Home | History | Annotate | Download | only in mips
      1 
      2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      3 // All Rights Reserved.
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 // - Redistributions of source code must retain the above copyright notice,
     10 // this list of conditions and the following disclaimer.
     11 //
     12 // - Redistribution in binary form must reproduce the above copyright
     13 // notice, this list of conditions and the following disclaimer in the
     14 // documentation and/or other materials provided with the distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31 
     32 // The original source code covered by the above license above has been
     33 // modified significantly by Google Inc.
     34 // Copyright 2012 the V8 project authors. All rights reserved.
     35 
     36 
     37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
     38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
     39 
     40 #include "src/mips/assembler-mips.h"
     41 
     42 #include "src/assembler.h"
     43 #include "src/debug/debug.h"
     44 #include "src/objects-inl.h"
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 
     50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
     51 
     52 bool CpuFeatures::SupportsSimd128() { return false; }
     53 
     54 // -----------------------------------------------------------------------------
     55 // Operand and MemOperand.
     56 
     57 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
     58   rm_ = no_reg;
     59   imm32_ = immediate;
     60   rmode_ = rmode;
     61 }
     62 
     63 
     64 Operand::Operand(const ExternalReference& f)  {
     65   rm_ = no_reg;
     66   imm32_ = reinterpret_cast<int32_t>(f.address());
     67   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
     68 }
     69 
     70 
     71 Operand::Operand(Smi* value) {
     72   rm_ = no_reg;
     73   imm32_ =  reinterpret_cast<intptr_t>(value);
     74   rmode_ = RelocInfo::NONE32;
     75 }
     76 
     77 
     78 Operand::Operand(Register rm) {
     79   rm_ = rm;
     80 }
     81 
     82 
     83 bool Operand::is_reg() const {
     84   return rm_.is_valid();
     85 }
     86 
     87 
     88 // -----------------------------------------------------------------------------
     89 // RelocInfo.
     90 
     91 void RelocInfo::apply(intptr_t delta) {
     92   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
     93     // Absolute code pointer inside code object moves with the code object.
     94     byte* p = reinterpret_cast<byte*>(pc_);
     95     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
     96     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
     97   }
     98 }
     99 
    100 
    101 Address RelocInfo::target_address() {
    102   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    103   return Assembler::target_address_at(pc_, host_);
    104 }
    105 
    106 Address RelocInfo::target_address_address() {
    107   DCHECK(IsCodeTarget(rmode_) ||
    108          IsRuntimeEntry(rmode_) ||
    109          rmode_ == EMBEDDED_OBJECT ||
    110          rmode_ == EXTERNAL_REFERENCE);
    111   // Read the address of the word containing the target_address in an
    112   // instruction stream.
    113   // The only architecture-independent user of this function is the serializer.
    114   // The serializer uses it to find out how many raw bytes of instruction to
    115   // output before the next target.
    116   // For an instruction like LUI/ORI where the target bits are mixed into the
    117   // instruction bits, the size of the target will be zero, indicating that the
    118   // serializer should not step forward in memory after a target is resolved
    119   // and written. In this case the target_address_address function should
    120   // return the end of the instructions to be patched, allowing the
    121   // deserializer to deserialize the instructions as raw bytes and put them in
    122   // place, ready to be patched with the target. After jump optimization,
    123   // that is the address of the instruction that follows J/JAL/JR/JALR
    124   // instruction.
    125   return reinterpret_cast<Address>(
    126     pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
    127 }
    128 
    129 
    130 Address RelocInfo::constant_pool_entry_address() {
    131   UNREACHABLE();
    132   return NULL;
    133 }
    134 
    135 
    136 int RelocInfo::target_address_size() {
    137   return Assembler::kSpecialTargetSize;
    138 }
    139 
    140 Address Assembler::target_address_at(Address pc, Code* code) {
    141   Address constant_pool = code ? code->constant_pool() : NULL;
    142   return target_address_at(pc, constant_pool);
    143 }
    144 
    145 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
    146                                       Address target,
    147                                       ICacheFlushMode icache_flush_mode) {
    148   Address constant_pool = code ? code->constant_pool() : NULL;
    149   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
    150 }
    151 
    152 Address Assembler::target_address_from_return_address(Address pc) {
    153   return pc - kCallTargetAddressOffset;
    154 }
    155 
    156 
    157 void Assembler::set_target_internal_reference_encoded_at(Address pc,
    158                                                          Address target) {
    159   Instr instr1 = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
    160   Instr instr2 = Assembler::instr_at(pc + 1 * Assembler::kInstrSize);
    161   DCHECK(Assembler::IsLui(instr1));
    162   DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
    163   instr1 &= ~kImm16Mask;
    164   instr2 &= ~kImm16Mask;
    165   int32_t imm = reinterpret_cast<int32_t>(target);
    166   DCHECK((imm & 3) == 0);
    167   if (Assembler::IsJicOrJialc(instr2)) {
    168     // Encoded internal references are lui/jic load of 32-bit absolute address.
