191 2192 if (Signed && isNegative()) { 2193 // They want to print the signed version and it is a negative value 2194 // Flip the bits and add one to turn it into the equivalent positive 2195 // value and put a '-' in the result. 2196 Tmp.flipAllBits(); 2197 ++Tmp; 2198 Str.push_back('-'); 2199 } 2200 2201 while (*Prefix) { 2202 Str.push_back(*Prefix); 2203 ++Prefix; 2204 }; 2205 2206 // We insert the digits backward, then reverse them to get the right order. 2207 unsigned StartDig = Str.size(); 2208 2209 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2210 // because the number of bits per digit (1, 3 and 4 respectively) divides 2211 // equaly. We just shift until the value is zero. 2212 if (Radix == 2 || Radix == 8 || Radix == 16) { 2213 // Just shift tmp right for each digit width until it becomes zero 2214 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2215 unsigned MaskAmt = Radix - 1; 2216 2217 while (Tmp != 0) { 2218 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2219 Str.push_back(Digits[Digit]); 2220 Tmp = Tmp.lshr(ShiftAmt); 2221 } 2222 } else { 2223 APInt divisor(Radix == 10? 4 : 8, Radix); 2224 while (Tmp != 0) { 2225 APInt APdigit(1, 0); 2226 APInt tmp2(Tmp.getBitWidth(), 0); 2227 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 2228 &APdigit); 2229 unsigned Digit = (unsigned)APdigit.getZExtValue(); 2230 assert(Digit < Radix && "divide failed"); 2231 Str.push_back(Digits[Digit]); 2232 Tmp = tmp2; 2233 } 2234 } 2235 2236 // Reverse the digits before returning. 2237 std::reverse(Str.begin()+StartDig, Str.end()); 2238 } 2239 2240 /// Returns the APInt as a std::string. Note that this is an inefficient method. 2241 /// It is better to pass in a SmallVector/SmallString to the methods above. 2242 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2243 SmallString<40> S; 2244 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2245 return S.str(); 2246 } 2247 2248 2249 LLVM_DUMP_METHOD void APInt::dump() const { 2250 SmallString<40> S, U; 2251 this->toStringUnsigned(U); 2252 this->toStringSigned(S); 2253 dbgs() << "APInt(" << BitWidth << "b, " 2254 << U << "u " << S << "s)"; 2255 } 2256 2257 void APInt::print(raw_ostream &OS, bool isSigned) const { 2258 SmallString<40> S; 2259 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2260 OS << S; 2261 } 2262 2263 // This implements a variety of operations on a representation of 2264 // arbitrary precision, two's-complement, bignum integer values. 2265 2266 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2267 // and unrestricting assumption. 2268 static_assert(integerPartWidth % 2 == 0, "Part width must be divisible by 2!"); 2269 2270 /* Some handy functions local to this file. */ 2271 namespace { 2272 2273 /* Returns the integer part with the least significant BITS set. 2274 BITS cannot be zero. */ 2275 static inline integerPart 2276 lowBitMask(unsigned int bits) 2277 { 2278 assert(bits != 0 && bits <= integerPartWidth); 2279 2280 return ~(integerPart) 0 >> (integerPartWidth - bits); 2281 } 2282 2283 /* Returns the value of the lower half of PART. */ 2284 static inline integerPart 2285 lowHalf(integerPart part) 2286 { 2287 return part & lowBitMask(integerPartWidth / 2); 2288 } 2289 2290 /* Returns the value of the upper half of PART. */ 2291 static inline integerPart 2292 highHalf(integerPart part) 2293 { 2294 return part >> (integerPartWidth / 2); 2295 } 2296 2297 /* Returns the bit number of the most significant set bit of a part. 2298 If the input number has no bits set -1U is returned. */ 2299 static unsigned int 2300 partMSB(integerPart value) 2301 { 2302 return findLastSet(value, ZB_Max); 2303 } 2304 2305 /* Returns the bit number of the least significant set bit of a 2306 part. If the input