Home | History | Annotate | Download | only in mips64
      1 
      2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      3 // All Rights Reserved.
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 // - Redistributions of source code must retain the above copyright notice,
     10 // this list of conditions and the following disclaimer.
     11 //
     12 // - Redistribution in binary form must reproduce the above copyright
     13 // notice, this list of conditions and the following disclaimer in the
     14 // documentation and/or other materials provided with the distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     31 
     32 // The original source code covered by the above license above has been
     33 // modified significantly by Google Inc.
     34 // Copyright 2012 the V8 project authors. All rights reserved.
     35 
     36 
     37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
     38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
     39 
     40 #include "src/mips64/assembler-mips64.h"
     41 
     42 #include "src/assembler.h"
     43 #include "src/debug/debug.h"
     44 #include "src/objects-inl.h"
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 
     50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
     51 
     52 bool CpuFeatures::SupportsSimd128() { return false; }
     53 
     54 // -----------------------------------------------------------------------------
     55 // Operand and MemOperand.
     56 
     57 Operand::Operand(int64_t immediate, RelocInfo::Mode rmode)  {
     58   rm_ = no_reg;
     59   imm64_ = immediate;
     60   rmode_ = rmode;
     61 }
     62 
     63 
     64 Operand::Operand(const ExternalReference& f)  {
     65   rm_ = no_reg;
     66   imm64_ = reinterpret_cast<int64_t>(f.address());
     67   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
     68 }
     69 
     70 
     71 Operand::Operand(Smi* value) {
     72   rm_ = no_reg;
     73   imm64_ =  reinterpret_cast<intptr_t>(value);
     74   rmode_ = RelocInfo::NONE32;
     75 }
     76 
     77 
     78 Operand::Operand(Register rm) {
     79   rm_ = rm;
     80 }
     81 
     82 
     83 bool Operand::is_reg() const {
     84   return rm_.is_valid();
     85 }
     86 
     87 
     88 // -----------------------------------------------------------------------------
     89 // RelocInfo.
     90 
     91 void RelocInfo::apply(intptr_t delta) {
     92   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
     93     // Absolute code pointer inside code object moves with the code object.
     94     byte* p = reinterpret_cast<byte*>(pc_);
     95     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
     96     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
     97   }
     98 }
     99 
    100 
    101 Address RelocInfo::target_address() {
    102   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
    103   return Assembler::target_address_at(pc_, host_);
    104 }
    105 
    106 Address RelocInfo::target_address_address() {
    107   DCHECK(IsCodeTarget(rmode_) ||
    108          IsRuntimeEntry(rmode_) ||
    109          rmode_ == EMBEDDED_OBJECT ||
    110          rmode_ == EXTERNAL_REFERENCE);
    111   // Read the address of the word containing the target_address in an
    112   // instruction stream.
    113   // The only architecture-independent user of this function is the serializer.
    114   // The serializer uses it to find out how many raw bytes of instruction to
    115   // output before the next target.
    116   // For an instruction like LUI/ORI where the target bits are mixed into the
    117   // instruction bits, the size of the target will be zero, indicating that the
    118   // serializer should not step forward in memory after a target is resolved
    119   // and written. In this case the target_address_address function should
    120   // return the end of the instructions to be patched, allowing the
    121   // deserializer to deserialize the instructions as raw bytes and put them in
    122   // place, ready to be patched with the target. After jump optimization,
    123   // that is the address of the instruction that follows J/JAL/JR/JALR
    124   // instruction.
    125   // return reinterpret_cast<Address>(
    126   //  pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
    127   return reinterpret_cast<Address>(
    128     pc_ + Assembler::kInstructionsFor64BitConstant * Assembler::kInstrSize);
    129 }
    130 
    131 
    132 Address RelocInfo::constant_pool_entry_address() {
    133   UNREACHABLE();
    134   return NULL;
    135 }
    136 
    137 
    138 int RelocInfo::target_address_size() {
    139   return Assembler::kSpecialTargetSize;
    140 }
    141 
    142 Address Assembler::target_address_at(Address pc, Code* code) {
    143   Address constant_pool = code ? code->constant_pool() : NULL;
    144   return target_address_at(pc, constant_pool);
    145 }
    146 
    147 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
    148                                       Address target,
    149                                       ICacheFlushMode icache_flush_mode) {
    150   Address constant_pool = code ? code->constant_pool() : NULL;
    151   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
    152 }
    153 
    154 Address Assembler::target_address_from_return_address(Address pc) {
    155   return pc - kCallTargetAddressOffset;
    156 }
    157 
    158 
    159 void Assembler::set_target_internal_reference_encoded_at(Address pc,
    160                                                          Address target) {
    161   // Encoded internal references are j/jal instructions.
    162   Instr instr = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
    163 
    164   uint64_t imm28 =
    165       (reinterpret_cast<uint64_t>(target) & static_cast<uint64_t>(kImm28Mask));
    166 
    167   instr &= ~kImm26Mask;
    168   uint64_t imm26 = imm28 >> 2;
    169   DCHECK(is_uint26(imm26));
    170 
    171   instr_at_put(pc, instr | (imm26 & kImm26Mask));
    172   // Currently used only by deserializer, and all code will be flushed
    173   // after complete deserialization, no need to flush on each reference.
