Home | History | Annotate | Download | only in src
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/gdb-jit.h"
      6 
      7 #include <memory>
      8 
      9 #include "src/base/bits.h"
     10 #include "src/base/platform/platform.h"
     11 #include "src/bootstrapper.h"
     12 #include "src/frames-inl.h"
     13 #include "src/frames.h"
     14 #include "src/global-handles.h"
     15 #include "src/messages.h"
     16 #include "src/objects.h"
     17 #include "src/ostreams.h"
     18 #include "src/snapshot/natives.h"
     19 #include "src/splay-tree-inl.h"
     20 
     21 namespace v8 {
     22 namespace internal {
     23 namespace GDBJITInterface {
     24 
     25 #ifdef ENABLE_GDB_JIT_INTERFACE
     26 
     27 #ifdef __APPLE__
     28 #define __MACH_O
     29 class MachO;
     30 class MachOSection;
     31 typedef MachO DebugObject;
     32 typedef MachOSection DebugSection;
     33 #else
     34 #define __ELF
     35 class ELF;
     36 class ELFSection;
     37 typedef ELF DebugObject;
     38 typedef ELFSection DebugSection;
     39 #endif
     40 
     41 class Writer BASE_EMBEDDED {
     42  public:
     43   explicit Writer(DebugObject* debug_object)
     44       : debug_object_(debug_object),
     45         position_(0),
     46         capacity_(1024),
     47         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
     48   }
     49 
     50   ~Writer() {
     51     free(buffer_);
     52   }
     53 
     54   uintptr_t position() const {
     55     return position_;
     56   }
     57 
     58   template<typename T>
     59   class Slot {
     60    public:
     61     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
     62 
     63     T* operator-> () {
     64       return w_->RawSlotAt<T>(offset_);
     65     }
     66 
     67     void set(const T& value) {
     68       *w_->RawSlotAt<T>(offset_) = value;
     69     }
     70 
     71     Slot<T> at(int i) {
     72       return Slot<T>(w_, offset_ + sizeof(T) * i);
     73     }
     74 
     75    private:
     76     Writer* w_;
     77     uintptr_t offset_;
     78   };
     79 
     80   template<typename T>
     81   void Write(const T& val) {
     82     Ensure(position_ + sizeof(T));
     83     *RawSlotAt<T>(position_) = val;
     84     position_ += sizeof(T);
     85   }
     86 
     87   template<typename T>
     88   Slot<T> SlotAt(uintptr_t offset) {
     89     Ensure(offset + sizeof(T));
     90     return Slot<T>(this, offset);
     91   }
     92 
     93   template<typename T>
     94   Slot<T> CreateSlotHere() {
     95     return CreateSlotsHere<T>(1);
     96   }
     97 
     98   template<typename T>
     99   Slot<T> CreateSlotsHere(uint32_t count) {
    100     uintptr_t slot_position = position_;
    101     position_ += sizeof(T) * count;
    102     Ensure(position_);
    103     return SlotAt<T>(slot_position);
    104   }
    105 
    106   void Ensure(uintptr_t pos) {
    107     if (capacity_ < pos) {
    108       while (capacity_ < pos) capacity_ *= 2;
    109       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
    110     }
    111   }
    112 
    113   DebugObject* debug_object() { return debug_object_; }
    114 
    115   byte* buffer() { return buffer_; }
    116 
    117   void Align(uintptr_t align) {
    118     uintptr_t delta = position_ % align;
    119     if (delta == 0) return;
    120     uintptr_t padding = align - delta;
    121     Ensure(position_ += padding);
    122     DCHECK((position_ % align) == 0);
    123   }
    124 
    125   void WriteULEB128(uintptr_t value) {
    126     do {
    127       uint8_t byte = value & 0x7F;
    128       value >>= 7;
    129       if (value != 0) byte |= 0x80;
    130       Write<uint8_t>(byte);
    131     } while (value != 0);
    132   }
    133 
    134   void WriteSLEB128(intptr_t value) {
    135     bool more = true;
    136     while (more) {
    137       int8_t byte = value & 0x7F;
    138       bool byte_sign = byte & 0x40;
    139       value >>= 7;
    140 
    141       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
    142         more = false;
    143       } else {
    144         byte |= 0x80;
    145       }
    146 
    147       Write<int8_t>(byte);
    148     }
    149   }
    150 
    151   void WriteString(const char* str) {
    152     do {
    153       Write<char>(*str);
    154     } while (*str++);
    155   }
    156 
    157  private:
    158   template<typename T> friend class Slot;
    159 
    160   template<typename T>
    161   T* RawSlotAt(uintptr_t offset) {
    162     DCHECK(offset < capacity_ && offset + sizeof(T) <= capacity_);
    163     return reinterpret_cast<T*>(&buffer_[offset]);
    164   }
    165 
    166   DebugObject* debug_object_;
    167   uintptr_t position_;
    168   uintptr_t capacity_;
    169   byte* buffer_;
    170 };
    171 
    172 class ELFStringTable;
    173 
    174 template<typename THeader>
    175 class DebugSectionBase : public ZoneObject {
    176  public:
    177   virtual ~DebugSectionBase() { }
    178 
    179   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
    180     uintptr_t start = writer->position();
    181     if (WriteBodyInternal(writer)) {
    182       uintptr_t end = writer->position();
    183       header->offset = static_cast<uint32_t>(start);
    184 #if defined(__MACH_O)
    185       header->addr = 0;
    186 #endif
    187       header->size = end - start;
    188     }
    189   }
    190 
    191   virtual bool WriteBodyInternal(Writer* writer) {
    192     return false;
    193   }
    194 
    195   typedef THeader Header;
    196 };
    197 
    198 
    199 struct MachOSectionHeader {
    200   char sectname[16];
    201   char segname[16];
    202 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    203   uint32_t addr;
    204   uint32_t size;
    205 #else
    206   uint64_t addr;
    207   uint64_t size;
    208 #endif
    209   uint32_t offset;
    210   uint32_t align;
    211   uint32_t reloff;
    212   uint32_t nreloc;
    213   uint32_t flags;
    214   uint32_t reserved1;
    215   uint32_t reserved2;
    216 };
    217 
    218 
    219 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
    220  public:
    221   enum Type {
    222     S_REGULAR = 0x0u,
    223     S_ATTR_COALESCED = 0xbu,
    224     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
    225     S_ATTR_DEBUG = 0x02000000u,
    226     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
    227   };
    228 
    229   MachOSection(const char* name, const char* segment, uint32_t align,
    230                uint32_t flags)
    231       : name_(name), segment_(segment), align_(align), flags_(flags) {
    232     if (align_ != 0) {
    233       DCHECK(base::bits::IsPowerOfTwo32(align));
    234       align_ = WhichPowerOf2(align_);
    235     }
    236   }
    237 
    238   virtual ~MachOSection() { }
    239 
    240   virtual void PopulateHeader(Writer::Slot<Header> header) {
    241     header->addr = 0;
    242     header->size = 0;
    243     header->offset = 0;
    244     header->align = align_;
    245     header->reloff = 0;
    246     header->nreloc = 0;
    247     header->flags = flags_;
    248     header->reserved1 = 0;
    249     header->reserved2 = 0;
    250     memset(header->sectname, 0, sizeof(header->sectname));
    251     memset(header->segname, 0, sizeof(header->segname));
    252     DCHECK(strlen(name_) < sizeof(header->sectname));
    253     DCHECK(strlen(segment_) < sizeof(header->segname));
    254     strncpy(header->sectname, name_, sizeof(header->sectname));
    255     strncpy(header->segname, segment_, sizeof(header->segname));
    256   }
    257 
    258  private:
    259   const char* name_;
    260   const char* segment_;
    261   uint32_t align_;
    262   uint32_t flags_;
    263 };
    264 
    265 
    266 struct ELFSectionHeader {
    267   uint32_t name;
    268   uint32_t type;
    269   uintptr_t flags;
    270   uintptr_t address;
    271   uintptr_t offset;
    272   uintptr_t size;
    273   uint32_t link;
    274   uint32_t info;
    275   uintptr_t alignment;
    276   uintptr_t entry_size;
    277 };
    278 
    279 
    280 #if defined(__ELF)
    281 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
    282  public:
    283   enum Type {
    284     TYPE_NULL = 0,
    285     TYPE_PROGBITS = 1,
    286     TYPE_SYMTAB = 2,
    287     TYPE_STRTAB = 3,
    288     TYPE_RELA = 4,
    289     TYPE_HASH = 5,
    290     TYPE_DYNAMIC = 6,
    291     TYPE_NOTE = 7,
    292     TYPE_NOBITS = 8,
    293     TYPE_REL = 9,
    294     TYPE_SHLIB = 10,
    295     TYPE_DYNSYM = 11,
    296     TYPE_LOPROC = 0x70000000,
    297     TYPE_X86_64_UNWIND = 0x70000001,
    298     TYPE_HIPROC = 0x7fffffff,
    299     TYPE_LOUSER = 0x80000000,
    300     TYPE_HIUSER = 0xffffffff
    301   };
    302 
    303   enum Flags {
    304     FLAG_WRITE = 1,
    305     FLAG_ALLOC = 2,
    306     FLAG_EXEC = 4
    307   };
    308 
    309   enum SpecialIndexes {
    310     INDEX_ABSOLUTE = 0xfff1
    311   };
    312 
    313   ELFSection(const char* name, Type type, uintptr_t align)
    314       : name_(name), type_(type), align_(align) { }
    315 
    316   virtual ~ELFSection() { }
    317 
    318   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
    319 
    320   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    321     uintptr_t start = w->position();
    322     if (WriteBodyInternal(w)) {
    323       uintptr_t end = w->position();
    324       header->offset = start;
    325       header->size = end - start;
    326     }
    327   }
    328 
    329   virtual bool WriteBodyInternal(Writer* w) {
    330     return false;
    331   }
    332 
    333   uint16_t index() const { return index_; }
    334   void set_index(uint16_t index) { index_ = index; }
    335 
    336  protected:
    337   virtual void PopulateHeader(Writer::Slot<Header> header) {
    338     header->flags = 0;
    339     header->address = 0;
    340     header->offset = 0;
    341     header->size = 0;
    342     header->link = 0;
    343     header->info = 0;
    344     header->entry_size = 0;
    345   }
    346 
    347  private:
    348   const char* name_;
    349   Type type_;
    350   uintptr_t align_;
    351   uint16_t index_;
    352 };
    353 #endif  // defined(__ELF)
    354 
    355 
    356 #if defined(__MACH_O)
    357 class MachOTextSection : public MachOSection {
    358  public:
    359   MachOTextSection(uint32_t align, uintptr_t addr, uintptr_t size)
    360       : MachOSection("__text", "__TEXT", align,
