Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #if V8_TARGET_ARCH_X64
      6 
      7 #include "src/regexp/x64/regexp-macro-assembler-x64.h"
      8 
      9 #include "src/factory.h"
     10 #include "src/log.h"
     11 #include "src/macro-assembler.h"
     12 #include "src/objects-inl.h"
     13 #include "src/regexp/regexp-macro-assembler.h"
     14 #include "src/regexp/regexp-stack.h"
     15 #include "src/unicode.h"
     16 
     17 namespace v8 {
     18 namespace internal {
     19 
     20 #ifndef V8_INTERPRETED_REGEXP
     21 
     22 /*
     23  * This assembler uses the following register assignment convention
     24  * - rdx : Currently loaded character(s) as Latin1 or UC16.  Must be loaded
     25  *         using LoadCurrentCharacter before using any of the dispatch methods.
     26  *         Temporarily stores the index of capture start after a matching pass
     27  *         for a global regexp.
     28  * - rdi : Current position in input, as negative offset from end of string.
     29  *         Please notice that this is the byte offset, not the character
     30  *         offset!  Is always a 32-bit signed (negative) offset, but must be
     31  *         maintained sign-extended to 64 bits, since it is used as index.
     32  * - rsi : End of input (points to byte after last character in input),
     33  *         so that rsi+rdi points to the current character.
     34  * - rbp : Frame pointer.  Used to access arguments, local variables and
     35  *         RegExp registers.
     36  * - rsp : Points to tip of C stack.
     37  * - rcx : Points to tip of backtrack stack.  The backtrack stack contains
     38  *         only 32-bit values.  Most are offsets from some base (e.g., character
     39  *         positions from end of string or code location from Code* pointer).
     40  * - r8  : Code object pointer.  Used to convert between absolute and
     41  *         code-object-relative addresses.
     42  *
     43  * The registers rax, rbx, r9 and r11 are free to use for computations.
     44  * If changed to use r12+, they should be saved as callee-save registers.
     45  * The macro assembler special register r13 (kRootRegister) isn't special
     46  * during execution of RegExp code (it doesn't hold the value assumed when
     47  * creating JS code), so Root related macro operations can be used.
     48  *
     49  * Each call to a C++ method should retain these registers.
     50  *
     51  * The stack will have the following content, in some order, indexable from the
     52  * frame pointer (see, e.g., kStackHighEnd):
     53  *    - Isolate* isolate     (address of the current isolate)
     54  *    - direct_call          (if 1, direct call from JavaScript code, if 0 call
     55  *                            through the runtime system)
     56  *    - stack_area_base      (high end of the memory area to use as
     57  *                            backtracking stack)
     58  *    - capture array size   (may fit multiple sets of matches)
     59  *    - int* capture_array   (int[num_saved_registers_], for output).
     60  *    - end of input         (address of end of string)
     61  *    - start of input       (address of first character in string)
     62  *    - start index          (character index of start)
     63  *    - String* input_string (input string)
     64  *    - return address
     65  *    - backup of callee save registers (rbx, possibly rsi and rdi).
     66  *    - success counter      (only useful for global regexp to count matches)
     67  *    - Offset of location before start of input (effectively character
     68  *      string start - 1).  Used to initialize capture registers to a
     69  *      non-position.
     70  *    - At start of string (if 1, we are starting at the start of the
     71  *      string, otherwise 0)
     72  *    - register 0  rbp[-n]   (Only positions must be stored in the first
     73  *    - register 1  rbp[-n-8]  num_saved_registers_ registers)
     74  *    - ...
     75  *
     76  * The first num_saved_registers_ registers are initialized to point to
     77  * "character -1" in the string (i.e., char_size() bytes before the first
     78  * character of the string).  The remaining registers starts out uninitialized.
     79  *
     80  * The first seven values must be provided by the calling code by
     81  * calling the code's entry address cast to a function pointer with the
     82  * following signature:
     83  * int (*match)(String* input_string,
     84  *              int start_index,
     85  *              Address start,
     86  *              Address end,
     87  *              int* capture_output_array,
     88  *              bool at_start,
     89  *              byte* stack_area_base,
     90  *              bool direct_call)
     91  */
     92 
     93 #define __ ACCESS_MASM((&masm_))
     94 
     95 RegExpMacroAssemblerX64::RegExpMacroAssemblerX64(Isolate* isolate, Zone* zone,
     96                                                  Mode mode,
     97                                                  int registers_to_save)
     98     : NativeRegExpMacroAssembler(isolate, zone),
     99       masm_(isolate, NULL, kRegExpCodeSize, CodeObjectRequired::kYes),
    100       no_root_array_scope_(&masm_),
    101       code_relative_fixup_positions_(4, zone),
    102       mode_(mode),
    103       num_registers_(registers_to_save),
    104       num_saved_registers_(registers_to_save),
    105       entry_label_(),
    106       start_label_(),
    107       success_label_(),
    108       backtrack_label_(),
    109       exit_label_() {
    110   DCHECK_EQ(0, registers_to_save % 2);
    111   __ jmp(&entry_label_);   // We'll write the entry code when we know more.
