Home | History | Annotate | Download | only in kernels
      1 /* Copyright 2016 The TensorFlow Authors. All Rights Reserved.
      2 
      3 Licensed under the Apache License, Version 2.0 (the "License");
      4 you may not use this file except in compliance with the License.
      5 You may obtain a copy of the License at
      6 
      7     http://www.apache.org/licenses/LICENSE-2.0
      8 
      9 Unless required by applicable law or agreed to in writing, software
     10 distributed under the License is distributed on an "AS IS" BASIS,
     11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 See the License for the specific language governing permissions and
     13 limitations under the License.
     14 ==============================================================================*/
     15 
     16 // See docs in ../ops/random_ops.cc.
     17 
     18 #define EIGEN_USE_THREADS
     19 
     20 #include "tensorflow/core/kernels/random_poisson_op.h"
     21 
     22 #include <algorithm>
     23 #include <cmath>
     24 #include <limits>
     25 #include <memory>
     26 
     27 #include "tensorflow/core/framework/op_kernel.h"
     28 #include "tensorflow/core/framework/register_types.h"
     29 #include "tensorflow/core/framework/tensor.h"
     30 #include "tensorflow/core/framework/tensor_shape.h"
     31 #include "tensorflow/core/lib/random/random_distributions.h"
     32 #include "tensorflow/core/lib/random/simple_philox.h"
     33 #include "tensorflow/core/util/guarded_philox_random.h"
     34 #include "tensorflow/core/util/work_sharder.h"
     35 
     36 #if EIGEN_COMP_GNUC && __cplusplus > 199711L
     37 #define DISABLE_FLOAT_EQUALITY_WARNING \
     38   _Pragma("GCC diagnostic push")       \
     39       _Pragma("GCC diagnostic ignored \"-Wfloat-equal\"")
     40 #define ENABLE_FLOAT_EQUALITY_WARNING _Pragma("GCC diagnostic pop")
     41 #else
     42 #define DISABLE_FLOAT_EQUALITY_WARNING
     43 #define ENABLE_FLOAT_EQUALITY_WARNING
     44 #endif
     45 
     46 #define UNIFORM(X)                                    \
     47   if (uniform_remaining == 0) {                       \
     48     uniform_remaining = Uniform::kResultElementCount; \
     49     uniform_result = uniform(&gen);                   \
     50   }                                                   \
     51   uniform_remaining--;                                \
     52   CT X = uniform_result[uniform_remaining]
     53 
     54 namespace tensorflow {
     55 namespace {
     56 
     57 static constexpr int kReservedSamplesPerOutput = 256;
     58 
     59 typedef Eigen::ThreadPoolDevice CPUDevice;
     60 
     61 template <typename T>
     62 struct PoissonComputeType {
     63   typedef double ComputeType;
     64 };
     65 
     66 }  // namespace
     67 
     68 namespace functor {
     69 
     70 template <typename Device, typename T, typename U>
     71 struct PoissonFunctor {
     72   void operator()(OpKernelContext* ctx, const Device& d, const T* rate_flat,
     73                   int num_rate, int num_samples,
     74                   const random::PhiloxRandom& rng, U* samples_flat);
     75 };
     76 
     77 template <typename T, typename U>
     78 struct PoissonFunctor<CPUDevice, T, U> {
     79   void operator()(OpKernelContext* ctx, const CPUDevice& d, const T* rate_flat,
     80                   int num_rate, int num_samples,
     81                   const random::PhiloxRandom& rng, U* samples_flat) {
     82     // Two different algorithms are employed, depending on the size of
     83     // rate.
     84     // If rate < 10, we use an algorithm attributed to Knuth:
     85     // Seminumerical Algorithms. Art of Computer Programming, Volume 2.
     86     //
     87     // This algorithm runs in O(rate) time, and will require O(rate)
     88     // uniform variates.
     89     //
     90     // If rate >= 10 we use a transformation-rejection algorithm from
     91     // pairs of uniform random variables due to Hormann.
