Home | History | Annotate | Download | only in heap
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/heap/spaces.h"
      6 
      7 #include <utility>
      8 
      9 #include "src/base/bits.h"
     10 #include "src/base/platform/platform.h"
     11 #include "src/base/platform/semaphore.h"
     12 #include "src/counters.h"
     13 #include "src/full-codegen/full-codegen.h"
     14 #include "src/heap/array-buffer-tracker.h"
     15 #include "src/heap/incremental-marking.h"
     16 #include "src/heap/mark-compact.h"
     17 #include "src/heap/slot-set.h"
     18 #include "src/macro-assembler.h"
     19 #include "src/msan.h"
     20 #include "src/objects-inl.h"
     21 #include "src/snapshot/snapshot.h"
     22 #include "src/v8.h"
     23 
     24 namespace v8 {
     25 namespace internal {
     26 
     27 
     28 // ----------------------------------------------------------------------------
     29 // HeapObjectIterator
     30 
     31 HeapObjectIterator::HeapObjectIterator(PagedSpace* space)
     32     : cur_addr_(nullptr),
     33       cur_end_(nullptr),
     34       space_(space),
     35       page_range_(space->anchor()->next_page(), space->anchor()),
     36       current_page_(page_range_.begin()) {}
     37 
     38 HeapObjectIterator::HeapObjectIterator(Page* page)
     39     : cur_addr_(nullptr),
     40       cur_end_(nullptr),
     41       space_(reinterpret_cast<PagedSpace*>(page->owner())),
     42       page_range_(page),
     43       current_page_(page_range_.begin()) {
     44 #ifdef DEBUG
     45   Space* owner = page->owner();
     46   DCHECK(owner == page->heap()->old_space() ||
     47          owner == page->heap()->map_space() ||
     48          owner == page->heap()->code_space());
     49 #endif  // DEBUG
     50 }
     51 
     52 // We have hit the end of the page and should advance to the next block of
     53 // objects.  This happens at the end of the page.
     54 bool HeapObjectIterator::AdvanceToNextPage() {
     55   DCHECK_EQ(cur_addr_, cur_end_);
     56   if (current_page_ == page_range_.end()) return false;
     57   Page* cur_page = *(current_page_++);
     58   space_->heap()
     59       ->mark_compact_collector()
     60       ->sweeper()
     61       .SweepOrWaitUntilSweepingCompleted(cur_page);
     62   cur_addr_ = cur_page->area_start();
     63   cur_end_ = cur_page->area_end();
     64   DCHECK(cur_page->SweepingDone());
     65   return true;
     66 }
     67 
     68 PauseAllocationObserversScope::PauseAllocationObserversScope(Heap* heap)
     69     : heap_(heap) {
     70   AllSpaces spaces(heap_);
     71   for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
     72     space->PauseAllocationObservers();
     73   }
     74 }
     75 
     76 PauseAllocationObserversScope::~PauseAllocationObserversScope() {
     77   AllSpaces spaces(heap_);
     78   for (Space* space = spaces.next(); space != NULL; space = spaces.next()) {
     79     space->ResumeAllocationObservers();
     80   }
     81 }
     82 
     83 // -----------------------------------------------------------------------------
     84 // CodeRange
     85 
     86 
     87 CodeRange::CodeRange(Isolate* isolate)
     88     : isolate_(isolate),
     89       code_range_(NULL),
     90       free_list_(0),
     91       allocation_list_(0),
     92       current_allocation_block_index_(0) {}
     93 
     94 
     95 bool CodeRange::SetUp(size_t requested) {
     96   DCHECK(code_range_ == NULL);
     97 
     98   if (requested == 0) {
     99     // When a target requires the code range feature, we put all code objects
    100     // in a kMaximalCodeRangeSize range of virtual address space, so that
    101     // they can call each other with near calls.
    102     if (kRequiresCodeRange) {
    103       requested = kMaximalCodeRangeSize;
    104     } else {
    105       return true;
    106     }
    107   }
    108 
    109   if (requested <= kMinimumCodeRangeSize) {
    110     requested = kMinimumCodeRangeSize;
    111   }
    112 
    113   const size_t reserved_area =
    114       kReservedCodeRangePages * MemoryAllocator::GetCommitPageSize();
    115   if (requested < (kMaximalCodeRangeSize - reserved_area))
    116     requested += reserved_area;
    117 
    118   DCHECK(!kRequiresCodeRange || requested <= kMaximalCodeRangeSize);
    119 
    120   code_range_ = new base::VirtualMemory(
    121       requested, Max(kCodeRangeAreaAlignment,
    122                      static_cast<size_t>(base::OS::AllocateAlignment())));
    123   CHECK(code_range_ != NULL);
    124   if (!code_range_->IsReserved()) {
    125     delete code_range_;
    126     code_range_ = NULL;
    127     return false;
    128   }
    129 
    130   // We are sure that we have mapped a block of requested addresses.
    131   DCHECK(code_range_->size() == requested);
    132   Address base = reinterpret_cast<Address>(code_range_->address());
    133 
    134   // On some platforms, specifically Win64, we need to reserve some pages at
    135   // the beginning of an executable space.
    136   if (reserved_area > 0) {
    137     if (!code_range_->Commit(base, reserved_area, true)) {
    138       delete code_range_;
    139       code_range_ = NULL;
    140       return false;
    141     }
    142     base += reserved_area;
    143   }
    144   Address aligned_base = RoundUp(base, MemoryChunk::kAlignment);
    145   size_t size = code_range_->size() - (aligned_base - base) - reserved_area;
    146   allocation_list_.Add(FreeBlock(aligned_base, size));
    147   current_allocation_block_index_ = 0;
    148 
    149   LOG(isolate_, NewEvent("CodeRange", code_range_->address(), requested));
    150   return true;
    151 }
    152 
    153 
    154 int CodeRange::CompareFreeBlockAddress(const FreeBlock* left,
    155                                        const FreeBlock* right) {
    156   // The entire point of CodeRange is that the difference between two
    157   // addresses in the range can be represented as a signed 32-bit int,
    158   // so the cast is semantically correct.
    159   return static_cast<int>(left->start - right->start);
    160 }
    161 
    162 
    163 bool CodeRange::GetNextAllocationBlock(size_t requested) {
    164   for (current_allocation_block_index_++;
    165        current_allocation_block_index_ < allocation_list_.length();
    166        current_allocation_block_index_++) {
    167     if (requested <= allocation_list_[current_allocation_block_index_].size) {
    168       return true;  // Found a large enough allocation block.
    169     }
    170   }
    171 
    172   // Sort and merge the free blocks on the free list and the allocation list.
    173   free_list_.AddAll(allocation_list_);
    174   allocation_list_.Clear();
    175   free_list_.Sort(&CompareFreeBlockAddress);
    176   for (int i = 0; i < free_list_.length();) {
    177     FreeBlock merged = free_list_[i];
    178     i++;
    179     // Add adjacent free blocks to the current merged block.
    180     while (i < free_list_.length() &&
    181            free_list_[i].start == merged.start + merged.size) {
    182       merged.size += free_list_[i].size;
    183       i++;
    184     }
    185     if (merged.size > 0) {
    186       allocation_list_.Add(merged);
    187     }
    188   }
    189   free_list_.Clear();
    190 
    191   for (current_allocation_block_index_ = 0;
    192        current_allocation_block_index_ < allocation_list_.length();
    193        current_allocation_block_index_++) {
    194     if (requested <= allocation_list_[current_allocation_block_index_].size) {
    195       return true;  // Found a large enough allocation block.
    196     }
    197   }
    198   current_allocation_block_index_ = 0;
    199   // Code range is full or too fragmented.
    200   return false;
    201 }
    202 
    203 
    204 Address CodeRange::AllocateRawMemory(const size_t requested_size,
    205                                      const size_t commit_size,
    206                                      size_t* allocated) {
    207   // request_size includes guards while committed_size does not. Make sure
    208   // callers know about the invariant.
    209   CHECK_LE(commit_size,
    210            requested_size - 2 * MemoryAllocator::CodePageGuardSize());
    211   FreeBlock current;
    212   if (!ReserveBlock(requested_size, &current)) {
    213     *allocated = 0;
    214     return NULL;
    215   }
    216   *allocated = current.size;
    217   DCHECK(*allocated <= current.size);
    218   DCHECK(IsAddressAligned(current.start, MemoryChunk::kAlignment));
    219   if (!isolate_->heap()->memory_allocator()->CommitExecutableMemory(
    220           code_range_, current.start, commit_size, *allocated)) {
    221     *allocated = 0;
    222     ReleaseBlock(&current);
    223     return NULL;
    224   }
    225   return current.start;
    226 }
    227 
    228 
    229 bool CodeRange::CommitRawMemory(Address start, size_t length) {
    230   return isolate_->heap()->memory_allocator()->CommitMemory(start, length,
    231                                                             EXECUTABLE);
    232 }
    233 
    234 
    235 bool CodeRange::UncommitRawMemory(Address start, size_t length) {
    236   return code_range_->Uncommit(start, length);
    237 }
    238 
    239 
    240 void CodeRange::FreeRawMemory(Address address, size_t length) {
    241   DCHECK(IsAddressAligned(address, MemoryChunk::kAlignment));
    242   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    243   free_list_.Add(FreeBlock(address, length));
    244   code_range_->Uncommit(address, length);
    245 }
    246 
    247 
    248 void CodeRange::TearDown() {
    249   delete code_range_;  // Frees all memory in the virtual memory range.
    250   code_range_ = NULL;
    251   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    252   free_list_.Free();
    253   allocation_list_.Free();
    254 }
    255 
    256 
    257 bool CodeRange::ReserveBlock(const size_t requested_size, FreeBlock* block) {
    258   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    259   DCHECK(allocation_list_.length() == 0 ||
    260          current_allocation_block_index_ < allocation_list_.length());
    261   if (allocation_list_.length() == 0 ||
    262       requested_size > allocation_list_[current_allocation_block_index_].size) {
    263     // Find an allocation block large enough.
    264     if (!GetNextAllocationBlock(requested_size)) return false;
    265   }
    266   // Commit the requested memory at the start of the current allocation block.
    267   size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment);
    268   *block = allocation_list_[current_allocation_block_index_];
    269   // Don't leave a small free block, useless for a large object or chunk.
    270   if (aligned_requested < (block->size - Page::kPageSize)) {
    271     block->size = aligned_requested;
    272   }
    273   DCHECK(IsAddressAligned(block->start, MemoryChunk::kAlignment));
    274   allocation_list_[current_allocation_block_index_].start += block->size;
    275   allocation_list_[current_allocation_block_index_].size -= block->size;
    276   return true;
    277 }
    278 
    279 
    280 void CodeRange::ReleaseBlock(const FreeBlock* block) {
    281   base::LockGuard<base::Mutex> guard(&code_range_mutex_);
    282   free_list_.Add(*block);
    283 }
    284 
    285 
    286 // -----------------------------------------------------------------------------
    287 // MemoryAllocator
    288 //
    289 
    290 MemoryAllocator::MemoryAllocator(Isolate* isolate)
    291     : isolate_(isolate),
    292       code_range_(nullptr),
    293       capacity_(0),
    294       capacity_executable_(0),
    295       size_(0),
    296       size_executable_(0),
    297       lowest_ever_allocated_(reinterpret_cast<void*>(-1)),
    298       highest_ever_allocated_(reinterpret_cast<void*>(0)),
    299       unmapper_(this) {}
    300 
    301 bool MemoryAllocator::SetUp(size_t capacity, size_t capacity_executable,
    302                             size_t code_range_size) {
    303   capacity_ = RoundUp(capacity, Page::kPageSize);
    304   capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize);
    305   DCHECK_GE(capacity_, capacity_executable_);
    306 
    307   size_ = 0;
    308   size_executable_ = 0;
    309 
    310   code_range_ = new CodeRange(isolate_);
    311   if (!code_range_->SetUp(code_range_size)) return false;
    312 
    313   return true;
    314 }
    315 
    316 
    317 void MemoryAllocator::TearDown() {
    318   unmapper()->TearDown();
    319 
    320   // Check that spaces were torn down before MemoryAllocator.
    321   DCHECK_EQ(size_.Value(), 0u);
    322   // TODO(gc) this will be true again when we fix FreeMemory.
    323   // DCHECK(size_executable_ == 0);
    324   capacity_ = 0;
    325   capacity_executable_ = 0;
    326 
    327   if (last_chunk_.IsReserved()) {
    328     last_chunk_.Release();
    329   }
    330 
    331   delete code_range_;
    332   code_range_ = nullptr;
    333 }
    334 
    335 class MemoryAllocator::Unmapper::UnmapFreeMemoryTask : public v8::Task {
    336  public:
    337   explicit UnmapFreeMemoryTask(Unmapper* unmapper) : unmapper_(unmapper) {}
    338 
    339  private:
    340   // v8::Task overrides.
    341   void Run() override {
    342     unmapper_->PerformFreeMemoryOnQueuedChunks<FreeMode::kUncommitPooled>();
    343     unmapper_->pending_unmapping_tasks_semaphore_.Signal();
    344   }
    345 
    346   Unmapper* unmapper_;
    347   DISALLOW_COPY_AND_ASSIGN(UnmapFreeMemoryTask);
    348 };
    349 
    350 void MemoryAllocator::Unmapper::FreeQueuedChunks() {
    351   ReconsiderDelayedChunks();
    352   if (FLAG_concurrent_sweeping) {
    353     V8::GetCurrentPlatform()->CallOnBackgroundThread(
    354         new UnmapFreeMemoryTask(this), v8::Platform::kShortRunningTask);
    355     concurrent_unmapping_tasks_active_++;
    356   } else {
    357     PerformFreeMemoryOnQueuedChunks<FreeMode::kUncommitPooled>();
    358   }
    359 }
    360 
    361 bool MemoryAllocator::Unmapper::WaitUntilCompleted() {
    362   bool waited = false;
    363   while (concurrent_unmapping_tasks_active_ > 0) {
    364     pending_unmapping_tasks_semaphore_.Wait();
    365     concurrent_unmapping_tasks_active_--;
    366     waited = true;
    367   }
    368   return waited;
    369 }
    370 
    371 template <MemoryAllocator::Unmapper::FreeMode mode>
    372 void MemoryAllocator::Unmapper::PerformFreeMemoryOnQueuedChunks() {
    373   MemoryChunk* chunk = nullptr;
    374   // Regular chunks.
    375   while ((chunk = GetMemoryChunkSafe<kRegular>()) != nullptr) {
    376     bool pooled = chunk->IsFlagSet(MemoryChunk::POOLED);
    377     allocator_->PerformFreeMemory(chunk);
    378     if (pooled) AddMemoryChunkSafe<kPooled>(chunk);
    379   }
    380   if (mode == MemoryAllocator::Unmapper::FreeMode::kReleasePooled) {
    381     // The previous loop uncommitted any pages marked as pooled and added them
    382     // to the pooled list. In case of kReleasePooled we need to free them
    383     // though.
    384     while ((chunk = GetMemoryChunkSafe<kPooled>()) != nullptr) {
    385       allocator_->Free<MemoryAllocator::kAlreadyPooled>(chunk);
    386     }
    387   }
    388   // Non-regular chunks.
    389   while ((chunk = GetMemoryChunkSafe<kNonRegular>()) != nullptr) {
    390     allocator_->PerformFreeMemory(chunk);
    391   }
    392 }
    393 
    394 void MemoryAllocator::Unmapper::TearDown() {
    395   WaitUntilCompleted();
    396   ReconsiderDelayedChunks();
    397   CHECK(delayed_regular_chunks_.empty());
    398   PerformFreeMemoryOnQueuedChunks<FreeMode::kReleasePooled>();
    399   for (int i = 0; i < kNumberOfChunkQueues; i++) {
    400     DCHECK(chunks_[i].empty());
    401   }
    402 }
    403 
    404 void MemoryAllocator::Unmapper::ReconsiderDelayedChunks() {
    405   std::list<MemoryChunk*> delayed_chunks(std::move(delayed_regular_chunks_));
    406   // Move constructed, so the permanent list should be empty.
    407   DCHECK(delayed_regular_chunks_.empty());
    408   for (auto it = delayed_chunks.begin(); it != delayed_chunks.end(); ++it) {
    409     AddMemoryChunkSafe<kRegular>(*it);
    410   }
    411 }
    412 
    413 bool MemoryAllocator::CanFreeMemoryChunk(MemoryChunk* chunk) {
    414   MarkCompactCollector* mc = isolate_->heap()->mark_compact_collector();
    415   // We cannot free a memory chunk in new space while the sweeper is running
    416   // because the memory chunk can be in the queue of a sweeper task.
    417   // Chunks in old generation are unmapped if they are empty.