    112   __ bind(&start_label_);  // And then continue from here.
    113 }
    114 
    115 
    116 RegExpMacroAssemblerX64::~RegExpMacroAssemblerX64() {
    117   // Unuse labels in case we throw away the assembler without calling GetCode.
    118   entry_label_.Unuse();
    119   start_label_.Unuse();
    120   success_label_.Unuse();
    121   backtrack_label_.Unuse();
    122   exit_label_.Unuse();
    123   check_preempt_label_.Unuse();
    124   stack_overflow_label_.Unuse();
    125 }
    126 
    127 
    128 int RegExpMacroAssemblerX64::stack_limit_slack()  {
    129   return RegExpStack::kStackLimitSlack;
    130 }
    131 
    132 
    133 void RegExpMacroAssemblerX64::AdvanceCurrentPosition(int by) {
    134   if (by != 0) {
    135     __ addq(rdi, Immediate(by * char_size()));
    136   }
    137 }
    138 
    139 
    140 void RegExpMacroAssemblerX64::AdvanceRegister(int reg, int by) {
    141   DCHECK(reg >= 0);
    142   DCHECK(reg < num_registers_);
    143   if (by != 0) {
    144     __ addp(register_location(reg), Immediate(by));
    145   }
    146 }
    147 
    148 
    149 void RegExpMacroAssemblerX64::Backtrack() {
    150   CheckPreemption();
    151   // Pop Code* offset from backtrack stack, add Code* and jump to location.
    152   Pop(rbx);
    153   __ addp(rbx, code_object_pointer());
    154   __ jmp(rbx);
    155 }
    156 
    157 
    158 void RegExpMacroAssemblerX64::Bind(Label* label) {
    159   __ bind(label);
    160 }
    161 
    162 
    163 void RegExpMacroAssemblerX64::CheckCharacter(uint32_t c, Label* on_equal) {
    164   __ cmpl(current_character(), Immediate(c));
    165   BranchOrBacktrack(equal, on_equal);
    166 }
    167 
    168 
    169 void RegExpMacroAssemblerX64::CheckCharacterGT(uc16 limit, Label* on_greater) {
    170   __ cmpl(current_character(), Immediate(limit));
    171   BranchOrBacktrack(greater, on_greater);
    172 }
    173 
    174 
    175 void RegExpMacroAssemblerX64::CheckAtStart(Label* on_at_start) {
    176   __ leap(rax, Operand(rdi, -char_size()));
    177   __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
    178   BranchOrBacktrack(equal, on_at_start);
    179 }
    180 
    181 
    182 void RegExpMacroAssemblerX64::CheckNotAtStart(int cp_offset,
    183                                               Label* on_not_at_start) {
    184   __ leap(rax, Operand(rdi, -char_size() + cp_offset * char_size()));
    185   __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
    186   BranchOrBacktrack(not_equal, on_not_at_start);
    187 }
    188 
    189 
    190 void RegExpMacroAssemblerX64::CheckCharacterLT(uc16 limit, Label* on_less) {
    191   __ cmpl(current_character(), Immediate(limit));
    192   BranchOrBacktrack(less, on_less);
    193 }
    194 
    195 
    196 void RegExpMacroAssemblerX64::CheckGreedyLoop(Label* on_equal) {
    197   Label fallthrough;
    198   __ cmpl(rdi, Operand(backtrack_stackpointer(), 0));
    199   __ j(not_equal, &fallthrough);
    200   Drop();
    201   BranchOrBacktrack(no_condition, on_equal);
    202   __ bind(&fallthrough);
    203 }
    204 
    205 
    206 void RegExpMacroAssemblerX64::CheckNotBackReferenceIgnoreCase(
    207     int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
    208   Label fallthrough;
    209   ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
    210   ReadPositionFromRegister(rbx, start_reg + 1);  // Offset of end of capture
    211   __ subp(rbx, rdx);  // Length of capture.
    212 
    213   // -----------------------
    214   // rdx  = Start offset of capture.
    215   // rbx = Length of capture
    216 
    217   // At this point, the capture registers are either both set or both cleared.
    218   // If the capture length is zero, then the capture is either empty or cleared.
    219   // Fall through in both cases.
    220   __ j(equal, &fallthrough);
    221 
    222   // -----------------------
    223   // rdx - Start of capture
    224   // rbx - length of capture
    225   // Check that there are sufficient characters left in the input.