    174 }
    175 
    176 
    177 void Assembler::deserialization_set_target_internal_reference_at(
    178     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
    179   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    180     DCHECK(IsJ(instr_at(pc)));
    181     set_target_internal_reference_encoded_at(pc, target);
    182   } else {
    183     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
    184     Memory::Address_at(pc) = target;
    185   }
    186 }
    187 
    188 
    189 Object* RelocInfo::target_object() {
    190   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    191   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
    192 }
    193 
    194 
    195 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
    196   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    197   return Handle<Object>(reinterpret_cast<Object**>(
    198       Assembler::target_address_at(pc_, host_)));
    199 }
    200 
    201 
    202 void RelocInfo::set_target_object(Object* target,
    203                                   WriteBarrierMode write_barrier_mode,
    204                                   ICacheFlushMode icache_flush_mode) {
    205   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
    206   Assembler::set_target_address_at(isolate_, pc_, host_,
    207                                    reinterpret_cast<Address>(target),
    208                                    icache_flush_mode);
    209   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
    210       host() != NULL &&
    211       target->IsHeapObject()) {
    212     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    213         host(), this, HeapObject::cast(target));
    214     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
    215   }
    216 }
    217 
    218 
    219 Address RelocInfo::target_external_reference() {
    220   DCHECK(rmode_ == EXTERNAL_REFERENCE);
    221   return Assembler::target_address_at(pc_, host_);
    222 }
    223 
    224 
    225 Address RelocInfo::target_internal_reference() {
    226   if (rmode_ == INTERNAL_REFERENCE) {
    227     return Memory::Address_at(pc_);
    228   } else {
    229     // Encoded internal references are j/jal instructions.
    230     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
    231     Instr instr = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
    232     instr &= kImm26Mask;
    233     uint64_t imm28 = instr << 2;
    234     uint64_t segment =
    235         (reinterpret_cast<uint64_t>(pc_) & ~static_cast<uint64_t>(kImm28Mask));
    236     return reinterpret_cast<Address>(segment | imm28);
    237   }
    238 }
    239 
    240 
    241 Address RelocInfo::target_internal_reference_address() {
    242   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
    243   return reinterpret_cast<Address>(pc_);
    244 }
    245 
    246 
    247 Address RelocInfo::target_runtime_entry(Assembler* origin) {
    248   DCHECK(IsRuntimeEntry(rmode_));
    249   return target_address();
    250 }
    251 
    252 
    253 void RelocInfo::set_target_runtime_entry(Address target,
    254                                          WriteBarrierMode write_barrier_mode,
    255                                          ICacheFlushMode icache_flush_mode) {
    256   DCHECK(IsRuntimeEntry(rmode_));
    257   if (target_address() != target)
    258     set_target_address(target, write_barrier_mode, icache_flush_mode);
    259 }
    260 
    261 
    262 Handle<Cell> RelocInfo::target_cell_handle() {
    263   DCHECK(rmode_ == RelocInfo::CELL);
    264   Address address = Memory::Address_at(pc_);
    265   return Handle<Cell>(reinterpret_cast<Cell**>(address));
    266 }
    267 
    268 
    269 Cell* RelocInfo::target_cell() {
    270   DCHECK(rmode_ == RelocInfo::CELL);
    271   return Cell::FromValueAddress(Memory::Address_at(pc_));
    272 }
    273 
    274 
    275 void RelocInfo::set_target_cell(Cell* cell,
    276                                 WriteBarrierMode write_barrier_mode,
    277                                 ICacheFlushMode icache_flush_mode) {
    278   DCHECK(rmode_ == RelocInfo::CELL);
    279   Address address = cell->address() + Cell::kValueOffset;
    280   Memory::Address_at(pc_) = address;
    281   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
    282     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
    283                                                                   cell);
    284   }
    285 }
    286 
    287 
    288 static const int kNoCodeAgeSequenceLength = 9 * Assembler::kInstrSize;
    289 
    290 
    291 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
    292   UNREACHABLE();  // This should never be reached on Arm.
    293   return Handle<Object>();
    294 }
    295 
    296 
    297 Code* RelocInfo::code_age_stub() {
    298   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    299   return Code::GetCodeFromTargetAddress(
    300       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
    301 }
    302 
    303 
    304 void RelocInfo::set_code_age_stub(Code* stub,
    305                                   ICacheFlushMode icache_flush_mode) {
    306   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
    307   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
    308                                    stub->instruction_start());
    309 }
    310 
    311 
    312 Address RelocInfo::debug_call_address() {
    313   // The pc_ offset of 0 assumes patched debug break slot or return
    314   // sequence.
    315   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    316   return Assembler::target_address_at(pc_, host_);
    317 }
    318 
    319 
    320 void RelocInfo::set_debug_call_address(Address target) {
    321   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
    322   // The pc_ offset of 0 assumes patched debug break slot or return
    323   // sequence.