    361                      MachOSection::S_REGULAR |
    362                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
    363                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
    364         addr_(addr),
    365         size_(size) {}
    366 
    367  protected:
    368   virtual void PopulateHeader(Writer::Slot<Header> header) {
    369     MachOSection::PopulateHeader(header);
    370     header->addr = addr_;
    371     header->size = size_;
    372   }
    373 
    374  private:
    375   uintptr_t addr_;
    376   uintptr_t size_;
    377 };
    378 #endif  // defined(__MACH_O)
    379 
    380 
    381 #if defined(__ELF)
    382 class FullHeaderELFSection : public ELFSection {
    383  public:
    384   FullHeaderELFSection(const char* name,
    385                        Type type,
    386                        uintptr_t align,
    387                        uintptr_t addr,
    388                        uintptr_t offset,
    389                        uintptr_t size,
    390                        uintptr_t flags)
    391       : ELFSection(name, type, align),
    392         addr_(addr),
    393         offset_(offset),
    394         size_(size),
    395         flags_(flags) { }
    396 
    397  protected:
    398   virtual void PopulateHeader(Writer::Slot<Header> header) {
    399     ELFSection::PopulateHeader(header);
    400     header->address = addr_;
    401     header->offset = offset_;
    402     header->size = size_;
    403     header->flags = flags_;
    404   }
    405 
    406  private:
    407   uintptr_t addr_;
    408   uintptr_t offset_;
    409   uintptr_t size_;
    410   uintptr_t flags_;
    411 };
    412 
    413 
    414 class ELFStringTable : public ELFSection {
    415  public:
    416   explicit ELFStringTable(const char* name)
    417       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
    418   }
    419 
    420   uintptr_t Add(const char* str) {
    421     if (*str == '\0') return 0;
    422 
    423     uintptr_t offset = size_;
    424     WriteString(str);
    425     return offset;
    426   }
    427 
    428   void AttachWriter(Writer* w) {
    429     writer_ = w;
    430     offset_ = writer_->position();
    431 
    432     // First entry in the string table should be an empty string.
    433     WriteString("");
    434   }
    435 
    436   void DetachWriter() {
    437     writer_ = NULL;
    438   }
    439 
    440   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    441     DCHECK(writer_ == NULL);
    442     header->offset = offset_;
    443     header->size = size_;
    444   }
    445 
    446  private:
    447   void WriteString(const char* str) {
    448     uintptr_t written = 0;
    449     do {
    450       writer_->Write(*str);
    451       written++;
    452     } while (*str++);
    453     size_ += written;
    454   }
    455 
    456   Writer* writer_;
    457 
    458   uintptr_t offset_;
    459   uintptr_t size_;
    460 };
    461 
    462 
    463 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
    464                                 ELFStringTable* strtab) {
    465   header->name = static_cast<uint32_t>(strtab->Add(name_));
    466   header->type = type_;
    467   header->alignment = align_;
    468   PopulateHeader(header);
    469 }
    470 #endif  // defined(__ELF)
    471 
    472 
    473 #if defined(__MACH_O)
    474 class MachO BASE_EMBEDDED {
    475  public:
    476   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
    477 
    478   uint32_t AddSection(MachOSection* section) {
    479     sections_.Add(section, zone_);
    480     return sections_.length() - 1;
    481   }
    482 
    483   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
    484     Writer::Slot<MachOHeader> header = WriteHeader(w);
    485     uintptr_t load_command_start = w->position();
    486     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
    487                                                                 code_start,
    488                                                                 code_size);
    489     WriteSections(w, cmd, header, load_command_start);
    490   }
    491 
    492  private:
    493   struct MachOHeader {
    494     uint32_t magic;
    495     uint32_t cputype;
    496     uint32_t cpusubtype;
    497     uint32_t filetype;
    498     uint32_t ncmds;
    499     uint32_t sizeofcmds;
    500     uint32_t flags;
    501 #if V8_TARGET_ARCH_X64
    502     uint32_t reserved;
    503 #endif
    504   };
    505 
    506   struct MachOSegmentCommand {
    507     uint32_t cmd;
    508     uint32_t cmdsize;
    509     char segname[16];
    510 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    511     uint32_t vmaddr;
    512     uint32_t vmsize;
    513     uint32_t fileoff;
    514     uint32_t filesize;
    515 #else
    516     uint64_t vmaddr;
    517     uint64_t vmsize;
    518     uint64_t fileoff;
    519     uint64_t filesize;
    520 #endif
    521     uint32_t maxprot;
    522     uint32_t initprot;
    523     uint32_t nsects;
    524     uint32_t flags;
    525   };
    526 
    527   enum MachOLoadCommandCmd {
    528     LC_SEGMENT_32 = 0x00000001u,
    529     LC_SEGMENT_64 = 0x00000019u
    530   };
    531 
    532 
    533   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
    534     DCHECK(w->position() == 0);
    535     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
    536 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    537     header->magic = 0xFEEDFACEu;
    538     header->cputype = 7;  // i386
    539     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    540 #elif V8_TARGET_ARCH_X64
    541     header->magic = 0xFEEDFACFu;
    542     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
    543     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    544     header->reserved = 0;
    545 #else
    546 #error Unsupported target architecture.
    547 #endif
    548     header->filetype = 0x1;  // MH_OBJECT
    549     header->ncmds = 1;
    550     header->sizeofcmds = 0;
    551     header->flags = 0;
    552     return header;
    553   }
    554 
    555 
    556   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
    557                                                         uintptr_t code_start,
    558                                                         uintptr_t code_size) {
    559     Writer::Slot<MachOSegmentCommand> cmd =
    560         w->CreateSlotHere<MachOSegmentCommand>();
    561 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    562     cmd->cmd = LC_SEGMENT_32;
    563 #else
    564     cmd->cmd = LC_SEGMENT_64;
    565 #endif
    566     cmd->vmaddr = code_start;
    567     cmd->vmsize = code_size;
    568     cmd->fileoff = 0;
    569     cmd->filesize = 0;
    570     cmd->maxprot = 7;
    571     cmd->initprot = 7;
    572     cmd->flags = 0;
    573     cmd->nsects = sections_.length();
    574     memset(cmd->segname, 0, 16);
    575     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
    576         cmd->nsects;
    577     return cmd;
    578   }
    579 
    580 
    581   void WriteSections(Writer* w,
    582                      Writer::Slot<MachOSegmentCommand> cmd,
    583                      Writer::Slot<MachOHeader> header,
    584                      uintptr_t load_command_start) {
    585     Writer::Slot<MachOSection::Header> headers =
    586         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
    587     cmd->fileoff = w->position();
    588     header->sizeofcmds =
    589         static_cast<uint32_t>(w->position() - load_command_start);
    590     for (int section = 0; section < sections_.length(); ++section) {
    591       sections_[section]->PopulateHeader(headers.at(section));
    592       sections_[section]->WriteBody(headers.at(section), w);
    593     }
    594     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
    595   }
    596 
    597   Zone* zone_;
    598   ZoneList<MachOSection*> sections_;
    599 };
    600 #endif  // defined(__MACH_O)
    601 
    602 
    603 #if defined(__ELF)
    604 class ELF BASE_EMBEDDED {
    605  public:
    606   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
    607     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
    608     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
    609   }
    610 
    611   void Write(Writer* w) {
    612     WriteHeader(w);
    613     WriteSectionTable(w);
    614     WriteSections(w);
    615   }
    616 
    617   ELFSection* SectionAt(uint32_t index) {
    618     return sections_[index];
    619   }
    620 
    621   uint32_t AddSection(ELFSection* section) {
    622     sections_.Add(section, zone_);
    623     section->set_index(sections_.length() - 1);
    624     return sections_.length() - 1;
    625   }
    626 
    627  private:
    628   struct ELFHeader {
    629     uint8_t ident[16];
    630     uint16_t type;
    631     uint16_t machine;
    632     uint32_t version;
    633     uintptr_t entry;
    634     uintptr_t pht_offset;
    635     uintptr_t sht_offset;
    636     uint32_t flags;
    637     uint16_t header_size;
    638     uint16_t pht_entry_size;
    639     uint16_t pht_entry_num;
    640     uint16_t sht_entry_size;
    641     uint16_t sht_entry_num;
    642     uint16_t sht_strtab_index;
    643   };
    644 
    645 
    646   void WriteHeader(Writer* w) {
    647     DCHECK(w->position() == 0);
    648     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
    649 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
    650      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT))
    651     const uint8_t ident[16] =
    652         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    653 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
    654     (V8_TARGET_ARCH_PPC64 && V8_TARGET_LITTLE_ENDIAN)
    655     const uint8_t ident[16] =
    656         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    657 #elif V8_TARGET_ARCH_PPC64 && V8_TARGET_BIG_ENDIAN && V8_OS_LINUX
    658     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 0,
    659                                0,    0,   0,   0,   0, 0, 0, 0};
    660 #elif V8_TARGET_ARCH_S390X
    661     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 2, 2, 1, 3,
    662                                0,    0,   0,   0,   0, 0, 0, 0};
    663 #elif V8_TARGET_ARCH_S390
    664     const uint8_t ident[16] = {0x7f, 'E', 'L', 'F', 1, 2, 1, 3,
    665                                0,    0,   0,   0,   0, 0, 0, 0};
    666 #else
    667 #error Unsupported target architecture.