number has no bits set -1U is returned. */ 2307 static unsigned int 2308 partLSB(integerPart value) 2309 { 2310 return findFirstSet(value, ZB_Max); 2311 } 2312 } 2313 2314 /* Sets the least significant part of a bignum to the input value, and 2315 zeroes out higher parts. */ 2316 void 2317 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) 2318 { 2319 unsigned int i; 2320 2321 assert(parts > 0); 2322 2323 dst[0] = part; 2324 for (i = 1; i < parts; i++) 2325 dst[i] = 0; 2326 } 2327 2328 /* Assign one bignum to another. */ 2329 void 2330 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) 2331 { 2332 unsigned int i; 2333 2334 for (i = 0; i < parts; i++) 2335 dst[i] = src[i]; 2336 } 2337 2338 /* Returns true if a bignum is zero, false otherwise. */ 2339 bool 2340 APInt::tcIsZero(const integerPart *src, unsigned int parts) 2341 { 2342 unsigned int i; 2343 2344 for (i = 0; i < parts; i++) 2345 if (src[i]) 2346 return false; 2347 2348 return true; 2349 } 2350 2351 /* Extract the given bit of a bignum; returns 0 or 1. */ 2352 int 2353 APInt::tcExtractBit(const integerPart *parts, unsigned int bit) 2354 { 2355 return (parts[bit / integerPartWidth] & 2356 ((integerPart) 1 << bit % integerPartWidth)) != 0; 2357 } 2358 2359 /* Set the given bit of a bignum. */ 2360 void 2361 APInt::tcSetBit(integerPart *parts, unsigned int bit) 2362 { 2363 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); 2364 } 2365 2366 /* Clears the given bit of a bignum. */ 2367 void 2368 APInt::tcClearBit(integerPart *parts, unsigned int bit) 2369 { 2370 parts[bit / integerPartWidth] &= 2371 ~((integerPart) 1 << (bit % integerPartWidth)); 2372 } 2373 2374 /* Returns the bit number of the least significant set bit of a 2375 number. If the input number has no bits set -1U is returned. */ 2376 unsigned int 2377 APInt::tcLSB(const integerPart *parts, unsigned int n) 2378 { 2379 unsigned int i, lsb; 2380 2381 for (i = 0; i < n; i++) { 2382 if (parts[i] != 0) { 2383 lsb = partLSB(parts[i]); 2384 2385 return lsb + i * integerPartWidth; 2386 } 2387 } 2388 2389 return -1U; 2390 } 2391 2392 /* Returns the bit number of the most significant set bit of a number. 2393 If the input number has no bits set -1U is returned. */ 2394 unsigned int 2395 APInt::tcMSB(const integerPart *parts, unsigned int n) 2396 { 2397 unsigned int msb; 2398 2399 do { 2400 --n; 2401 2402 if (parts[n] != 0) { 2403 msb = partMSB(parts[n]); 2404 2405 return msb + n * integerPartWidth; 2406 } 2407 } while (n); 2408 2409 return -1U; 2410 } 2411 2412 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2413 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2414 the least significant bit of DST. All high bits above srcBITS in 2415 DST are zero-filled. */ 2416 void 2417 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, 2418 unsigned int srcBits, unsigned int srcLSB) 2419 { 2420 unsigned int firstSrcPart, dstParts, shift, n; 2421 2422 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; 2423 assert(dstParts <= dstCount); 2424 2425 firstSrcPart = srcLSB / integerPartWidth; 2426 tcAssign (dst, src + firstSrcPart, dstParts); 2427 2428 shift = srcLSB % integerPartWidth; 2429 tcShiftRight (dst, dstParts, shift); 2430 2431 /* We now have (dstParts * integerPartWidth - shift) bits from SRC 2432 in DST. If this is less that srcBits, append the rest, else 2433 clear the high bits. */ 2434 n = dstParts * integerPartWidth - shift; 2435 if (n < srcBits) { 2436 integerPart mask = lowBitMask (srcBits - n); 2437 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2438 << n % integerPartWidth); 2439 } else if (n > srcBits) { 2440 if (srcBits % integerPartWidth) 2441 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); 2442 } 2443 2444 /* Clear high parts. */ 