    418   DCHECK(chunk->InNewSpace() || chunk->SweepingDone());
    419   return !chunk->InNewSpace() || mc == nullptr || !FLAG_concurrent_sweeping ||
    420          mc->sweeper().IsSweepingCompleted(NEW_SPACE);
    421 }
    422 
    423 bool MemoryAllocator::CommitMemory(Address base, size_t size,
    424                                    Executability executable) {
    425   if (!base::VirtualMemory::CommitRegion(base, size,
    426                                          executable == EXECUTABLE)) {
    427     return false;
    428   }
    429   UpdateAllocatedSpaceLimits(base, base + size);
    430   return true;
    431 }
    432 
    433 
    434 void MemoryAllocator::FreeMemory(base::VirtualMemory* reservation,
    435                                  Executability executable) {
    436   // TODO(gc) make code_range part of memory allocator?
    437   // Code which is part of the code-range does not have its own VirtualMemory.
    438   DCHECK(code_range() == NULL ||
    439          !code_range()->contains(static_cast<Address>(reservation->address())));
    440   DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid() ||
    441          reservation->size() <= Page::kPageSize);
    442 
    443   reservation->Release();
    444 }
    445 
    446 
    447 void MemoryAllocator::FreeMemory(Address base, size_t size,
    448                                  Executability executable) {
    449   // TODO(gc) make code_range part of memory allocator?
    450   if (code_range() != NULL &&
    451       code_range()->contains(static_cast<Address>(base))) {
    452     DCHECK(executable == EXECUTABLE);
    453     code_range()->FreeRawMemory(base, size);
    454   } else {
    455     DCHECK(executable == NOT_EXECUTABLE || !code_range()->valid());
    456     bool result = base::VirtualMemory::ReleaseRegion(base, size);
    457     USE(result);
    458     DCHECK(result);
    459   }
    460 }
    461 
    462 Address MemoryAllocator::ReserveAlignedMemory(size_t size, size_t alignment,
    463                                               base::VirtualMemory* controller) {
    464   base::VirtualMemory reservation(size, alignment);
    465 
    466   if (!reservation.IsReserved()) return NULL;
    467   size_.Increment(reservation.size());
    468   Address base =
    469       RoundUp(static_cast<Address>(reservation.address()), alignment);
    470   controller->TakeControl(&reservation);
    471   return base;
    472 }
    473 
    474 Address MemoryAllocator::AllocateAlignedMemory(
    475     size_t reserve_size, size_t commit_size, size_t alignment,
    476     Executability executable, base::VirtualMemory* controller) {
    477   DCHECK(commit_size <= reserve_size);
    478   base::VirtualMemory reservation;
    479   Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation);
    480   if (base == NULL) return NULL;
    481 
    482   if (executable == EXECUTABLE) {
    483     if (!CommitExecutableMemory(&reservation, base, commit_size,
    484                                 reserve_size)) {
    485       base = NULL;
    486     }
    487   } else {
    488     if (reservation.Commit(base, commit_size, false)) {
    489       UpdateAllocatedSpaceLimits(base, base + commit_size);
    490     } else {
    491       base = NULL;
    492     }
    493   }
    494 
    495   if (base == NULL) {
    496     // Failed to commit the body. Release the mapping and any partially
    497     // commited regions inside it.
    498     reservation.Release();
    499     size_.Decrement(reserve_size);
    500     return NULL;
    501   }
    502 
    503   controller->TakeControl(&reservation);
    504   return base;
    505 }
    506 
    507 void Page::InitializeAsAnchor(Space* space) {
    508   set_owner(space);
    509   set_next_chunk(this);
    510   set_prev_chunk(this);
    511   SetFlags(0, ~0);
    512   SetFlag(ANCHOR);
    513 }
    514 
    515 MemoryChunk* MemoryChunk::Initialize(Heap* heap, Address base, size_t size,
    516                                      Address area_start, Address area_end,
    517                                      Executability executable, Space* owner,
    518                                      base::VirtualMemory* reservation) {
    519   MemoryChunk* chunk = FromAddress(base);
    520 
    521   DCHECK(base == chunk->address());
    522 
    523   chunk->heap_ = heap;
    524   chunk->size_ = size;
    525   chunk->area_start_ = area_start;
    526   chunk->area_end_ = area_end;
    527   chunk->flags_ = Flags(NO_FLAGS);
    528   chunk->set_owner(owner);
    529   chunk->InitializeReservedMemory();
    530   chunk->old_to_new_slots_.SetValue(nullptr);
    531   chunk->old_to_old_slots_ = nullptr;
    532   chunk->typed_old_to_new_slots_.SetValue(nullptr);
    533   chunk->typed_old_to_old_slots_ = nullptr;
    534   chunk->skip_list_ = nullptr;
    535   chunk->progress_bar_ = 0;
    536   chunk->high_water_mark_.SetValue(static_cast<intptr_t>(area_start - base));
    537   chunk->concurrent_sweeping_state().SetValue(kSweepingDone);
    538   chunk->mutex_ = new base::Mutex();
    539   chunk->available_in_free_list_ = 0;
    540   chunk->wasted_memory_ = 0;
    541   chunk->ResetLiveBytes();
    542   chunk->ClearLiveness();
    543   chunk->set_next_chunk(nullptr);
    544   chunk->set_prev_chunk(nullptr);
    545   chunk->local_tracker_ = nullptr;
    546 
    547   DCHECK(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset);
    548 
    549   if (executable == EXECUTABLE) {
    550     chunk->SetFlag(IS_EXECUTABLE);
    551   }
    552 
    553   if (reservation != nullptr) {
    554     chunk->reservation_.TakeControl(reservation);
    555   }
    556 
    557   return chunk;
    558 }
    559 
    560 
    561 // Commit MemoryChunk area to the requested size.
    562 bool MemoryChunk::CommitArea(size_t requested) {
    563   size_t guard_size =
    564       IsFlagSet(IS_EXECUTABLE) ? MemoryAllocator::CodePageGuardSize() : 0;
    565   size_t header_size = area_start() - address() - guard_size;
    566   size_t commit_size =
    567       RoundUp(header_size + requested, MemoryAllocator::GetCommitPageSize());
    568   size_t committed_size = RoundUp(header_size + (area_end() - area_start()),
    569                                   MemoryAllocator::GetCommitPageSize());
    570 
    571   if (commit_size > committed_size) {
    572     // Commit size should be less or equal than the reserved size.
    573     DCHECK(commit_size <= size() - 2 * guard_size);
    574     // Append the committed area.
    575     Address start = address() + committed_size + guard_size;
    576     size_t length = commit_size - committed_size;
    577     if (reservation_.IsReserved()) {
    578       Executability executable =
    579           IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE;
    580       if (!heap()->memory_allocator()->CommitMemory(start, length,
    581                                                     executable)) {
    582         return false;
    583       }
    584     } else {
    585       CodeRange* code_range = heap_->memory_allocator()->code_range();
    586       DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
    587       if (!code_range->CommitRawMemory(start, length)) return false;
    588     }
    589 
    590     if (Heap::ShouldZapGarbage()) {
    591       heap_->memory_allocator()->ZapBlock(start, length);
    592     }
    593   } else if (commit_size < committed_size) {
    594     DCHECK(commit_size > 0);
    595     // Shrink the committed area.
    596     size_t length = committed_size - commit_size;
    597     Address start = address() + committed_size + guard_size - length;
    598     if (reservation_.IsReserved()) {
    599       if (!reservation_.Uncommit(start, length)) return false;
    600     } else {
    601       CodeRange* code_range = heap_->memory_allocator()->code_range();
    602       DCHECK(code_range->valid() && IsFlagSet(IS_EXECUTABLE));
    603       if (!code_range->UncommitRawMemory(start, length)) return false;
    604     }
    605   }
    606 
    607   area_end_ = area_start_ + requested;
    608   return true;
    609 }
    610 
    611 size_t MemoryChunk::CommittedPhysicalMemory() {
    612   if (!base::VirtualMemory::HasLazyCommits() || owner()->identity() == LO_SPACE)
    613     return size();
    614   return high_water_mark_.Value();
    615 }
    616 
    617 void MemoryChunk::InsertAfter(MemoryChunk* other) {
    618   MemoryChunk* other_next = other->next_chunk();
    619 
    620   set_next_chunk(other_next);
    621   set_prev_chunk(other);
    622   other_next->set_prev_chunk(this);
    623   other->set_next_chunk(this);
    624 }
    625 
    626 
    627 void MemoryChunk::Unlink() {
    628   MemoryChunk* next_element = next_chunk();
    629   MemoryChunk* prev_element = prev_chunk();
    630   next_element->set_prev_chunk(prev_element);
    631   prev_element->set_next_chunk(next_element);
    632   set_prev_chunk(NULL);
    633   set_next_chunk(NULL);
    634 }
    635 
    636 void MemoryAllocator::ShrinkChunk(MemoryChunk* chunk, size_t bytes_to_shrink) {
    637   DCHECK_GE(bytes_to_shrink, static_cast<size_t>(GetCommitPageSize()));
    638   DCHECK_EQ(0u, bytes_to_shrink % GetCommitPageSize());
    639   Address free_start = chunk->area_end_ - bytes_to_shrink;
    640   // Don't adjust the size of the page. The area is just uncomitted but not
    641   // released.
    642   chunk->area_end_ -= bytes_to_shrink;
    643   UncommitBlock(free_start, bytes_to_shrink);
    644   if (chunk->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) {
    645     if (chunk->reservation_.IsReserved())
    646       chunk->reservation_.Guard(chunk->area_end_);
    647     else
    648       base::OS::Guard(chunk->area_end_, GetCommitPageSize());
    649   }
    650 }
    651 
    652 MemoryChunk* MemoryAllocator::AllocateChunk(size_t reserve_area_size,
    653                                             size_t commit_area_size,
    654                                             Executability executable,
    655                                             Space* owner) {
    656   DCHECK_LE(commit_area_size, reserve_area_size);
    657 
    658   size_t chunk_size;
    659   Heap* heap = isolate_->heap();
    660   Address base = nullptr;
    661   base::VirtualMemory reservation;
    662   Address area_start = nullptr;
    663   Address area_end = nullptr;
    664 
    665   //
    666   // MemoryChunk layout:
    667   //
    668   //             Executable
    669   // +----------------------------+<- base aligned with MemoryChunk::kAlignment
    670   // |           Header           |
    671   // +----------------------------+<- base + CodePageGuardStartOffset
    672   // |           Guard            |
    673   // +----------------------------+<- area_start_
    674   // |           Area             |
    675   // +----------------------------+<- area_end_ (area_start + commit_area_size)
    676   // |   Committed but not used   |
    677   // +----------------------------+<- aligned at OS page boundary
    678   // | Reserved but not committed |
    679   // +----------------------------+<- aligned at OS page boundary
    680   // |           Guard            |
    681   // +----------------------------+<- base + chunk_size
    682   //
    683   //           Non-executable
    684   // +----------------------------+<- base aligned with MemoryChunk::kAlignment
    685   // |          Header            |
    686   // +----------------------------+<- area_start_ (base + kObjectStartOffset)
    687   // |           Area             |
    688   // +----------------------------+<- area_end_ (area_start + commit_area_size)
    689   // |  Committed but not used    |
    690   // +----------------------------+<- aligned at OS page boundary
    691   // | Reserved but not committed |
    692   // +----------------------------+<- base + chunk_size
    693   //
    694 
    695   if (executable == EXECUTABLE) {
    696     chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size,
    697                          GetCommitPageSize()) +
    698                  CodePageGuardSize();
    699 
    700     // Check executable memory limit.
    701     if ((size_executable_.Value() + chunk_size) > capacity_executable_) {
    702       LOG(isolate_, StringEvent("MemoryAllocator::AllocateRawMemory",
    703                                 "V8 Executable Allocation capacity exceeded"));
    704       return NULL;
    705     }
    706 
    707     // Size of header (not executable) plus area (executable).
    708     size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size,
    709                                  GetCommitPageSize());
    710     // Allocate executable memory either from code range or from the
    711     // OS.
    712 #ifdef V8_TARGET_ARCH_MIPS64
    713     // Use code range only for large object space on mips64 to keep address
    714     // range within 256-MB memory region.
    715     if (code_range()->valid() && reserve_area_size > CodePageAreaSize()) {
    716 #else
    717     if (code_range()->valid()) {
    718 #endif
    719       base =
    720           code_range()->AllocateRawMemory(chunk_size, commit_size, &chunk_size);
    721       DCHECK(
    722           IsAligned(reinterpret_cast<intptr_t>(base), MemoryChunk::kAlignment));
    723       if (base == NULL) return NULL;
    724       size_.Increment(chunk_size);
    725       // Update executable memory size.
    726       size_executable_.Increment(chunk_size);
    727     } else {
    728       base = AllocateAlignedMemory(chunk_size, commit_size,
    729                                    MemoryChunk::kAlignment, executable,
    730                                    &reservation);
    731       if (base == NULL) return NULL;
    732       // Update executable memory size.
    733       size_executable_.Increment(reservation.size());
    734     }
    735 
    736     if (Heap::ShouldZapGarbage()) {
    737       ZapBlock(base, CodePageGuardStartOffset());
    738       ZapBlock(base + CodePageAreaStartOffset(), commit_area_size);
    739     }
    740 
    741     area_start = base + CodePageAreaStartOffset();
    742     area_end = area_start + commit_area_size;
    743   } else {
    744     chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size,
    745                          GetCommitPageSize());
    746     size_t commit_size =
    747         RoundUp(MemoryChunk::kObjectStartOffset + commit_area_size,
    748                 GetCommitPageSize());
    749     base =
    750         AllocateAlignedMemory(chunk_size, commit_size, MemoryChunk::kAlignment,
    751                               executable, &reservation);
    752 
    753     if (base == NULL) return NULL;
    754 
    755     if (Heap::ShouldZapGarbage()) {
    756       ZapBlock(base, Page::kObjectStartOffset + commit_area_size);
    757     }
    758 
    759     area_start = base + Page::kObjectStartOffset;
    760     area_end = area_start + commit_area_size;
    761   }
    762 
    763   // Use chunk_size for statistics and callbacks because we assume that they
    764   // treat reserved but not-yet committed memory regions of chunks as allocated.
    765   isolate_->counters()->memory_allocated()->Increment(
    766       static_cast<int>(chunk_size));
    767 
    768   LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size));
    769 
    770   // We cannot use the last chunk in the address space because we would
    771   // overflow when comparing top and limit if this chunk is used for a
    772   // linear allocation area.
    773   if ((reinterpret_cast<uintptr_t>(base) + chunk_size) == 0u) {
    774     CHECK(!last_chunk_.IsReserved());
    775     last_chunk_.TakeControl(&reservation);
    776     UncommitBlock(reinterpret_cast<Address>(last_chunk_.address()),
    777                   last_chunk_.size());
    778     size_.Decrement(chunk_size);
    779     if (executable == EXECUTABLE) {
    780       size_executable_.Decrement(chunk_size);
    781     }
    782     CHECK(last_chunk_.IsReserved());
    783     return AllocateChunk(reserve_area_size, commit_area_size, executable,
    784                          owner);
    785   }
    786 
    787   return MemoryChunk::Initialize(heap, base, chunk_size, area_start, area_end,
    788                                  executable, owner, &reservation);
    789 }
    790 
    791 
    792 void Page::ResetFreeListStatistics() {
    793   wasted_memory_ = 0;
    794   available_in_free_list_ = 0;
    795 }
    796 
    797 size_t Page::AvailableInFreeList() {
    798   size_t sum = 0;
    799   ForAllFreeListCategories([&sum](FreeListCategory* category) {
    800     sum += category->available();
    801   });
    802   return sum;
    803 }
    804 
    805 size_t Page::ShrinkToHighWaterMark() {
    806   // Shrink pages to high water mark. The water mark points either to a filler
    807   // or the area_end.
    808   HeapObject* filler = HeapObject::FromAddress(HighWaterMark());
    809   if (filler->address() == area_end()) return 0;
    810   CHECK(filler->IsFiller());
    811   if (!filler->IsFreeSpace()) return 0;
    812 
    813 #ifdef DEBUG
    814   // Check the the filler is indeed the last filler on the page.
    815   HeapObjectIterator it(this);
    816   HeapObject* filler2 = nullptr;
    817   for (HeapObject* obj = it.Next(); obj != nullptr; obj = it.Next()) {
    818     filler2 = HeapObject::FromAddress(obj->address() + obj->Size());
    819   }
    820   if (filler2 == nullptr || filler2->address() == area_end()) return 0;
    821   DCHECK(filler2->IsFiller());
    822   // The deserializer might leave behind fillers. In this case we need to
    823   // iterate even further.
