Home | History | Annotate | Download | only in compiler
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
      6 #define V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/compiler/common-operator.h"
     10 #include "src/compiler/graph.h"
     11 #include "src/compiler/linkage.h"
     12 #include "src/compiler/machine-operator.h"
     13 #include "src/compiler/node.h"
     14 #include "src/compiler/operator.h"
     15 #include "src/factory.h"
     16 #include "src/globals.h"
     17 
     18 namespace v8 {
     19 namespace internal {
     20 namespace compiler {
     21 
     22 class BasicBlock;
     23 class RawMachineLabel;
     24 class Schedule;
     25 
     26 
     27 // The RawMachineAssembler produces a low-level IR graph. All nodes are wired
     28 // into a graph and also placed into a schedule immediately, hence subsequent
     29 // code generation can happen without the need for scheduling.
     30 //
     31 // In order to create a schedule on-the-fly, the assembler keeps track of basic
     32 // blocks by having one current basic block being populated and by referencing
     33 // other basic blocks through the use of labels.
     34 //
     35 // Also note that the generated graph is only valid together with the generated
     36 // schedule, using one without the other is invalid as the graph is inherently
     37 // non-schedulable due to missing control and effect dependencies.
     38 class V8_EXPORT_PRIVATE RawMachineAssembler {
     39  public:
     40   RawMachineAssembler(
     41       Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor,
     42       MachineRepresentation word = MachineType::PointerRepresentation(),
     43       MachineOperatorBuilder::Flags flags =
     44           MachineOperatorBuilder::Flag::kNoFlags,
     45       MachineOperatorBuilder::AlignmentRequirements alignment_requirements =
     46           MachineOperatorBuilder::AlignmentRequirements::
     47               FullUnalignedAccessSupport());
     48   ~RawMachineAssembler() {}
     49 
     50   Isolate* isolate() const { return isolate_; }
     51   Graph* graph() const { return graph_; }
     52   Zone* zone() const { return graph()->zone(); }
     53   MachineOperatorBuilder* machine() { return &machine_; }
     54   CommonOperatorBuilder* common() { return &common_; }
     55   CallDescriptor* call_descriptor() const { return call_descriptor_; }
     56 
     57   // Finalizes the schedule and exports it to be used for code generation. Note
     58   // that this RawMachineAssembler becomes invalid after export.
     59   Schedule* Export();
     60 
     61   // ===========================================================================
     62   // The following utility methods create new nodes with specific operators and
     63   // place them into the current basic block. They don't perform control flow,
     64   // hence will not switch the current basic block.
     65 
     66   Node* NullConstant() {
     67     return HeapConstant(isolate()->factory()->null_value());
     68   }
     69 
     70   Node* UndefinedConstant() {
     71     return HeapConstant(isolate()->factory()->undefined_value());
     72   }
     73 
     74   // Constants.
     75   Node* PointerConstant(void* value) {
     76     return IntPtrConstant(reinterpret_cast<intptr_t>(value));
     77   }
     78   Node* IntPtrConstant(intptr_t value) {
     79     // TODO(dcarney): mark generated code as unserializable if value != 0.
     80     return kPointerSize == 8 ? Int64Constant(value)
     81                              : Int32Constant(static_cast<int>(value));
     82   }
     83   Node* RelocatableIntPtrConstant(intptr_t value, RelocInfo::Mode rmode);
     84   Node* Int32Constant(int32_t value) {
     85     return AddNode(common()->Int32Constant(value));
     86   }
     87   Node* StackSlot(MachineRepresentation rep) {
     88     return AddNode(machine()->StackSlot(rep));
     89   }
     90   Node* Int64Constant(int64_t value) {
     91     return AddNode(common()->Int64Constant(value));
     92   }
     93   Node* NumberConstant(double value) {
     94     return AddNode(common()->NumberConstant(value));
     95   }
     96   Node* Float32Constant(float value) {
     97     return AddNode(common()->Float32Constant(value));
     98   }
     99   Node* Float64Constant(double value) {
    100     return AddNode(common()->Float64Constant(value));
    101   }
    102   Node* HeapConstant(Handle<HeapObject> object) {
    103     return AddNode(common()->HeapConstant(object));
    104   }
    105   Node* BooleanConstant(bool value) {
    106     Handle<Object> object = isolate()->factory()->ToBoolean(value);
    107     return HeapConstant(Handle<HeapObject>::cast(object));
    108   }
    109   Node* ExternalConstant(ExternalReference address) {
    110     return AddNode(common()->ExternalConstant(address));
    111   }
    112   Node* RelocatableInt32Constant(int32_t value, RelocInfo::Mode rmode) {
    113     return AddNode(common()->RelocatableInt32Constant(value, rmode));
    114   }
    115   Node* RelocatableInt64Constant(int64_t value, RelocInfo::Mode rmode) {
    116     return AddNode(common()->RelocatableInt64Constant(value, rmode));
    117   }
    118 
    119   Node* Projection(int index, Node* a) {
    120     return AddNode(common()->Projection(index), a);
    121   }
    122 
    123   // Memory Operations.