2445 while (dstParts < dstCount) 2446 dst[dstParts++] = 0; 2447 } 2448 2449 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2450 integerPart 2451 APInt::tcAdd(integerPart *dst, const integerPart *rhs, 2452 integerPart c, unsigned int parts) 2453 { 2454 unsigned int i; 2455 2456 assert(c <= 1); 2457 2458 for (i = 0; i < parts; i++) { 2459 integerPart l; 2460 2461 l = dst[i]; 2462 if (c) { 2463 dst[i] += rhs[i] + 1; 2464 c = (dst[i] <= l); 2465 } else { 2466 dst[i] += rhs[i]; 2467 c = (dst[i] < l); 2468 } 2469 } 2470 2471 return c; 2472 } 2473 2474 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2475 integerPart 2476 APInt::tcSubtract(integerPart *dst, const integerPart *rhs, 2477 integerPart c, unsigned int parts) 2478 { 2479 unsigned int i; 2480 2481 assert(c <= 1); 2482 2483 for (i = 0; i < parts; i++) { 2484 integerPart l; 2485 2486 l = dst[i]; 2487 if (c) { 2488 dst[i] -= rhs[i] + 1; 2489 c = (dst[i] >= l); 2490 } else { 2491 dst[i] -= rhs[i]; 2492 c = (dst[i] > l); 2493 } 2494 } 2495 2496 return c; 2497 } 2498 2499 /* Negate a bignum in-place. */ 2500 void 2501 APInt::tcNegate(integerPart *dst, unsigned int parts) 2502 { 2503 tcComplement(dst, parts); 2504 tcIncrement(dst, parts); 2505 } 2506 2507 /* DST += SRC * MULTIPLIER + CARRY if add is true 2508 DST = SRC * MULTIPLIER + CARRY if add is false 2509 2510 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2511 they must start at the same point, i.e. DST == SRC. 2512 2513 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2514 returned. Otherwise DST is filled with the least significant 2515 DSTPARTS parts of the result, and if all of the omitted higher 2516 parts were zero return zero, otherwise overflow occurred and 2517 return one. */ 2518 int 2519 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, 2520 integerPart multiplier, integerPart carry, 2521 unsigned int srcParts, unsigned int dstParts, 2522 bool add) 2523 { 2524 unsigned int i, n; 2525 2526 /* Otherwise our writes of DST kill our later reads of SRC. */ 2527 assert(dst <= src || dst >= src + srcParts); 2528 assert(dstParts <= srcParts + 1); 2529 2530 /* N loops; minimum of dstParts and srcParts. */ 2531 n = dstParts < srcParts ? dstParts: srcParts; 2532 2533 for (i = 0; i < n; i++) { 2534 integerPart low, mid, high, srcPart; 2535 2536 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2537 2538 This cannot overflow, because 2539 2540 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2541 2542 which is less than n^2. */ 2543 2544 srcPart = src[i]; 2545 2546 if (multiplier == 0 || srcPart == 0) { 2547 low = carry; 2548 high = 0; 2549 } else { 2550 low = lowHalf(srcPart) * lowHalf(multiplier); 2551 high = highHalf(srcPart) * highHalf(multiplier); 2552 2553 mid = lowHalf(srcPart) * highHalf(multiplier); 2554 high += highHalf(mid); 2555 mid <<= integerPartWidth / 2; 2556 if (low + mid < low) 2557 high++; 2558 low += mid; 2559 2560 mid = highHalf(srcPart) * lowHalf(multiplier); 2561 high += highHalf(mid); 2562 mid <<= integerPartWidth / 2; 2563 if (low + mid < low) 2564 high++; 2565 low += mid; 2566 2567 /* Now add carry. */ 2568 if (low + carry < low) 2569 high++; 2570 low += carry; 2571 } 2572 2573 if (add) { 2574 /* And now DST[i], and store the new low part there. */ 2575 if (low + dst[i] < low) 2576 high++; 2577 dst[i] += low; 2578 } else 2579 dst[i] = low; 2580 2581 carry = high; 2582 } 2583 2584 if (i < dstParts) { 2585 /* Full multiplication, there is no overflow. */ 2586 assert(i + 1 == dstParts); 2587 dst[i] = carry; 2588 return 0; 2589 } else { 2590 /* We overflowed if there is carry. */ 2591 if (carry) 2592 return 1; 2593 2594 /* We would overflow if any significant unwritten parts would be 2595 non-zero. This is true if any remaining