    668 #endif
    669     memcpy(header->ident, ident, 16);
    670     header->type = 1;
    671 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    672     header->machine = 3;
    673 #elif V8_TARGET_ARCH_X64
    674     // Processor identification value for x64 is 62 as defined in
    675     //    System V ABI, AMD64 Supplement
    676     //    http://www.x86-64.org/documentation/abi.pdf
    677     header->machine = 62;
    678 #elif V8_TARGET_ARCH_ARM
    679     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
    680     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
    681     header->machine = 40;
    682 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
    683     // Set to EM_PPC64, defined as 21, in Power ABI,
    684     // Join the next 4 lines, omitting the spaces and double-slashes.
    685     // https://www-03.ibm.com/technologyconnect/tgcm/TGCMFileServlet.wss/
    686     // ABI64BitOpenPOWERv1.1_16July2015_pub.pdf?
    687     // id=B81AEC1A37F5DAF185257C3E004E8845&linkid=1n0000&c_t=
    688     // c9xw7v5dzsj7gt1ifgf4cjbcnskqptmr
    689     header->machine = 21;
    690 #elif V8_TARGET_ARCH_S390
    691     // Processor identification value is 22 (EM_S390) as defined in the ABI:
    692     // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_s390.html#AEN1691
    693     // http://refspecs.linuxbase.org/ELF/zSeries/lzsabi0_zSeries.html#AEN1599
    694     header->machine = 22;
    695 #else
    696 #error Unsupported target architecture.
    697 #endif
    698     header->version = 1;
    699     header->entry = 0;
    700     header->pht_offset = 0;
    701     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
    702     header->flags = 0;
    703     header->header_size = sizeof(ELFHeader);
    704     header->pht_entry_size = 0;
    705     header->pht_entry_num = 0;
    706     header->sht_entry_size = sizeof(ELFSection::Header);
    707     header->sht_entry_num = sections_.length();
    708     header->sht_strtab_index = 1;
    709   }
    710 
    711   void WriteSectionTable(Writer* w) {
    712     // Section headers table immediately follows file header.
    713     DCHECK(w->position() == sizeof(ELFHeader));
    714 
    715     Writer::Slot<ELFSection::Header> headers =
    716         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
    717 
    718     // String table for section table is the first section.
    719     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
    720     strtab->AttachWriter(w);
    721     for (int i = 0, length = sections_.length();
    722          i < length;
    723          i++) {
    724       sections_[i]->PopulateHeader(headers.at(i), strtab);
    725     }
    726     strtab->DetachWriter();
    727   }
    728 
    729   int SectionHeaderPosition(uint32_t section_index) {
    730     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
    731   }
    732 
    733   void WriteSections(Writer* w) {
    734     Writer::Slot<ELFSection::Header> headers =
    735         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
    736 
    737     for (int i = 0, length = sections_.length();
    738          i < length;
    739          i++) {
    740       sections_[i]->WriteBody(headers.at(i), w);
    741     }
    742   }
    743 
    744   Zone* zone_;
    745   ZoneList<ELFSection*> sections_;
    746 };
    747 
    748 
    749 class ELFSymbol BASE_EMBEDDED {
    750  public:
    751   enum Type {
    752     TYPE_NOTYPE = 0,
    753     TYPE_OBJECT = 1,
    754     TYPE_FUNC = 2,
    755     TYPE_SECTION = 3,
    756     TYPE_FILE = 4,
    757     TYPE_LOPROC = 13,
    758     TYPE_HIPROC = 15
    759   };
    760 
    761   enum Binding {
    762     BIND_LOCAL = 0,
    763     BIND_GLOBAL = 1,
    764     BIND_WEAK = 2,
    765     BIND_LOPROC = 13,
    766     BIND_HIPROC = 15
    767   };
    768 
    769   ELFSymbol(const char* name,
    770             uintptr_t value,
    771             uintptr_t size,
    772             Binding binding,
    773             Type type,
    774             uint16_t section)
    775       : name(name),
    776         value(value),
    777         size(size),
    778         info((binding << 4) | type),
    779         other(0),
    780         section(section) {
    781   }
    782 
    783   Binding binding() const {
    784     return static_cast<Binding>(info >> 4);
    785   }
    786 #if (V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87 || \
    787      (V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT) ||                   \
    788      (V8_TARGET_ARCH_S390 && V8_TARGET_ARCH_32_BIT))
    789   struct SerializedLayout {
    790     SerializedLayout(uint32_t name,
    791                      uintptr_t value,
    792                      uintptr_t size,
    793                      Binding binding,
    794                      Type type,
    795                      uint16_t section)
    796         : name(name),
    797           value(value),
    798           size(size),
    799           info((binding << 4) | type),
    800           other(0),
    801           section(section) {
    802     }
    803 
    804     uint32_t name;
    805     uintptr_t value;
    806     uintptr_t size;
    807     uint8_t info;
    808     uint8_t other;
    809     uint16_t section;
    810   };
    811 #elif(V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_64_BIT) || \
    812     (V8_TARGET_ARCH_PPC64 && V8_OS_LINUX) || V8_TARGET_ARCH_S390X
    813   struct SerializedLayout {
    814     SerializedLayout(uint32_t name,
    815                      uintptr_t value,
    816                      uintptr_t size,
    817                      Binding binding,
    818                      Type type,
    819                      uint16_t section)
    820         : name(name),
    821           info((binding << 4) | type),
    822           other(0),
    823           section(section),
    824           value(value),
    825           size(size) {
    826     }
    827 
    828     uint32_t name;
    829     uint8_t info;
    830     uint8_t other;
    831     uint16_t section;
    832     uintptr_t value;
    833     uintptr_t size;
    834   };
    835 #endif
    836 
    837   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
    838     // Convert symbol names from strings to indexes in the string table.
    839     s->name = static_cast<uint32_t>(t->Add(name));
    840     s->value = value;
    841     s->size = size;
    842     s->info = info;
    843     s->other = other;
    844     s->section = section;
    845   }
    846 
    847  private:
    848   const char* name;
    849   uintptr_t value;
    850   uintptr_t size;
    851   uint8_t info;
    852   uint8_t other;
    853   uint16_t section;
    854 };
    855 
    856 
    857 class ELFSymbolTable : public ELFSection {
    858  public:
    859   ELFSymbolTable(const char* name, Zone* zone)
    860       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
    861         locals_(1, zone),
    862         globals_(1, zone) {
    863   }
    864 
    865   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    866     w->Align(header->alignment);
    867     int total_symbols = locals_.length() + globals_.length() + 1;
    868     header->offset = w->position();
    869 
    870     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
    871         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
    872 
    873     header->size = w->position() - header->offset;
    874 
    875     // String table for this symbol table should follow it in the section table.
    876     ELFStringTable* strtab =
    877         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
    878     strtab->AttachWriter(w);
    879     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
    880                                                   0,
    881                                                   0,
    882                                                   ELFSymbol::BIND_LOCAL,
    883                                                   ELFSymbol::TYPE_NOTYPE,
    884                                                   0));
    885     WriteSymbolsList(&locals_, symbols.at(1), strtab);
    886     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
    887     strtab->DetachWriter();
    888   }
    889 
    890   void Add(const ELFSymbol& symbol, Zone* zone) {
    891     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
    892       locals_.Add(symbol, zone);
    893     } else {
    894       globals_.Add(symbol, zone);
    895     }
    896   }
    897 
    898  protected:
    899   virtual void PopulateHeader(Writer::Slot<Header> header) {
    900     ELFSection::PopulateHeader(header);
    901     // We are assuming that string table will follow symbol table.