    226   if (read_backward) {
    227     __ movl(rax, Operand(rbp, kStringStartMinusOne));
    228     __ addl(rax, rbx);
    229     __ cmpl(rdi, rax);
    230     BranchOrBacktrack(less_equal, on_no_match);
    231   } else {
    232     __ movl(rax, rdi);
    233     __ addl(rax, rbx);
    234     BranchOrBacktrack(greater, on_no_match);
    235   }
    236 
    237   if (mode_ == LATIN1) {
    238     Label loop_increment;
    239     if (on_no_match == NULL) {
    240       on_no_match = &backtrack_label_;
    241     }
    242 
    243     __ leap(r9, Operand(rsi, rdx, times_1, 0));
    244     __ leap(r11, Operand(rsi, rdi, times_1, 0));
    245     if (read_backward) {
    246       __ subp(r11, rbx);  // Offset by length when matching backwards.
    247     }
    248     __ addp(rbx, r9);  // End of capture
    249     // ---------------------
    250     // r11 - current input character address
    251     // r9 - current capture character address
    252     // rbx - end of capture
    253 
    254     Label loop;
    255     __ bind(&loop);
    256     __ movzxbl(rdx, Operand(r9, 0));
    257     __ movzxbl(rax, Operand(r11, 0));
    258     // al - input character
    259     // dl - capture character
    260     __ cmpb(rax, rdx);
    261     __ j(equal, &loop_increment);
    262 
    263     // Mismatch, try case-insensitive match (converting letters to lower-case).
    264     // I.e., if or-ing with 0x20 makes values equal and in range 'a'-'z', it's
    265     // a match.
    266     __ orp(rax, Immediate(0x20));  // Convert match character to lower-case.
    267     __ orp(rdx, Immediate(0x20));  // Convert capture character to lower-case.
    268     __ cmpb(rax, rdx);
    269     __ j(not_equal, on_no_match);  // Definitely not equal.
    270     __ subb(rax, Immediate('a'));
    271     __ cmpb(rax, Immediate('z' - 'a'));
    272     __ j(below_equal, &loop_increment);  // In range 'a'-'z'.
    273     // Latin-1: Check for values in range [224,254] but not 247.
    274     __ subb(rax, Immediate(224 - 'a'));
    275     __ cmpb(rax, Immediate(254 - 224));
    276     __ j(above, on_no_match);  // Weren't Latin-1 letters.
    277     __ cmpb(rax, Immediate(247 - 224));  // Check for 247.
    278     __ j(equal, on_no_match);
    279     __ bind(&loop_increment);
    280     // Increment pointers into match and capture strings.
    281     __ addp(r11, Immediate(1));
    282     __ addp(r9, Immediate(1));
    283     // Compare to end of capture, and loop if not done.
    284     __ cmpp(r9, rbx);
    285     __ j(below, &loop);
    286 
    287     // Compute new value of character position after the matched part.
    288     __ movp(rdi, r11);
    289     __ subq(rdi, rsi);
    290     if (read_backward) {
    291       // Subtract match length if we matched backward.
    292       __ addq(rdi, register_location(start_reg));
    293       __ subq(rdi, register_location(start_reg + 1));
    294     }
    295   } else {
    296     DCHECK(mode_ == UC16);
    297     // Save important/volatile registers before calling C function.
    298 #ifndef _WIN64
    299     // Caller save on Linux and callee save in Windows.
    300     __ pushq(rsi);
    301     __ pushq(rdi);
    302 #endif
    303     __ pushq(backtrack_stackpointer());
    304 
    305     static const int num_arguments = 4;
    306     __ PrepareCallCFunction(num_arguments);
    307 
    308     // Put arguments into parameter registers. Parameters are
    309     //   Address byte_offset1 - Address captured substring's start.
    310     //   Address byte_offset2 - Address of current character position.
    311     //   size_t byte_length - length of capture in bytes(!)
    312 //   Isolate* isolate or 0 if unicode flag.
    313 #ifdef _WIN64
    314     DCHECK(rcx.is(arg_reg_1));
    315     DCHECK(rdx.is(arg_reg_2));
    316     // Compute and set byte_offset1 (start of capture).
    317     __ leap(rcx, Operand(rsi, rdx, times_1, 0));
    318     // Set byte_offset2.
    319     __ leap(rdx, Operand(rsi, rdi, times_1, 0));
    320     if (read_backward) {
    321       __ subq(rdx, rbx);
    322     }
    323 #else  // AMD64 calling convention
    324     DCHECK(rdi.is(arg_reg_1));
    325     DCHECK(rsi.is(arg_reg_2));
    326     // Compute byte_offset2 (current position = rsi+rdi).