    824   while ((filler2->address() + filler2->Size()) != area_end()) {
    825     filler2 = HeapObject::FromAddress(filler2->address() + filler2->Size());
    826     DCHECK(filler2->IsFiller());
    827   }
    828   DCHECK_EQ(filler->address(), filler2->address());
    829 #endif  // DEBUG
    830 
    831   size_t unused = RoundDown(
    832       static_cast<size_t>(area_end() - filler->address() - FreeSpace::kSize),
    833       MemoryAllocator::GetCommitPageSize());
    834   if (unused > 0) {
    835     if (FLAG_trace_gc_verbose) {
    836       PrintIsolate(heap()->isolate(), "Shrinking page %p: end %p -> %p\n",
    837                    reinterpret_cast<void*>(this),
    838                    reinterpret_cast<void*>(area_end()),
    839                    reinterpret_cast<void*>(area_end() - unused));
    840     }
    841     heap()->CreateFillerObjectAt(
    842         filler->address(),
    843         static_cast<int>(area_end() - filler->address() - unused),
    844         ClearRecordedSlots::kNo);
    845     heap()->memory_allocator()->ShrinkChunk(this, unused);
    846     CHECK(filler->IsFiller());
    847     CHECK_EQ(filler->address() + filler->Size(), area_end());
    848   }
    849   return unused;
    850 }
    851 
    852 void Page::CreateBlackArea(Address start, Address end) {
    853   DCHECK(heap()->incremental_marking()->black_allocation());
    854   DCHECK_EQ(Page::FromAddress(start), this);
    855   DCHECK_NE(start, end);
    856   DCHECK_EQ(Page::FromAddress(end - 1), this);
    857   markbits()->SetRange(AddressToMarkbitIndex(start),
    858                        AddressToMarkbitIndex(end));
    859   IncrementLiveBytes(static_cast<int>(end - start));
    860 }
    861 
    862 void MemoryAllocator::PartialFreeMemory(MemoryChunk* chunk,
    863                                         Address start_free) {
    864   // We do not allow partial shrink for code.
    865   DCHECK(chunk->executable() == NOT_EXECUTABLE);
    866 
    867   intptr_t size;
    868   base::VirtualMemory* reservation = chunk->reserved_memory();
    869   DCHECK(reservation->IsReserved());
    870   size = static_cast<intptr_t>(reservation->size());
    871 
    872   size_t to_free_size = size - (start_free - chunk->address());
    873 
    874   DCHECK(size_.Value() >= to_free_size);
    875   size_.Decrement(to_free_size);
    876   isolate_->counters()->memory_allocated()->Decrement(
    877       static_cast<int>(to_free_size));
    878   chunk->set_size(size - to_free_size);
    879 
    880   reservation->ReleasePartial(start_free);
    881 }
    882 
    883 void MemoryAllocator::PreFreeMemory(MemoryChunk* chunk) {
    884   DCHECK(!chunk->IsFlagSet(MemoryChunk::PRE_FREED));
    885   LOG(isolate_, DeleteEvent("MemoryChunk", chunk));
    886 
    887   isolate_->heap()->RememberUnmappedPage(reinterpret_cast<Address>(chunk),
    888                                          chunk->IsEvacuationCandidate());
    889 
    890   base::VirtualMemory* reservation = chunk->reserved_memory();
    891   const size_t size =
    892       reservation->IsReserved() ? reservation->size() : chunk->size();
    893   DCHECK_GE(size_.Value(), static_cast<size_t>(size));
    894   size_.Decrement(size);
    895   isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
    896   if (chunk->executable() == EXECUTABLE) {
    897     DCHECK_GE(size_executable_.Value(), size);
    898     size_executable_.Decrement(size);
    899   }
    900 
    901   chunk->SetFlag(MemoryChunk::PRE_FREED);
    902 }
    903 
    904 
    905 void MemoryAllocator::PerformFreeMemory(MemoryChunk* chunk) {
    906   DCHECK(chunk->IsFlagSet(MemoryChunk::PRE_FREED));
    907   chunk->ReleaseAllocatedMemory();
    908 
    909   base::VirtualMemory* reservation = chunk->reserved_memory();
    910   if (chunk->IsFlagSet(MemoryChunk::POOLED)) {
    911     UncommitBlock(reinterpret_cast<Address>(chunk), MemoryChunk::kPageSize);
    912   } else {
    913     if (reservation->IsReserved()) {
    914       FreeMemory(reservation, chunk->executable());
    915     } else {
    916       FreeMemory(chunk->address(), chunk->size(), chunk->executable());
    917     }
    918   }
    919 }
    920 
    921 template <MemoryAllocator::FreeMode mode>
    922 void MemoryAllocator::Free(MemoryChunk* chunk) {
    923   switch (mode) {
    924     case kFull:
    925       PreFreeMemory(chunk);
    926       PerformFreeMemory(chunk);
    927       break;
    928     case kAlreadyPooled:
    929       // Pooled pages cannot be touched anymore as their memory is uncommitted.
    930       FreeMemory(chunk->address(), static_cast<size_t>(MemoryChunk::kPageSize),
    931                  Executability::NOT_EXECUTABLE);
    932       break;
    933     case kPooledAndQueue:
    934       DCHECK_EQ(chunk->size(), static_cast<size_t>(MemoryChunk::kPageSize));
    935       DCHECK_EQ(chunk->executable(), NOT_EXECUTABLE);
    936       chunk->SetFlag(MemoryChunk::POOLED);
    937     // Fall through to kPreFreeAndQueue.
    938     case kPreFreeAndQueue:
    939       PreFreeMemory(chunk);
    940       // The chunks added to this queue will be freed by a concurrent thread.
    941       unmapper()->AddMemoryChunkSafe(chunk);
    942       break;
    943   }
    944 }
    945 
    946 template void MemoryAllocator::Free<MemoryAllocator::kFull>(MemoryChunk* chunk);
    947 
    948 template void MemoryAllocator::Free<MemoryAllocator::kAlreadyPooled>(
    949     MemoryChunk* chunk);
    950 
    951 template void MemoryAllocator::Free<MemoryAllocator::kPreFreeAndQueue>(
    952     MemoryChunk* chunk);
    953 
    954 template void MemoryAllocator::Free<MemoryAllocator::kPooledAndQueue>(
    955     MemoryChunk* chunk);
    956 
    957 template <MemoryAllocator::AllocationMode alloc_mode, typename SpaceType>
    958 Page* MemoryAllocator::AllocatePage(size_t size, SpaceType* owner,
    959                                     Executability executable) {
    960   MemoryChunk* chunk = nullptr;
    961   if (alloc_mode == kPooled) {
    962     DCHECK_EQ(size, static_cast<size_t>(MemoryChunk::kAllocatableMemory));
    963     DCHECK_EQ(executable, NOT_EXECUTABLE);
    964     chunk = AllocatePagePooled(owner);
    965   }
    966   if (chunk == nullptr) {
    967     chunk = AllocateChunk(size, size, executable, owner);
    968   }
    969   if (chunk == nullptr) return nullptr;
    970   return Page::Initialize(isolate_->heap(), chunk, executable, owner);
    971 }
    972 
    973 template Page*
    974 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>(
    975     size_t size, PagedSpace* owner, Executability executable);
    976 template Page*
    977 MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>(
    978     size_t size, SemiSpace* owner, Executability executable);
    979 template Page*
    980 MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>(
    981     size_t size, SemiSpace* owner, Executability executable);
    982 
    983 LargePage* MemoryAllocator::AllocateLargePage(size_t size,
    984                                               LargeObjectSpace* owner,
    985                                               Executability executable) {
    986   MemoryChunk* chunk = AllocateChunk(size, size, executable, owner);
    987   if (chunk == nullptr) return nullptr;
    988   return LargePage::Initialize(isolate_->heap(), chunk, executable, owner);
    989 }
    990 
    991 template <typename SpaceType>
    992 MemoryChunk* MemoryAllocator::AllocatePagePooled(SpaceType* owner) {
    993   MemoryChunk* chunk = unmapper()->TryGetPooledMemoryChunkSafe();
    994   if (chunk == nullptr) return nullptr;
    995   const int size = MemoryChunk::kPageSize;
    996   const Address start = reinterpret_cast<Address>(chunk);
    997   const Address area_start = start + MemoryChunk::kObjectStartOffset;
    998   const Address area_end = start + size;
    999   if (!CommitBlock(reinterpret_cast<Address>(chunk), size, NOT_EXECUTABLE)) {
   1000     return nullptr;
   1001   }
   1002   base::VirtualMemory reservation(start, size);
   1003   MemoryChunk::Initialize(isolate_->heap(), start, size, area_start, area_end,
   1004                           NOT_EXECUTABLE, owner, &reservation);
   1005   size_.Increment(size);
   1006   return chunk;
   1007 }
   1008 
   1009 bool MemoryAllocator::CommitBlock(Address start, size_t size,
   1010                                   Executability executable) {
   1011   if (!CommitMemory(start, size, executable)) return false;
   1012 
   1013   if (Heap::ShouldZapGarbage()) {
   1014     ZapBlock(start, size);
   1015   }
   1016 
   1017   isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size));
   1018   return true;
   1019 }
   1020 
   1021 
   1022 bool MemoryAllocator::UncommitBlock(Address start, size_t size) {
   1023   if (!base::VirtualMemory::UncommitRegion(start, size)) return false;
   1024   isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size));
   1025   return true;
   1026 }
   1027 
   1028 
   1029 void MemoryAllocator::ZapBlock(Address start, size_t size) {
   1030   for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) {
   1031     Memory::Address_at(start + s) = kZapValue;
   1032   }
   1033 }
   1034 
   1035 #ifdef DEBUG
   1036 void MemoryAllocator::ReportStatistics() {
   1037   size_t size = Size();
   1038   float pct = static_cast<float>(capacity_ - size) / capacity_;
   1039   PrintF("  capacity: %zu , used: %" V8PRIdPTR ", available: %%%d\n\n",
   1040          capacity_, size, static_cast<int>(pct * 100));
   1041 }
   1042 #endif
   1043 
   1044 size_t MemoryAllocator::CodePageGuardStartOffset() {
   1045   // We are guarding code pages: the first OS page after the header
   1046   // will be protected as non-writable.
   1047   return RoundUp(Page::kObjectStartOffset, GetCommitPageSize());
   1048 }
   1049 
   1050 size_t MemoryAllocator::CodePageGuardSize() {
   1051   return static_cast<int>(GetCommitPageSize());
   1052 }
   1053 
   1054 size_t MemoryAllocator::CodePageAreaStartOffset() {
   1055   // We are guarding code pages: the first OS page after the header
   1056   // will be protected as non-writable.
   1057   return CodePageGuardStartOffset() + CodePageGuardSize();
   1058 }
   1059 
   1060 size_t MemoryAllocator::CodePageAreaEndOffset() {
   1061   // We are guarding code pages: the last OS page will be protected as
   1062   // non-writable.
   1063   return Page::kPageSize - static_cast<int>(GetCommitPageSize());
   1064 }
   1065 
   1066 intptr_t MemoryAllocator::GetCommitPageSize() {
   1067   if (FLAG_v8_os_page_size != 0) {
   1068     DCHECK(base::bits::IsPowerOfTwo32(FLAG_v8_os_page_size));
   1069     return FLAG_v8_os_page_size * KB;
   1070   } else {
   1071     return base::OS::CommitPageSize();
   1072   }
   1073 }
   1074 
   1075 
   1076 bool MemoryAllocator::CommitExecutableMemory(base::VirtualMemory* vm,
   1077                                              Address start, size_t commit_size,
   1078                                              size_t reserved_size) {
   1079   // Commit page header (not executable).
   1080   Address header = start;
   1081   size_t header_size = CodePageGuardStartOffset();
   1082   if (vm->Commit(header, header_size, false)) {
   1083     // Create guard page after the header.
   1084     if (vm->Guard(start + CodePageGuardStartOffset())) {
   1085       // Commit page body (executable).
   1086       Address body = start + CodePageAreaStartOffset();
   1087       size_t body_size = commit_size - CodePageGuardStartOffset();
   1088       if (vm->Commit(body, body_size, true)) {
   1089         // Create guard page before the end.
   1090         if (vm->Guard(start + reserved_size - CodePageGuardSize())) {
   1091           UpdateAllocatedSpaceLimits(start, start + CodePageAreaStartOffset() +
   1092                                                 commit_size -
   1093                                                 CodePageGuardStartOffset());
   1094           return true;
   1095         }
   1096         vm->Uncommit(body, body_size);
   1097       }
   1098     }
   1099     vm->Uncommit(header, header_size);
   1100   }
   1101   return false;
   1102 }
   1103 
   1104 
   1105 // -----------------------------------------------------------------------------
   1106 // MemoryChunk implementation
   1107 
   1108 void MemoryChunk::ReleaseAllocatedMemory() {
   1109   if (skip_list_ != nullptr) {
   1110     delete skip_list_;
   1111     skip_list_ = nullptr;
   1112   }
   1113   if (mutex_ != nullptr) {
   1114     delete mutex_;
   1115     mutex_ = nullptr;
   1116   }
   1117   if (old_to_new_slots_.Value() != nullptr) ReleaseOldToNewSlots();
   1118   if (old_to_old_slots_ != nullptr) ReleaseOldToOldSlots();
   1119   if (typed_old_to_new_slots_.Value() != nullptr) ReleaseTypedOldToNewSlots();
   1120   if (typed_old_to_old_slots_ != nullptr) ReleaseTypedOldToOldSlots();
   1121   if (local_tracker_ != nullptr) ReleaseLocalTracker();
   1122 }
   1123 
   1124 static SlotSet* AllocateSlotSet(size_t size, Address page_start) {
   1125   size_t pages = (size + Page::kPageSize - 1) / Page::kPageSize;
   1126   DCHECK(pages > 0);
   1127   SlotSet* slot_set = new SlotSet[pages];
   1128   for (size_t i = 0; i < pages; i++) {
   1129     slot_set[i].SetPageStart(page_start + i * Page::kPageSize);
   1130   }
   1131   return slot_set;
   1132 }
   1133 
   1134 void MemoryChunk::AllocateOldToNewSlots() {
   1135   DCHECK(nullptr == old_to_new_slots_.Value());
   1136   old_to_new_slots_.SetValue(AllocateSlotSet(size_, address()));
   1137 }
   1138 
   1139 void MemoryChunk::ReleaseOldToNewSlots() {
   1140   SlotSet* old_to_new_slots = old_to_new_slots_.Value();
   1141   delete[] old_to_new_slots;
   1142   old_to_new_slots_.SetValue(nullptr);
   1143 }
   1144 
   1145 void MemoryChunk::AllocateOldToOldSlots() {
   1146   DCHECK(nullptr == old_to_old_slots_);
   1147   old_to_old_slots_ = AllocateSlotSet(size_, address());
   1148 }
   1149 
   1150 void MemoryChunk::ReleaseOldToOldSlots() {
   1151   delete[] old_to_old_slots_;
   1152   old_to_old_slots_ = nullptr;
   1153 }
   1154 
   1155 void MemoryChunk::AllocateTypedOldToNewSlots() {
   1156   DCHECK(nullptr == typed_old_to_new_slots_.Value());
   1157   typed_old_to_new_slots_.SetValue(new TypedSlotSet(address()));
   1158 }
   1159 
   1160 void MemoryChunk::ReleaseTypedOldToNewSlots() {
   1161   TypedSlotSet* typed_old_to_new_slots = typed_old_to_new_slots_.Value();
   1162   delete typed_old_to_new_slots;
   1163   typed_old_to_new_slots_.SetValue(nullptr);
   1164 }
   1165 
   1166 void MemoryChunk::AllocateTypedOldToOldSlots() {
   1167   DCHECK(nullptr == typed_old_to_old_slots_);
   1168   typed_old_to_old_slots_ = new TypedSlotSet(address());
   1169 }
   1170 
   1171 void MemoryChunk::ReleaseTypedOldToOldSlots() {
   1172   delete typed_old_to_old_slots_;
   1173   typed_old_to_old_slots_ = nullptr;
   1174 }
   1175 
   1176 void MemoryChunk::AllocateLocalTracker() {
   1177   DCHECK_NULL(local_tracker_);
   1178   local_tracker_ = new LocalArrayBufferTracker(heap());
   1179 }
   1180 
   1181 void MemoryChunk::ReleaseLocalTracker() {
   1182   DCHECK_NOT_NULL(local_tracker_);
   1183   delete local_tracker_;
   1184   local_tracker_ = nullptr;
   1185 }
   1186 
   1187 void MemoryChunk::ClearLiveness() {
   1188   markbits()->Clear();
   1189   ResetLiveBytes();
   1190 }
   1191 
   1192 // -----------------------------------------------------------------------------
   1193 // PagedSpace implementation
   1194 
   1195 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::NEW_SPACE) ==
   1196               ObjectSpace::kObjectSpaceNewSpace);
   1197 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::OLD_SPACE) ==
   1198               ObjectSpace::kObjectSpaceOldSpace);
   1199 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::CODE_SPACE) ==
   1200               ObjectSpace::kObjectSpaceCodeSpace);
   1201 STATIC_ASSERT(static_cast<ObjectSpace>(1 << AllocationSpace::MAP_SPACE) ==
   1202               ObjectSpace::kObjectSpaceMapSpace);
   1203 
   1204 void Space::AllocationStep(Address soon_object, int size) {
   1205   if (!allocation_observers_paused_) {
   1206     for (int i = 0; i < allocation_observers_->length(); ++i) {
   1207       AllocationObserver* o = (*allocation_observers_)[i];
   1208       o->AllocationStep(size, soon_object, size);
   1209     }
   1210   }
   1211 }
   1212 
   1213 PagedSpace::PagedSpace(Heap* heap, AllocationSpace space,
   1214                        Executability executable)
   1215     : Space(heap, space, executable), anchor_(this), free_list_(this) {
   1216   area_size_ = MemoryAllocator::PageAreaSize(space);
   1217   accounting_stats_.Clear();
   1218 
   1219   allocation_info_.Reset(nullptr, nullptr);
   1220 }
   1221 
   1222 
   1223 bool PagedSpace::SetUp() { return true; }
   1224 
   1225 
   1226 bool PagedSpace::HasBeenSetUp() { return true; }
   1227 
   1228 
   1229 void PagedSpace::TearDown() {
   1230   for (auto it = begin(); it != end();) {
   1231     Page* page = *(it++);  // Will be erased.
   1232     ArrayBufferTracker::FreeAll(page);
   1233     heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
   1234   }
   1235   anchor_.set_next_page(&anchor_);
   1236   anchor_.set_prev_page(&anchor_);
   1237   accounting_stats_.Clear();
   1238 }
   1239 
   1240 void PagedSpace::RefillFreeList() {
   1241   // Any PagedSpace might invoke RefillFreeList. We filter all but our old
   1242   // generation spaces out.