    124   Node* Load(MachineType rep, Node* base) {
    125     return Load(rep, base, IntPtrConstant(0));
    126   }
    127   Node* Load(MachineType rep, Node* base, Node* index) {
    128     return AddNode(machine()->Load(rep), base, index);
    129   }
    130   Node* Store(MachineRepresentation rep, Node* base, Node* value,
    131               WriteBarrierKind write_barrier) {
    132     return Store(rep, base, IntPtrConstant(0), value, write_barrier);
    133   }
    134   Node* Store(MachineRepresentation rep, Node* base, Node* index, Node* value,
    135               WriteBarrierKind write_barrier) {
    136     return AddNode(machine()->Store(StoreRepresentation(rep, write_barrier)),
    137                    base, index, value);
    138   }
    139   Node* Retain(Node* value) { return AddNode(common()->Retain(), value); }
    140 
    141   // Unaligned memory operations
    142   Node* UnalignedLoad(MachineType rep, Node* base) {
    143     return UnalignedLoad(rep, base, IntPtrConstant(0));
    144   }
    145   Node* UnalignedLoad(MachineType rep, Node* base, Node* index) {
    146     if (machine()->UnalignedLoadSupported(rep, 1)) {
    147       return AddNode(machine()->Load(rep), base, index);
    148     } else {
    149       return AddNode(machine()->UnalignedLoad(rep), base, index);
    150     }
    151   }
    152   Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* value) {
    153     return UnalignedStore(rep, base, IntPtrConstant(0), value);
    154   }
    155   Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* index,
    156                        Node* value) {
    157     MachineType t = MachineType::TypeForRepresentation(rep);
    158     if (machine()->UnalignedStoreSupported(t, 1)) {
    159       return AddNode(machine()->Store(StoreRepresentation(
    160                          rep, WriteBarrierKind::kNoWriteBarrier)),
    161                      base, index, value);
    162     } else {
    163       return AddNode(
    164           machine()->UnalignedStore(UnalignedStoreRepresentation(rep)), base,
    165           index, value);
    166     }
    167   }
    168 
    169   // Atomic memory operations.
    170   Node* AtomicLoad(MachineType rep, Node* base, Node* index) {
    171     return AddNode(machine()->AtomicLoad(rep), base, index);
    172   }
    173   Node* AtomicStore(MachineRepresentation rep, Node* base, Node* index,
    174                     Node* value) {
    175     return AddNode(machine()->AtomicStore(rep), base, index, value);
    176   }
    177 
    178   // Arithmetic Operations.
    179   Node* WordAnd(Node* a, Node* b) {
    180     return AddNode(machine()->WordAnd(), a, b);
    181   }
    182   Node* WordOr(Node* a, Node* b) { return AddNode(machine()->WordOr(), a, b); }
    183   Node* WordXor(Node* a, Node* b) {
    184     return AddNode(machine()->WordXor(), a, b);
    185   }
    186   Node* WordShl(Node* a, Node* b) {
    187     return AddNode(machine()->WordShl(), a, b);
    188   }
    189   Node* WordShr(Node* a, Node* b) {
    190     return AddNode(machine()->WordShr(), a, b);
    191   }
    192   Node* WordSar(Node* a, Node* b) {
    193     return AddNode(machine()->WordSar(), a, b);
    194   }
    195   Node* WordRor(Node* a, Node* b) {
    196     return AddNode(machine()->WordRor(), a, b);
    197   }
    198   Node* WordEqual(Node* a, Node* b) {
    199     return AddNode(machine()->WordEqual(), a, b);
    200   }
    201   Node* WordNotEqual(Node* a, Node* b) {
    202     return Word32BinaryNot(WordEqual(a, b));
    203   }
    204   Node* WordNot(Node* a) {
    205     if (machine()->Is32()) {
    206       return Word32Not(a);
    207     } else {
    208       return Word64Not(a);
    209     }
    210   }
    211 
    212   Node* Word32And(Node* a, Node* b) {
    213     return AddNode(machine()->Word32And(), a, b);
    214   }
    215   Node* Word32Or(Node* a, Node* b) {
    216     return AddNode(machine()->Word32Or(), a, b);
    217   }
    218   Node* Word32Xor(Node* a, Node* b) {
    219     return AddNode(machine()->Word32Xor(), a, b);
    220   }
    221   Node* Word32Shl(Node* a, Node* b) {
    222     return AddNode(machine()->Word32Shl(), a, b);
    223   }
    224   Node* Word32Shr(Node* a, Node* b) {
    225     return AddNode(machine()->Word32Shr(), a, b);
    226   }
    227   Node* Word32Sar(Node* a, Node* b) {
    228     return AddNode(machine()->Word32Sar(), a, b);
    229   }
    230   Node* Word32Ror(Node* a, Node* b) {
    231     return AddNode(machine()->Word32Ror(), a, b);
    232   }