     92     // http://www.sciencedirect.com/science/article/pii/0167668793909974
     93     //
     94     // The algorithm has an acceptance rate of ~89% for the smallest rate
     95     // (~10),
     96     // and higher accept rates for higher rate, so runtime is
     97     // O(NumRate * NumSamples * k) with k ~ 1 / 0.89.
     98     //
     99     // We partition work first across rates then across
    100     // samples-per-rate to
    101     // avoid a couple flops which can be done on a per-rate basis.
    102 
    103     typedef random::UniformDistribution<random::PhiloxRandom, CT> Uniform;
    104 
    105     auto DoWork = [num_samples, num_rate, &rng, samples_flat, rate_flat](
    106                       int start_output, int limit_output) {
    107       // Capturing "rng" by value would only make a copy for the _shared_
    108       // lambda.  Since we want to let each worker have its own copy, we pass
    109       // "rng" by reference and explicitly do a copy assignment.
    110 
    111       Uniform uniform;
    112       typename Uniform::ResultType uniform_result;
    113       for (int64 output_idx = start_output; output_idx < limit_output;
    114            /* output_idx incremented within inner loop below */) {
    115         const int64 rate_idx = output_idx / num_samples;
    116 
    117         // Several calculations can be done on a per-rate basis.
    118         const CT rate = CT(rate_flat[rate_idx]);
    119 
    120         auto samples_rate_output = samples_flat + rate_idx;
    121 
    122         if (rate < CT(10)) {
    123           // Knuth's algorithm for generating Poisson random variates.
    124           // Given a Poisson process, the time between events is exponentially
    125           // distributed. If we have a Poisson process with rate lambda, then,
    126           // the time between events is distributed Exp(lambda). If X ~
    127           // Uniform(0, 1), then Y ~ Exp(lambda), where Y = -log(X) / lambda.
    128           // Thus to simulate a Poisson draw, we can draw X_i ~ Exp(lambda),
    129           // and N ~ Poisson(lambda), where N is the least number such that
    130           // \sum_i^N X_i > 1.
    131           const CT exp_neg_rate = Eigen::numext::exp(-rate);
    132 
    133           // Compute the rest of the samples for the current rate value.
    134           for (int64 sample_idx = output_idx % num_samples;
    135                sample_idx < num_samples && output_idx < limit_output;
    136                sample_idx++, output_idx++) {
    137             random::PhiloxRandom gen = rng;
    138             gen.Skip(kReservedSamplesPerOutput * output_idx);
    139             int16 uniform_remaining = 0;
    140 
    141             CT prod = 1;
    142             CT x = 0;
    143 
    144             // Keep trying until we surpass e^(-rate). This will take
    145             // expected time proportional to rate.
    146             while (true) {
    147               UNIFORM(u);
    148               prod = prod * u;
    149               if (prod <= exp_neg_rate &&
    150                   x <= CT(Eigen::NumTraits<U>::highest())) {
    151                 samples_rate_output[sample_idx * num_rate] = U(x);
    152                 break;
    153               }
    154               x += 1;
    155             }
    156           }
    157           continue;
    158         }
    159         // Transformed rejection due to Hormann.
    160         //
    161         // Given a CDF F(x), and G(x), a dominating distribution chosen such
    162         // that it is close to the inverse CDF F^-1(x), compute the following
    163         // steps:
    164         //
    165         // 1) Generate U and V, two independent random variates. Set U = U - 0.5
    166         // (this step isn't strictly necessary, but is done to make some
    167         // calculations symmetric and convenient. Henceforth, G is defined on
    168         // [-0.5, 0.5]).
    169         //
    170         // 2) If V <= alpha * F'(G(U)) * G'(U), return floor(G(U)), else return
    171         // to step 1. alpha is the acceptance probability of the rejection
    172         // algorithm.
    173         //
    174         // For more details on transformed rejection, see:
    175         // http://citeseer.ist.psu.edu/viewdoc/citations;jsessionid=1BEB35946CC807879F55D42512E5490C?doi=10.1.1.48.3054.