   1243   if (identity() != OLD_SPACE && identity() != CODE_SPACE &&
   1244       identity() != MAP_SPACE) {
   1245     return;
   1246   }
   1247   MarkCompactCollector* collector = heap()->mark_compact_collector();
   1248   intptr_t added = 0;
   1249   {
   1250     Page* p = nullptr;
   1251     while ((p = collector->sweeper().GetSweptPageSafe(this)) != nullptr) {
   1252       // Only during compaction pages can actually change ownership. This is
   1253       // safe because there exists no other competing action on the page links
   1254       // during compaction.
   1255       if (is_local() && (p->owner() != this)) {
   1256         base::LockGuard<base::Mutex> guard(
   1257             reinterpret_cast<PagedSpace*>(p->owner())->mutex());
   1258         p->Unlink();
   1259         p->set_owner(this);
   1260         p->InsertAfter(anchor_.prev_page());
   1261       }
   1262       added += RelinkFreeListCategories(p);
   1263       added += p->wasted_memory();
   1264       if (is_local() && (added > kCompactionMemoryWanted)) break;
   1265     }
   1266   }
   1267   accounting_stats_.IncreaseCapacity(added);
   1268 }
   1269 
   1270 void PagedSpace::MergeCompactionSpace(CompactionSpace* other) {
   1271   DCHECK(identity() == other->identity());
   1272   // Unmerged fields:
   1273   //   area_size_
   1274   //   anchor_
   1275 
   1276   other->EmptyAllocationInfo();
   1277 
   1278   // Update and clear accounting statistics.
   1279   accounting_stats_.Merge(other->accounting_stats_);
   1280   other->accounting_stats_.Clear();
   1281 
   1282   // The linear allocation area of {other} should be destroyed now.
   1283   DCHECK(other->top() == nullptr);
   1284   DCHECK(other->limit() == nullptr);
   1285 
   1286   AccountCommitted(other->CommittedMemory());
   1287 
   1288   // Move over pages.
   1289   for (auto it = other->begin(); it != other->end();) {
   1290     Page* p = *(it++);
   1291 
   1292     // Relinking requires the category to be unlinked.
   1293     other->UnlinkFreeListCategories(p);
   1294 
   1295     p->Unlink();
   1296     p->set_owner(this);
   1297     p->InsertAfter(anchor_.prev_page());
   1298     RelinkFreeListCategories(p);
   1299     DCHECK_EQ(p->AvailableInFreeList(), p->available_in_free_list());
   1300   }
   1301 }
   1302 
   1303 
   1304 size_t PagedSpace::CommittedPhysicalMemory() {
   1305   if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
   1306   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   1307   size_t size = 0;
   1308   for (Page* page : *this) {
   1309     size += page->CommittedPhysicalMemory();
   1310   }
   1311   return size;
   1312 }
   1313 
   1314 bool PagedSpace::ContainsSlow(Address addr) {
   1315   Page* p = Page::FromAddress(addr);
   1316   for (Page* page : *this) {
   1317     if (page == p) return true;
   1318   }
   1319   return false;
   1320 }
   1321 
   1322 void PagedSpace::ShrinkImmortalImmovablePages() {
   1323   DCHECK(!heap()->deserialization_complete());
   1324   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   1325   EmptyAllocationInfo();
   1326   ResetFreeList();
   1327 
   1328   for (Page* page : *this) {
   1329     DCHECK(page->IsFlagSet(Page::NEVER_EVACUATE));
   1330     size_t unused = page->ShrinkToHighWaterMark();
   1331     accounting_stats_.DecreaseCapacity(static_cast<intptr_t>(unused));
   1332     AccountUncommitted(unused);
   1333   }
   1334 }
   1335 
   1336 bool PagedSpace::Expand() {
   1337   const int size = AreaSize();
   1338 
   1339   if (!heap()->CanExpandOldGeneration(size)) return false;
   1340 
   1341   Page* p = heap()->memory_allocator()->AllocatePage(size, this, executable());
   1342   if (p == nullptr) return false;
   1343 
   1344   AccountCommitted(p->size());
   1345 
   1346   // Pages created during bootstrapping may contain immortal immovable objects.
   1347   if (!heap()->deserialization_complete()) p->MarkNeverEvacuate();
   1348 
   1349   DCHECK(Capacity() <= heap()->MaxOldGenerationSize());
   1350 
   1351   p->InsertAfter(anchor_.prev_page());
   1352 
   1353   return true;
   1354 }
   1355 
   1356 
   1357 int PagedSpace::CountTotalPages() {
   1358   int count = 0;
   1359   for (Page* page : *this) {
   1360     count++;
   1361     USE(page);
   1362   }
   1363   return count;
   1364 }
   1365 
   1366 
   1367 void PagedSpace::ResetFreeListStatistics() {
   1368   for (Page* page : *this) {
   1369     page->ResetFreeListStatistics();
   1370   }
   1371 }
   1372 
   1373 void PagedSpace::SetAllocationInfo(Address top, Address limit) {
   1374   SetTopAndLimit(top, limit);
   1375   if (top != nullptr && top != limit &&
   1376       heap()->incremental_marking()->black_allocation()) {
   1377     Page::FromAllocationAreaAddress(top)->CreateBlackArea(top, limit);
   1378   }
   1379 }
   1380 
   1381 void PagedSpace::MarkAllocationInfoBlack() {
   1382   DCHECK(heap()->incremental_marking()->black_allocation());
   1383   Address current_top = top();
   1384   Address current_limit = limit();
   1385   if (current_top != nullptr && current_top != current_limit) {
   1386     Page::FromAllocationAreaAddress(current_top)
   1387         ->CreateBlackArea(current_top, current_limit);
   1388   }
   1389 }
   1390 
   1391 // Empty space allocation info, returning unused area to free list.
   1392 void PagedSpace::EmptyAllocationInfo() {
   1393   // Mark the old linear allocation area with a free space map so it can be
   1394   // skipped when scanning the heap.
   1395   Address current_top = top();
   1396   Address current_limit = limit();
   1397   if (current_top == nullptr) {
   1398     DCHECK(current_limit == nullptr);
   1399     return;
   1400   }
   1401 
   1402   if (heap()->incremental_marking()->black_allocation()) {
   1403     Page* page = Page::FromAllocationAreaAddress(current_top);
   1404 
   1405     // Clear the bits in the unused black area.
   1406     if (current_top != current_limit) {
   1407       page->markbits()->ClearRange(page->AddressToMarkbitIndex(current_top),
   1408                                    page->AddressToMarkbitIndex(current_limit));
   1409       page->IncrementLiveBytes(-static_cast<int>(current_limit - current_top));
   1410     }
   1411   }
   1412 
   1413   SetTopAndLimit(NULL, NULL);
   1414   DCHECK_GE(current_limit, current_top);
   1415   Free(current_top, current_limit - current_top);
   1416 }
   1417 
   1418 void PagedSpace::IncreaseCapacity(size_t bytes) {
   1419   accounting_stats_.ExpandSpace(bytes);
   1420 }
   1421 
   1422 void PagedSpace::ReleasePage(Page* page) {
   1423   DCHECK_EQ(page->LiveBytes(), 0);
   1424   DCHECK_EQ(page->owner(), this);
   1425 
   1426   free_list_.EvictFreeListItems(page);
   1427   DCHECK(!free_list_.ContainsPageFreeListItems(page));
   1428 
   1429   if (Page::FromAllocationAreaAddress(allocation_info_.top()) == page) {
   1430     allocation_info_.Reset(nullptr, nullptr);
   1431   }
   1432 
   1433   // If page is still in a list, unlink it from that list.
   1434   if (page->next_chunk() != NULL) {
   1435     DCHECK(page->prev_chunk() != NULL);
   1436     page->Unlink();
   1437   }
   1438 
   1439   AccountUncommitted(page->size());
   1440   accounting_stats_.ShrinkSpace(page->area_size());
   1441   heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
   1442 }
   1443 
   1444 std::unique_ptr<ObjectIterator> PagedSpace::GetObjectIterator() {
   1445   return std::unique_ptr<ObjectIterator>(new HeapObjectIterator(this));
   1446 }
   1447 
   1448 #ifdef DEBUG
   1449 void PagedSpace::Print() {}
   1450 #endif
   1451 
   1452 #ifdef VERIFY_HEAP
   1453 void PagedSpace::Verify(ObjectVisitor* visitor) {
   1454   bool allocation_pointer_found_in_space =
   1455       (allocation_info_.top() == allocation_info_.limit());
   1456   for (Page* page : *this) {
   1457     CHECK(page->owner() == this);
   1458     if (page == Page::FromAllocationAreaAddress(allocation_info_.top())) {
   1459       allocation_pointer_found_in_space = true;
   1460     }
   1461     CHECK(page->SweepingDone());
   1462     HeapObjectIterator it(page);
   1463     Address end_of_previous_object = page->area_start();
   1464     Address top = page->area_end();
   1465     int black_size = 0;
   1466     for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
   1467       CHECK(end_of_previous_object <= object->address());
   1468 
   1469       // The first word should be a map, and we expect all map pointers to
   1470       // be in map space.
   1471       Map* map = object->map();
   1472       CHECK(map->IsMap());
   1473       CHECK(heap()->map_space()->Contains(map));
   1474 
   1475       // Perform space-specific object verification.
   1476       VerifyObject(object);
   1477 
   1478       // The object itself should look OK.
   1479       object->ObjectVerify();
   1480 
   1481       // All the interior pointers should be contained in the heap.
   1482       int size = object->Size();
   1483       object->IterateBody(map->instance_type(), size, visitor);
   1484       if (ObjectMarking::IsBlack(object)) {
   1485         black_size += size;
   1486       }
   1487 
   1488       CHECK(object->address() + size <= top);
   1489       end_of_previous_object = object->address() + size;
   1490     }
   1491     CHECK_LE(black_size, page->LiveBytes());
   1492   }
   1493   CHECK(allocation_pointer_found_in_space);
   1494 }
   1495 #endif  // VERIFY_HEAP
   1496 
   1497 // -----------------------------------------------------------------------------
   1498 // NewSpace implementation
   1499 
   1500 bool NewSpace::SetUp(size_t initial_semispace_capacity,
   1501                      size_t maximum_semispace_capacity) {
   1502   DCHECK(initial_semispace_capacity <= maximum_semispace_capacity);
   1503   DCHECK(base::bits::IsPowerOfTwo32(
   1504       static_cast<uint32_t>(maximum_semispace_capacity)));
   1505 
   1506   to_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity);
   1507   from_space_.SetUp(initial_semispace_capacity, maximum_semispace_capacity);
   1508   if (!to_space_.Commit()) {
   1509     return false;
   1510   }
   1511   DCHECK(!from_space_.is_committed());  // No need to use memory yet.
   1512   ResetAllocationInfo();
   1513 
   1514   // Allocate and set up the histogram arrays if necessary.
   1515   allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
   1516   promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1);
   1517 #define SET_NAME(name)                        \
   1518   allocated_histogram_[name].set_name(#name); \
   1519   promoted_histogram_[name].set_name(#name);
   1520   INSTANCE_TYPE_LIST(SET_NAME)
   1521 #undef SET_NAME
   1522 
   1523   return true;
   1524 }
   1525 
   1526 
   1527 void NewSpace::TearDown() {
   1528   if (allocated_histogram_) {
   1529     DeleteArray(allocated_histogram_);
   1530     allocated_histogram_ = NULL;
   1531   }
   1532   if (promoted_histogram_) {
   1533     DeleteArray(promoted_histogram_);
   1534     promoted_histogram_ = NULL;
   1535   }
   1536 
   1537   allocation_info_.Reset(nullptr, nullptr);
   1538 
   1539   to_space_.TearDown();
   1540   from_space_.TearDown();
   1541 }
   1542 
   1543 void NewSpace::Flip() { SemiSpace::Swap(&from_space_, &to_space_); }
   1544 
   1545 
   1546 void NewSpace::Grow() {
   1547   // Double the semispace size but only up to maximum capacity.
   1548   DCHECK(TotalCapacity() < MaximumCapacity());
   1549   size_t new_capacity =
   1550       Min(MaximumCapacity(),
   1551           static_cast<size_t>(FLAG_semi_space_growth_factor) * TotalCapacity());
   1552   if (to_space_.GrowTo(new_capacity)) {
   1553     // Only grow from space if we managed to grow to-space.
   1554     if (!from_space_.GrowTo(new_capacity)) {
   1555       // If we managed to grow to-space but couldn't grow from-space,
   1556       // attempt to shrink to-space.
   1557       if (!to_space_.ShrinkTo(from_space_.current_capacity())) {
   1558         // We are in an inconsistent state because we could not
   1559         // commit/uncommit memory from new space.
   1560         CHECK(false);
   1561       }
   1562     }
   1563   }
   1564   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1565 }
   1566 
   1567 
   1568 void NewSpace::Shrink() {
   1569   size_t new_capacity = Max(InitialTotalCapacity(), 2 * Size());
   1570   size_t rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize);
   1571   if (rounded_new_capacity < TotalCapacity() &&
   1572       to_space_.ShrinkTo(rounded_new_capacity)) {
   1573     // Only shrink from-space if we managed to shrink to-space.
   1574     from_space_.Reset();
   1575     if (!from_space_.ShrinkTo(rounded_new_capacity)) {
   1576       // If we managed to shrink to-space but couldn't shrink from
   1577       // space, attempt to grow to-space again.
   1578       if (!to_space_.GrowTo(from_space_.current_capacity())) {
   1579         // We are in an inconsistent state because we could not
   1580         // commit/uncommit memory from new space.
   1581         CHECK(false);
   1582       }
   1583     }
   1584   }
   1585   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1586 }
   1587 
   1588 bool NewSpace::Rebalance() {
   1589   CHECK(heap()->promotion_queue()->is_empty());
   1590   // Order here is important to make use of the page pool.
   1591   return to_space_.EnsureCurrentCapacity() &&
   1592          from_space_.EnsureCurrentCapacity();
   1593 }
   1594 
   1595 bool SemiSpace::EnsureCurrentCapacity() {
   1596   if (is_committed()) {
   1597     const int expected_pages =
   1598         static_cast<int>(current_capacity_ / Page::kPageSize);
   1599     int actual_pages = 0;
   1600     Page* current_page = anchor()->next_page();
   1601     while (current_page != anchor()) {
   1602       actual_pages++;
   1603       current_page = current_page->next_page();
   1604       if (actual_pages > expected_pages) {
   1605         Page* to_remove = current_page->prev_page();
   1606         // Make sure we don't overtake the actual top pointer.
   1607         CHECK_NE(to_remove, current_page_);
   1608         to_remove->Unlink();
   1609         // Clear new space flags to avoid this page being treated as a new
   1610         // space page that is potentially being swept.