    233   Node* Word32Clz(Node* a) { return AddNode(machine()->Word32Clz(), a); }
    234   Node* Word32Equal(Node* a, Node* b) {
    235     return AddNode(machine()->Word32Equal(), a, b);
    236   }
    237   Node* Word32NotEqual(Node* a, Node* b) {
    238     return Word32BinaryNot(Word32Equal(a, b));
    239   }
    240   Node* Word32Not(Node* a) { return Word32Xor(a, Int32Constant(-1)); }
    241   Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); }
    242 
    243   Node* Word64And(Node* a, Node* b) {
    244     return AddNode(machine()->Word64And(), a, b);
    245   }
    246   Node* Word64Or(Node* a, Node* b) {
    247     return AddNode(machine()->Word64Or(), a, b);
    248   }
    249   Node* Word64Xor(Node* a, Node* b) {
    250     return AddNode(machine()->Word64Xor(), a, b);
    251   }
    252   Node* Word64Shl(Node* a, Node* b) {
    253     return AddNode(machine()->Word64Shl(), a, b);
    254   }
    255   Node* Word64Shr(Node* a, Node* b) {
    256     return AddNode(machine()->Word64Shr(), a, b);
    257   }
    258   Node* Word64Sar(Node* a, Node* b) {
    259     return AddNode(machine()->Word64Sar(), a, b);
    260   }
    261   Node* Word64Ror(Node* a, Node* b) {
    262     return AddNode(machine()->Word64Ror(), a, b);
    263   }
    264   Node* Word64Clz(Node* a) { return AddNode(machine()->Word64Clz(), a); }
    265   Node* Word64Equal(Node* a, Node* b) {
    266     return AddNode(machine()->Word64Equal(), a, b);
    267   }
    268   Node* Word64NotEqual(Node* a, Node* b) {
    269     return Word32BinaryNot(Word64Equal(a, b));
    270   }
    271   Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); }
    272 
    273   Node* Int32Add(Node* a, Node* b) {
    274     return AddNode(machine()->Int32Add(), a, b);
    275   }
    276   Node* Int32AddWithOverflow(Node* a, Node* b) {
    277     return AddNode(machine()->Int32AddWithOverflow(), a, b);
    278   }
    279   Node* Int32Sub(Node* a, Node* b) {
    280     return AddNode(machine()->Int32Sub(), a, b);
    281   }
    282   Node* Int32SubWithOverflow(Node* a, Node* b) {
    283     return AddNode(machine()->Int32SubWithOverflow(), a, b);
    284   }
    285   Node* Int32Mul(Node* a, Node* b) {
    286     return AddNode(machine()->Int32Mul(), a, b);
    287   }
    288   Node* Int32MulHigh(Node* a, Node* b) {
    289     return AddNode(machine()->Int32MulHigh(), a, b);
    290   }
    291   Node* Int32MulWithOverflow(Node* a, Node* b) {
    292     return AddNode(machine()->Int32MulWithOverflow(), a, b);
    293   }
    294   Node* Int32Div(Node* a, Node* b) {
    295     return AddNode(machine()->Int32Div(), a, b);
    296   }
    297   Node* Int32Mod(Node* a, Node* b) {
    298     return AddNode(machine()->Int32Mod(), a, b);
    299   }
    300   Node* Int32LessThan(Node* a, Node* b) {
    301     return AddNode(machine()->Int32LessThan(), a, b);
    302   }
    303   Node* Int32LessThanOrEqual(Node* a, Node* b) {
    304     return AddNode(machine()->Int32LessThanOrEqual(), a, b);
    305   }
    306   Node* Uint32Div(Node* a, Node* b) {
    307     return AddNode(machine()->Uint32Div(), a, b);
    308   }
    309   Node* Uint32LessThan(Node* a, Node* b) {
    310     return AddNode(machine()->Uint32LessThan(), a, b);
    311   }
    312   Node* Uint32LessThanOrEqual(Node* a, Node* b) {
    313     return AddNode(machine()->Uint32LessThanOrEqual(), a, b);
    314   }
    315   Node* Uint32Mod(Node* a, Node* b) {
    316     return AddNode(machine()->Uint32Mod(), a, b);
    317   }
    318   Node* Uint32MulHigh(Node* a, Node* b) {
    319     return AddNode(machine()->Uint32MulHigh(), a, b);
    320   }
    321   Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); }
    322   Node* Int32GreaterThanOrEqual(Node* a, Node* b) {
    323     return Int32LessThanOrEqual(b, a);
    324   }
    325   Node* Uint32GreaterThan(Node* a, Node* b) { return Uint32LessThan(b, a); }
    326   Node* Uint32GreaterThanOrEqual(Node* a, Node* b) {
    327     return Uint32LessThanOrEqual(b, a);
    328   }
    329   Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); }
    330 
    331   Node* Int64Add(Node* a, Node* b) {
    332     return AddNode(machine()->Int64Add(), a, b);
    333   }
    334   Node* Int64AddWithOverflow(Node* a, Node* b) {
    335     return AddNode(machine()->Int64AddWithOverflow(), a, b);
    336   }
    337   Node* Int64Sub(Node* a, Node* b) {
    338     return AddNode(machine()->Int64Sub(), a, b);
    339   }
    340   Node* Int64SubWithOverflow(Node* a, Node* b) {
    341     return AddNode(machine()->Int64SubWithOverflow(), a, b);
    342   }
    343   Node* Int64Mul(Node* a, Node* b) {