    902     header->link = index() + 1;
    903     header->info = locals_.length() + 1;
    904     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
    905   }
    906 
    907  private:
    908   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
    909                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
    910                         ELFStringTable* strtab) {
    911     for (int i = 0, len = src->length();
    912          i < len;
    913          i++) {
    914       src->at(i).Write(dst.at(i), strtab);
    915     }
    916   }
    917 
    918   ZoneList<ELFSymbol> locals_;
    919   ZoneList<ELFSymbol> globals_;
    920 };
    921 #endif  // defined(__ELF)
    922 
    923 
    924 class LineInfo : public Malloced {
    925  public:
    926   LineInfo() : pc_info_(10) {}
    927 
    928   void SetPosition(intptr_t pc, int pos, bool is_statement) {
    929     AddPCInfo(PCInfo(pc, pos, is_statement));
    930   }
    931 
    932   struct PCInfo {
    933     PCInfo(intptr_t pc, int pos, bool is_statement)
    934         : pc_(pc), pos_(pos), is_statement_(is_statement) {}
    935 
    936     intptr_t pc_;
    937     int pos_;
    938     bool is_statement_;
    939   };
    940 
    941   List<PCInfo>* pc_info() { return &pc_info_; }
    942 
    943  private:
    944   void AddPCInfo(const PCInfo& pc_info) { pc_info_.Add(pc_info); }
    945 
    946   List<PCInfo> pc_info_;
    947 };
    948 
    949 
    950 class CodeDescription BASE_EMBEDDED {
    951  public:
    952 #if V8_TARGET_ARCH_X64
    953   enum StackState {
    954     POST_RBP_PUSH,
    955     POST_RBP_SET,
    956     POST_RBP_POP,
    957     STACK_STATE_MAX
    958   };
    959 #endif
    960 
    961   CodeDescription(const char* name, Code* code, SharedFunctionInfo* shared,
    962                   LineInfo* lineinfo)
    963       : name_(name), code_(code), shared_info_(shared), lineinfo_(lineinfo) {}
    964 
    965   const char* name() const {
    966     return name_;
    967   }
    968 
    969   LineInfo* lineinfo() const { return lineinfo_; }
    970 
    971   bool is_function() const {
    972     Code::Kind kind = code_->kind();
    973     return kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION;
    974   }
    975 
    976   bool has_scope_info() const { return shared_info_ != NULL; }
    977 
    978   ScopeInfo* scope_info() const {
    979     DCHECK(has_scope_info());
    980     return shared_info_->scope_info();
    981   }
    982 
    983   uintptr_t CodeStart() const {
    984     return reinterpret_cast<uintptr_t>(code_->instruction_start());
    985   }
    986 
    987   uintptr_t CodeEnd() const {
    988     return reinterpret_cast<uintptr_t>(code_->instruction_end());
    989   }
    990 
    991   uintptr_t CodeSize() const {
    992     return CodeEnd() - CodeStart();
    993   }
    994 
    995   bool has_script() {
    996     return shared_info_ != NULL && shared_info_->script()->IsScript();
    997   }
    998 
    999   Script* script() { return Script::cast(shared_info_->script()); }
   1000 
   1001   bool IsLineInfoAvailable() {
   1002     return has_script() && script()->source()->IsString() &&
   1003            script()->HasValidSource() && script()->name()->IsString() &&
   1004            lineinfo_ != NULL;
   1005   }
   1006 
   1007 #if V8_TARGET_ARCH_X64
   1008   uintptr_t GetStackStateStartAddress(StackState state) const {
   1009     DCHECK(state < STACK_STATE_MAX);
   1010     return stack_state_start_addresses_[state];
   1011   }
   1012 
   1013   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
   1014     DCHECK(state < STACK_STATE_MAX);
   1015     stack_state_start_addresses_[state] = addr;
   1016   }
   1017 #endif
   1018 
   1019   std::unique_ptr<char[]> GetFilename() {
   1020     return String::cast(script()->name())->ToCString();
   1021   }
   1022 
   1023   int GetScriptLineNumber(int pos) { return script()->GetLineNumber(pos) + 1; }
   1024 
   1025 
   1026  private:
   1027   const char* name_;
   1028   Code* code_;
   1029   SharedFunctionInfo* shared_info_;
   1030   LineInfo* lineinfo_;
   1031 #if V8_TARGET_ARCH_X64
   1032   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
   1033 #endif
   1034 };
   1035 
   1036 #if defined(__ELF)
   1037 static void CreateSymbolsTable(CodeDescription* desc,
   1038                                Zone* zone,
   1039                                ELF* elf,
   1040                                int text_section_index) {
   1041   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
   1042   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
   1043 
   1044   // Symbol table should be followed by the linked string table.
   1045   elf->AddSection(symtab);
   1046   elf->AddSection(strtab);
   1047 
   1048   symtab->Add(ELFSymbol("V8 Code",
   1049                         0,
   1050                         0,
   1051                         ELFSymbol::BIND_LOCAL,
   1052                         ELFSymbol::TYPE_FILE,
   1053                         ELFSection::INDEX_ABSOLUTE),
   1054               zone);
   1055 
   1056   symtab->Add(ELFSymbol(desc->name(),
   1057                         0,
   1058                         desc->CodeSize(),
   1059                         ELFSymbol::BIND_GLOBAL,
   1060                         ELFSymbol::TYPE_FUNC,
   1061                         text_section_index),
   1062               zone);
   1063 }
   1064 #endif  // defined(__ELF)
   1065 
   1066 
   1067 class DebugInfoSection : public DebugSection {
   1068  public:
   1069   explicit DebugInfoSection(CodeDescription* desc)
   1070 #if defined(__ELF)
   1071       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
   1072 #else
   1073       : MachOSection("__debug_info",
   1074                      "__DWARF",
   1075                      1,
   1076                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1077 #endif
   1078         desc_(desc) { }
   1079 
   1080   // DWARF2 standard
   1081   enum DWARF2LocationOp {
   1082     DW_OP_reg0 = 0x50,
   1083     DW_OP_reg1 = 0x51,
   1084     DW_OP_reg2 = 0x52,
   1085     DW_OP_reg3 = 0x53,
   1086     DW_OP_reg4 = 0x54,
   1087     DW_OP_reg5 = 0x55,
   1088     DW_OP_reg6 = 0x56,
   1089     DW_OP_reg7 = 0x57,
   1090     DW_OP_reg8 = 0x58,
   1091     DW_OP_reg9 = 0x59,
   1092     DW_OP_reg10 = 0x5a,
   1093     DW_OP_reg11 = 0x5b,
   1094     DW_OP_reg12 = 0x5c,
   1095     DW_OP_reg13 = 0x5d,
   1096     DW_OP_reg14 = 0x5e,
   1097     DW_OP_reg15 = 0x5f,
   1098     DW_OP_reg16 = 0x60,
   1099     DW_OP_reg17 = 0x61,
   1100     DW_OP_reg18 = 0x62,
   1101     DW_OP_reg19 = 0x63,
   1102     DW_OP_reg20 = 0x64,
   1103     DW_OP_reg21 = 0x65,
   1104     DW_OP_reg22 = 0x66,
   1105     DW_OP_reg23 = 0x67,
   1106     DW_OP_reg24 = 0x68,
   1107     DW_OP_reg25 = 0x69,
   1108     DW_OP_reg26 = 0x6a,
   1109     DW_OP_reg27 = 0x6b,
   1110     DW_OP_reg28 = 0x6c,
   1111     DW_OP_reg29 = 0x6d,
   1112     DW_OP_reg30 = 0x6e,
   1113     DW_OP_reg31 = 0x6f,
   1114     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
   1115   };
   1116 
   1117   enum DWARF2Encoding {
   1118     DW_ATE_ADDRESS = 0x1,
   1119     DW_ATE_SIGNED = 0x5
   1120   };
   1121 
   1122   bool WriteBodyInternal(Writer* w) {
   1123     uintptr_t cu_start = w->position();
   1124     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
   1125     uintptr_t start = w->position();
   1126     w->Write<uint16_t>(2);  // DWARF version.
   1127     w->Write<uint32_t>(0);  // Abbreviation table offset.
   1128     w->Write<uint8_t>(sizeof(intptr_t));
   1129 
   1130     w->WriteULEB128(1);  // Abbreviation code.
   1131     w->WriteString(desc_->GetFilename().get());
   1132     w->Write<intptr_t>(desc_->CodeStart());
   1133     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1134     w->Write<uint32_t>(0);
   1135 
   1136     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
   1137     w->WriteULEB128(3);
   1138     w->Write<uint8_t>(kPointerSize);
   1139     w->WriteString("v8value");
   1140 
   1141     if (desc_->has_scope_info()) {
   1142       ScopeInfo* scope = desc_->scope_info();
   1143       w->WriteULEB128(2);
   1144       w->WriteString(desc_->name());
   1145       w->Write<intptr_t>(desc_->CodeStart());
   1146       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1147       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
   1148       uintptr_t fb_block_start = w->position();
   1149 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
   1150       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
   1151 #elif V8_TARGET_ARCH_X64
   1152       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
   1153 #elif V8_TARGET_ARCH_ARM
   1154       UNIMPLEMENTED();
   1155 #elif V8_TARGET_ARCH_MIPS
   1156       UNIMPLEMENTED();
   1157 #elif V8_TARGET_ARCH_MIPS64
   1158       UNIMPLEMENTED();
   1159 #elif V8_TARGET_ARCH_PPC64 && V8_OS_LINUX
   1160       w->Write<uint8_t>(DW_OP_reg31);  // The frame pointer is here on PPC64.
   1161 #elif V8_TARGET_ARCH_S390
   1162       w->Write<uint8_t>(DW_OP_reg11);  // The frame pointer's here on S390.
   1163 #else
   1164 #error Unsupported target architecture.
   1165 #endif
   1166       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
   1167 
   1168       int params = scope->ParameterCount();
   1169       int slots = scope->StackLocalCount();
   1170       int context_slots = scope->ContextLocalCount();
   1171       // The real slot ID is internal_slots + context_slot_id.
   1172       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1173       int locals = scope->StackLocalCount();
   1174       int current_abbreviation = 4;
   1175 
   1176       for (int param = 0; param < params; ++param) {
   1177         w->WriteULEB128(current_abbreviation++);
   1178         w->WriteString(
   1179             scope->ParameterName(param)->ToCString(DISALLOW_NULLS).get());
   1180         w->Write<uint32_t>(ty_offset);
   1181         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1182         uintptr_t block_start = w->position();
   1183         w->Write<uint8_t>(DW_OP_fbreg);
   1184         w->WriteSLEB128(
   1185           JavaScriptFrameConstants::kLastParameterOffset +
   1186               kPointerSize * (params - param - 1));
   1187         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1188       }
   1189 
   1190       EmbeddedVector<char, 256> buffer;
   1191       StringBuilder builder(buffer.start(), buffer.length());
   1192 
   1193       for (int slot = 0; slot < slots; ++slot) {
   1194         w->WriteULEB128(current_abbreviation++);
   1195         builder.Reset();
   1196         builder.AddFormatted("slot%d", slot);
   1197         w->WriteString(builder.Finalize());
   1198       }
   1199 
   1200       // See contexts.h for more information.