   1611         to_remove->SetFlags(0, Page::kIsInNewSpaceMask);
   1612         heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
   1613             to_remove);
   1614       }
   1615     }
   1616     while (actual_pages < expected_pages) {
   1617       actual_pages++;
   1618       current_page =
   1619           heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1620               Page::kAllocatableMemory, this, executable());
   1621       if (current_page == nullptr) return false;
   1622       DCHECK_NOT_NULL(current_page);
   1623       current_page->InsertAfter(anchor());
   1624       current_page->ClearLiveness();
   1625       current_page->SetFlags(anchor()->prev_page()->GetFlags(),
   1626                              Page::kCopyAllFlags);
   1627       heap()->CreateFillerObjectAt(current_page->area_start(),
   1628                                    static_cast<int>(current_page->area_size()),
   1629                                    ClearRecordedSlots::kNo);
   1630     }
   1631   }
   1632   return true;
   1633 }
   1634 
   1635 void LocalAllocationBuffer::Close() {
   1636   if (IsValid()) {
   1637     heap_->CreateFillerObjectAt(
   1638         allocation_info_.top(),
   1639         static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
   1640         ClearRecordedSlots::kNo);
   1641   }
   1642 }
   1643 
   1644 
   1645 LocalAllocationBuffer::LocalAllocationBuffer(Heap* heap,
   1646                                              AllocationInfo allocation_info)
   1647     : heap_(heap), allocation_info_(allocation_info) {
   1648   if (IsValid()) {
   1649     heap_->CreateFillerObjectAt(
   1650         allocation_info_.top(),
   1651         static_cast<int>(allocation_info_.limit() - allocation_info_.top()),
   1652         ClearRecordedSlots::kNo);
   1653   }
   1654 }
   1655 
   1656 
   1657 LocalAllocationBuffer::LocalAllocationBuffer(
   1658     const LocalAllocationBuffer& other) {
   1659   *this = other;
   1660 }
   1661 
   1662 
   1663 LocalAllocationBuffer& LocalAllocationBuffer::operator=(
   1664     const LocalAllocationBuffer& other) {
   1665   Close();
   1666   heap_ = other.heap_;
   1667   allocation_info_ = other.allocation_info_;
   1668 
   1669   // This is needed since we (a) cannot yet use move-semantics, and (b) want
   1670   // to make the use of the class easy by it as value and (c) implicitly call
   1671   // {Close} upon copy.
   1672   const_cast<LocalAllocationBuffer&>(other)
   1673       .allocation_info_.Reset(nullptr, nullptr);
   1674   return *this;
   1675 }
   1676 
   1677 
   1678 void NewSpace::UpdateAllocationInfo() {
   1679   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   1680   allocation_info_.Reset(to_space_.page_low(), to_space_.page_high());
   1681   UpdateInlineAllocationLimit(0);
   1682   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1683 }
   1684 
   1685 
   1686 void NewSpace::ResetAllocationInfo() {
   1687   Address old_top = allocation_info_.top();
   1688   to_space_.Reset();
   1689   UpdateAllocationInfo();
   1690   // Clear all mark-bits in the to-space.
   1691   for (Page* p : to_space_) {
   1692     p->ClearLiveness();
   1693   }
   1694   InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);
   1695 }
   1696 
   1697 
   1698 void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) {
   1699   if (heap()->inline_allocation_disabled()) {
   1700     // Lowest limit when linear allocation was disabled.
   1701     Address high = to_space_.page_high();
   1702     Address new_top = allocation_info_.top() + size_in_bytes;
   1703     allocation_info_.set_limit(Min(new_top, high));
   1704   } else if (allocation_observers_paused_ || top_on_previous_step_ == 0) {
   1705     // Normal limit is the end of the current page.
   1706     allocation_info_.set_limit(to_space_.page_high());
   1707   } else {
   1708     // Lower limit during incremental marking.
   1709     Address high = to_space_.page_high();
   1710     Address new_top = allocation_info_.top() + size_in_bytes;
   1711     Address new_limit = new_top + GetNextInlineAllocationStepSize() - 1;
   1712     allocation_info_.set_limit(Min(new_limit, high));
   1713   }
   1714   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1715 }
   1716 
   1717 
   1718 bool NewSpace::AddFreshPage() {
   1719   Address top = allocation_info_.top();
   1720   DCHECK(!Page::IsAtObjectStart(top));
   1721   if (!to_space_.AdvancePage()) {
   1722     // No more pages left to advance.
   1723     return false;
   1724   }
   1725 
   1726   // Clear remainder of current page.
   1727   Address limit = Page::FromAllocationAreaAddress(top)->area_end();
   1728   if (heap()->gc_state() == Heap::SCAVENGE) {
   1729     heap()->promotion_queue()->SetNewLimit(limit);
   1730   }
   1731 
   1732   int remaining_in_page = static_cast<int>(limit - top);
   1733   heap()->CreateFillerObjectAt(top, remaining_in_page, ClearRecordedSlots::kNo);
   1734   UpdateAllocationInfo();
   1735 
   1736   return true;
   1737 }
   1738 
   1739 
   1740 bool NewSpace::AddFreshPageSynchronized() {
   1741   base::LockGuard<base::Mutex> guard(&mutex_);
   1742   return AddFreshPage();
   1743 }
   1744 
   1745 
   1746 bool NewSpace::EnsureAllocation(int size_in_bytes,
   1747                                 AllocationAlignment alignment) {
   1748   Address old_top = allocation_info_.top();
   1749   Address high = to_space_.page_high();
   1750   int filler_size = Heap::GetFillToAlign(old_top, alignment);
   1751   int aligned_size_in_bytes = size_in_bytes + filler_size;
   1752 
   1753   if (old_top + aligned_size_in_bytes > high) {
   1754     // Not enough room in the page, try to allocate a new one.
   1755     if (!AddFreshPage()) {
   1756       return false;
   1757     }
   1758 
   1759     InlineAllocationStep(old_top, allocation_info_.top(), nullptr, 0);
   1760 
   1761     old_top = allocation_info_.top();
   1762     high = to_space_.page_high();
   1763     filler_size = Heap::GetFillToAlign(old_top, alignment);
   1764   }
   1765 
   1766   DCHECK(old_top + aligned_size_in_bytes <= high);
   1767 
   1768   if (allocation_info_.limit() < high) {
   1769     // Either the limit has been lowered because linear allocation was disabled
   1770     // or because incremental marking wants to get a chance to do a step,
   1771     // or because idle scavenge job wants to get a chance to post a task.
   1772     // Set the new limit accordingly.
   1773     Address new_top = old_top + aligned_size_in_bytes;
   1774     Address soon_object = old_top + filler_size;
   1775     InlineAllocationStep(new_top, new_top, soon_object, size_in_bytes);
   1776     UpdateInlineAllocationLimit(aligned_size_in_bytes);
   1777   }
   1778   return true;
   1779 }
   1780 
   1781 
   1782 void NewSpace::StartNextInlineAllocationStep() {
   1783   if (!allocation_observers_paused_) {
   1784     top_on_previous_step_ =
   1785         allocation_observers_->length() ? allocation_info_.top() : 0;
   1786     UpdateInlineAllocationLimit(0);
   1787   }
   1788 }
   1789 
   1790 
   1791 intptr_t NewSpace::GetNextInlineAllocationStepSize() {
   1792   intptr_t next_step = 0;
   1793   for (int i = 0; i < allocation_observers_->length(); ++i) {
   1794     AllocationObserver* o = (*allocation_observers_)[i];
   1795     next_step = next_step ? Min(next_step, o->bytes_to_next_step())
   1796                           : o->bytes_to_next_step();
   1797   }
   1798   DCHECK(allocation_observers_->length() == 0 || next_step != 0);
   1799   return next_step;
   1800 }
   1801 
   1802 void NewSpace::AddAllocationObserver(AllocationObserver* observer) {
   1803   Space::AddAllocationObserver(observer);
   1804   StartNextInlineAllocationStep();
   1805 }
   1806 
   1807 void NewSpace::RemoveAllocationObserver(AllocationObserver* observer) {
   1808   Space::RemoveAllocationObserver(observer);
   1809   StartNextInlineAllocationStep();
   1810 }
   1811 
   1812 void NewSpace::PauseAllocationObservers() {
   1813   // Do a step to account for memory allocated so far.
   1814   InlineAllocationStep(top(), top(), nullptr, 0);
   1815   Space::PauseAllocationObservers();
   1816   top_on_previous_step_ = 0;
   1817   UpdateInlineAllocationLimit(0);
   1818 }
   1819 
   1820 void NewSpace::ResumeAllocationObservers() {
   1821   DCHECK(top_on_previous_step_ == 0);
   1822   Space::ResumeAllocationObservers();
   1823   StartNextInlineAllocationStep();
   1824 }
   1825 
   1826 
   1827 void NewSpace::InlineAllocationStep(Address top, Address new_top,
   1828                                     Address soon_object, size_t size) {
   1829   if (top_on_previous_step_) {
   1830     int bytes_allocated = static_cast<int>(top - top_on_previous_step_);
   1831     for (int i = 0; i < allocation_observers_->length(); ++i) {
   1832       (*allocation_observers_)[i]->AllocationStep(bytes_allocated, soon_object,
   1833                                                   size);
   1834     }
   1835     top_on_previous_step_ = new_top;
   1836   }
   1837 }
   1838 
   1839 std::unique_ptr<ObjectIterator> NewSpace::GetObjectIterator() {
   1840   return std::unique_ptr<ObjectIterator>(new SemiSpaceIterator(this));
   1841 }
   1842 
   1843 #ifdef VERIFY_HEAP
   1844 // We do not use the SemiSpaceIterator because verification doesn't assume
   1845 // that it works (it depends on the invariants we are checking).
   1846 void NewSpace::Verify() {
   1847   // The allocation pointer should be in the space or at the very end.
   1848   DCHECK_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);
   1849 
   1850   // There should be objects packed in from the low address up to the
   1851   // allocation pointer.
   1852   Address current = to_space_.first_page()->area_start();
   1853   CHECK_EQ(current, to_space_.space_start());
   1854 
   1855   while (current != top()) {
   1856     if (!Page::IsAlignedToPageSize(current)) {
   1857       // The allocation pointer should not be in the middle of an object.
   1858       CHECK(!Page::FromAllocationAreaAddress(current)->ContainsLimit(top()) ||
   1859             current < top());
   1860 
   1861       HeapObject* object = HeapObject::FromAddress(current);
   1862 
   1863       // The first word should be a map, and we expect all map pointers to
   1864       // be in map space.
   1865       Map* map = object->map();
   1866       CHECK(map->IsMap());
   1867       CHECK(heap()->map_space()->Contains(map));
   1868 
   1869       // The object should not be code or a map.
   1870       CHECK(!object->IsMap());
   1871       CHECK(!object->IsAbstractCode());
   1872 
   1873       // The object itself should look OK.
   1874       object->ObjectVerify();
   1875 
   1876       // All the interior pointers should be contained in the heap.
   1877       VerifyPointersVisitor visitor;
   1878       int size = object->Size();
   1879       object->IterateBody(map->instance_type(), size, &visitor);
   1880 
   1881       current += size;
   1882     } else {
   1883       // At end of page, switch to next page.
   1884       Page* page = Page::FromAllocationAreaAddress(current)->next_page();
   1885       // Next page should be valid.
   1886       CHECK(!page->is_anchor());
   1887       current = page->area_start();
   1888     }
   1889   }
   1890 
   1891   // Check semi-spaces.
   1892   CHECK_EQ(from_space_.id(), kFromSpace);
   1893   CHECK_EQ(to_space_.id(), kToSpace);
   1894   from_space_.Verify();
   1895   to_space_.Verify();
   1896 }
   1897 #endif
   1898 
   1899 // -----------------------------------------------------------------------------
   1900 // SemiSpace implementation
   1901 
   1902 void SemiSpace::SetUp(size_t initial_capacity, size_t maximum_capacity) {
   1903   DCHECK_GE(maximum_capacity, static_cast<size_t>(Page::kPageSize));
   1904   minimum_capacity_ = RoundDown(initial_capacity, Page::kPageSize);
   1905   current_capacity_ = minimum_capacity_;
   1906   maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize);
   1907   committed_ = false;
   1908 }
   1909 
   1910 
   1911 void SemiSpace::TearDown() {
   1912   // Properly uncommit memory to keep the allocator counters in sync.
   1913   if (is_committed()) {
   1914     for (Page* p : *this) {
   1915       ArrayBufferTracker::FreeAll(p);
   1916     }
   1917     Uncommit();
   1918   }
   1919   current_capacity_ = maximum_capacity_ = 0;
   1920 }
   1921 
   1922 
   1923 bool SemiSpace::Commit() {
   1924   DCHECK(!is_committed());
   1925   Page* current = anchor();
   1926   const int num_pages = static_cast<int>(current_capacity_ / Page::kPageSize);
   1927   for (int pages_added = 0; pages_added < num_pages; pages_added++) {
   1928     Page* new_page =
   1929         heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1930             Page::kAllocatableMemory, this, executable());
   1931     if (new_page == nullptr) {
   1932       RewindPages(current, pages_added);
   1933       return false;
   1934     }
   1935     new_page->InsertAfter(current);
   1936     current = new_page;
   1937   }
   1938   Reset();
   1939   AccountCommitted(current_capacity_);
   1940   if (age_mark_ == nullptr) {
   1941     age_mark_ = first_page()->area_start();
   1942   }
   1943   committed_ = true;
   1944   return true;
   1945 }
   1946 
   1947 
   1948 bool SemiSpace::Uncommit() {
   1949   DCHECK(is_committed());
   1950   for (auto it = begin(); it != end();) {
   1951     Page* p = *(it++);
   1952     heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(p);
   1953   }
   1954   anchor()->set_next_page(anchor());
   1955   anchor()->set_prev_page(anchor());
   1956   AccountUncommitted(current_capacity_);
   1957   committed_ = false;
   1958   heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
   1959   return true;
   1960 }
   1961 
   1962 
   1963 size_t SemiSpace::CommittedPhysicalMemory() {
   1964   if (!is_committed()) return 0;
   1965   size_t size = 0;
   1966   for (Page* p : *this) {
   1967     size += p->CommittedPhysicalMemory();
   1968   }
   1969   return size;
   1970 }
   1971 
   1972 bool SemiSpace::GrowTo(size_t new_capacity) {
   1973   if (!is_committed()) {
   1974     if (!Commit()) return false;
   1975   }
   1976   DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0u);
   1977   DCHECK_LE(new_capacity, maximum_capacity_);
   1978   DCHECK_GT(new_capacity, current_capacity_);
   1979   const size_t delta = new_capacity - current_capacity_;
   1980   DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
   1981   const int delta_pages = static_cast<int>(delta / Page::kPageSize);
   1982   Page* last_page = anchor()->prev_page();
   1983   DCHECK_NE(last_page, anchor());
   1984   for (int pages_added = 0; pages_added < delta_pages; pages_added++) {
   1985     Page* new_page =
   1986         heap()->memory_allocator()->AllocatePage<MemoryAllocator::kPooled>(
   1987             Page::kAllocatableMemory, this, executable());
   1988     if (new_page == nullptr) {
   1989       RewindPages(last_page, pages_added);
   1990       return false;
   1991     }
   1992     new_page->InsertAfter(last_page);
   1993     new_page->ClearLiveness();
   1994     // Duplicate the flags that was set on the old page.
   1995     new_page->SetFlags(last_page->GetFlags(), Page::kCopyOnFlipFlagsMask);
   1996     last_page = new_page;
   1997   }
   1998   AccountCommitted(delta);
   1999   current_capacity_ = new_capacity;
   2000   return true;
   2001 }
   2002 
   2003 void SemiSpace::RewindPages(Page* start, int num_pages) {
   2004   Page* new_last_page = nullptr;
   2005   Page* last_page = start;
   2006   while (num_pages > 0) {
   2007     DCHECK_NE(last_page, anchor());
   2008     new_last_page = last_page->prev_page();
   2009     last_page->prev_page()->set_next_page(last_page->next_page());
   2010     last_page->next_page()->set_prev_page(last_page->prev_page());
   2011     last_page = new_last_page;
   2012     num_pages--;
   2013   }
   2014 }
   2015 
   2016 bool SemiSpace::ShrinkTo(size_t new_capacity) {
   2017   DCHECK_EQ(new_capacity & Page::kPageAlignmentMask, 0u);
   2018   DCHECK_GE(new_capacity, minimum_capacity_);
   2019   DCHECK_LT(new_capacity, current_capacity_);
   2020   if (is_committed()) {
   2021     const size_t delta = current_capacity_ - new_capacity;
   2022     DCHECK(IsAligned(delta, base::OS::AllocateAlignment()));
   2023     int delta_pages = static_cast<int>(delta / Page::kPageSize);
   2024     Page* new_last_page;
   2025     Page* last_page;
   2026     while (delta_pages > 0) {
   2027       last_page = anchor()->prev_page();
   2028       new_last_page = last_page->prev_page();
   2029       new_last_page->set_next_page(anchor());
   2030       anchor()->set_prev_page(new_last_page);
   2031       heap()->memory_allocator()->Free<MemoryAllocator::kPooledAndQueue>(
   2032           last_page);
   2033       delta_pages--;
   2034     }
   2035     AccountUncommitted(delta);
   2036     heap()->memory_allocator()->unmapper()->FreeQueuedChunks();
   2037   }
   2038   current_capacity_ = new_capacity;
   2039   return true;
   2040 }
   2041 
   2042 void SemiSpace::FixPagesFlags(intptr_t flags, intptr_t mask) {
   2043   anchor_.set_owner(this);
   2044   anchor_.prev_page()->set_next_page(&anchor_);
   2045   anchor_.next_page()->set_prev_page(&anchor_);
   2046 
   2047   for (Page* page : *this) {
   2048     page->set_owner(this);
   2049     page->SetFlags(flags, mask);
   2050     if (id_ == kToSpace) {
   2051       page->ClearFlag(MemoryChunk::IN_FROM_SPACE);
   2052       page->SetFlag(MemoryChunk::IN_TO_SPACE);
   2053       page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
   2054       page->ResetLiveBytes();
   2055     } else {
   2056       page->SetFlag(MemoryChunk::IN_FROM_SPACE);
   2057       page->ClearFlag(MemoryChunk::IN_TO_SPACE);
   2058     }
   2059     DCHECK(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) ||
   2060            page->IsFlagSet(MemoryChunk::IN_FROM_SPACE));
   2061   }
   2062 }
   2063 
   2064 
   2065 void SemiSpace::Reset() {
   2066   DCHECK_NE(anchor_.next_page(), &anchor_);
   2067   current_page_ = anchor_.next_page();
   2068   pages_used_ = 0;
   2069 }
   2070 
   2071 void SemiSpace::RemovePage(Page* page) {
   2072   if (current_page_ == page) {
   2073     current_page_ = page->prev_page();
   2074   }
   2075   page->Unlink();
   2076 }
   2077 
   2078 void SemiSpace::PrependPage(Page* page) {
   2079   page->SetFlags(current_page()->GetFlags(), Page::kCopyAllFlags);
   2080   page->set_owner(this);
   2081   page->InsertAfter(anchor());
   2082   pages_used_++;
   2083 }
   2084 
   2085 void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) {
   2086   // We won't be swapping semispaces without data in them.