src parts are non-zero 2596 and the multiplier is non-zero. */ 2597 if (multiplier) 2598 for (; i < srcParts; i++) 2599 if (src[i]) 2600 return 1; 2601 2602 /* We fitted in the narrow destination. */ 2603 return 0; 2604 } 2605 } 2606 2607 /* DST = LHS * RHS, where DST has the same width as the operands and 2608 is filled with the least significant parts of the result. Returns 2609 one if overflow occurred, otherwise zero. DST must be disjoint 2610 from both operands. */ 2611 int 2612 APInt::tcMultiply(integerPart *dst, const integerPart *lhs, 2613 const integerPart *rhs, unsigned int parts) 2614 { 2615 unsigned int i; 2616 int overflow; 2617 2618 assert(dst != lhs && dst != rhs); 2619 2620 overflow = 0; 2621 tcSet(dst, 0, parts); 2622 2623 for (i = 0; i < parts; i++) 2624 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2625 parts - i, true); 2626 2627 return overflow; 2628 } 2629 2630 /* DST = LHS * RHS, where DST has width the sum of the widths of the 2631 operands. No overflow occurs. DST must be disjoint from both 2632 operands. Returns the number of parts required to hold the 2633 result. */ 2634 unsigned int 2635 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, 2636 const integerPart *rhs, unsigned int lhsParts, 2637 unsigned int rhsParts) 2638 { 2639 /* Put the narrower number on the LHS for less loops below. */ 2640 if (lhsParts > rhsParts) { 2641 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2642 } else { 2643 unsigned int n; 2644 2645 assert(dst != lhs && dst != rhs); 2646 2647 tcSet(dst, 0, rhsParts); 2648 2649 for (n = 0; n < lhsParts; n++) 2650 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); 2651 2652 n = lhsParts + rhsParts; 2653 2654 return n - (dst[n - 1] == 0); 2655 } 2656 } 2657 2658 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2659 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2660 set REMAINDER to the remainder, return zero. i.e. 2661 2662 OLD_LHS = RHS * LHS + REMAINDER 2663 2664 SCRATCH is a bignum of the same size as the operands and result for 2665 use by the routine; its contents need not be initialized and are 2666 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2667 */ 2668 int 2669 APInt::tcDivide(integerPart *lhs, const integerPart *rhs, 2670 integerPart *remainder, integerPart *srhs, 2671 unsigned int parts) 2672 { 2673 unsigned int n, shiftCount; 2674 integerPart mask; 2675 2676 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2677 2678 shiftCount = tcMSB(rhs, parts) + 1; 2679 if (shiftCount == 0) 2680 return true; 2681 2682 shiftCount = parts * integerPartWidth - shiftCount; 2683 n = shiftCount / integerPartWidth; 2684 mask = (integerPart) 1 << (shiftCount % integerPartWidth); 2685 2686 tcAssign(srhs, rhs, parts); 2687 tcShiftLeft(srhs, parts, shiftCount); 2688 tcAssign(remainder, lhs, parts); 2689 tcSet(lhs, 0, parts); 2690 2691 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2692 the total. */ 2693 for (;;) { 2694 int compare; 2695 2696 compare = tcCompare(remainder, srhs, parts); 2697 if (compare >= 0) { 2698 tcSubtract(remainder, srhs, 0, parts); 2699 lhs[n] |= mask; 2700 } 2701 2702 if (shiftCount == 0) 2703 break; 2704 shiftCount--; 2705 tcShiftRight(srhs, parts, 1); 2706 if ((mask >>= 1) == 0) { 2707 mask = (integerPart) 1 << (integerPartWidth - 1); 2708 n--; 2709 } 2710 } 2711 2712 return false; 2713 } 2714 2715 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. 