    344     return AddNode(machine()->Int64Mul(), a, b);
    345   }
    346   Node* Int64Div(Node* a, Node* b) {
    347     return AddNode(machine()->Int64Div(), a, b);
    348   }
    349   Node* Int64Mod(Node* a, Node* b) {
    350     return AddNode(machine()->Int64Mod(), a, b);
    351   }
    352   Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); }
    353   Node* Int64LessThan(Node* a, Node* b) {
    354     return AddNode(machine()->Int64LessThan(), a, b);
    355   }
    356   Node* Int64LessThanOrEqual(Node* a, Node* b) {
    357     return AddNode(machine()->Int64LessThanOrEqual(), a, b);
    358   }
    359   Node* Uint64LessThan(Node* a, Node* b) {
    360     return AddNode(machine()->Uint64LessThan(), a, b);
    361   }
    362   Node* Uint64LessThanOrEqual(Node* a, Node* b) {
    363     return AddNode(machine()->Uint64LessThanOrEqual(), a, b);
    364   }
    365   Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); }
    366   Node* Int64GreaterThanOrEqual(Node* a, Node* b) {
    367     return Int64LessThanOrEqual(b, a);
    368   }
    369   Node* Uint64GreaterThan(Node* a, Node* b) { return Uint64LessThan(b, a); }
    370   Node* Uint64GreaterThanOrEqual(Node* a, Node* b) {
    371     return Uint64LessThanOrEqual(b, a);
    372   }
    373   Node* Uint64Div(Node* a, Node* b) {
    374     return AddNode(machine()->Uint64Div(), a, b);
    375   }
    376   Node* Uint64Mod(Node* a, Node* b) {
    377     return AddNode(machine()->Uint64Mod(), a, b);
    378   }
    379   Node* Int32PairAdd(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    380     return AddNode(machine()->Int32PairAdd(), a_low, a_high, b_low, b_high);
    381   }
    382   Node* Int32PairSub(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    383     return AddNode(machine()->Int32PairSub(), a_low, a_high, b_low, b_high);
    384   }
    385   Node* Int32PairMul(Node* a_low, Node* a_high, Node* b_low, Node* b_high) {
    386     return AddNode(machine()->Int32PairMul(), a_low, a_high, b_low, b_high);
    387   }
    388   Node* Word32PairShl(Node* low_word, Node* high_word, Node* shift) {
    389     return AddNode(machine()->Word32PairShl(), low_word, high_word, shift);
    390   }
    391   Node* Word32PairShr(Node* low_word, Node* high_word, Node* shift) {
    392     return AddNode(machine()->Word32PairShr(), low_word, high_word, shift);
    393   }
    394   Node* Word32PairSar(Node* low_word, Node* high_word, Node* shift) {
    395     return AddNode(machine()->Word32PairSar(), low_word, high_word, shift);
    396   }
    397 
    398 #define INTPTR_BINOP(prefix, name)                     \
    399   Node* IntPtr##name(Node* a, Node* b) {               \
    400     return kPointerSize == 8 ? prefix##64##name(a, b)  \
    401                              : prefix##32##name(a, b); \
    402   }
    403 
    404   INTPTR_BINOP(Int, Add);
    405   INTPTR_BINOP(Int, AddWithOverflow);
    406   INTPTR_BINOP(Int, Sub);
    407   INTPTR_BINOP(Int, SubWithOverflow);
    408   INTPTR_BINOP(Int, Mul);
    409   INTPTR_BINOP(Int, Div);
    410   INTPTR_BINOP(Int, LessThan);
    411   INTPTR_BINOP(Int, LessThanOrEqual);
    412   INTPTR_BINOP(Word, Equal);
    413   INTPTR_BINOP(Word, NotEqual);
    414   INTPTR_BINOP(Int, GreaterThanOrEqual);
    415   INTPTR_BINOP(Int, GreaterThan);
    416 
    417 #undef INTPTR_BINOP
    418 
    419 #define UINTPTR_BINOP(prefix, name)                    \
    420   Node* UintPtr##name(Node* a, Node* b) {              \
    421     return kPointerSize == 8 ? prefix##64##name(a, b)  \
    422                              : prefix##32##name(a, b); \
    423   }
    424 
    425   UINTPTR_BINOP(Uint, LessThan);
    426   UINTPTR_BINOP(Uint, LessThanOrEqual);
    427   UINTPTR_BINOP(Uint, GreaterThanOrEqual);
    428   UINTPTR_BINOP(Uint, GreaterThan);
    429 
    430 #undef UINTPTR_BINOP
    431 
    432   Node* Float32Add(Node* a, Node* b) {
    433     return AddNode(machine()->Float32Add(), a, b);
    434   }
    435   Node* Float32Sub(Node* a, Node* b) {
    436     return AddNode(machine()->Float32Sub(), a, b);
    437   }
    438   Node* Float32Mul(Node* a, Node* b) {
    439     return AddNode(machine()->Float32Mul(), a, b);
    440   }
    441   Node* Float32Div(Node* a, Node* b) {
    442     return AddNode(machine()->Float32Div(), a, b);
    443   }
    444   Node* Float32Abs(Node* a) { return AddNode(machine()->Float32Abs(), a); }
    445   Node* Float32Neg(Node* a) { return AddNode(machine()->Float32Neg(), a); }
    446   Node* Float32Sqrt(Node* a) { return AddNode(machine()->Float32Sqrt(), a); }