   1201       DCHECK(Context::MIN_CONTEXT_SLOTS == 4);
   1202       DCHECK(Context::CLOSURE_INDEX == 0);
   1203       DCHECK(Context::PREVIOUS_INDEX == 1);
   1204       DCHECK(Context::EXTENSION_INDEX == 2);
   1205       DCHECK(Context::NATIVE_CONTEXT_INDEX == 3);
   1206       w->WriteULEB128(current_abbreviation++);
   1207       w->WriteString(".closure");
   1208       w->WriteULEB128(current_abbreviation++);
   1209       w->WriteString(".previous");
   1210       w->WriteULEB128(current_abbreviation++);
   1211       w->WriteString(".extension");
   1212       w->WriteULEB128(current_abbreviation++);
   1213       w->WriteString(".native_context");
   1214 
   1215       for (int context_slot = 0;
   1216            context_slot < context_slots;
   1217            ++context_slot) {
   1218         w->WriteULEB128(current_abbreviation++);
   1219         builder.Reset();
   1220         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
   1221         w->WriteString(builder.Finalize());
   1222       }
   1223 
   1224       for (int local = 0; local < locals; ++local) {
   1225         w->WriteULEB128(current_abbreviation++);
   1226         w->WriteString(
   1227             scope->StackLocalName(local)->ToCString(DISALLOW_NULLS).get());
   1228         w->Write<uint32_t>(ty_offset);
   1229         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1230         uintptr_t block_start = w->position();
   1231         w->Write<uint8_t>(DW_OP_fbreg);
   1232         w->WriteSLEB128(
   1233           JavaScriptFrameConstants::kLocal0Offset -
   1234               kPointerSize * local);
   1235         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1236       }
   1237 
   1238       {
   1239         w->WriteULEB128(current_abbreviation++);
   1240         w->WriteString("__function");
   1241         w->Write<uint32_t>(ty_offset);
   1242         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1243         uintptr_t block_start = w->position();
   1244         w->Write<uint8_t>(DW_OP_fbreg);
   1245         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
   1246         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1247       }
   1248 
   1249       {
   1250         w->WriteULEB128(current_abbreviation++);
   1251         w->WriteString("__context");
   1252         w->Write<uint32_t>(ty_offset);
   1253         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1254         uintptr_t block_start = w->position();
   1255         w->Write<uint8_t>(DW_OP_fbreg);
   1256         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
   1257         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1258       }
   1259 
   1260       w->WriteULEB128(0);  // Terminate the sub program.
   1261     }
   1262 
   1263     w->WriteULEB128(0);  // Terminate the compile unit.
   1264     size.set(static_cast<uint32_t>(w->position() - start));
   1265     return true;
   1266   }
   1267 
   1268  private:
   1269   CodeDescription* desc_;
   1270 };
   1271 
   1272 
   1273 class DebugAbbrevSection : public DebugSection {
   1274  public:
   1275   explicit DebugAbbrevSection(CodeDescription* desc)
   1276 #ifdef __ELF
   1277       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
   1278 #else
   1279       : MachOSection("__debug_abbrev",
   1280                      "__DWARF",
   1281                      1,
   1282                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1283 #endif
   1284         desc_(desc) { }
   1285 
   1286   // DWARF2 standard, figure 14.
   1287   enum DWARF2Tags {
   1288     DW_TAG_FORMAL_PARAMETER = 0x05,
   1289     DW_TAG_POINTER_TYPE = 0xf,
   1290     DW_TAG_COMPILE_UNIT = 0x11,
   1291     DW_TAG_STRUCTURE_TYPE = 0x13,
   1292     DW_TAG_BASE_TYPE = 0x24,
   1293     DW_TAG_SUBPROGRAM = 0x2e,
   1294     DW_TAG_VARIABLE = 0x34
   1295   };
   1296 
   1297   // DWARF2 standard, figure 16.
   1298   enum DWARF2ChildrenDetermination {
   1299     DW_CHILDREN_NO = 0,
   1300     DW_CHILDREN_YES = 1
   1301   };
   1302 
   1303   // DWARF standard, figure 17.
   1304   enum DWARF2Attribute {
   1305     DW_AT_LOCATION = 0x2,
   1306     DW_AT_NAME = 0x3,
   1307     DW_AT_BYTE_SIZE = 0xb,
   1308     DW_AT_STMT_LIST = 0x10,
   1309     DW_AT_LOW_PC = 0x11,
   1310     DW_AT_HIGH_PC = 0x12,
   1311     DW_AT_ENCODING = 0x3e,
   1312     DW_AT_FRAME_BASE = 0x40,
   1313     DW_AT_TYPE = 0x49
   1314   };
   1315 
   1316   // DWARF2 standard, figure 19.
   1317   enum DWARF2AttributeForm {
   1318     DW_FORM_ADDR = 0x1,
   1319     DW_FORM_BLOCK4 = 0x4,
   1320     DW_FORM_STRING = 0x8,
   1321     DW_FORM_DATA4 = 0x6,
   1322     DW_FORM_BLOCK = 0x9,
   1323     DW_FORM_DATA1 = 0xb,
   1324     DW_FORM_FLAG = 0xc,
   1325     DW_FORM_REF4 = 0x13
   1326   };
   1327 
   1328   void WriteVariableAbbreviation(Writer* w,
   1329                                  int abbreviation_code,
   1330                                  bool has_value,
   1331                                  bool is_parameter) {
   1332     w->WriteULEB128(abbreviation_code);
   1333     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
   1334     w->Write<uint8_t>(DW_CHILDREN_NO);
   1335     w->WriteULEB128(DW_AT_NAME);
   1336     w->WriteULEB128(DW_FORM_STRING);
   1337     if (has_value) {
   1338       w->WriteULEB128(DW_AT_TYPE);
   1339       w->WriteULEB128(DW_FORM_REF4);
   1340       w->WriteULEB128(DW_AT_LOCATION);
   1341       w->WriteULEB128(DW_FORM_BLOCK4);
   1342     }
   1343     w->WriteULEB128(0);
   1344     w->WriteULEB128(0);
   1345   }
   1346 
   1347   bool WriteBodyInternal(Writer* w) {
   1348     int current_abbreviation = 1;
   1349     bool extra_info = desc_->has_scope_info();
   1350     DCHECK(desc_->IsLineInfoAvailable());
   1351     w->WriteULEB128(current_abbreviation++);
   1352     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
   1353     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
   1354     w->WriteULEB128(DW_AT_NAME);
   1355     w->WriteULEB128(DW_FORM_STRING);
   1356     w->WriteULEB128(DW_AT_LOW_PC);
   1357     w->WriteULEB128(DW_FORM_ADDR);
   1358     w->WriteULEB128(DW_AT_HIGH_PC);
   1359     w->WriteULEB128(DW_FORM_ADDR);
   1360     w->WriteULEB128(DW_AT_STMT_LIST);
   1361     w->WriteULEB128(DW_FORM_DATA4);
   1362     w->WriteULEB128(0);
   1363     w->WriteULEB128(0);
   1364 
   1365     if (extra_info) {
   1366       ScopeInfo* scope = desc_->scope_info();
   1367       int params = scope->ParameterCount();
   1368       int slots = scope->StackLocalCount();
   1369       int context_slots = scope->ContextLocalCount();
   1370       // The real slot ID is internal_slots + context_slot_id.
   1371       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1372       int locals = scope->StackLocalCount();
   1373       // Total children is params + slots + context_slots + internal_slots +
   1374       // locals + 2 (__function and __context).
   1375 
   1376       // The extra duplication below seems to be necessary to keep
   1377       // gdb from getting upset on OSX.
   1378       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
   1379       w->WriteULEB128(DW_TAG_SUBPROGRAM);
   1380       w->Write<uint8_t>(DW_CHILDREN_YES);
   1381       w->WriteULEB128(DW_AT_NAME);
   1382       w->WriteULEB128(DW_FORM_STRING);
   1383       w->WriteULEB128(DW_AT_LOW_PC);
   1384       w->WriteULEB128(DW_FORM_ADDR);
   1385       w->WriteULEB128(DW_AT_HIGH_PC);
   1386       w->WriteULEB128(DW_FORM_ADDR);
   1387       w->WriteULEB128(DW_AT_FRAME_BASE);
   1388       w->WriteULEB128(DW_FORM_BLOCK4);
   1389       w->WriteULEB128(0);
   1390       w->WriteULEB128(0);
   1391 
   1392       w->WriteULEB128(current_abbreviation++);
   1393       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
   1394       w->Write<uint8_t>(DW_CHILDREN_NO);
   1395       w->WriteULEB128(DW_AT_BYTE_SIZE);
   1396       w->WriteULEB128(DW_FORM_DATA1);
   1397       w->WriteULEB128(DW_AT_NAME);
   1398       w->WriteULEB128(DW_FORM_STRING);
   1399       w->WriteULEB128(0);
   1400       w->WriteULEB128(0);
   1401 
   1402       for (int param = 0; param < params; ++param) {
   1403         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
   1404       }
   1405 
   1406       for (int slot = 0; slot < slots; ++slot) {
   1407         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1408       }
   1409 
   1410       for (int internal_slot = 0;
   1411            internal_slot < internal_slots;
   1412            ++internal_slot) {
   1413         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1414       }
   1415 
   1416       for (int context_slot = 0;
   1417            context_slot < context_slots;
   1418            ++context_slot) {
   1419         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1420       }
   1421 
   1422       for (int local = 0; local < locals; ++local) {
   1423         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1424       }
   1425 
   1426       // The function.
   1427       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1428 
   1429       // The context.
   1430       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1431 
   1432       w->WriteULEB128(0);  // Terminate the sibling list.
   1433     }
   1434 
   1435     w->WriteULEB128(0);  // Terminate the table.
   1436     return true;
   1437   }
   1438 
   1439  private:
   1440   CodeDescription* desc_;
   1441 };
   1442 
   1443 
   1444 class DebugLineSection : public DebugSection {
   1445  public:
   1446   explicit DebugLineSection(CodeDescription* desc)
   1447 #ifdef __ELF
   1448       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
   1449 #else
   1450       : MachOSection("__debug_line",
   1451                      "__DWARF",
   1452                      1,
   1453                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1454 #endif
   1455         desc_(desc) { }
   1456 
   1457   // DWARF2 standard, figure 34.