    327     __ leap(rax, Operand(rsi, rdi, times_1, 0));
    328     // Compute and set byte_offset1 (start of capture).
    329     __ leap(rdi, Operand(rsi, rdx, times_1, 0));
    330     // Set byte_offset2.
    331     __ movp(rsi, rax);
    332     if (read_backward) {
    333       __ subq(rsi, rbx);
    334     }
    335 #endif  // _WIN64
    336 
    337     // Set byte_length.
    338     __ movp(arg_reg_3, rbx);
    339     // Isolate.
    340 #ifdef V8_I18N_SUPPORT
    341     if (unicode) {
    342       __ movp(arg_reg_4, Immediate(0));
    343     } else  // NOLINT
    344 #endif      // V8_I18N_SUPPORT
    345     {
    346       __ LoadAddress(arg_reg_4, ExternalReference::isolate_address(isolate()));
    347     }
    348 
    349     { // NOLINT: Can't find a way to open this scope without confusing the
    350       // linter.
    351       AllowExternalCallThatCantCauseGC scope(&masm_);
    352       ExternalReference compare =
    353           ExternalReference::re_case_insensitive_compare_uc16(isolate());
    354       __ CallCFunction(compare, num_arguments);
    355     }
    356 
    357     // Restore original values before reacting on result value.
    358     __ Move(code_object_pointer(), masm_.CodeObject());
    359     __ popq(backtrack_stackpointer());
    360 #ifndef _WIN64
    361     __ popq(rdi);
    362     __ popq(rsi);
    363 #endif
    364 
    365     // Check if function returned non-zero for success or zero for failure.
    366     __ testp(rax, rax);
    367     BranchOrBacktrack(zero, on_no_match);
    368     // On success, advance position by length of capture.
    369     // Requires that rbx is callee save (true for both Win64 and AMD64 ABIs).
    370     if (read_backward) {
    371       __ subq(rdi, rbx);
    372     } else {
    373       __ addq(rdi, rbx);
    374     }
    375   }
    376   __ bind(&fallthrough);
    377 }
    378 
    379 
    380 void RegExpMacroAssemblerX64::CheckNotBackReference(int start_reg,
    381                                                     bool read_backward,
    382                                                     Label* on_no_match) {
    383   Label fallthrough;
    384 
    385   // Find length of back-referenced capture.
    386   ReadPositionFromRegister(rdx, start_reg);  // Offset of start of capture
    387   ReadPositionFromRegister(rax, start_reg + 1);  // Offset of end of capture
    388   __ subp(rax, rdx);  // Length to check.
    389 
    390   // At this point, the capture registers are either both set or both cleared.
    391   // If the capture length is zero, then the capture is either empty or cleared.
    392   // Fall through in both cases.
    393   __ j(equal, &fallthrough);
    394 
    395   // -----------------------
    396   // rdx - Start of capture
    397   // rax - length of capture
    398   // Check that there are sufficient characters left in the input.
    399   if (read_backward) {
    400     __ movl(rbx, Operand(rbp, kStringStartMinusOne));
    401     __ addl(rbx, rax);
    402     __ cmpl(rdi, rbx);
    403     BranchOrBacktrack(less_equal, on_no_match);
    404   } else {
    405     __ movl(rbx, rdi);
    406     __ addl(rbx, rax);
    407     BranchOrBacktrack(greater, on_no_match);
    408   }
    409 
    410   // Compute pointers to match string and capture string
    411   __ leap(rbx, Operand(rsi, rdi, times_1, 0));  // Start of match.
    412   if (read_backward) {
    413     __ subq(rbx, rax);  // Offset by length when matching backwards.
    414   }
    415   __ addp(rdx, rsi);  // Start of capture.
    416   __ leap(r9, Operand(rdx, rax, times_1, 0));  // End of capture
    417 
    418   // -----------------------
    419   // rbx - current capture character address.
    420   // rbx - current input character address .
    421   // r9 - end of input to match (capture length after rbx).
    422 
    423   Label loop;
    424   __ bind(&loop);
    425   if (mode_ == LATIN1) {
    426     __ movzxbl(rax, Operand(rdx, 0));
    427     __ cmpb(rax, Operand(rbx, 0));
    428   } else {
    429     DCHECK(mode_ == UC16);
    430     __ movzxwl(rax, Operand(rdx, 0));
    431     __ cmpw(rax, Operand(rbx, 0));
    432   }
    433   BranchOrBacktrack(not_equal, on_no_match);
    434   // Increment pointers into capture and match string.
    435   __ addp(rbx, Immediate(char_size()));
    436   __ addp(rdx, Immediate(char_size()));
    437   // Check if we have reached end of match area.