    447   Node* Float32Equal(Node* a, Node* b) {
    448     return AddNode(machine()->Float32Equal(), a, b);
    449   }
    450   Node* Float32NotEqual(Node* a, Node* b) {
    451     return Word32BinaryNot(Float32Equal(a, b));
    452   }
    453   Node* Float32LessThan(Node* a, Node* b) {
    454     return AddNode(machine()->Float32LessThan(), a, b);
    455   }
    456   Node* Float32LessThanOrEqual(Node* a, Node* b) {
    457     return AddNode(machine()->Float32LessThanOrEqual(), a, b);
    458   }
    459   Node* Float32GreaterThan(Node* a, Node* b) { return Float32LessThan(b, a); }
    460   Node* Float32GreaterThanOrEqual(Node* a, Node* b) {
    461     return Float32LessThanOrEqual(b, a);
    462   }
    463   Node* Float32Max(Node* a, Node* b) {
    464     return AddNode(machine()->Float32Max(), a, b);
    465   }
    466   Node* Float32Min(Node* a, Node* b) {
    467     return AddNode(machine()->Float32Min(), a, b);
    468   }
    469   Node* Float64Add(Node* a, Node* b) {
    470     return AddNode(machine()->Float64Add(), a, b);
    471   }
    472   Node* Float64Sub(Node* a, Node* b) {
    473     return AddNode(machine()->Float64Sub(), a, b);
    474   }
    475   Node* Float64Mul(Node* a, Node* b) {
    476     return AddNode(machine()->Float64Mul(), a, b);
    477   }
    478   Node* Float64Div(Node* a, Node* b) {
    479     return AddNode(machine()->Float64Div(), a, b);
    480   }
    481   Node* Float64Mod(Node* a, Node* b) {
    482     return AddNode(machine()->Float64Mod(), a, b);
    483   }
    484   Node* Float64Max(Node* a, Node* b) {
    485     return AddNode(machine()->Float64Max(), a, b);
    486   }
    487   Node* Float64Min(Node* a, Node* b) {
    488     return AddNode(machine()->Float64Min(), a, b);
    489   }
    490   Node* Float64Abs(Node* a) { return AddNode(machine()->Float64Abs(), a); }
    491   Node* Float64Neg(Node* a) { return AddNode(machine()->Float64Neg(), a); }
    492   Node* Float64Acos(Node* a) { return AddNode(machine()->Float64Acos(), a); }
    493   Node* Float64Acosh(Node* a) { return AddNode(machine()->Float64Acosh(), a); }
    494   Node* Float64Asin(Node* a) { return AddNode(machine()->Float64Asin(), a); }
    495   Node* Float64Asinh(Node* a) { return AddNode(machine()->Float64Asinh(), a); }
    496   Node* Float64Atan(Node* a) { return AddNode(machine()->Float64Atan(), a); }
    497   Node* Float64Atanh(Node* a) { return AddNode(machine()->Float64Atanh(), a); }
    498   Node* Float64Atan2(Node* a, Node* b) {
    499     return AddNode(machine()->Float64Atan2(), a, b);
    500   }
    501   Node* Float64Cbrt(Node* a) { return AddNode(machine()->Float64Cbrt(), a); }
    502   Node* Float64Cos(Node* a) { return AddNode(machine()->Float64Cos(), a); }
    503   Node* Float64Cosh(Node* a) { return AddNode(machine()->Float64Cosh(), a); }
    504   Node* Float64Exp(Node* a) { return AddNode(machine()->Float64Exp(), a); }
    505   Node* Float64Expm1(Node* a) { return AddNode(machine()->Float64Expm1(), a); }
    506   Node* Float64Log(Node* a) { return AddNode(machine()->Float64Log(), a); }
    507   Node* Float64Log1p(Node* a) { return AddNode(machine()->Float64Log1p(), a); }
    508   Node* Float64Log10(Node* a) { return AddNode(machine()->Float64Log10(), a); }
    509   Node* Float64Log2(Node* a) { return AddNode(machine()->Float64Log2(), a); }
    510   Node* Float64Pow(Node* a, Node* b) {
    511     return AddNode(machine()->Float64Pow(), a, b);
    512   }
    513   Node* Float64Sin(Node* a) { return AddNode(machine()->Float64Sin(), a); }
    514   Node* Float64Sinh(Node* a) { return AddNode(machine()->Float64Sinh(), a); }
    515   Node* Float64Sqrt(Node* a) { return AddNode(machine()->Float64Sqrt(), a); }
    516   Node* Float64Tan(Node* a) { return AddNode(machine()->Float64Tan(), a); }
    517   Node* Float64Tanh(Node* a) { return AddNode(machine()->Float64Tanh(), a); }
    518   Node* Float64Equal(Node* a, Node* b) {
    519     return AddNode(machine()->Float64Equal(), a, b);
    520   }
    521   Node* Float64NotEqual(Node* a, Node* b) {
    522     return Word32BinaryNot(Float64Equal(a, b));
    523   }
    524   Node* Float64LessThan(Node* a, Node* b) {
    525     return AddNode(machine()->Float64LessThan(), a, b);
    526   }
    527   Node* Float64LessThanOrEqual(Node* a, Node* b) {
    528     return AddNode(machine()->Float64LessThanOrEqual(), a, b);
    529   }
    530   Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); }
    531   Node* Float64GreaterThanOrEqual(Node* a, Node* b) {
    532     return Float64LessThanOrEqual(b, a);
    533   }
    534 
    535   // Conversions.