    169     uint32_t lui_offset_u, jic_offset_u;
    170     Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
    171 
    172     Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
    173                             instr1 | lui_offset_u);
    174     Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
    175                             instr2 | jic_offset_u);
    176   } else {
    177     // Encoded internal references are lui/ori load of 32-bit absolute address.
    178     Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
    179                             instr1 | ((imm >> kLuiShift) & kImm16Mask));
    180     Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
    181                             instr2 | (imm & kImm16Mask));
    182   }
    183 
    184   // Currently used only by deserializer, and all code will be flushed
    185   // after complete deserialization, no need to flush on each reference.
    186 }
    187 
    188 
    189 void Assembler::deserialization_set_target_internal_reference_at(
    190     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
    191   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    192     DCHECK(IsLui(instr_at(pc)));
    193     set_target_internal_reference_encoded_at(pc, target);
    194   } else {
    195     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
    196     Memory::Address_at(pc) = target;
    197   }
    198 }
    199 
    200 
    201 Object* RelocInfo::target_object() {
    202   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    203   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    204 }
    205 
    206 
    207 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    208   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    209   return Handle<Object>(reinterpret_cast<Object**>(
    210       Assembler::target_address_at(pc_, host_)));
    211 }
    212 
    213 
    214 void RelocInfo::set_target_object(Object* target,
    215                                   WriteBarrierMode write_barrier_mode,
    216                                   ICacheFlushMode icache_flush_mode) {
    217   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    218   Assembler::set_target_address_at(isolate_, pc_, host_,
    219                                    reinterpret_cast<Address>(target),
    220                                    icache_flush_mode);
    221   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    222       host() != NULL &&
    223       target->IsHeapObject()) {
    224     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    225         host(), this, HeapObject::cast(target));
    226     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
    227   }
    228 }
    229 
    230 
    231 Address RelocInfo::target_external_reference() {
    232   DCHECK(rmode_ == EXTERNAL_REFERENCE);
    233   return Assembler::target_address_at(pc_, host_);
    234 }
    235 
    236 
    237 Address RelocInfo::target_internal_reference() {
    238   if (rmode_ == INTERNAL_REFERENCE) {
    239     return Memory::Address_at(pc_);
    240   } else {
    241     // Encoded internal references are lui/ori or lui/jic load of 32-bit
    242     // absolute address.
    243     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
    244     Instr instr1 = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
    245     Instr instr2 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
    246     DCHECK(Assembler::IsLui(instr1));
    247     DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
    248     if (Assembler::IsJicOrJialc(instr2)) {
    249       return reinterpret_cast<Address>(
    250           Assembler::CreateTargetAddress(instr1, instr2));
    251     }
    252     int32_t imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
    253     imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
    254     return reinterpret_cast<Address>(imm);
    255   }
    256 }
    257 
    258 
    259 Address RelocInfo::target_internal_reference_address() {
    260   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
    261   return reinterpret_cast<Address>(pc_);
    262 }
    263 
    264 
    265 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    266   DCHECK(IsRuntimeEntry(rmode_));
    267   return target_address();
    268 }
    269 
    270 
    271 void RelocInfo::set_target_runtime_entry(Address target,
    272                                          WriteBarrierMode write_barrier_mode,
    273                                          ICacheFlushMode icache_flush_mode) {
    274   DCHECK(IsRuntimeEntry(rmode_));
    275   if (target_address() != target)
    276     set_target_address(target, write_barrier_mode, icache_flush_mode);
    277 }
    278 
    279 
    280 Handle<Cell> RelocInfo::target_cell_handle() {
    281   DCHECK(rmode_ == RelocInfo::CELL);
    282   Address address = Memory::Address_at(pc_);
    283   return Handle<Cell>(reinterpret_cast<Cell**>(address));
    284 }
    285 
    286 
    287 Cell* RelocInfo::target_cell() {
    288   DCHECK(rmode_ == RelocInfo::CELL);
    289   return Cell::FromValueAddress(Memory::Address_at(pc_));
    290 }
    291 
    292 
    293 void RelocInfo::set_target_cell(Cell* cell,
    294                                 WriteBarrierMode write_barrier_mode,
    295                                 ICacheFlushMode icache_flush_mode) {
    296   DCHECK(rmode_ == RelocInfo::CELL);
    297   Address address = cell->address() + Cell::kValueOffset;
    298   Memory::Address_at(pc_) = address;
    299   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
    300     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
    301                                                                   cell);
    302   }
    303 }
    304 
    305 
    306 static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;
    307 
    308 
    309 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    310   UNREACHABLE();  // This should never be reached on Arm.
    311   return Handle<Object>();
    312 }
    313 
    314 
    315 Code* RelocInfo::code_age_stub() {
    316   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    317   return Code::GetCodeFromTargetAddress(
    318       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
    319 }
    320 
    321 
    322 void RelocInfo::set_code_age_stub(Code* stub,
    323                                   ICacheFlushMode icache_flush_mode) {
    324   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    325   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
    326                                    stub->instruction_start());
    327 }
    328 
    329 
    330 Address RelocInfo::debug_call_address() {
    331   // The pc_ offset of 0 assumes patched debug break slot or return
    332   // sequence.