    176         //
    177         // The dominating distribution in this case:
    178         //
    179         // G(u) = (2 * a / (2 - |u|) + b) * u + c
    180 
    181         using Eigen::numext::log;
    182         const CT log_rate = log(rate);
    183 
    184         // Constants used to define the dominating distribution. Names taken
    185         // from Hormann's paper. Constants were chosen to define the tightest
    186         // G(u) for the inverse Poisson CDF.
    187         const CT b = CT(0.931) + CT(2.53) * Eigen::numext::sqrt(rate);
    188         const CT a = CT(-0.059) + CT(0.02483) * b;
    189 
    190         // This is the inverse acceptance rate. At a minimum (when rate = 10),
    191         // this corresponds to ~75% acceptance. As the rate becomes larger, this
    192         // approaches ~89%.
    193         const CT inv_alpha = CT(1.1239) + CT(1.1328) / (b - CT(3.4));
    194 
    195         // Compute the rest of the samples for the current rate value.
    196         for (int64 sample_idx = output_idx % num_samples;
    197              sample_idx < num_samples && output_idx < limit_output;
    198              sample_idx++, output_idx++) {
    199           random::PhiloxRandom gen = rng;
    200           gen.Skip(kReservedSamplesPerOutput * output_idx);
    201           int16 uniform_remaining = 0;
    202 
    203           while (true) {
    204             UNIFORM(u);
    205             u -= CT(0.5);
    206             UNIFORM(v);
    207 
    208             CT u_shifted = CT(0.5) - Eigen::numext::abs(u);
    209             CT k = Eigen::numext::floor((CT(2) * a / u_shifted + b) * u + rate +
    210                                         CT(0.43));
    211 
    212             if (k > CT(Eigen::NumTraits<U>::highest())) {
    213               // retry in case of overflow.
    214               continue;
    215             }
    216 
    217             // When alpha * f(G(U)) * G'(U) is close to 1, it is possible to
    218             // find a rectangle (-u_r, u_r) x (0, v_r) under the curve, such
    219             // that if v <= v_r and |u| <= u_r, then we can accept.
    220             // Here v_r = 0.9227 - 3.6224 / (b - 2) and u_r = 0.43.
    221             if (u_shifted >= CT(0.07) &&
    222                 v <= CT(0.9277) - CT(3.6224) / (b - CT(2))) {
    223               samples_rate_output[sample_idx * num_rate] = U(k);
    224               break;
    225             }
    226 
    227             if (k < 0 || (u_shifted < CT(0.013) && v > u_shifted)) {
    228               continue;
    229             }
    230 
    231             // The expression below is equivalent to the computation of step 2)
    232             // in transformed rejection (v <= alpha * F'(G(u)) * G'(u)).
    233             CT s = log(v * inv_alpha / (a / (u_shifted * u_shifted) + b));
    234             CT t = -rate + k * log_rate - Eigen::numext::lgamma(k + 1);
    235             if (s <= t) {
    236               samples_rate_output[sample_idx * num_rate] = U(k);
    237               break;
    238             }
    239           }
    240         }
    241       }
    242     };
    243 
    244     // This will depend on rate.
    245     // For rate < 10, on average, O(rate) calls to uniform are
    246     // needed, with that
    247     // many multiplies. ~10 uniform calls on average with ~25 cost op calls.
    248     //
    249     // Very roughly, for rate >= 10, the single call to log + call to
    250     // lgamma
    251     // occur for ~60 percent of samples.
    252     // 2 x 100 (64-bit cycles per log) * 0.62 = ~124
    253     // Additionally, there are ~10 other ops (+, *, /, ...) at 3-6 cycles each:
    254     // 40 * .62  = ~25.
    255     //
    256     // Finally, there are several other ops that are done every loop along with
    257     // 2 uniform generations along with 5 other ops at 3-6 cycles each.
    258     // ~15 / .89 = ~16
    259     //
    260     // In total this should be ~165 + 2 * Uniform::kElementCost.
    261     // We assume that half the tensor has rate < 10, so on average 6
    262     // uniform's
    263     // will be needed. We will upper bound the other op cost by the one for
    264     // rate > 10.