    536   Node* BitcastTaggedToWord(Node* a) {
    537 #ifdef ENABLE_VERIFY_CSA
    538     return AddNode(machine()->BitcastTaggedToWord(), a);
    539 #else
    540     return a;
    541 #endif
    542   }
    543   Node* BitcastWordToTagged(Node* a) {
    544     return AddNode(machine()->BitcastWordToTagged(), a);
    545   }
    546   Node* BitcastWordToTaggedSigned(Node* a) {
    547 #ifdef ENABLE_VERIFY_CSA
    548     return AddNode(machine()->BitcastWordToTaggedSigned(), a);
    549 #else
    550     return a;
    551 #endif
    552   }
    553   Node* TruncateFloat64ToWord32(Node* a) {
    554     return AddNode(machine()->TruncateFloat64ToWord32(), a);
    555   }
    556   Node* ChangeFloat32ToFloat64(Node* a) {
    557     return AddNode(machine()->ChangeFloat32ToFloat64(), a);
    558   }
    559   Node* ChangeInt32ToFloat64(Node* a) {
    560     return AddNode(machine()->ChangeInt32ToFloat64(), a);
    561   }
    562   Node* ChangeUint32ToFloat64(Node* a) {
    563     return AddNode(machine()->ChangeUint32ToFloat64(), a);
    564   }
    565   Node* ChangeFloat64ToInt32(Node* a) {
    566     return AddNode(machine()->ChangeFloat64ToInt32(), a);
    567   }
    568   Node* ChangeFloat64ToUint32(Node* a) {
    569     return AddNode(machine()->ChangeFloat64ToUint32(), a);
    570   }
    571   Node* TruncateFloat64ToUint32(Node* a) {
    572     return AddNode(machine()->TruncateFloat64ToUint32(), a);
    573   }
    574   Node* TruncateFloat32ToInt32(Node* a) {
    575     return AddNode(machine()->TruncateFloat32ToInt32(), a);
    576   }
    577   Node* TruncateFloat32ToUint32(Node* a) {
    578     return AddNode(machine()->TruncateFloat32ToUint32(), a);
    579   }
    580   Node* TryTruncateFloat32ToInt64(Node* a) {
    581     return AddNode(machine()->TryTruncateFloat32ToInt64(), a);
    582   }
    583   Node* TryTruncateFloat64ToInt64(Node* a) {
    584     return AddNode(machine()->TryTruncateFloat64ToInt64(), a);
    585   }
    586   Node* TryTruncateFloat32ToUint64(Node* a) {
    587     return AddNode(machine()->TryTruncateFloat32ToUint64(), a);
    588   }
    589   Node* TryTruncateFloat64ToUint64(Node* a) {
    590     return AddNode(machine()->TryTruncateFloat64ToUint64(), a);
    591   }
    592   Node* ChangeInt32ToInt64(Node* a) {
    593     return AddNode(machine()->ChangeInt32ToInt64(), a);
    594   }
    595   Node* ChangeUint32ToUint64(Node* a) {
    596     return AddNode(machine()->ChangeUint32ToUint64(), a);
    597   }
    598   Node* TruncateFloat64ToFloat32(Node* a) {
    599     return AddNode(machine()->TruncateFloat64ToFloat32(), a);
    600   }
    601   Node* TruncateInt64ToInt32(Node* a) {
    602     return AddNode(machine()->TruncateInt64ToInt32(), a);
    603   }
    604   Node* RoundFloat64ToInt32(Node* a) {
    605     return AddNode(machine()->RoundFloat64ToInt32(), a);
    606   }
    607   Node* RoundInt32ToFloat32(Node* a) {
    608     return AddNode(machine()->RoundInt32ToFloat32(), a);
    609   }
    610   Node* RoundInt64ToFloat32(Node* a) {
    611     return AddNode(machine()->RoundInt64ToFloat32(), a);
    612   }
    613   Node* RoundInt64ToFloat64(Node* a) {
    614     return AddNode(machine()->RoundInt64ToFloat64(), a);
    615   }
    616   Node* RoundUint32ToFloat32(Node* a) {
    617     return AddNode(machine()->RoundUint32ToFloat32(), a);
    618   }
    619   Node* RoundUint64ToFloat32(Node* a) {
    620     return AddNode(machine()->RoundUint64ToFloat32(), a);
    621   }
    622   Node* RoundUint64ToFloat64(Node* a) {
    623     return AddNode(machine()->RoundUint64ToFloat64(), a);
    624   }
    625   Node* BitcastFloat32ToInt32(Node* a) {
    626     return AddNode(machine()->BitcastFloat32ToInt32(), a);
    627   }
    628   Node* BitcastFloat64ToInt64(Node* a) {
    629     return AddNode(machine()->BitcastFloat64ToInt64(), a);
    630   }
    631   Node* BitcastInt32ToFloat32(Node* a) {
    632     return AddNode(machine()->BitcastInt32ToFloat32(), a);
    633   }
    634   Node* BitcastInt64ToFloat64(Node* a) {
    635     return AddNode(machine()->BitcastInt64ToFloat64(), a);
    636   }
    637   Node* Float32RoundDown(Node* a) {
    638     return AddNode(machine()->Float32RoundDown().op(), a);
    639   }
    640   Node* Float64RoundDown(Node* a) {
    641     return AddNode(machine()->Float64RoundDown().op(), a);
    642   }