    333   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    334   return Assembler::target_address_at(pc_, host_);
    335 }
    336 
    337 
    338 void RelocInfo::set_debug_call_address(Address target) {
    339   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    340   // The pc_ offset of 0 assumes patched debug break slot or return
    341   // sequence.
    342   Assembler::set_target_address_at(isolate_, pc_, host_, target);
    343   if (host() != NULL) {
    344     Object* target_code = Code::GetCodeFromTargetAddress(target);
    345     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    346         host(), this, HeapObject::cast(target_code));
    347   }
    348 }
    349 
    350 
    351 void RelocInfo::WipeOut() {
    352   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
    353          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
    354          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
    355   if (IsInternalReference(rmode_)) {
    356     Memory::Address_at(pc_) = NULL;
    357   } else if (IsInternalReferenceEncoded(rmode_)) {
    358     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
    359   } else {
    360     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
    361   }
    362 }
    363 
    364 template <typename ObjectVisitor>
    365 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    366   RelocInfo::Mode mode = rmode();
    367   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    368     visitor->VisitEmbeddedPointer(this);
    369   } else if (RelocInfo::IsCodeTarget(mode)) {
    370     visitor->VisitCodeTarget(this);
    371   } else if (mode == RelocInfo::CELL) {
    372     visitor->VisitCell(this);
    373   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    374     visitor->VisitExternalReference(this);
    375   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
    376              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    377     visitor->VisitInternalReference(this);
    378   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    379     visitor->VisitCodeAgeSequence(this);
    380   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    381              IsPatchedDebugBreakSlotSequence()) {
    382     visitor->VisitDebugTarget(this);
    383   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    384     visitor->VisitRuntimeEntry(this);
    385   }
    386 }
    387 
    388 
    389 template<typename StaticVisitor>
    390 void RelocInfo::Visit(Heap* heap) {
    391   RelocInfo::Mode mode = rmode();
    392   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    393     StaticVisitor::VisitEmbeddedPointer(heap, this);
    394   } else if (RelocInfo::IsCodeTarget(mode)) {
    395     StaticVisitor::VisitCodeTarget(heap, this);
    396   } else if (mode == RelocInfo::CELL) {
    397     StaticVisitor::VisitCell(heap, this);
    398   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    399     StaticVisitor::VisitExternalReference(this);
    400   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
    401              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    402     StaticVisitor::VisitInternalReference(this);
    403   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    404     StaticVisitor::VisitCodeAgeSequence(heap, this);
    405   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    406              IsPatchedDebugBreakSlotSequence()) {
    407     StaticVisitor::VisitDebugTarget(heap, this);
    408   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    409     StaticVisitor::VisitRuntimeEntry(this);
    410   }
    411 }
    412 
    413 
    414 // -----------------------------------------------------------------------------
    415 // Assembler.
    416 
    417 
    418 void Assembler::CheckBuffer() {
    419   if (buffer_space() <= kGap) {
    420     GrowBuffer();
    421   }
    422 }
    423 
    424 
    425 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
    426   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
    427     CheckTrampolinePool();
    428   }
    429 }
    430 
    431 
    432 void Assembler::CheckForEmitInForbiddenSlot() {
    433   if (!is_buffer_growth_blocked()) {
    434     CheckBuffer();
    435   }
    436   if (IsPrevInstrCompactBranch()) {
    437     // Nop instruction to preceed a CTI in forbidden slot:
    438     Instr nop = SPECIAL | SLL;
    439     *reinterpret_cast<Instr*>(pc_) = nop;
    440     pc_ += kInstrSize;
    441 
    442     ClearCompactBranchState();
    443   }
    444 }
    445 
    446 
    447 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
    448   if (IsPrevInstrCompactBranch()) {
    449     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
    450       // Nop instruction to preceed a CTI in forbidden slot:
    451       Instr nop = SPECIAL | SLL;
    452       *reinterpret_cast<Instr*>(pc_) = nop;
    453       pc_ += kInstrSize;
    454     }
    455     ClearCompactBranchState();
    456   }
    457   *reinterpret_cast<Instr*>(pc_) = x;
    458   pc_ += kInstrSize;
    459   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
    460     EmittedCompactBranchInstruction();
    461   }
    462   CheckTrampolinePoolQuick();
    463 }
    464 
    465 template <>
    466 inline void Assembler::EmitHelper(uint8_t x);
    467 
    468 template <typename T>
    469 void Assembler::EmitHelper(T x) {
    470   *reinterpret_cast<T*>(pc_) = x;
    471   pc_ += sizeof(x);
    472   CheckTrampolinePoolQuick();
    473 }
    474 
    475 template <>
    476 void Assembler::EmitHelper(uint8_t x) {
    477   *reinterpret_cast<uint8_t*>(pc_) = x;
    478   pc_ += sizeof(x);
    479   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
    480     CheckTrampolinePoolQuick();
    481   }
    482 }
    483 
    484 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
    485   if (!is_buffer_growth_blocked()) {
    486     CheckBuffer();
    487   }
    488   EmitHelper(x, is_compact_branch);
    489 }
    490 
    491 
    492 }  // namespace internal
    493 }  // namespace v8
    494 
    495 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
    496