    438   __ cmpp(rdx, r9);
    439   __ j(below, &loop);
    440 
    441   // Success.
    442   // Set current character position to position after match.
    443   __ movp(rdi, rbx);
    444   __ subq(rdi, rsi);
    445   if (read_backward) {
    446     // Subtract match length if we matched backward.
    447     __ addq(rdi, register_location(start_reg));
    448     __ subq(rdi, register_location(start_reg + 1));
    449   }
    450 
    451   __ bind(&fallthrough);
    452 }
    453 
    454 
    455 void RegExpMacroAssemblerX64::CheckNotCharacter(uint32_t c,
    456                                                 Label* on_not_equal) {
    457   __ cmpl(current_character(), Immediate(c));
    458   BranchOrBacktrack(not_equal, on_not_equal);
    459 }
    460 
    461 
    462 void RegExpMacroAssemblerX64::CheckCharacterAfterAnd(uint32_t c,
    463                                                      uint32_t mask,
    464                                                      Label* on_equal) {
    465   if (c == 0) {
    466     __ testl(current_character(), Immediate(mask));
    467   } else {
    468     __ movl(rax, Immediate(mask));
    469     __ andp(rax, current_character());
    470     __ cmpl(rax, Immediate(c));
    471   }
    472   BranchOrBacktrack(equal, on_equal);
    473 }
    474 
    475 
    476 void RegExpMacroAssemblerX64::CheckNotCharacterAfterAnd(uint32_t c,
    477                                                         uint32_t mask,
    478                                                         Label* on_not_equal) {
    479   if (c == 0) {
    480     __ testl(current_character(), Immediate(mask));
    481   } else {
    482     __ movl(rax, Immediate(mask));
    483     __ andp(rax, current_character());
    484     __ cmpl(rax, Immediate(c));
    485   }
    486   BranchOrBacktrack(not_equal, on_not_equal);
    487 }
    488 
    489 
    490 void RegExpMacroAssemblerX64::CheckNotCharacterAfterMinusAnd(
    491     uc16 c,
    492     uc16 minus,
    493     uc16 mask,
    494     Label* on_not_equal) {
    495   DCHECK(minus < String::kMaxUtf16CodeUnit);
    496   __ leap(rax, Operand(current_character(), -minus));
    497   __ andp(rax, Immediate(mask));
    498   __ cmpl(rax, Immediate(c));
    499   BranchOrBacktrack(not_equal, on_not_equal);
    500 }
    501 
    502 
    503 void RegExpMacroAssemblerX64::CheckCharacterInRange(
    504     uc16 from,
    505     uc16 to,
    506     Label* on_in_range) {
    507   __ leal(rax, Operand(current_character(), -from));
    508   __ cmpl(rax, Immediate(to - from));
    509   BranchOrBacktrack(below_equal, on_in_range);
    510 }
    511 
    512 
    513 void RegExpMacroAssemblerX64::CheckCharacterNotInRange(
    514     uc16 from,
    515     uc16 to,
    516     Label* on_not_in_range) {
    517   __ leal(rax, Operand(current_character(), -from));
    518   __ cmpl(rax, Immediate(to - from));
    519   BranchOrBacktrack(above, on_not_in_range);
    520 }
    521 
    522 
    523 void RegExpMacroAssemblerX64::CheckBitInTable(
    524     Handle<ByteArray> table,
    525     Label* on_bit_set) {
    526   __ Move(rax, table);
    527   Register index = current_character();
    528   if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
    529     __ movp(rbx, current_character());
    530     __ andp(rbx, Immediate(kTableMask));
    531     index = rbx;
    532   }
    533   __ cmpb(FieldOperand(rax, index, times_1, ByteArray::kHeaderSize),
    534           Immediate(0));
    535   BranchOrBacktrack(not_equal, on_bit_set);
    536 }
    537 
    538 
    539 bool RegExpMacroAssemblerX64::CheckSpecialCharacterClass(uc16 type,
    540                                                          Label* on_no_match) {
    541   // Range checks (c in min..max) are generally implemented by an unsigned
    542   // (c - min) <= (max - min) check, using the sequence:
    543   //   leap(rax, Operand(current_character(), -min)) or sub(rax, Immediate(min))
    544   //   cmp(rax, Immediate(max - min))
    545   switch (type) {
    546   case 's':
    547     // Match space-characters
    548     if (mode_ == LATIN1) {
    549       // One byte space characters are '\t'..'\r', ' ' and \u00a0.
    550       Label success;
    551       __ cmpl(current_character(), Immediate(' '));
    552       __ j(equal, &success, Label::kNear);
    553       // Check range 0x09..0x0d
    554       __ leap(rax, Operand(current_character(), -'\t'));
    555       __ cmpl(rax, Immediate('\r' - '\t'));
    556       __ j(below_equal, &success, Label::kNear);
    557       // \u00a0 (NBSP).