    643   Node* Float32RoundUp(Node* a) {
    644     return AddNode(machine()->Float32RoundUp().op(), a);
    645   }
    646   Node* Float64RoundUp(Node* a) {
    647     return AddNode(machine()->Float64RoundUp().op(), a);
    648   }
    649   Node* Float32RoundTruncate(Node* a) {
    650     return AddNode(machine()->Float32RoundTruncate().op(), a);
    651   }
    652   Node* Float64RoundTruncate(Node* a) {
    653     return AddNode(machine()->Float64RoundTruncate().op(), a);
    654   }
    655   Node* Float64RoundTiesAway(Node* a) {
    656     return AddNode(machine()->Float64RoundTiesAway().op(), a);
    657   }
    658   Node* Float32RoundTiesEven(Node* a) {
    659     return AddNode(machine()->Float32RoundTiesEven().op(), a);
    660   }
    661   Node* Float64RoundTiesEven(Node* a) {
    662     return AddNode(machine()->Float64RoundTiesEven().op(), a);
    663   }
    664   Node* Word32ReverseBytes(Node* a) {
    665     return AddNode(machine()->Word32ReverseBytes().op(), a);
    666   }
    667   Node* Word64ReverseBytes(Node* a) {
    668     return AddNode(machine()->Word64ReverseBytes().op(), a);
    669   }
    670 
    671   // Float64 bit operations.
    672   Node* Float64ExtractLowWord32(Node* a) {
    673     return AddNode(machine()->Float64ExtractLowWord32(), a);
    674   }
    675   Node* Float64ExtractHighWord32(Node* a) {
    676     return AddNode(machine()->Float64ExtractHighWord32(), a);
    677   }
    678   Node* Float64InsertLowWord32(Node* a, Node* b) {
    679     return AddNode(machine()->Float64InsertLowWord32(), a, b);
    680   }
    681   Node* Float64InsertHighWord32(Node* a, Node* b) {
    682     return AddNode(machine()->Float64InsertHighWord32(), a, b);
    683   }
    684   Node* Float64SilenceNaN(Node* a) {
    685     return AddNode(machine()->Float64SilenceNaN(), a);
    686   }
    687 
    688   // Stack operations.
    689   Node* LoadStackPointer() { return AddNode(machine()->LoadStackPointer()); }
    690   Node* LoadFramePointer() { return AddNode(machine()->LoadFramePointer()); }
    691   Node* LoadParentFramePointer() {
    692     return AddNode(machine()->LoadParentFramePointer());
    693   }
    694 
    695   // Parameters.
    696   Node* Parameter(size_t index);
    697 
    698   // Pointer utilities.
    699   Node* LoadFromPointer(void* address, MachineType rep, int32_t offset = 0) {
    700     return Load(rep, PointerConstant(address), Int32Constant(offset));
    701   }
    702   Node* StoreToPointer(void* address, MachineRepresentation rep, Node* node) {
    703     return Store(rep, PointerConstant(address), node, kNoWriteBarrier);
    704   }
    705   Node* UnalignedLoadFromPointer(void* address, MachineType rep,
    706                                  int32_t offset = 0) {
    707     return UnalignedLoad(rep, PointerConstant(address), Int32Constant(offset));
    708   }
    709   Node* UnalignedStoreToPointer(void* address, MachineRepresentation rep,
    710                                 Node* node) {
    711     return UnalignedStore(rep, PointerConstant(address), node);
    712   }
    713   Node* StringConstant(const char* string) {
    714     return HeapConstant(isolate()->factory()->InternalizeUtf8String(string));
    715   }
    716 
    717   // Call a given call descriptor and the given arguments.
    718   // The call target is passed as part of the {inputs} array.
    719   Node* CallN(CallDescriptor* desc, int input_count, Node* const* inputs);
    720 
    721   // Call a given call descriptor and the given arguments and frame-state.
    722   // The call target and frame state are passed as part of the {inputs} array.
    723   Node* CallNWithFrameState(CallDescriptor* desc, int input_count,
    724                             Node* const* inputs);
    725 
    726   // Tail call a given call descriptor and the given arguments.
    727   // The call target is passed as part of the {inputs} array.
    728   Node* TailCallN(CallDescriptor* desc, int input_count, Node* const* inputs);
    729 
    730   // Call to a C function with zero arguments.
    731   Node* CallCFunction0(MachineType return_type, Node* function);
    732   // Call to a C function with one parameter.
    733   Node* CallCFunction1(MachineType return_type, MachineType arg0_type,
    734                        Node* function, Node* arg0);
    735   // Call to a C function with two arguments.