   2087   DCHECK_NE(from->anchor_.next_page(), &from->anchor_);
   2088   DCHECK_NE(to->anchor_.next_page(), &to->anchor_);
   2089 
   2090   intptr_t saved_to_space_flags = to->current_page()->GetFlags();
   2091 
   2092   // We swap all properties but id_.
   2093   std::swap(from->current_capacity_, to->current_capacity_);
   2094   std::swap(from->maximum_capacity_, to->maximum_capacity_);
   2095   std::swap(from->minimum_capacity_, to->minimum_capacity_);
   2096   std::swap(from->age_mark_, to->age_mark_);
   2097   std::swap(from->committed_, to->committed_);
   2098   std::swap(from->anchor_, to->anchor_);
   2099   std::swap(from->current_page_, to->current_page_);
   2100 
   2101   to->FixPagesFlags(saved_to_space_flags, Page::kCopyOnFlipFlagsMask);
   2102   from->FixPagesFlags(0, 0);
   2103 }
   2104 
   2105 void SemiSpace::set_age_mark(Address mark) {
   2106   DCHECK_EQ(Page::FromAllocationAreaAddress(mark)->owner(), this);
   2107   age_mark_ = mark;
   2108   // Mark all pages up to the one containing mark.
   2109   for (Page* p : PageRange(space_start(), mark)) {
   2110     p->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK);
   2111   }
   2112 }
   2113 
   2114 std::unique_ptr<ObjectIterator> SemiSpace::GetObjectIterator() {
   2115   // Use the NewSpace::NewObjectIterator to iterate the ToSpace.
   2116   UNREACHABLE();
   2117   return std::unique_ptr<ObjectIterator>();
   2118 }
   2119 
   2120 #ifdef DEBUG
   2121 void SemiSpace::Print() {}
   2122 #endif
   2123 
   2124 #ifdef VERIFY_HEAP
   2125 void SemiSpace::Verify() {
   2126   bool is_from_space = (id_ == kFromSpace);
   2127   Page* page = anchor_.next_page();
   2128   CHECK(anchor_.owner() == this);
   2129   while (page != &anchor_) {
   2130     CHECK_EQ(page->owner(), this);
   2131     CHECK(page->InNewSpace());
   2132     CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE
   2133                                         : MemoryChunk::IN_TO_SPACE));
   2134     CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE
   2135                                          : MemoryChunk::IN_FROM_SPACE));
   2136     CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING));
   2137     if (!is_from_space) {
   2138       // The pointers-from-here-are-interesting flag isn't updated dynamically
   2139       // on from-space pages, so it might be out of sync with the marking state.
   2140       if (page->heap()->incremental_marking()->IsMarking()) {
   2141         CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
   2142       } else {
   2143         CHECK(
   2144             !page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING));
   2145       }
   2146       // TODO(gc): Check that the live_bytes_count_ field matches the
   2147       // black marking on the page (if we make it match in new-space).
   2148     }
   2149     CHECK_EQ(page->prev_page()->next_page(), page);
   2150     page = page->next_page();
   2151   }
   2152 }
   2153 #endif
   2154 
   2155 #ifdef DEBUG
   2156 void SemiSpace::AssertValidRange(Address start, Address end) {
   2157   // Addresses belong to same semi-space
   2158   Page* page = Page::FromAllocationAreaAddress(start);
   2159   Page* end_page = Page::FromAllocationAreaAddress(end);
   2160   SemiSpace* space = reinterpret_cast<SemiSpace*>(page->owner());
   2161   CHECK_EQ(space, end_page->owner());
   2162   // Start address is before end address, either on same page,
   2163   // or end address is on a later page in the linked list of
   2164   // semi-space pages.
   2165   if (page == end_page) {
   2166     CHECK_LE(start, end);
   2167   } else {
   2168     while (page != end_page) {
   2169       page = page->next_page();
   2170       CHECK_NE(page, space->anchor());
   2171     }
   2172   }
   2173 }
   2174 #endif
   2175 
   2176 
   2177 // -----------------------------------------------------------------------------
   2178 // SemiSpaceIterator implementation.
   2179 
   2180 SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) {
   2181   Initialize(space->bottom(), space->top());
   2182 }
   2183 
   2184 
   2185 void SemiSpaceIterator::Initialize(Address start, Address end) {
   2186   SemiSpace::AssertValidRange(start, end);
   2187   current_ = start;
   2188   limit_ = end;
   2189 }
   2190 
   2191 #ifdef DEBUG
   2192 // heap_histograms is shared, always clear it before using it.
   2193 static void ClearHistograms(Isolate* isolate) {
   2194 // We reset the name each time, though it hasn't changed.
   2195 #define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name);
   2196   INSTANCE_TYPE_LIST(DEF_TYPE_NAME)
   2197 #undef DEF_TYPE_NAME
   2198 
   2199 #define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear();
   2200   INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM)
   2201 #undef CLEAR_HISTOGRAM
   2202 
   2203   isolate->js_spill_information()->Clear();
   2204 }
   2205 
   2206 static int CollectHistogramInfo(HeapObject* obj) {
   2207   Isolate* isolate = obj->GetIsolate();
   2208   InstanceType type = obj->map()->instance_type();
   2209   DCHECK(0 <= type && type <= LAST_TYPE);
   2210   DCHECK(isolate->heap_histograms()[type].name() != NULL);
   2211   isolate->heap_histograms()[type].increment_number(1);
   2212   isolate->heap_histograms()[type].increment_bytes(obj->Size());
   2213 
   2214   if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) {
   2215     JSObject::cast(obj)
   2216         ->IncrementSpillStatistics(isolate->js_spill_information());
   2217   }
   2218 
   2219   return obj->Size();
   2220 }
   2221 
   2222 
   2223 static void ReportHistogram(Isolate* isolate, bool print_spill) {
   2224   PrintF("\n  Object Histogram:\n");
   2225   for (int i = 0; i <= LAST_TYPE; i++) {
   2226     if (isolate->heap_histograms()[i].number() > 0) {
   2227       PrintF("    %-34s%10d (%10d bytes)\n",
   2228              isolate->heap_histograms()[i].name(),
   2229              isolate->heap_histograms()[i].number(),
   2230              isolate->heap_histograms()[i].bytes());
   2231     }
   2232   }
   2233   PrintF("\n");
   2234 
   2235   // Summarize string types.
   2236   int string_number = 0;
   2237   int string_bytes = 0;
   2238 #define INCREMENT(type, size, name, camel_name)               \
   2239   string_number += isolate->heap_histograms()[type].number(); \
   2240   string_bytes += isolate->heap_histograms()[type].bytes();
   2241   STRING_TYPE_LIST(INCREMENT)
   2242 #undef INCREMENT
   2243   if (string_number > 0) {
   2244     PrintF("    %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number,
   2245            string_bytes);
   2246   }
   2247 
   2248   if (FLAG_collect_heap_spill_statistics && print_spill) {
   2249     isolate->js_spill_information()->Print();
   2250   }
   2251 }
   2252 #endif  // DEBUG
   2253 
   2254 
   2255 // Support for statistics gathering for --heap-stats and --log-gc.
   2256 void NewSpace::ClearHistograms() {
   2257   for (int i = 0; i <= LAST_TYPE; i++) {
   2258     allocated_histogram_[i].clear();
   2259     promoted_histogram_[i].clear();
   2260   }
   2261 }
   2262 
   2263 
   2264 // Because the copying collector does not touch garbage objects, we iterate
   2265 // the new space before a collection to get a histogram of allocated objects.
   2266 // This only happens when --log-gc flag is set.
   2267 void NewSpace::CollectStatistics() {
   2268   ClearHistograms();
   2269   SemiSpaceIterator it(this);
   2270   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next())
   2271     RecordAllocation(obj);
   2272 }
   2273 
   2274 
   2275 static void DoReportStatistics(Isolate* isolate, HistogramInfo* info,
   2276                                const char* description) {
   2277   LOG(isolate, HeapSampleBeginEvent("NewSpace", description));
   2278   // Lump all the string types together.
   2279   int string_number = 0;
   2280   int string_bytes = 0;
   2281 #define INCREMENT(type, size, name, camel_name) \
   2282   string_number += info[type].number();         \
   2283   string_bytes += info[type].bytes();
   2284   STRING_TYPE_LIST(INCREMENT)
   2285 #undef INCREMENT
   2286   if (string_number > 0) {
   2287     LOG(isolate,
   2288         HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes));
   2289   }
   2290 
   2291   // Then do the other types.
   2292   for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) {
   2293     if (info[i].number() > 0) {
   2294       LOG(isolate, HeapSampleItemEvent(info[i].name(), info[i].number(),
   2295                                        info[i].bytes()));
   2296     }
   2297   }
   2298   LOG(isolate, HeapSampleEndEvent("NewSpace", description));
   2299 }
   2300 
   2301 
   2302 void NewSpace::ReportStatistics() {
   2303 #ifdef DEBUG
   2304   if (FLAG_heap_stats) {
   2305     float pct = static_cast<float>(Available()) / TotalCapacity();
   2306     PrintF("  capacity: %" V8PRIdPTR ", available: %" V8PRIdPTR ", %%%d\n",
   2307            TotalCapacity(), Available(), static_cast<int>(pct * 100));
   2308     PrintF("\n  Object Histogram:\n");
   2309     for (int i = 0; i <= LAST_TYPE; i++) {
   2310       if (allocated_histogram_[i].number() > 0) {
   2311         PrintF("    %-34s%10d (%10d bytes)\n", allocated_histogram_[i].name(),
   2312                allocated_histogram_[i].number(),
   2313                allocated_histogram_[i].bytes());
   2314       }
   2315     }
   2316     PrintF("\n");
   2317   }
   2318 #endif  // DEBUG
   2319 
   2320   if (FLAG_log_gc) {
   2321     Isolate* isolate = heap()->isolate();
   2322     DoReportStatistics(isolate, allocated_histogram_, "allocated");
   2323     DoReportStatistics(isolate, promoted_histogram_, "promoted");
   2324   }
   2325 }
   2326 
   2327 
   2328 void NewSpace::RecordAllocation(HeapObject* obj) {
   2329   InstanceType type = obj->map()->instance_type();
   2330   DCHECK(0 <= type && type <= LAST_TYPE);
   2331   allocated_histogram_[type].increment_number(1);
   2332   allocated_histogram_[type].increment_bytes(obj->Size());
   2333 }
   2334 
   2335 
   2336 void NewSpace::RecordPromotion(HeapObject* obj) {
   2337   InstanceType type = obj->map()->instance_type();
   2338   DCHECK(0 <= type && type <= LAST_TYPE);
   2339   promoted_histogram_[type].increment_number(1);
   2340   promoted_histogram_[type].increment_bytes(obj->Size());
   2341 }
   2342 
   2343 
   2344 size_t NewSpace::CommittedPhysicalMemory() {
   2345   if (!base::VirtualMemory::HasLazyCommits()) return CommittedMemory();
   2346   MemoryChunk::UpdateHighWaterMark(allocation_info_.top());
   2347   size_t size = to_space_.CommittedPhysicalMemory();
   2348   if (from_space_.is_committed()) {
   2349     size += from_space_.CommittedPhysicalMemory();
   2350   }
   2351   return size;
   2352 }
   2353 
   2354 
   2355 // -----------------------------------------------------------------------------
   2356 // Free lists for old object spaces implementation
   2357 
   2358 
   2359 void FreeListCategory::Reset() {
   2360   set_top(nullptr);
   2361   set_prev(nullptr);
   2362   set_next(nullptr);
   2363   available_ = 0;
   2364 }
   2365 
   2366 FreeSpace* FreeListCategory::PickNodeFromList(size_t* node_size) {
   2367   DCHECK(page()->CanAllocate());
   2368 
   2369   FreeSpace* node = top();
   2370   if (node == nullptr) return nullptr;
   2371   set_top(node->next());
   2372   *node_size = node->Size();
   2373   available_ -= *node_size;
   2374   return node;
   2375 }
   2376 
   2377 FreeSpace* FreeListCategory::TryPickNodeFromList(size_t minimum_size,
   2378                                                  size_t* node_size) {
   2379   DCHECK(page()->CanAllocate());
   2380 
   2381   FreeSpace* node = PickNodeFromList(node_size);
   2382   if ((node != nullptr) && (*node_size < minimum_size)) {
   2383     Free(node, *node_size, kLinkCategory);
   2384     *node_size = 0;
   2385     return nullptr;
   2386   }
   2387   return node;
   2388 }
   2389 
   2390 FreeSpace* FreeListCategory::SearchForNodeInList(size_t minimum_size,
   2391                                                  size_t* node_size) {
   2392   DCHECK(page()->CanAllocate());
   2393 
   2394   FreeSpace* prev_non_evac_node = nullptr;
   2395   for (FreeSpace* cur_node = top(); cur_node != nullptr;
   2396        cur_node = cur_node->next()) {
   2397     size_t size = cur_node->size();
   2398     if (size >= minimum_size) {
   2399       DCHECK_GE(available_, size);
   2400       available_ -= size;
   2401       if (cur_node == top()) {
   2402         set_top(cur_node->next());
   2403       }
   2404       if (prev_non_evac_node != nullptr) {
   2405         prev_non_evac_node->set_next(cur_node->next());
   2406       }
   2407       *node_size = size;
   2408       return cur_node;
   2409     }
   2410 
   2411     prev_non_evac_node = cur_node;
   2412   }
   2413   return nullptr;
   2414 }
   2415 
   2416 bool FreeListCategory::Free(FreeSpace* free_space, size_t size_in_bytes,
   2417                             FreeMode mode) {
   2418   if (!page()->CanAllocate()) return false;
   2419 
   2420   free_space->set_next(top());
   2421   set_top(free_space);
   2422   available_ += size_in_bytes;
   2423   if ((mode == kLinkCategory) && (prev() == nullptr) && (next() == nullptr)) {
   2424     owner()->AddCategory(this);
   2425   }
   2426   return true;
   2427 }
   2428 
   2429 
   2430 void FreeListCategory::RepairFreeList(Heap* heap) {
   2431   FreeSpace* n = top();
   2432   while (n != NULL) {
   2433     Map** map_location = reinterpret_cast<Map**>(n->address());
   2434     if (*map_location == NULL) {
   2435       *map_location = heap->free_space_map();
   2436     } else {
   2437       DCHECK(*map_location == heap->free_space_map());
   2438     }
   2439     n = n->next();
   2440   }
   2441 }
   2442 
   2443 void FreeListCategory::Relink() {
   2444   DCHECK(!is_linked());
   2445   owner()->AddCategory(this);
   2446 }
   2447 
   2448 void FreeListCategory::Invalidate() {
   2449   page()->remove_available_in_free_list(available());
   2450   Reset();
   2451   type_ = kInvalidCategory;
   2452 }
   2453 
   2454 FreeList::FreeList(PagedSpace* owner) : owner_(owner), wasted_bytes_(0) {
   2455   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2456     categories_[i] = nullptr;
   2457   }
   2458   Reset();
   2459 }
   2460 
   2461 
   2462 void FreeList::Reset() {
   2463   ForAllFreeListCategories(
   2464       [](FreeListCategory* category) { category->Reset(); });
   2465   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2466     categories_[i] = nullptr;
   2467   }
   2468   ResetStats();
   2469 }
   2470 
   2471 size_t FreeList::Free(Address start, size_t size_in_bytes, FreeMode mode) {
   2472   if (size_in_bytes == 0) return 0;
   2473 
   2474   owner()->heap()->CreateFillerObjectAt(start, static_cast<int>(size_in_bytes),
   2475                                         ClearRecordedSlots::kNo);
   2476 
   2477   Page* page = Page::FromAddress(start);
   2478 
   2479   // Blocks have to be a minimum size to hold free list items.