   1458   enum DWARF2Opcodes {
   1459     DW_LNS_COPY = 1,
   1460     DW_LNS_ADVANCE_PC = 2,
   1461     DW_LNS_ADVANCE_LINE = 3,
   1462     DW_LNS_SET_FILE = 4,
   1463     DW_LNS_SET_COLUMN = 5,
   1464     DW_LNS_NEGATE_STMT = 6
   1465   };
   1466 
   1467   // DWARF2 standard, figure 35.
   1468   enum DWARF2ExtendedOpcode {
   1469     DW_LNE_END_SEQUENCE = 1,
   1470     DW_LNE_SET_ADDRESS = 2,
   1471     DW_LNE_DEFINE_FILE = 3
   1472   };
   1473 
   1474   bool WriteBodyInternal(Writer* w) {
   1475     // Write prologue.
   1476     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
   1477     uintptr_t start = w->position();
   1478 
   1479     // Used for special opcodes
   1480     const int8_t line_base = 1;
   1481     const uint8_t line_range = 7;
   1482     const int8_t max_line_incr = (line_base + line_range - 1);
   1483     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
   1484 
   1485     w->Write<uint16_t>(2);  // Field version.
   1486     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
   1487     uintptr_t prologue_start = w->position();
   1488     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
   1489     w->Write<uint8_t>(1);  // Field default_is_stmt.
   1490     w->Write<int8_t>(line_base);  // Field line_base.
   1491     w->Write<uint8_t>(line_range);  // Field line_range.
   1492     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
   1493     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
   1494     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
   1495     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
   1496     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
   1497     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
   1498     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
   1499     w->Write<uint8_t>(0);  // Empty include_directories sequence.
   1500     w->WriteString(desc_->GetFilename().get());  // File name.
   1501     w->WriteULEB128(0);  // Current directory.
   1502     w->WriteULEB128(0);  // Unknown modification time.
   1503     w->WriteULEB128(0);  // Unknown file size.
   1504     w->Write<uint8_t>(0);
   1505     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
   1506 
   1507     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
   1508     w->Write<intptr_t>(desc_->CodeStart());
   1509     w->Write<uint8_t>(DW_LNS_COPY);
   1510 
   1511     intptr_t pc = 0;
   1512     intptr_t line = 1;
   1513     bool is_statement = true;
   1514 
   1515     List<LineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
   1516     pc_info->Sort(&ComparePCInfo);
   1517 
   1518     int pc_info_length = pc_info->length();
   1519     for (int i = 0; i < pc_info_length; i++) {
   1520       LineInfo::PCInfo* info = &pc_info->at(i);
   1521       DCHECK(info->pc_ >= pc);
   1522 
   1523       // Reduce bloating in the debug line table by removing duplicate line
   1524       // entries (per DWARF2 standard).
   1525       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
   1526       if (new_line == line) {
   1527         continue;
   1528       }
   1529 
   1530       // Mark statement boundaries.  For a better debugging experience, mark
   1531       // the last pc address in the function as a statement (e.g. "}"), so that
   1532       // a user can see the result of the last line executed in the function,
   1533       // should control reach the end.
   1534       if ((i+1) == pc_info_length) {
   1535         if (!is_statement) {
   1536           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1537         }
   1538       } else if (is_statement != info->is_statement_) {
   1539         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1540         is_statement = !is_statement;
   1541       }
   1542 
   1543       // Generate special opcodes, if possible.  This results in more compact
   1544       // debug line tables.  See the DWARF 2.0 standard to learn more about
   1545       // special opcodes.
   1546       uintptr_t pc_diff = info->pc_ - pc;
   1547       intptr_t line_diff = new_line - line;
   1548 
   1549       // Compute special opcode (see DWARF 2.0 standard)
   1550       intptr_t special_opcode = (line_diff - line_base) +
   1551                                 (line_range * pc_diff) + opcode_base;
   1552 
   1553       // If special_opcode is less than or equal to 255, it can be used as a
   1554       // special opcode.  If line_diff is larger than the max line increment
   1555       // allowed for a special opcode, or if line_diff is less than the minimum
   1556       // line that can be added to the line register (i.e. line_base), then
   1557       // special_opcode can't be used.
   1558       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
   1559           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
   1560         w->Write<uint8_t>(special_opcode);
   1561       } else {
   1562         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1563         w->WriteSLEB128(pc_diff);
   1564         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
   1565         w->WriteSLEB128(line_diff);
   1566         w->Write<uint8_t>(DW_LNS_COPY);
   1567       }
   1568 
   1569       // Increment the pc and line operands.
   1570       pc += pc_diff;
   1571       line += line_diff;
   1572     }
   1573     // Advance the pc to the end of the routine, since the end sequence opcode
   1574     // requires this.
   1575     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1576     w->WriteSLEB128(desc_->CodeSize() - pc);
   1577     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
   1578     total_length.set(static_cast<uint32_t>(w->position() - start));
   1579     return true;
   1580   }
   1581 
   1582  private:
   1583   void WriteExtendedOpcode(Writer* w,
   1584                            DWARF2ExtendedOpcode op,
   1585                            size_t operands_size) {
   1586     w->Write<uint8_t>(0);
   1587     w->WriteULEB128(operands_size + 1);
   1588     w->Write<uint8_t>(op);
   1589   }
   1590 
   1591   static int ComparePCInfo(const LineInfo::PCInfo* a,
   1592                            const LineInfo::PCInfo* b) {
   1593     if (a->pc_ == b->pc_) {
   1594       if (a->is_statement_ != b->is_statement_) {
   1595         return b->is_statement_ ? +1 : -1;
   1596       }
   1597       return 0;
   1598     } else if (a->pc_ > b->pc_) {
   1599       return +1;
   1600     } else {
   1601       return -1;
   1602     }
   1603   }
   1604 
   1605   CodeDescription* desc_;
   1606 };
   1607 
   1608 
   1609 #if V8_TARGET_ARCH_X64
   1610 
   1611 class UnwindInfoSection : public DebugSection {
   1612  public:
   1613   explicit UnwindInfoSection(CodeDescription* desc);
   1614   virtual bool WriteBodyInternal(Writer* w);
   1615 
   1616   int WriteCIE(Writer* w);
   1617   void WriteFDE(Writer* w, int);
   1618 
   1619   void WriteFDEStateOnEntry(Writer* w);
   1620   void WriteFDEStateAfterRBPPush(Writer* w);
   1621   void WriteFDEStateAfterRBPSet(Writer* w);
   1622   void WriteFDEStateAfterRBPPop(Writer* w);
   1623 
   1624   void WriteLength(Writer* w,
   1625                    Writer::Slot<uint32_t>* length_slot,
   1626                    int initial_position);
   1627 
   1628  private:
   1629   CodeDescription* desc_;
   1630 
   1631   // DWARF3 Specification, Table 7.23
   1632   enum CFIInstructions {
   1633     DW_CFA_ADVANCE_LOC = 0x40,
   1634     DW_CFA_OFFSET = 0x80,
   1635     DW_CFA_RESTORE = 0xC0,
   1636     DW_CFA_NOP = 0x00,
   1637     DW_CFA_SET_LOC = 0x01,
   1638     DW_CFA_ADVANCE_LOC1 = 0x02,
   1639     DW_CFA_ADVANCE_LOC2 = 0x03,
   1640     DW_CFA_ADVANCE_LOC4 = 0x04,
   1641     DW_CFA_OFFSET_EXTENDED = 0x05,
   1642     DW_CFA_RESTORE_EXTENDED = 0x06,
   1643     DW_CFA_UNDEFINED = 0x07,
   1644     DW_CFA_SAME_VALUE = 0x08,
   1645     DW_CFA_REGISTER = 0x09,
   1646     DW_CFA_REMEMBER_STATE = 0x0A,
   1647     DW_CFA_RESTORE_STATE = 0x0B,
   1648     DW_CFA_DEF_CFA = 0x0C,
   1649     DW_CFA_DEF_CFA_REGISTER = 0x0D,
   1650     DW_CFA_DEF_CFA_OFFSET = 0x0E,
   1651 
   1652     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
   1653     DW_CFA_EXPRESSION = 0x10,
   1654     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
   1655     DW_CFA_DEF_CFA_SF = 0x12,
   1656     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
   1657     DW_CFA_VAL_OFFSET = 0x14,
   1658     DW_CFA_VAL_OFFSET_SF = 0x15,
   1659     DW_CFA_VAL_EXPRESSION = 0x16
   1660   };
   1661 
   1662   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
   1663   enum RegisterMapping {
   1664     // Only the relevant ones have been added to reduce clutter.
   1665     AMD64_RBP = 6,
   1666     AMD64_RSP = 7,
   1667     AMD64_RA = 16
   1668   };
   1669 
   1670   enum CFIConstants {
   1671     CIE_ID = 0,
   1672     CIE_VERSION = 1,
   1673     CODE_ALIGN_FACTOR = 1,
   1674     DATA_ALIGN_FACTOR = 1,
   1675     RETURN_ADDRESS_REGISTER = AMD64_RA
   1676   };
   1677 };
   1678 
   1679 
   1680 void UnwindInfoSection::WriteLength(Writer* w,
   1681                                     Writer::Slot<uint32_t>* length_slot,
   1682                                     int initial_position) {
   1683   uint32_t align = (w->position() - initial_position) % kPointerSize;
   1684 
   1685   if (align != 0) {
   1686     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
   1687       w->Write<uint8_t>(DW_CFA_NOP);
   1688     }
   1689   }
   1690 
   1691   DCHECK((w->position() - initial_position) % kPointerSize == 0);
   1692   length_slot->set(static_cast<uint32_t>(w->position() - initial_position));
   1693 }
   1694 
   1695 
   1696 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
   1697 #ifdef __ELF
   1698     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
   1699 #else
   1700     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
   1701                    MachOSection::S_REGULAR),
   1702 #endif
   1703       desc_(desc) { }
   1704 
   1705 int UnwindInfoSection::WriteCIE(Writer* w) {
   1706   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
   1707   uint32_t cie_position = static_cast<uint32_t>(w->position());
   1708 
   1709   // Write out the CIE header. Currently no 'common instructions' are
   1710   // emitted onto the CIE; every FDE has its own set of instructions.