    736   Node* CallCFunction2(MachineType return_type, MachineType arg0_type,
    737                        MachineType arg1_type, Node* function, Node* arg0,
    738                        Node* arg1);
    739   // Call to a C function with three arguments.
    740   Node* CallCFunction3(MachineType return_type, MachineType arg0_type,
    741                        MachineType arg1_type, MachineType arg2_type,
    742                        Node* function, Node* arg0, Node* arg1, Node* arg2);
    743   // Call to a C function with eight arguments.
    744   Node* CallCFunction8(MachineType return_type, MachineType arg0_type,
    745                        MachineType arg1_type, MachineType arg2_type,
    746                        MachineType arg3_type, MachineType arg4_type,
    747                        MachineType arg5_type, MachineType arg6_type,
    748                        MachineType arg7_type, Node* function, Node* arg0,
    749                        Node* arg1, Node* arg2, Node* arg3, Node* arg4,
    750                        Node* arg5, Node* arg6, Node* arg7);
    751 
    752   // ===========================================================================
    753   // The following utility methods deal with control flow, hence might switch
    754   // the current basic block or create new basic blocks for labels.
    755 
    756   // Control flow.
    757   void Goto(RawMachineLabel* label);
    758   void Branch(Node* condition, RawMachineLabel* true_val,
    759               RawMachineLabel* false_val);
    760   void Switch(Node* index, RawMachineLabel* default_label,
    761               const int32_t* case_values, RawMachineLabel** case_labels,
    762               size_t case_count);
    763   void Return(Node* value);
    764   void Return(Node* v1, Node* v2);
    765   void Return(Node* v1, Node* v2, Node* v3);
    766   void PopAndReturn(Node* pop, Node* value);
    767   void PopAndReturn(Node* pop, Node* v1, Node* v2);
    768   void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3);
    769   void Bind(RawMachineLabel* label);
    770   void Deoptimize(Node* state);
    771   void DebugBreak();
    772   void Unreachable();
    773   void Comment(const char* msg);
    774 
    775   // Add success / exception successor blocks and ends the current block ending
    776   // in a potentially throwing call node.
    777   void Continuations(Node* call, RawMachineLabel* if_success,
    778                      RawMachineLabel* if_exception);
    779 
    780   // Variables.
    781   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2) {
    782     return AddNode(common()->Phi(rep, 2), n1, n2, graph()->start());
    783   }
    784   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3) {
    785     return AddNode(common()->Phi(rep, 3), n1, n2, n3, graph()->start());
    786   }
    787   Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3, Node* n4) {
    788     return AddNode(common()->Phi(rep, 4), n1, n2, n3, n4, graph()->start());
    789   }
    790   Node* Phi(MachineRepresentation rep, int input_count, Node* const* inputs);
    791   void AppendPhiInput(Node* phi, Node* new_input);
    792 
    793   // ===========================================================================
    794   // The following generic node creation methods can be used for operators that
    795   // are not covered by the above utility methods. There should rarely be a need
    796   // to do that outside of testing though.
    797 
    798   Node* AddNode(const Operator* op, int input_count, Node* const* inputs);
    799 
    800   Node* AddNode(const Operator* op) {
    801     return AddNode(op, 0, static_cast<Node* const*>(nullptr));
    802   }
    803 
    804   template <class... TArgs>
    805   Node* AddNode(const Operator* op, Node* n1, TArgs... args) {
    806     Node* buffer[] = {n1, args...};
    807     return AddNode(op, sizeof...(args) + 1, buffer);
    808   }
    809 
    810  private:
    811   Node* MakeNode(const Operator* op, int input_count, Node* const* inputs);
    812   BasicBlock* Use(RawMachineLabel* label);
    813   BasicBlock* EnsureBlock(RawMachineLabel* label);
    814   BasicBlock* CurrentBlock();
    815 
    816   Schedule* schedule() { return schedule_; }
    817   size_t parameter_count() const { return call_descriptor_->ParameterCount(); }
    818 
    819   Isolate* isolate_;
    820   Graph* graph_;
    821   Schedule* schedule_;
    822   MachineOperatorBuilder machine_;
    823   CommonOperatorBuilder common_;
    824   CallDescriptor* call_descriptor_;
    825   NodeVector parameters_;
    826   BasicBlock* current_block_;
    827 
    828   DISALLOW_COPY_AND_ASSIGN(RawMachineAssembler);
    829 };
    830 
    831 class V8_EXPORT_PRIVATE RawMachineLabel final {
    832  public:
    833   enum Type { kDeferred, kNonDeferred };
    834 
    835   explicit RawMachineLabel(Type type = kNonDeferred)
    836       : deferred_(type == kDeferred) {}
    837   ~RawMachineLabel();
    838 
    839  private:
    840   BasicBlock* block_ = nullptr;
    841   bool used_ = false;
    842   bool bound_ = false;
    843   bool deferred_;
    844   friend class RawMachineAssembler;
    845   DISALLOW_COPY_AND_ASSIGN(RawMachineLabel);
    846 };
    847 
    848 }  // namespace compiler
    849 }  // namespace internal
    850 }  // namespace v8
    851 
    852 #endif  // V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_
    853