   2480   if (size_in_bytes < kMinBlockSize) {
   2481     page->add_wasted_memory(size_in_bytes);
   2482     wasted_bytes_.Increment(size_in_bytes);
   2483     return size_in_bytes;
   2484   }
   2485 
   2486   FreeSpace* free_space = FreeSpace::cast(HeapObject::FromAddress(start));
   2487   // Insert other blocks at the head of a free list of the appropriate
   2488   // magnitude.
   2489   FreeListCategoryType type = SelectFreeListCategoryType(size_in_bytes);
   2490   if (page->free_list_category(type)->Free(free_space, size_in_bytes, mode)) {
   2491     page->add_available_in_free_list(size_in_bytes);
   2492   }
   2493   DCHECK_EQ(page->AvailableInFreeList(), page->available_in_free_list());
   2494   return 0;
   2495 }
   2496 
   2497 FreeSpace* FreeList::FindNodeIn(FreeListCategoryType type, size_t* node_size) {
   2498   FreeListCategoryIterator it(this, type);
   2499   FreeSpace* node = nullptr;
   2500   while (it.HasNext()) {
   2501     FreeListCategory* current = it.Next();
   2502     node = current->PickNodeFromList(node_size);
   2503     if (node != nullptr) {
   2504       Page::FromAddress(node->address())
   2505           ->remove_available_in_free_list(*node_size);
   2506       DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2507       return node;
   2508     }
   2509     RemoveCategory(current);
   2510   }
   2511   return node;
   2512 }
   2513 
   2514 FreeSpace* FreeList::TryFindNodeIn(FreeListCategoryType type, size_t* node_size,
   2515                                    size_t minimum_size) {
   2516   if (categories_[type] == nullptr) return nullptr;
   2517   FreeSpace* node =
   2518       categories_[type]->TryPickNodeFromList(minimum_size, node_size);
   2519   if (node != nullptr) {
   2520     Page::FromAddress(node->address())
   2521         ->remove_available_in_free_list(*node_size);
   2522     DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2523   }
   2524   return node;
   2525 }
   2526 
   2527 FreeSpace* FreeList::SearchForNodeInList(FreeListCategoryType type,
   2528                                          size_t* node_size,
   2529                                          size_t minimum_size) {
   2530   FreeListCategoryIterator it(this, type);
   2531   FreeSpace* node = nullptr;
   2532   while (it.HasNext()) {
   2533     FreeListCategory* current = it.Next();
   2534     node = current->SearchForNodeInList(minimum_size, node_size);
   2535     if (node != nullptr) {
   2536       Page::FromAddress(node->address())
   2537           ->remove_available_in_free_list(*node_size);
   2538       DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2539       return node;
   2540     }
   2541     if (current->is_empty()) {
   2542       RemoveCategory(current);
   2543     }
   2544   }
   2545   return node;
   2546 }
   2547 
   2548 FreeSpace* FreeList::FindNodeFor(size_t size_in_bytes, size_t* node_size) {
   2549   FreeSpace* node = nullptr;
   2550 
   2551   // First try the allocation fast path: try to allocate the minimum element
   2552   // size of a free list category. This operation is constant time.
   2553   FreeListCategoryType type =
   2554       SelectFastAllocationFreeListCategoryType(size_in_bytes);
   2555   for (int i = type; i < kHuge; i++) {
   2556     node = FindNodeIn(static_cast<FreeListCategoryType>(i), node_size);
   2557     if (node != nullptr) return node;
   2558   }
   2559 
   2560   // Next search the huge list for free list nodes. This takes linear time in
   2561   // the number of huge elements.
   2562   node = SearchForNodeInList(kHuge, node_size, size_in_bytes);
   2563   if (node != nullptr) {
   2564     DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2565     return node;
   2566   }
   2567 
   2568   // We need a huge block of memory, but we didn't find anything in the huge
   2569   // list.
   2570   if (type == kHuge) return nullptr;
   2571 
   2572   // Now search the best fitting free list for a node that has at least the
   2573   // requested size.
   2574   type = SelectFreeListCategoryType(size_in_bytes);
   2575   node = TryFindNodeIn(type, node_size, size_in_bytes);
   2576 
   2577   DCHECK(IsVeryLong() || Available() == SumFreeLists());
   2578   return node;
   2579 }
   2580 
   2581 // Allocation on the old space free list.  If it succeeds then a new linear
   2582 // allocation space has been set up with the top and limit of the space.  If
   2583 // the allocation fails then NULL is returned, and the caller can perform a GC
   2584 // or allocate a new page before retrying.
   2585 HeapObject* FreeList::Allocate(size_t size_in_bytes) {
   2586   DCHECK(size_in_bytes <= kMaxBlockSize);
   2587   DCHECK(IsAligned(size_in_bytes, kPointerSize));
   2588   DCHECK_LE(owner_->top(), owner_->limit());
   2589 #ifdef DEBUG
   2590   if (owner_->top() != owner_->limit()) {
   2591     DCHECK_EQ(Page::FromAddress(owner_->top()),
   2592               Page::FromAddress(owner_->limit() - 1));
   2593   }
   2594 #endif
   2595   // Don't free list allocate if there is linear space available.
   2596   DCHECK_LT(static_cast<size_t>(owner_->limit() - owner_->top()),
   2597             size_in_bytes);
   2598 
   2599   // Mark the old linear allocation area with a free space map so it can be
   2600   // skipped when scanning the heap.  This also puts it back in the free list
   2601   // if it is big enough.
   2602   owner_->EmptyAllocationInfo();
   2603 
   2604   owner_->heap()->StartIncrementalMarkingIfAllocationLimitIsReached(
   2605       Heap::kNoGCFlags, kNoGCCallbackFlags);
   2606 
   2607   size_t new_node_size = 0;
   2608   FreeSpace* new_node = FindNodeFor(size_in_bytes, &new_node_size);
   2609   if (new_node == nullptr) return nullptr;
   2610 
   2611   DCHECK_GE(new_node_size, size_in_bytes);
   2612   size_t bytes_left = new_node_size - size_in_bytes;
   2613 
   2614 #ifdef DEBUG
   2615   for (size_t i = 0; i < size_in_bytes / kPointerSize; i++) {
   2616     reinterpret_cast<Object**>(new_node->address())[i] =
   2617         Smi::FromInt(kCodeZapValue);
   2618   }
   2619 #endif
   2620 
   2621   // The old-space-step might have finished sweeping and restarted marking.
   2622   // Verify that it did not turn the page of the new node into an evacuation
   2623   // candidate.
   2624   DCHECK(!MarkCompactCollector::IsOnEvacuationCandidate(new_node));
   2625 
   2626   const size_t kThreshold = IncrementalMarking::kAllocatedThreshold;
   2627 
   2628   // Memory in the linear allocation area is counted as allocated.  We may free
   2629   // a little of this again immediately - see below.
   2630   owner_->AccountAllocatedBytes(new_node_size);
   2631 
   2632   if (owner_->heap()->inline_allocation_disabled()) {
   2633     // Keep the linear allocation area empty if requested to do so, just
   2634     // return area back to the free list instead.
   2635     owner_->Free(new_node->address() + size_in_bytes, bytes_left);
   2636     owner_->SetAllocationInfo(new_node->address() + size_in_bytes,
   2637                               new_node->address() + size_in_bytes);
   2638   } else if (bytes_left > kThreshold &&
   2639              owner_->heap()->incremental_marking()->IsMarkingIncomplete() &&
   2640              FLAG_incremental_marking) {
   2641     size_t linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold);
   2642     // We don't want to give too large linear areas to the allocator while
   2643     // incremental marking is going on, because we won't check again whether
   2644     // we want to do another increment until the linear area is used up.
   2645     DCHECK_GE(new_node_size, size_in_bytes + linear_size);
   2646     owner_->Free(new_node->address() + size_in_bytes + linear_size,
   2647                  new_node_size - size_in_bytes - linear_size);
   2648     owner_->SetAllocationInfo(
   2649         new_node->address() + size_in_bytes,
   2650         new_node->address() + size_in_bytes + linear_size);
   2651   } else {
   2652     // Normally we give the rest of the node to the allocator as its new
   2653     // linear allocation area.
   2654     owner_->SetAllocationInfo(new_node->address() + size_in_bytes,
   2655                               new_node->address() + new_node_size);
   2656   }
   2657 
   2658   return new_node;
   2659 }
   2660 
   2661 size_t FreeList::EvictFreeListItems(Page* page) {
   2662   size_t sum = 0;
   2663   page->ForAllFreeListCategories(
   2664       [this, &sum](FreeListCategory* category) {
   2665         DCHECK_EQ(this, category->owner());
   2666         sum += category->available();
   2667         RemoveCategory(category);
   2668         category->Invalidate();
   2669       });
   2670   return sum;
   2671 }
   2672 
   2673 bool FreeList::ContainsPageFreeListItems(Page* page) {
   2674   bool contained = false;
   2675   page->ForAllFreeListCategories(
   2676       [this, &contained](FreeListCategory* category) {
   2677         if (category->owner() == this && category->is_linked()) {
   2678           contained = true;
   2679         }
   2680       });
   2681   return contained;
   2682 }
   2683 
   2684 void FreeList::RepairLists(Heap* heap) {
   2685   ForAllFreeListCategories(
   2686       [heap](FreeListCategory* category) { category->RepairFreeList(heap); });
   2687 }
   2688 
   2689 bool FreeList::AddCategory(FreeListCategory* category) {
   2690   FreeListCategoryType type = category->type_;
   2691   FreeListCategory* top = categories_[type];
   2692 
   2693   if (category->is_empty()) return false;
   2694   if (top == category) return false;
   2695 
   2696   // Common double-linked list insertion.
   2697   if (top != nullptr) {
   2698     top->set_prev(category);
   2699   }
   2700   category->set_next(top);
   2701   categories_[type] = category;
   2702   return true;
   2703 }
   2704 
   2705 void FreeList::RemoveCategory(FreeListCategory* category) {
   2706   FreeListCategoryType type = category->type_;
   2707   FreeListCategory* top = categories_[type];
   2708 
   2709   // Common double-linked list removal.
   2710   if (top == category) {
   2711     categories_[type] = category->next();
   2712   }
   2713   if (category->prev() != nullptr) {
   2714     category->prev()->set_next(category->next());
   2715   }
   2716   if (category->next() != nullptr) {
   2717     category->next()->set_prev(category->prev());
   2718   }
   2719   category->set_next(nullptr);
   2720   category->set_prev(nullptr);
   2721 }
   2722 
   2723 void FreeList::PrintCategories(FreeListCategoryType type) {
   2724   FreeListCategoryIterator it(this, type);
   2725   PrintF("FreeList[%p, top=%p, %d] ", static_cast<void*>(this),
   2726          static_cast<void*>(categories_[type]), type);
   2727   while (it.HasNext()) {
   2728     FreeListCategory* current = it.Next();
   2729     PrintF("%p -> ", static_cast<void*>(current));
   2730   }
   2731   PrintF("null\n");
   2732 }
   2733 
   2734 
   2735 #ifdef DEBUG
   2736 size_t FreeListCategory::SumFreeList() {
   2737   size_t sum = 0;
   2738   FreeSpace* cur = top();
   2739   while (cur != NULL) {
   2740     DCHECK(cur->map() == cur->GetHeap()->root(Heap::kFreeSpaceMapRootIndex));
   2741     sum += cur->nobarrier_size();
   2742     cur = cur->next();
   2743   }
   2744   return sum;
   2745 }
   2746 
   2747 int FreeListCategory::FreeListLength() {
   2748   int length = 0;
   2749   FreeSpace* cur = top();
   2750   while (cur != NULL) {
   2751     length++;
   2752     cur = cur->next();
   2753     if (length == kVeryLongFreeList) return length;
   2754   }
   2755   return length;
   2756 }
   2757 
   2758 bool FreeList::IsVeryLong() {
   2759   int len = 0;
   2760   for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
   2761     FreeListCategoryIterator it(this, static_cast<FreeListCategoryType>(i));
   2762     while (it.HasNext()) {
   2763       len += it.Next()->FreeListLength();
   2764       if (len >= FreeListCategory::kVeryLongFreeList) return true;
   2765     }
   2766   }
   2767   return false;
   2768 }
   2769 
   2770 
   2771 // This can take a very long time because it is linear in the number of entries
   2772 // on the free list, so it should not be called if FreeListLength returns
   2773 // kVeryLongFreeList.
   2774 size_t FreeList::SumFreeLists() {
   2775   size_t sum = 0;
   2776   ForAllFreeListCategories(
   2777       [&sum](FreeListCategory* category) { sum += category->SumFreeList(); });
   2778   return sum;
   2779 }
   2780 #endif
   2781 
   2782 
   2783 // -----------------------------------------------------------------------------
   2784 // OldSpace implementation
   2785 
   2786 void PagedSpace::PrepareForMarkCompact() {
   2787   // We don't have a linear allocation area while sweeping.  It will be restored
   2788   // on the first allocation after the sweep.
   2789   EmptyAllocationInfo();
   2790 
   2791   // Clear the free list before a full GC---it will be rebuilt afterward.
   2792   free_list_.Reset();
   2793 }
   2794 
   2795 size_t PagedSpace::SizeOfObjects() {
   2796   CHECK_GE(limit(), top());
   2797   DCHECK_GE(Size(), static_cast<size_t>(limit() - top()));
   2798   return Size() - (limit() - top());
   2799 }
   2800 
   2801 
   2802 // After we have booted, we have created a map which represents free space
   2803 // on the heap.  If there was already a free list then the elements on it
   2804 // were created with the wrong FreeSpaceMap (normally NULL), so we need to
   2805 // fix them.
   2806 void PagedSpace::RepairFreeListsAfterDeserialization() {
   2807   free_list_.RepairLists(heap());
   2808   // Each page may have a small free space that is not tracked by a free list.
   2809   // Update the maps for those free space objects.
   2810   for (Page* page : *this) {
   2811     size_t size = page->wasted_memory();
   2812     if (size == 0) continue;
   2813     DCHECK_GE(static_cast<size_t>(Page::kPageSize), size);
   2814     Address address = page->OffsetToAddress(Page::kPageSize - size);
   2815     heap()->CreateFillerObjectAt(address, static_cast<int>(size),
   2816                                  ClearRecordedSlots::kNo);
   2817   }
   2818 }
   2819 
   2820 HeapObject* PagedSpace::SweepAndRetryAllocation(int size_in_bytes) {
   2821   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2822   if (collector->sweeping_in_progress()) {
   2823     // Wait for the sweeper threads here and complete the sweeping phase.
   2824     collector->EnsureSweepingCompleted();
   2825 
   2826     // After waiting for the sweeper threads, there may be new free-list
   2827     // entries.
   2828     return free_list_.Allocate(size_in_bytes);
   2829   }
   2830   return nullptr;
   2831 }
   2832 
   2833 HeapObject* CompactionSpace::SweepAndRetryAllocation(int size_in_bytes) {
   2834   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2835   if (collector->sweeping_in_progress()) {
   2836     collector->SweepAndRefill(this);
   2837     return free_list_.Allocate(size_in_bytes);
   2838   }
   2839   return nullptr;
   2840 }
   2841 
   2842 HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) {
   2843   DCHECK_GE(size_in_bytes, 0);
   2844   const int kMaxPagesToSweep = 1;
   2845 
   2846   // Allocation in this space has failed.
   2847 
   2848   MarkCompactCollector* collector = heap()->mark_compact_collector();
   2849   // Sweeping is still in progress.
   2850   if (collector->sweeping_in_progress()) {
   2851     // First try to refill the free-list, concurrent sweeper threads
   2852     // may have freed some objects in the meantime.
   2853     RefillFreeList();
   2854 
   2855     // Retry the free list allocation.
   2856     HeapObject* object =
   2857         free_list_.Allocate(static_cast<size_t>(size_in_bytes));
   2858     if (object != NULL) return object;
   2859 
   2860     // If sweeping is still in progress try to sweep pages on the main thread.