   1711 
   1712   w->Write<uint32_t>(CIE_ID);
   1713   w->Write<uint8_t>(CIE_VERSION);
   1714   w->Write<uint8_t>(0);  // Null augmentation string.
   1715   w->WriteSLEB128(CODE_ALIGN_FACTOR);
   1716   w->WriteSLEB128(DATA_ALIGN_FACTOR);
   1717   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
   1718 
   1719   WriteLength(w, &cie_length_slot, cie_position);
   1720 
   1721   return cie_position;
   1722 }
   1723 
   1724 
   1725 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
   1726   // The only FDE for this function. The CFA is the current RBP.
   1727   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
   1728   int fde_position = static_cast<uint32_t>(w->position());
   1729   w->Write<int32_t>(fde_position - cie_position + 4);
   1730 
   1731   w->Write<uintptr_t>(desc_->CodeStart());
   1732   w->Write<uintptr_t>(desc_->CodeSize());
   1733 
   1734   WriteFDEStateOnEntry(w);
   1735   WriteFDEStateAfterRBPPush(w);
   1736   WriteFDEStateAfterRBPSet(w);
   1737   WriteFDEStateAfterRBPPop(w);
   1738 
   1739   WriteLength(w, &fde_length_slot, fde_position);
   1740 }
   1741 
   1742 
   1743 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
   1744   // The first state, just after the control has been transferred to the the
   1745   // function.
   1746 
   1747   // RBP for this function will be the value of RSP after pushing the RBP
   1748   // for the previous function. The previous RBP has not been pushed yet.
   1749   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1750   w->WriteULEB128(AMD64_RSP);
   1751   w->WriteSLEB128(-kPointerSize);
   1752 
   1753   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
   1754   // and hence omitted from the next states.
   1755   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1756   w->WriteULEB128(AMD64_RA);
   1757   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
   1758 
   1759   // The RBP of the previous function is still in RBP.
   1760   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
   1761   w->WriteULEB128(AMD64_RBP);
   1762 
   1763   // Last location described by this entry.
   1764   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1765   w->Write<uint64_t>(
   1766       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
   1767 }
   1768 
   1769 
   1770 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
   1771   // The second state, just after RBP has been pushed.
   1772 
   1773   // RBP / CFA for this function is now the current RSP, so just set the
   1774   // offset from the previous rule (from -8) to 0.
   1775   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
   1776   w->WriteULEB128(0);
   1777 
   1778   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
   1779   // in this and the next state, and hence omitted in the next state.
   1780   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1781   w->WriteULEB128(AMD64_RBP);
   1782   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1783 
   1784   // Last location described by this entry.
   1785   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1786   w->Write<uint64_t>(
   1787       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
   1788 }
   1789 
   1790 
   1791 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
   1792   // The third state, after the RBP has been set.
   1793 
   1794   // The CFA can now directly be set to RBP.
   1795   w->Write<uint8_t>(DW_CFA_DEF_CFA);
   1796   w->WriteULEB128(AMD64_RBP);
   1797   w->WriteULEB128(0);
   1798 
   1799   // Last location described by this entry.
   1800   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1801   w->Write<uint64_t>(
   1802       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
   1803 }
   1804 
   1805 
   1806 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
   1807   // The fourth (final) state. The RBP has been popped (just before issuing a
   1808   // return).
   1809 
   1810   // The CFA can is now calculated in the same way as in the first state.
   1811   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1812   w->WriteULEB128(AMD64_RSP);
   1813   w->WriteSLEB128(-kPointerSize);
   1814 
   1815   // The RBP
   1816   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1817   w->WriteULEB128(AMD64_RBP);
   1818   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1819 
   1820   // Last location described by this entry.
   1821   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1822   w->Write<uint64_t>(desc_->CodeEnd());
   1823 }
   1824 
   1825 
   1826 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
   1827   uint32_t cie_position = WriteCIE(w);
   1828   WriteFDE(w, cie_position);
   1829   return true;
   1830 }
   1831 
   1832 
   1833 #endif  // V8_TARGET_ARCH_X64
   1834 
   1835 static void CreateDWARFSections(CodeDescription* desc,
   1836                                 Zone* zone,
   1837                                 DebugObject* obj) {
   1838   if (desc->IsLineInfoAvailable()) {
   1839     obj->AddSection(new(zone) DebugInfoSection(desc));
   1840     obj->AddSection(new(zone) DebugAbbrevSection(desc));
   1841     obj->AddSection(new(zone) DebugLineSection(desc));
   1842   }
   1843 #if V8_TARGET_ARCH_X64
   1844   obj->AddSection(new(zone) UnwindInfoSection(desc));
   1845 #endif
   1846 }
   1847 
   1848 
   1849 // -------------------------------------------------------------------
   1850 // Binary GDB JIT Interface as described in
   1851 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
   1852 extern "C" {
   1853   typedef enum {
   1854     JIT_NOACTION = 0,
   1855     JIT_REGISTER_FN,
   1856     JIT_UNREGISTER_FN
   1857   } JITAction;
   1858 
   1859   struct JITCodeEntry {
   1860     JITCodeEntry* next_;
   1861     JITCodeEntry* prev_;
   1862     Address symfile_addr_;
   1863     uint64_t symfile_size_;
   1864   };
   1865 
   1866   struct JITDescriptor {
   1867     uint32_t version_;
   1868     uint32_t action_flag_;
   1869     JITCodeEntry* relevant_entry_;
   1870     JITCodeEntry* first_entry_;
   1871   };
   1872 
   1873   // GDB will place breakpoint into this function.
   1874   // To prevent GCC from inlining or removing it we place noinline attribute
   1875   // and inline assembler statement inside.
   1876   void __attribute__((noinline)) __jit_debug_register_code() {
   1877     __asm__("");
   1878   }
   1879 
   1880   // GDB will inspect contents of this descriptor.
   1881   // Static initialization is necessary to prevent GDB from seeing
   1882   // uninitialized descriptor.
   1883   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
   1884 
   1885 #ifdef OBJECT_PRINT
   1886   void __gdb_print_v8_object(Object* object) {
   1887     OFStream os(stdout);
   1888     object->Print(os);
   1889     os << std::flush;
   1890   }
   1891 #endif
   1892 }
   1893 
   1894 
   1895 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
   1896                                      uintptr_t symfile_size) {
   1897   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
   1898       malloc(sizeof(JITCodeEntry) + symfile_size));
   1899 
   1900   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
   1901   entry->symfile_size_ = symfile_size;
   1902   MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
   1903 
   1904   entry->prev_ = entry->next_ = NULL;
   1905 
   1906   return entry;
   1907 }
   1908 
   1909 
   1910 static void DestroyCodeEntry(JITCodeEntry* entry) {
   1911   free(entry);
   1912 }
   1913 
   1914 
   1915 static void RegisterCodeEntry(JITCodeEntry* entry) {
   1916   entry->next_ = __jit_debug_descriptor.first_entry_;
   1917   if (entry->next_ != NULL) entry->next_->prev_ = entry;
   1918   __jit_debug_descriptor.first_entry_ =
   1919       __jit_debug_descriptor.relevant_entry_ = entry;
   1920 
   1921   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
   1922   __jit_debug_register_code();
   1923 }
   1924 
   1925 
   1926 static void UnregisterCodeEntry(JITCodeEntry* entry) {
   1927   if (entry->prev_ != NULL) {
   1928     entry->prev_->next_ = entry->next_;
   1929   } else {
   1930     __jit_debug_descriptor.first_entry_ = entry->next_;
   1931   }
   1932 
   1933   if (entry->next_ != NULL) {
   1934     entry->next_->prev_ = entry->prev_;
   1935   }
   1936 
   1937   __jit_debug_descriptor.relevant_entry_ = entry;
   1938   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
   1939   __jit_debug_register_code();
   1940 }
   1941 
   1942 
   1943 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
   1944 #ifdef __MACH_O
   1945   Zone zone(isolate->allocator(), ZONE_NAME);
   1946   MachO mach_o(&zone);
   1947   Writer w(&mach_o);
   1948 
   1949   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
   1950                                                 desc->CodeStart(),
   1951                                                 desc->CodeSize()));
   1952 
   1953   CreateDWARFSections(desc, &zone, &mach_o);
   1954 
   1955   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
   1956 #else
   1957   Zone zone(isolate->allocator(), ZONE_NAME);
   1958   ELF elf(&zone);
   1959   Writer w(&elf);
   1960 
   1961   int text_section_index = elf.AddSection(
   1962       new(&zone) FullHeaderELFSection(
   1963           ".text",
   1964           ELFSection::TYPE_NOBITS,
   1965           kCodeAlignment,
   1966           desc->CodeStart(),
   1967           0,
   1968           desc->CodeSize(),
   1969           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
   1970 
   1971   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
   1972 
   1973   CreateDWARFSections(desc, &zone, &elf);
   1974 
   1975   elf.Write(&w);
   1976 #endif
   1977 
   1978   return CreateCodeEntry(w.buffer(), w.position());
   1979 }
   1980 
   1981 
   1982 struct AddressRange {
   1983   Address start;
   1984   Address end;
   1985 };
   1986 
   1987 struct SplayTreeConfig {
   1988   typedef AddressRange Key;
   1989   typedef JITCodeEntry* Value;
   1990   static const AddressRange kNoKey;
   1991   static Value NoValue() { return NULL; }
   1992   static int Compare(const AddressRange& a, const AddressRange& b) {
   1993     // ptrdiff_t probably doesn't fit in an int.