    558       __ cmpl(rax, Immediate(0x00a0 - '\t'));
    559       BranchOrBacktrack(not_equal, on_no_match);
    560       __ bind(&success);
    561       return true;
    562     }
    563     return false;
    564   case 'S':
    565     // The emitted code for generic character classes is good enough.
    566     return false;
    567   case 'd':
    568     // Match ASCII digits ('0'..'9')
    569     __ leap(rax, Operand(current_character(), -'0'));
    570     __ cmpl(rax, Immediate('9' - '0'));
    571     BranchOrBacktrack(above, on_no_match);
    572     return true;
    573   case 'D':
    574     // Match non ASCII-digits
    575     __ leap(rax, Operand(current_character(), -'0'));
    576     __ cmpl(rax, Immediate('9' - '0'));
    577     BranchOrBacktrack(below_equal, on_no_match);
    578     return true;
    579   case '.': {
    580     // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    581     __ movl(rax, current_character());
    582     __ xorp(rax, Immediate(0x01));
    583     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    584     __ subl(rax, Immediate(0x0b));
    585     __ cmpl(rax, Immediate(0x0c - 0x0b));
    586     BranchOrBacktrack(below_equal, on_no_match);
    587     if (mode_ == UC16) {
    588       // Compare original value to 0x2028 and 0x2029, using the already
    589       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    590       // 0x201d (0x2028 - 0x0b) or 0x201e.
    591       __ subl(rax, Immediate(0x2028 - 0x0b));
    592       __ cmpl(rax, Immediate(0x2029 - 0x2028));
    593       BranchOrBacktrack(below_equal, on_no_match);
    594     }
    595     return true;
    596   }
    597   case 'n': {
    598     // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    599     __ movl(rax, current_character());
    600     __ xorp(rax, Immediate(0x01));
    601     // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    602     __ subl(rax, Immediate(0x0b));
    603     __ cmpl(rax, Immediate(0x0c - 0x0b));
    604     if (mode_ == LATIN1) {
    605       BranchOrBacktrack(above, on_no_match);
    606     } else {
    607       Label done;
    608       BranchOrBacktrack(below_equal, &done);
    609       // Compare original value to 0x2028 and 0x2029, using the already
    610       // computed (current_char ^ 0x01 - 0x0b). I.e., check for
    611       // 0x201d (0x2028 - 0x0b) or 0x201e.
    612       __ subl(rax, Immediate(0x2028 - 0x0b));
    613       __ cmpl(rax, Immediate(0x2029 - 0x2028));
    614       BranchOrBacktrack(above, on_no_match);
    615       __ bind(&done);
    616     }
    617     return true;
    618   }
    619   case 'w': {
    620     if (mode_ != LATIN1) {
    621       // Table is 256 entries, so all Latin1 characters can be tested.
    622       __ cmpl(current_character(), Immediate('z'));
    623       BranchOrBacktrack(above, on_no_match);
    624     }
    625     __ Move(rbx, ExternalReference::re_word_character_map());
    626     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
    627     __ testb(Operand(rbx, current_character(), times_1, 0),
    628              current_character());
    629     BranchOrBacktrack(zero, on_no_match);
    630     return true;
    631   }
    632   case 'W': {
    633     Label done;
    634     if (mode_ != LATIN1) {
    635       // Table is 256 entries, so all Latin1 characters can be tested.
    636       __ cmpl(current_character(), Immediate('z'));
    637       __ j(above, &done);
    638     }
    639     __ Move(rbx, ExternalReference::re_word_character_map());
    640     DCHECK_EQ(0, word_character_map[0]);  // Character '\0' is not a word char.
    641     __ testb(Operand(rbx, current_character(), times_1, 0),
    642              current_character());
    643     BranchOrBacktrack(not_zero, on_no_match);
    644     if (mode_ != LATIN1) {
    645       __ bind(&done);
    646     }
    647     return true;
    648   }
    649 
    650   case '*':
    651     // Match any character.
    652     return true;
    653   // No custom implementation (yet): s(UC16), S(UC16).
    654   default:
    655     return false;
    656   }
    657 }
    658 
    659 
    660 void RegExpMacroAssemblerX64::Fail() {
    661   STATIC_ASSERT(FAILURE == 0);  // Return value for failure is zero.
    662   if (!global()) {
    663     __ Set(rax, FAILURE);
    664   }
    665   __ jmp(&exit_label_);
    666 }
    667 
    668 
    669 Handle<HeapObject> RegExpMacroAssemblerX64::GetCode(Handle<String> source) {
    670   Label return_rax;
    671   // Finalize code - write the entry point code now we know how many
    672   // registers we need.