   2861     int max_freed = collector->sweeper().ParallelSweepSpace(
   2862         identity(), size_in_bytes, kMaxPagesToSweep);
   2863     RefillFreeList();
   2864     if (max_freed >= size_in_bytes) {
   2865       object = free_list_.Allocate(static_cast<size_t>(size_in_bytes));
   2866       if (object != nullptr) return object;
   2867     }
   2868   }
   2869 
   2870   if (heap()->ShouldExpandOldGenerationOnSlowAllocation() && Expand()) {
   2871     DCHECK((CountTotalPages() > 1) ||
   2872            (static_cast<size_t>(size_in_bytes) <= free_list_.Available()));
   2873     return free_list_.Allocate(static_cast<size_t>(size_in_bytes));
   2874   }
   2875 
   2876   // If sweeper threads are active, wait for them at that point and steal
   2877   // elements form their free-lists. Allocation may still fail their which
   2878   // would indicate that there is not enough memory for the given allocation.
   2879   return SweepAndRetryAllocation(size_in_bytes);
   2880 }
   2881 
   2882 #ifdef DEBUG
   2883 void PagedSpace::ReportStatistics() {
   2884   int pct = static_cast<int>(Available() * 100 / Capacity());
   2885   PrintF("  capacity: %" V8PRIdPTR ", waste: %" V8PRIdPTR
   2886          ", available: %" V8PRIdPTR ", %%%d\n",
   2887          Capacity(), Waste(), Available(), pct);
   2888 
   2889   heap()->mark_compact_collector()->EnsureSweepingCompleted();
   2890   ClearHistograms(heap()->isolate());
   2891   HeapObjectIterator obj_it(this);
   2892   for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next())
   2893     CollectHistogramInfo(obj);
   2894   ReportHistogram(heap()->isolate(), true);
   2895 }
   2896 #endif
   2897 
   2898 
   2899 // -----------------------------------------------------------------------------
   2900 // MapSpace implementation
   2901 
   2902 #ifdef VERIFY_HEAP
   2903 void MapSpace::VerifyObject(HeapObject* object) { CHECK(object->IsMap()); }
   2904 #endif
   2905 
   2906 Address LargePage::GetAddressToShrink() {
   2907   HeapObject* object = GetObject();
   2908   if (executable() == EXECUTABLE) {
   2909     return 0;
   2910   }
   2911   size_t used_size = RoundUp((object->address() - address()) + object->Size(),
   2912                              MemoryAllocator::GetCommitPageSize());
   2913   if (used_size < CommittedPhysicalMemory()) {
   2914     return address() + used_size;
   2915   }
   2916   return 0;
   2917 }
   2918 
   2919 void LargePage::ClearOutOfLiveRangeSlots(Address free_start) {
   2920   RememberedSet<OLD_TO_NEW>::RemoveRange(this, free_start, area_end(),
   2921                                          SlotSet::FREE_EMPTY_BUCKETS);
   2922   RememberedSet<OLD_TO_OLD>::RemoveRange(this, free_start, area_end(),
   2923                                          SlotSet::FREE_EMPTY_BUCKETS);
   2924   RememberedSet<OLD_TO_NEW>::RemoveRangeTyped(this, free_start, area_end());
   2925   RememberedSet<OLD_TO_OLD>::RemoveRangeTyped(this, free_start, area_end());
   2926 }
   2927 
   2928 // -----------------------------------------------------------------------------
   2929 // LargeObjectIterator
   2930 
   2931 LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) {
   2932   current_ = space->first_page_;
   2933 }
   2934 
   2935 
   2936 HeapObject* LargeObjectIterator::Next() {
   2937   if (current_ == NULL) return NULL;
   2938 
   2939   HeapObject* object = current_->GetObject();
   2940   current_ = current_->next_page();
   2941   return object;
   2942 }
   2943 
   2944 
   2945 // -----------------------------------------------------------------------------
   2946 // LargeObjectSpace
   2947 
   2948 LargeObjectSpace::LargeObjectSpace(Heap* heap, AllocationSpace id)
   2949     : Space(heap, id, NOT_EXECUTABLE),  // Managed on a per-allocation basis
   2950       first_page_(NULL),
   2951       size_(0),
   2952       page_count_(0),
   2953       objects_size_(0),
   2954       chunk_map_(1024) {}
   2955 
   2956 LargeObjectSpace::~LargeObjectSpace() {}
   2957 
   2958 
   2959 bool LargeObjectSpace::SetUp() {
   2960   first_page_ = NULL;
   2961   size_ = 0;
   2962   page_count_ = 0;
   2963   objects_size_ = 0;
   2964   chunk_map_.Clear();
   2965   return true;
   2966 }
   2967 
   2968 
   2969 void LargeObjectSpace::TearDown() {
   2970   while (first_page_ != NULL) {
   2971     LargePage* page = first_page_;
   2972     first_page_ = first_page_->next_page();
   2973     LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address()));
   2974     heap()->memory_allocator()->Free<MemoryAllocator::kFull>(page);
   2975   }
   2976   SetUp();
   2977 }
   2978 
   2979 
   2980 AllocationResult LargeObjectSpace::AllocateRaw(int object_size,
   2981                                                Executability executable) {
   2982   // Check if we want to force a GC before growing the old space further.
   2983   // If so, fail the allocation.
   2984   if (!heap()->CanExpandOldGeneration(object_size) ||
   2985       !heap()->ShouldExpandOldGenerationOnSlowAllocation()) {
   2986     return AllocationResult::Retry(identity());
   2987   }
   2988 
   2989   LargePage* page = heap()->memory_allocator()->AllocateLargePage(
   2990       object_size, this, executable);
   2991   if (page == NULL) return AllocationResult::Retry(identity());
   2992   DCHECK_GE(page->area_size(), static_cast<size_t>(object_size));
   2993 
   2994   size_ += static_cast<int>(page->size());
   2995   AccountCommitted(page->size());
   2996   objects_size_ += object_size;
   2997   page_count_++;
   2998   page->set_next_page(first_page_);
   2999   first_page_ = page;
   3000 
   3001   InsertChunkMapEntries(page);
   3002 
   3003   HeapObject* object = page->GetObject();
   3004 
   3005   if (Heap::ShouldZapGarbage()) {
   3006     // Make the object consistent so the heap can be verified in OldSpaceStep.
   3007     // We only need to do this in debug builds or if verify_heap is on.
   3008     reinterpret_cast<Object**>(object->address())[0] =
   3009         heap()->fixed_array_map();
   3010     reinterpret_cast<Object**>(object->address())[1] = Smi::kZero;
   3011   }
   3012 
   3013   heap()->StartIncrementalMarkingIfAllocationLimitIsReached(Heap::kNoGCFlags,
   3014                                                             kNoGCCallbackFlags);
   3015   AllocationStep(object->address(), object_size);
   3016 
   3017   if (heap()->incremental_marking()->black_allocation()) {
   3018     // We cannot use ObjectMarking here as the object still lacks a size.
   3019     Marking::WhiteToBlack(ObjectMarking::MarkBitFrom(object));
   3020     MemoryChunk::IncrementLiveBytes(object, object_size);
   3021   }
   3022   return object;
   3023 }
   3024 
   3025 
   3026 size_t LargeObjectSpace::CommittedPhysicalMemory() {
   3027   // On a platform that provides lazy committing of memory, we over-account
   3028   // the actually committed memory. There is no easy way right now to support
   3029   // precise accounting of committed memory in large object space.
   3030   return CommittedMemory();
   3031 }
   3032 
   3033 
   3034 // GC support
   3035 Object* LargeObjectSpace::FindObject(Address a) {
   3036   LargePage* page = FindPage(a);
   3037   if (page != NULL) {
   3038     return page->GetObject();
   3039   }
   3040   return Smi::kZero;  // Signaling not found.
   3041 }
   3042 
   3043 LargePage* LargeObjectSpace::FindPageThreadSafe(Address a) {
   3044   base::LockGuard<base::Mutex> guard(&chunk_map_mutex_);
   3045   return FindPage(a);
   3046 }
   3047 
   3048 LargePage* LargeObjectSpace::FindPage(Address a) {
   3049   uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment;
   3050   base::HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key),
   3051                                               static_cast<uint32_t>(key));
   3052   if (e != NULL) {
   3053     DCHECK(e->value != NULL);
   3054     LargePage* page = reinterpret_cast<LargePage*>(e->value);
   3055     DCHECK(LargePage::IsValid(page));
   3056     if (page->Contains(a)) {
   3057       return page;
   3058     }
   3059   }
   3060   return NULL;
   3061 }
   3062 
   3063 
   3064 void LargeObjectSpace::ClearMarkingStateOfLiveObjects() {
   3065   LargePage* current = first_page_;
   3066   while (current != NULL) {
   3067     HeapObject* object = current->GetObject();
   3068     DCHECK(ObjectMarking::IsBlack(object));
   3069     ObjectMarking::ClearMarkBit(object);
   3070     Page::FromAddress(object->address())->ResetProgressBar();
   3071     Page::FromAddress(object->address())->ResetLiveBytes();
   3072     current = current->next_page();
   3073   }
   3074 }
   3075 
   3076 void LargeObjectSpace::InsertChunkMapEntries(LargePage* page) {
   3077   // Register all MemoryChunk::kAlignment-aligned chunks covered by
   3078   // this large page in the chunk map.
   3079   uintptr_t start = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment;
   3080   uintptr_t limit = (reinterpret_cast<uintptr_t>(page) + (page->size() - 1)) /
   3081                     MemoryChunk::kAlignment;
   3082   // There may be concurrent access on the chunk map. We have to take the lock
   3083   // here.
   3084   base::LockGuard<base::Mutex> guard(&chunk_map_mutex_);
   3085   for (uintptr_t key = start; key <= limit; key++) {
   3086     base::HashMap::Entry* entry = chunk_map_.InsertNew(
   3087         reinterpret_cast<void*>(key), static_cast<uint32_t>(key));
   3088     DCHECK(entry != NULL);
   3089     entry->value = page;
   3090   }
   3091 }
   3092 
   3093 void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page) {
   3094   RemoveChunkMapEntries(page, page->address());
   3095 }
   3096 
   3097 void LargeObjectSpace::RemoveChunkMapEntries(LargePage* page,
   3098                                              Address free_start) {
   3099   uintptr_t start = RoundUp(reinterpret_cast<uintptr_t>(free_start),
   3100                             MemoryChunk::kAlignment) /
   3101                     MemoryChunk::kAlignment;
   3102   uintptr_t limit = (reinterpret_cast<uintptr_t>(page) + (page->size() - 1)) /
   3103                     MemoryChunk::kAlignment;
   3104   for (uintptr_t key = start; key <= limit; key++) {
   3105     chunk_map_.Remove(reinterpret_cast<void*>(key), static_cast<uint32_t>(key));
   3106   }
   3107 }
   3108 
   3109 void LargeObjectSpace::FreeUnmarkedObjects() {
   3110   LargePage* previous = NULL;
   3111   LargePage* current = first_page_;
   3112   while (current != NULL) {
   3113     HeapObject* object = current->GetObject();
   3114     DCHECK(!ObjectMarking::IsGrey(object));
   3115     if (ObjectMarking::IsBlack(object)) {
   3116       Address free_start;
   3117       if ((free_start = current->GetAddressToShrink()) != 0) {
   3118         // TODO(hpayer): Perform partial free concurrently.
   3119         current->ClearOutOfLiveRangeSlots(free_start);
   3120         RemoveChunkMapEntries(current, free_start);
   3121         heap()->memory_allocator()->PartialFreeMemory(current, free_start);
   3122       }
   3123       previous = current;
   3124       current = current->next_page();
   3125     } else {
   3126       LargePage* page = current;
   3127       // Cut the chunk out from the chunk list.
   3128       current = current->next_page();
   3129       if (previous == NULL) {
   3130         first_page_ = current;
   3131       } else {
   3132         previous->set_next_page(current);
   3133       }
   3134 
   3135       // Free the chunk.
   3136       size_ -= static_cast<int>(page->size());
   3137       AccountUncommitted(page->size());
   3138       objects_size_ -= object->Size();
   3139       page_count_--;
   3140 
   3141       RemoveChunkMapEntries(page);
   3142       heap()->memory_allocator()->Free<MemoryAllocator::kPreFreeAndQueue>(page);
   3143     }
   3144   }
   3145 }
   3146 
   3147 
   3148 bool LargeObjectSpace::Contains(HeapObject* object) {
   3149   Address address = object->address();
   3150   MemoryChunk* chunk = MemoryChunk::FromAddress(address);
   3151 
   3152   bool owned = (chunk->owner() == this);
   3153 
   3154   SLOW_DCHECK(!owned || FindObject(address)->IsHeapObject());
   3155 
   3156   return owned;
   3157 }
   3158 
   3159 std::unique_ptr<ObjectIterator> LargeObjectSpace::GetObjectIterator() {
   3160   return std::unique_ptr<ObjectIterator>(new LargeObjectIterator(this));
   3161 }
   3162 
   3163 #ifdef VERIFY_HEAP
   3164 // We do not assume that the large object iterator works, because it depends
   3165 // on the invariants we are checking during verification.
   3166 void LargeObjectSpace::Verify() {
   3167   for (LargePage* chunk = first_page_; chunk != NULL;
   3168        chunk = chunk->next_page()) {
   3169     // Each chunk contains an object that starts at the large object page's
   3170     // object area start.
   3171     HeapObject* object = chunk->GetObject();
   3172     Page* page = Page::FromAddress(object->address());
   3173     CHECK(object->address() == page->area_start());
   3174 
   3175     // The first word should be a map, and we expect all map pointers to be
   3176     // in map space.
   3177     Map* map = object->map();
   3178     CHECK(map->IsMap());
   3179     CHECK(heap()->map_space()->Contains(map));
   3180 
   3181     // We have only code, sequential strings, external strings
   3182     // (sequential strings that have been morphed into external
   3183     // strings), thin strings (sequential strings that have been
   3184     // morphed into thin strings), fixed arrays, byte arrays, and
   3185     // constant pool arrays in the large object space.
   3186     CHECK(object->IsAbstractCode() || object->IsSeqString() ||
   3187           object->IsExternalString() || object->IsThinString() ||
   3188           object->IsFixedArray() || object->IsFixedDoubleArray() ||
   3189           object->IsByteArray());
   3190 
   3191     // The object itself should look OK.
   3192     object->ObjectVerify();
   3193 
   3194     // Byte arrays and strings don't have interior pointers.
   3195     if (object->IsAbstractCode()) {
   3196       VerifyPointersVisitor code_visitor;
   3197       object->IterateBody(map->instance_type(), object->Size(), &code_visitor);
   3198     } else if (object->IsFixedArray()) {
   3199       FixedArray* array = FixedArray::cast(object);
   3200       for (int j = 0; j < array->length(); j++) {
   3201         Object* element = array->get(j);
   3202         if (element->IsHeapObject()) {
   3203           HeapObject* element_object = HeapObject::cast(element);
   3204           CHECK(heap()->Contains(element_object));
   3205           CHECK(element_object->map()->IsMap());
   3206         }
   3207       }
   3208     }
   3209   }
   3210 }
   3211 #endif
   3212 
   3213 #ifdef DEBUG
   3214 void LargeObjectSpace::Print() {
   3215   OFStream os(stdout);
   3216   LargeObjectIterator it(this);
   3217   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   3218     obj->Print(os);
   3219   }
   3220 }
   3221 
   3222 
   3223 void LargeObjectSpace::ReportStatistics() {
   3224   PrintF("  size: %" V8PRIdPTR "\n", size_);
   3225   int num_objects = 0;
   3226   ClearHistograms(heap()->isolate());
   3227   LargeObjectIterator it(this);
   3228   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
   3229     num_objects++;
   3230     CollectHistogramInfo(obj);
   3231   }
   3232 
   3233   PrintF(
   3234       "  number of objects %d, "
   3235       "size of objects %" V8PRIdPTR "\n",
   3236       num_objects, objects_size_);
   3237   if (num_objects > 0) ReportHistogram(heap()->isolate(), false);
   3238 }
   3239 
   3240 
   3241 void Page::Print() {
   3242   // Make a best-effort to print the objects in the page.
   3243   PrintF("Page@%p in %s\n", static_cast<void*>(this->address()),
   3244          AllocationSpaceName(this->owner()->identity()));
   3245   printf(" --------------------------------------\n");
   3246   HeapObjectIterator objects(this);
   3247   unsigned mark_size = 0;
   3248   for (HeapObject* object = objects.Next(); object != NULL;
   3249        object = objects.Next()) {
   3250     bool is_marked = ObjectMarking::IsBlackOrGrey(object);
   3251     PrintF(" %c ", (is_marked ? '!' : ' '));  // Indent a little.
   3252     if (is_marked) {
   3253       mark_size += object->Size();
   3254     }
   3255     object->ShortPrint();
   3256     PrintF("\n");
   3257   }
   3258   printf(" --------------------------------------\n");
   3259   printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes());
   3260 }
   3261 
   3262 #endif  // DEBUG
   3263 }  // namespace internal
   3264 }  // namespace v8
   3265