   1994     if (a.start < b.start) return -1;
   1995     if (a.start == b.start) return 0;
   1996     return 1;
   1997   }
   1998 };
   1999 
   2000 const AddressRange SplayTreeConfig::kNoKey = {0, 0};
   2001 typedef SplayTree<SplayTreeConfig> CodeMap;
   2002 
   2003 static CodeMap* GetCodeMap() {
   2004   static CodeMap* code_map = NULL;
   2005   if (code_map == NULL) code_map = new CodeMap();
   2006   return code_map;
   2007 }
   2008 
   2009 
   2010 static uint32_t HashCodeAddress(Address addr) {
   2011   static const uintptr_t kGoldenRatio = 2654435761u;
   2012   uintptr_t offset = OffsetFrom(addr);
   2013   return static_cast<uint32_t>((offset >> kCodeAlignmentBits) * kGoldenRatio);
   2014 }
   2015 
   2016 static base::HashMap* GetLineMap() {
   2017   static base::HashMap* line_map = NULL;
   2018   if (line_map == NULL) {
   2019     line_map = new base::HashMap();
   2020   }
   2021   return line_map;
   2022 }
   2023 
   2024 
   2025 static void PutLineInfo(Address addr, LineInfo* info) {
   2026   base::HashMap* line_map = GetLineMap();
   2027   base::HashMap::Entry* e =
   2028       line_map->LookupOrInsert(addr, HashCodeAddress(addr));
   2029   if (e->value != NULL) delete static_cast<LineInfo*>(e->value);
   2030   e->value = info;
   2031 }
   2032 
   2033 
   2034 static LineInfo* GetLineInfo(Address addr) {
   2035   void* value = GetLineMap()->Remove(addr, HashCodeAddress(addr));
   2036   return static_cast<LineInfo*>(value);
   2037 }
   2038 
   2039 
   2040 static void AddUnwindInfo(CodeDescription* desc) {
   2041 #if V8_TARGET_ARCH_X64
   2042   if (desc->is_function()) {
   2043     // To avoid propagating unwinding information through
   2044     // compilation pipeline we use an approximation.
   2045     // For most use cases this should not affect usability.
   2046     static const int kFramePointerPushOffset = 1;
   2047     static const int kFramePointerSetOffset = 4;
   2048     static const int kFramePointerPopOffset = -3;
   2049 
   2050     uintptr_t frame_pointer_push_address =
   2051         desc->CodeStart() + kFramePointerPushOffset;
   2052 
   2053     uintptr_t frame_pointer_set_address =
   2054         desc->CodeStart() + kFramePointerSetOffset;
   2055 
   2056     uintptr_t frame_pointer_pop_address =
   2057         desc->CodeEnd() + kFramePointerPopOffset;
   2058 
   2059     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2060                                     frame_pointer_push_address);
   2061     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2062                                     frame_pointer_set_address);
   2063     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2064                                     frame_pointer_pop_address);
   2065   } else {
   2066     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2067                                     desc->CodeStart());
   2068     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2069                                     desc->CodeStart());
   2070     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2071                                     desc->CodeEnd());
   2072   }
   2073 #endif  // V8_TARGET_ARCH_X64
   2074 }
   2075 
   2076 
   2077 static base::LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
   2078 
   2079 
   2080 // Remove entries from the splay tree that intersect the given address range,
   2081 // and deregister them from GDB.
   2082 static void RemoveJITCodeEntries(CodeMap* map, const AddressRange& range) {
   2083   DCHECK(range.start < range.end);
   2084   CodeMap::Locator cur;
   2085   if (map->FindGreatestLessThan(range, &cur) || map->FindLeast(&cur)) {
   2086     // Skip entries that are entirely less than the range of interest.
   2087     while (cur.key().end <= range.start) {
   2088       // CodeMap::FindLeastGreaterThan succeeds for entries whose key is greater
   2089       // than _or equal to_ the given key, so we have to advance our key to get
   2090       // the next one.
   2091       AddressRange new_key;
   2092       new_key.start = cur.key().end;
   2093       new_key.end = 0;
   2094       if (!map->FindLeastGreaterThan(new_key, &cur)) return;
   2095     }
   2096     // Evict intersecting ranges.
   2097     while (cur.key().start < range.end) {
   2098       AddressRange old_range = cur.key();
   2099       JITCodeEntry* old_entry = cur.value();
   2100 
   2101       UnregisterCodeEntry(old_entry);
   2102       DestroyCodeEntry(old_entry);
   2103 
   2104       CHECK(map->Remove(old_range));
   2105       if (!map->FindLeastGreaterThan(old_range, &cur)) return;
   2106     }
   2107   }
   2108 }
   2109 
   2110 
   2111 // Insert the entry into the splay tree and register it with GDB.
   2112 static void AddJITCodeEntry(CodeMap* map, const AddressRange& range,
   2113                             JITCodeEntry* entry, bool dump_if_enabled,
   2114                             const char* name_hint) {
   2115 #if defined(DEBUG) && !V8_OS_WIN
   2116   static int file_num = 0;
   2117   if (FLAG_gdbjit_dump && dump_if_enabled) {
   2118     static const int kMaxFileNameSize = 64;
   2119     char file_name[64];
   2120 
   2121     SNPrintF(Vector<char>(file_name, kMaxFileNameSize), "/tmp/elfdump%s%d.o",
   2122              (name_hint != NULL) ? name_hint : "", file_num++);
   2123     WriteBytes(file_name, entry->symfile_addr_,
   2124                static_cast<int>(entry->symfile_size_));
   2125   }
   2126 #endif
   2127 
   2128   CodeMap::Locator cur;
   2129   CHECK(map->Insert(range, &cur));
   2130   cur.set_value(entry);
   2131 
   2132   RegisterCodeEntry(entry);
   2133 }
   2134 
   2135 
   2136 static void AddCode(const char* name, Code* code, SharedFunctionInfo* shared,
   2137                     LineInfo* lineinfo) {
   2138   DisallowHeapAllocation no_gc;
   2139 
   2140   CodeMap* code_map = GetCodeMap();
   2141   AddressRange range;
   2142   range.start = code->address();
   2143   range.end = code->address() + code->CodeSize();
   2144   RemoveJITCodeEntries(code_map, range);
   2145 
   2146   CodeDescription code_desc(name, code, shared, lineinfo);
   2147 
   2148   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
   2149     delete lineinfo;
   2150     return;
   2151   }
   2152 
   2153   AddUnwindInfo(&code_desc);
   2154   Isolate* isolate = code->GetIsolate();
   2155   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
   2156 
   2157   delete lineinfo;
   2158 
   2159   const char* name_hint = NULL;
   2160   bool should_dump = false;
   2161   if (FLAG_gdbjit_dump) {
   2162     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
   2163       name_hint = name;
   2164       should_dump = true;
   2165     } else if (name != NULL) {
   2166       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
   2167       should_dump = (name_hint != NULL);
   2168     }
   2169   }
   2170   AddJITCodeEntry(code_map, range, entry, should_dump, name_hint);
   2171 }
   2172 
   2173 
   2174 void EventHandler(const v8::JitCodeEvent* event) {
   2175   if (!FLAG_gdbjit) return;
   2176   base::LockGuard<base::Mutex> lock_guard(mutex.Pointer());
   2177   switch (event->type) {
   2178     case v8::JitCodeEvent::CODE_ADDED: {
   2179       Address addr = reinterpret_cast<Address>(event->code_start);
   2180       Code* code = Code::GetCodeFromTargetAddress(addr);
   2181       LineInfo* lineinfo = GetLineInfo(addr);
   2182       EmbeddedVector<char, 256> buffer;
   2183       StringBuilder builder(buffer.start(), buffer.length());
   2184       builder.AddSubstring(event->name.str, static_cast<int>(event->name.len));
   2185       // It's called UnboundScript in the API but it's a SharedFunctionInfo.
   2186       SharedFunctionInfo* shared =
   2187           event->script.IsEmpty() ? NULL : *Utils::OpenHandle(*event->script);
   2188       AddCode(builder.Finalize(), code, shared, lineinfo);
   2189       break;
   2190     }
   2191     case v8::JitCodeEvent::CODE_MOVED:
   2192       // Enabling the GDB JIT interface should disable code compaction.
   2193       UNREACHABLE();
   2194       break;
   2195     case v8::JitCodeEvent::CODE_REMOVED:
   2196       // Do nothing.  Instead, adding code causes eviction of any entry whose
   2197       // address range intersects the address range of the added code.
   2198       break;
   2199     case v8::JitCodeEvent::CODE_ADD_LINE_POS_INFO: {
   2200       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
   2201       line_info->SetPosition(static_cast<intptr_t>(event->line_info.offset),
   2202                              static_cast<int>(event->line_info.pos),
   2203                              event->line_info.position_type ==
   2204                                  v8::JitCodeEvent::STATEMENT_POSITION);
   2205       break;
   2206     }
   2207     case v8::JitCodeEvent::CODE_START_LINE_INFO_RECORDING: {
   2208       v8::JitCodeEvent* mutable_event = const_cast<v8::JitCodeEvent*>(event);
   2209       mutable_event->user_data = new LineInfo();
   2210       break;
   2211     }
   2212     case v8::JitCodeEvent::CODE_END_LINE_INFO_RECORDING: {
   2213       LineInfo* line_info = reinterpret_cast<LineInfo*>(event->user_data);
   2214       PutLineInfo(reinterpret_cast<Address>(event->code_start), line_info);
   2215       break;
   2216     }
   2217   }
   2218 }
   2219 #endif
   2220 }  // namespace GDBJITInterface
   2221 }  // namespace internal
   2222 }  // namespace v8
   2223