    265     static const int kElementCost = 165 + 6 * Uniform::kElementCost +
    266                                     6 * random::PhiloxRandom::kElementCost;
    267     auto worker_threads = *(ctx->device()->tensorflow_cpu_worker_threads());
    268     Shard(worker_threads.num_threads, worker_threads.workers,
    269           num_rate * num_samples, kElementCost, DoWork);
    270   }
    271 
    272  private:
    273   typedef typename PoissonComputeType<T>::ComputeType CT;
    274 };
    275 
    276 }  // namespace functor
    277 
    278 namespace {
    279 
    280 // Samples from one or more Poisson distributions.
    281 template <typename T, typename U>
    282 class RandomPoissonOp : public OpKernel {
    283  public:
    284   explicit RandomPoissonOp(OpKernelConstruction* context) : OpKernel(context) {
    285     OP_REQUIRES_OK(context, generator_.Init(context));
    286   }
    287 
    288   void Compute(OpKernelContext* ctx) override {
    289     const Tensor& shape_t = ctx->input(0);
    290     const Tensor& rate_t = ctx->input(1);
    291 
    292     TensorShape samples_shape;
    293     OP_REQUIRES_OK(ctx, MakeShape(shape_t, &samples_shape));
    294     const int64 num_samples = samples_shape.num_elements();
    295 
    296     samples_shape.AppendShape(rate_t.shape());
    297     // Allocate output samples.
    298     Tensor* samples_t = nullptr;
    299     OP_REQUIRES_OK(ctx, ctx->allocate_output(0, samples_shape, &samples_t));
    300     if (num_samples == 0) return;
    301 
    302     const auto rate_flat = rate_t.flat<T>().data();
    303     const int64 num_rate = rate_t.NumElements();
    304     auto samples_flat = samples_t->flat<U>().data();
    305     random::PhiloxRandom rng = generator_.ReserveRandomOutputs(
    306         num_samples * num_rate, kReservedSamplesPerOutput);
    307 
    308     functor::PoissonFunctor<CPUDevice, T, U>()(
    309         ctx, ctx->eigen_device<CPUDevice>(), rate_flat, num_rate, num_samples,
    310         rng, samples_flat);
    311   }
    312 
    313  private:
    314   GuardedPhiloxRandom generator_;
    315 
    316   TF_DISALLOW_COPY_AND_ASSIGN(RandomPoissonOp);
    317 };
    318 }  // namespace
    319 
    320 #undef UNIFORM
    321 
    322 #define REGISTER(TYPE)                                                        \
    323   REGISTER_KERNEL_BUILDER(                                                    \
    324       Name("RandomPoisson").Device(DEVICE_CPU).TypeConstraint<TYPE>("dtype"), \
    325       RandomPoissonOp<TYPE, TYPE>);
    326 
    327 TF_CALL_half(REGISTER);
    328 TF_CALL_float(REGISTER);
    329 TF_CALL_double(REGISTER);
    330 
    331 #define REGISTER_V2(RTYPE, OTYPE)                              \
    332   REGISTER_KERNEL_BUILDER(Name("RandomPoissonV2")              \
    333                               .Device(DEVICE_CPU)              \
    334                               .TypeConstraint<RTYPE>("R")      \
    335                               .TypeConstraint<OTYPE>("dtype"), \
    336                           RandomPoissonOp<RTYPE, OTYPE>);
    337 
    338 #define REGISTER_ALL(RTYPE)        \
    339   REGISTER_V2(RTYPE, Eigen::half); \
    340   REGISTER_V2(RTYPE, float);       \
    341   REGISTER_V2(RTYPE, double);      \
    342   REGISTER_V2(RTYPE, int32);       \
    343   REGISTER_V2(RTYPE, int64);
    344 
    345 REGISTER_ALL(Eigen::half);
    346 REGISTER_ALL(float);
    347 REGISTER_ALL(double);
    348 REGISTER_ALL(int32);
    349 REGISTER_ALL(int64);
    350 
    351 #undef REGISTER_ALL
    352 #undef REGISTER_V2
    353 #undef REGISTER
    354 
    355 }  // end namespace tensorflow
    356