    673   // Entry code:
    674   __ bind(&entry_label_);
    675 
    676   // Tell the system that we have a stack frame.  Because the type is MANUAL, no
    677   // is generated.
    678   FrameScope scope(&masm_, StackFrame::MANUAL);
    679 
    680   // Actually emit code to start a new stack frame.
    681   __ pushq(rbp);
    682   __ movp(rbp, rsp);
    683   // Save parameters and callee-save registers. Order here should correspond
    684   //  to order of kBackup_ebx etc.
    685 #ifdef _WIN64
    686   // MSVC passes arguments in rcx, rdx, r8, r9, with backing stack slots.
    687   // Store register parameters in pre-allocated stack slots,
    688   __ movq(Operand(rbp, kInputString), rcx);
    689   __ movq(Operand(rbp, kStartIndex), rdx);  // Passed as int32 in edx.
    690   __ movq(Operand(rbp, kInputStart), r8);
    691   __ movq(Operand(rbp, kInputEnd), r9);
    692   // Callee-save on Win64.
    693   __ pushq(rsi);
    694   __ pushq(rdi);
    695   __ pushq(rbx);
    696 #else
    697   // GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9 (and then on stack).
    698   // Push register parameters on stack for reference.
    699   DCHECK_EQ(kInputString, -1 * kRegisterSize);
    700   DCHECK_EQ(kStartIndex, -2 * kRegisterSize);
    701   DCHECK_EQ(kInputStart, -3 * kRegisterSize);
    702   DCHECK_EQ(kInputEnd, -4 * kRegisterSize);
    703   DCHECK_EQ(kRegisterOutput, -5 * kRegisterSize);
    704   DCHECK_EQ(kNumOutputRegisters, -6 * kRegisterSize);
    705   __ pushq(rdi);
    706   __ pushq(rsi);
    707   __ pushq(rdx);
    708   __ pushq(rcx);
    709   __ pushq(r8);
    710   __ pushq(r9);
    711 
    712   __ pushq(rbx);  // Callee-save
    713 #endif
    714 
    715   __ Push(Immediate(0));  // Number of successful matches in a global regexp.
    716   __ Push(Immediate(0));  // Make room for "string start - 1" constant.
    717 
    718   // Check if we have space on the stack for registers.
    719   Label stack_limit_hit;
    720   Label stack_ok;
    721 
    722   ExternalReference stack_limit =
    723       ExternalReference::address_of_stack_limit(isolate());
    724   __ movp(rcx, rsp);
    725   __ Move(kScratchRegister, stack_limit);
    726   __ subp(rcx, Operand(kScratchRegister, 0));
    727   // Handle it if the stack pointer is already below the stack limit.
    728   __ j(below_equal, &stack_limit_hit);
    729   // Check if there is room for the variable number of registers above
    730   // the stack limit.
    731   __ cmpp(rcx, Immediate(num_registers_ * kPointerSize));
    732   __ j(above_equal, &stack_ok);
    733   // Exit with OutOfMemory exception. There is not enough space on the stack
    734   // for our working registers.
    735   __ Set(rax, EXCEPTION);
    736   __ jmp(&return_rax);
    737 
    738   __ bind(&stack_limit_hit);
    739   __ Move(code_object_pointer(), masm_.CodeObject());
    740   CallCheckStackGuardState();  // Preserves no registers beside rbp and rsp.
    741   __ testp(rax, rax);
    742   // If returned value is non-zero, we exit with the returned value as result.
    743   __ j(not_zero, &return_rax);
    744 
    745   __ bind(&stack_ok);
    746 
    747   // Allocate space on stack for registers.
    748   __ subp(rsp, Immediate(num_registers_ * kPointerSize));
    749   // Load string length.
    750   __ movp(rsi, Operand(rbp, kInputEnd));
    751   // Load input position.
    752   __ movp(rdi, Operand(rbp, kInputStart));
    753   // Set up rdi to be negative offset from string end.
    754   __ subq(rdi, rsi);
    755   // Set rax to address of char before start of the string
    756   // (effectively string position -1).
    757   __ movp(rbx, Operand(rbp, kStartIndex));
    758   __ negq(rbx);
    759   if (mode_ == UC16) {
    760     __ leap(rax, Operand(rdi, rbx, times_2, -char_size()));
    761   } else {
    762     __ leap(rax, Operand(rdi, rbx, times_1, -char_size()));
    763   }
    764   // Store this value in a local variable, for use when clearing
    765   // position registers.