    324   Assembler::set_target_address_at(isolate_, pc_, host_, target);
    325   if (host() != NULL) {
    326     Object* target_code = Code::GetCodeFromTargetAddress(target);
    327     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
    328         host(), this, HeapObject::cast(target_code));
    329   }
    330 }
    331 
    332 
    333 void RelocInfo::WipeOut() {
    334   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
    335          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
    336          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
    337   if (IsInternalReference(rmode_)) {
    338     Memory::Address_at(pc_) = NULL;
    339   } else if (IsInternalReferenceEncoded(rmode_)) {
    340     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
    341   } else {
    342     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
    343   }
    344 }
    345 
    346 template <typename ObjectVisitor>
    347 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
    348   RelocInfo::Mode mode = rmode();
    349   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    350     visitor->VisitEmbeddedPointer(this);
    351   } else if (RelocInfo::IsCodeTarget(mode)) {
    352     visitor->VisitCodeTarget(this);
    353   } else if (mode == RelocInfo::CELL) {
    354     visitor->VisitCell(this);
    355   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    356     visitor->VisitExternalReference(this);
    357   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
    358              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    359     visitor->VisitInternalReference(this);
    360   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    361     visitor->VisitCodeAgeSequence(this);
    362   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    363              IsPatchedDebugBreakSlotSequence()) {
    364     visitor->VisitDebugTarget(this);
    365   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    366     visitor->VisitRuntimeEntry(this);
    367   }
    368 }
    369 
    370 
    371 template<typename StaticVisitor>
    372 void RelocInfo::Visit(Heap* heap) {
    373   RelocInfo::Mode mode = rmode();
    374   if (mode == RelocInfo::EMBEDDED_OBJECT) {
    375     StaticVisitor::VisitEmbeddedPointer(heap, this);
    376   } else if (RelocInfo::IsCodeTarget(mode)) {
    377     StaticVisitor::VisitCodeTarget(heap, this);
    378   } else if (mode == RelocInfo::CELL) {
    379     StaticVisitor::VisitCell(heap, this);
    380   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
    381     StaticVisitor::VisitExternalReference(this);
    382   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
    383              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
    384     StaticVisitor::VisitInternalReference(this);
    385   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
    386     StaticVisitor::VisitCodeAgeSequence(heap, this);
    387   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
    388              IsPatchedDebugBreakSlotSequence()) {
    389     StaticVisitor::VisitDebugTarget(heap, this);
    390   } else if (RelocInfo::IsRuntimeEntry(mode)) {
    391     StaticVisitor::VisitRuntimeEntry(this);
    392   }
    393 }
    394 
    395 
    396 // -----------------------------------------------------------------------------
    397 // Assembler.
    398 
    399 
    400 void Assembler::CheckBuffer() {
    401   if (buffer_space() <= kGap) {
    402     GrowBuffer();
    403   }
    404 }
    405 
    406 
    407 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
    408   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
    409     CheckTrampolinePool();
    410   }
    411 }
    412 
    413 
    414 void Assembler::CheckForEmitInForbiddenSlot() {
    415   if (!is_buffer_growth_blocked()) {
    416     CheckBuffer();
    417   }
    418   if (IsPrevInstrCompactBranch()) {
    419     // Nop instruction to preceed a CTI in forbidden slot:
    420     Instr nop = SPECIAL | SLL;
    421     *reinterpret_cast<Instr*>(pc_) = nop;
    422     pc_ += kInstrSize;
    423 
    424     ClearCompactBranchState();
    425   }
    426 }
    427 
    428 
    429 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
    430   if (IsPrevInstrCompactBranch()) {
    431     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
    432       // Nop instruction to preceed a CTI in forbidden slot:
    433       Instr nop = SPECIAL | SLL;
    434       *reinterpret_cast<Instr*>(pc_) = nop;
    435       pc_ += kInstrSize;
    436     }
    437     ClearCompactBranchState();
    438   }
    439   *reinterpret_cast<Instr*>(pc_) = x;
    440   pc_ += kInstrSize;
    441   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
    442     EmittedCompactBranchInstruction();
    443   }
    444   CheckTrampolinePoolQuick();
    445 }
    446 
    447 template <>
    448 inline void Assembler::EmitHelper(uint8_t x);
    449 
    450 template <typename T>
    451 void Assembler::EmitHelper(T x) {
    452   *reinterpret_cast<T*>(pc_) = x;
    453   pc_ += sizeof(x);
    454   CheckTrampolinePoolQuick();
    455 }
    456 
    457 template <>
    458 void Assembler::EmitHelper(uint8_t x) {
    459   *reinterpret_cast<uint8_t*>(pc_) = x;
    460   pc_ += sizeof(x);
    461   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
    462     CheckTrampolinePoolQuick();
    463   }
    464 }
    465 
    466 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
    467   if (!is_buffer_growth_blocked()) {
    468     CheckBuffer();
    469   }
    470   EmitHelper(x, is_compact_branch);
    471 }
    472 
    473 
    474 void Assembler::emit(uint64_t data) {
    475   CheckForEmitInForbiddenSlot();
    476   EmitHelper(data);
    477 }
    478 
    479 
    480 }  // namespace internal
    481 }  // namespace v8
    482 
    483 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
    484