2716 There are no restrictions on COUNT. */ 2717 void 2718 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) 2719 { 2720 if (count) { 2721 unsigned int jump, shift; 2722 2723 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2724 jump = count / integerPartWidth; 2725 shift = count % integerPartWidth; 2726 2727 while (parts > jump) { 2728 integerPart part; 2729 2730 parts--; 2731 2732 /* dst[i] comes from the two parts src[i - jump] and, if we have 2733 an intra-part shift, src[i - jump - 1]. */ 2734 part = dst[parts - jump]; 2735 if (shift) { 2736 part <<= shift; 2737 if (parts >= jump + 1) 2738 part |= dst[parts - jump - 1] >> (integerPartWidth - shift); 2739 } 2740 2741 dst[parts] = part; 2742 } 2743 2744 while (parts > 0) 2745 dst[--parts] = 0; 2746 } 2747 } 2748 2749 /* Shift a bignum right COUNT bits in-place. Shifted in bits are 2750 zero. There are no restrictions on COUNT. */ 2751 void 2752 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) 2753 { 2754 if (count) { 2755 unsigned int i, jump, shift; 2756 2757 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2758 jump = count / integerPartWidth; 2759 shift = count % integerPartWidth; 2760 2761 /* Perform the shift. This leaves the most significant COUNT bits 2762 of the result at zero. */ 2763 for (i = 0; i < parts; i++) { 2764 integerPart part; 2765 2766 if (i + jump >= parts) { 2767 part = 0; 2768 } else { 2769 part = dst[i + jump]; 2770 if (shift) { 2771 part >>= shift; 2772 if (i + jump + 1 < parts) 2773 part |= dst[i + jump + 1] << (integerPartWidth - shift); 2774 } 2775 } 2776 2777 dst[i] = part; 2778 } 2779 } 2780 } 2781 2782 /* Bitwise and of two bignums. */ 2783 void 2784 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) 2785 { 2786 unsigned int i; 2787 2788 for (i = 0; i < parts; i++) 2789 dst[i] &= rhs[i]; 2790 } 2791 2792 /* Bitwise inclusive or of two bignums. */ 2793 void 2794 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) 2795 { 2796 unsigned int i; 2797 2798 for (i = 0; i < parts; i++) 2799 dst[i] |= rhs[i]; 2800 } 2801 2802 /* Bitwise exclusive or of two bignums. */ 2803 void 2804 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) 2805 { 2806 unsigned int i; 2807 2808 for (i = 0; i < parts; i++) 2809 dst[i] ^= rhs[i]; 2810 } 2811 2812 /* Complement a bignum in-place. */ 2813 void 2814 APInt::tcComplement(integerPart *dst, unsigned int parts) 2815 { 2816 unsigned int i; 2817 2818 for (i = 0; i < parts; i++) 2819 dst[i] = ~dst[i]; 2820 } 2821 2822 /* Comparison (unsigned) of two bignums. */ 2823 int 2824 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, 2825 unsigned int parts) 2826 { 2827 while (parts) { 2828 parts--; 2829 if (lhs[parts] == rhs[parts]) 2830 continue; 2831 2832 if (lhs[parts] > rhs[parts]) 2833 return 1; 2834 else 2835 return -1; 2836 } 2837 2838 return 0; 2839 } 2840 2841 /* Increment a bignum in-place, return the carry flag. */ 2842 integerPart 2843 APInt::tcIncrement(integerPart *dst, unsigned int parts) 2844 { 2845 unsigned int i; 2846 2847 for (i = 0; i < parts; i++) 2848 if (++dst[i] != 0) 2849 break; 2850 2851 return i == parts; 2852 } 2853 2854 /* Decrement a bignum in-place, return the borrow flag. */ 2855 integerPart 2856 APInt::tcDecrement(integerPart *dst, unsigned int parts) { 2857 for (unsigned int i = 0; i < parts; i++) { 2858 // If the current word is non-zero, then the decrement has no effect on the 2859 // higher-order words of the integer and no borrow can occur. Exit early. 2860 if (dst[i]--) 2861 return 0; 2862 } 2863 // If every word was zero, then there is a borrow. 2864 return 1; 2865 } 2866 2867 2868 /* Set the least significant BITS bits of a bignum, clear the 2869 rest. */ 2870 void 2871 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, 2872 unsigned int bits) 2873 { 2874 unsigned int i; 2875 2876 i = 0; 2877 while (bits > integerPartWidth) { 2878 dst[i++] = ~(integerPart) 0; 2879 bits -= integerPartWidth; 2880 } 2881 2882 if (bits) 2883 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); 2884 2885 while (i < parts) 2886 dst[i++] = 0; 2887 } 2888