    766   __ movp(Operand(rbp, kStringStartMinusOne), rax);
    767 
    768 #if V8_OS_WIN
    769   // Ensure that we have written to each stack page, in order. Skipping a page
    770   // on Windows can cause segmentation faults. Assuming page size is 4k.
    771   const int kPageSize = 4096;
    772   const int kRegistersPerPage = kPageSize / kPointerSize;
    773   for (int i = num_saved_registers_ + kRegistersPerPage - 1;
    774       i < num_registers_;
    775       i += kRegistersPerPage) {
    776     __ movp(register_location(i), rax);  // One write every page.
    777   }
    778 #endif  // V8_OS_WIN
    779 
    780   // Initialize code object pointer.
    781   __ Move(code_object_pointer(), masm_.CodeObject());
    782 
    783   Label load_char_start_regexp, start_regexp;
    784   // Load newline if index is at start, previous character otherwise.
    785   __ cmpl(Operand(rbp, kStartIndex), Immediate(0));
    786   __ j(not_equal, &load_char_start_regexp, Label::kNear);
    787   __ Set(current_character(), '\n');
    788   __ jmp(&start_regexp, Label::kNear);
    789 
    790   // Global regexp restarts matching here.
    791   __ bind(&load_char_start_regexp);
    792   // Load previous char as initial value of current character register.
    793   LoadCurrentCharacterUnchecked(-1, 1);
    794   __ bind(&start_regexp);
    795 
    796   // Initialize on-stack registers.
    797   if (num_saved_registers_ > 0) {
    798     // Fill saved registers with initial value = start offset - 1
    799     // Fill in stack push order, to avoid accessing across an unwritten
    800     // page (a problem on Windows).
    801     if (num_saved_registers_ > 8) {
    802       __ Set(rcx, kRegisterZero);
    803       Label init_loop;
    804       __ bind(&init_loop);
    805       __ movp(Operand(rbp, rcx, times_1, 0), rax);
    806       __ subq(rcx, Immediate(kPointerSize));
    807       __ cmpq(rcx,
    808               Immediate(kRegisterZero - num_saved_registers_ * kPointerSize));
    809       __ j(greater, &init_loop);
    810     } else {  // Unroll the loop.
    811       for (int i = 0; i < num_saved_registers_; i++) {
    812         __ movp(register_location(i), rax);
    813       }
    814     }
    815   }
    816 
    817   // Initialize backtrack stack pointer.
    818   __ movp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
    819 
    820   __ jmp(&start_label_);
    821 
    822   // Exit code:
    823   if (success_label_.is_linked()) {
    824     // Save captures when successful.
    825     __ bind(&success_label_);
    826     if (num_saved_registers_ > 0) {
    827       // copy captures to output
    828       __ movp(rdx, Operand(rbp, kStartIndex));
    829       __ movp(rbx, Operand(rbp, kRegisterOutput));
    830       __ movp(rcx, Operand(rbp, kInputEnd));
    831       __ subp(rcx, Operand(rbp, kInputStart));
    832       if (mode_ == UC16) {
    833         __ leap(rcx, Operand(rcx, rdx, times_2, 0));
    834       } else {
    835         __ addp(rcx, rdx);
    836       }
    837       for (int i = 0; i < num_saved_registers_; i++) {
    838         __ movp(rax, register_location(i));
    839         if (i == 0 && global_with_zero_length_check()) {
    840           // Keep capture start in rdx for the zero-length check later.
    841           __ movp(rdx, rax);
    842         }
    843         __ addp(rax, rcx);  // Convert to index from start, not end.
    844         if (mode_ == UC16) {
    845           __ sarp(rax, Immediate(1));  // Convert byte index to character index.
    846         }
    847         __ movl(Operand(rbx, i * kIntSize), rax);
    848       }
    849     }
    850 
    851     if (global()) {
    852       // Restart matching if the regular expression is flagged as global.
    853       // Increment success counter.
    854       __ incp(Operand(rbp, kSuccessfulCaptures));
    855       // Capture results have been stored, so the number of remaining global
    856       // output registers is reduced by the number of stored captures.
    857       __ movsxlq(rcx, Operand(rbp, kNumOutputRegisters));
    858       __ subp(rcx, Immediate(num_saved_registers_));
    859       // Check whether we have enough room for another set of capture results.
    860       __ cmpp(rcx, Immediate(num_saved_registers_));
    861       __ j(less, &exit_label_);
    862 
    863       __ movp(Operand(rbp, kNumOutputRegisters), rcx);
    864       // Advance the location for output.
    865       __ addp(Operand(rbp, kRegisterOutput),
    866               Immediate(num_saved_registers_ * kIntSize));
    867 
    868       // Prepare rax to initialize registers with its value in the next run.
    869       __ movp(rax, Operand(rbp, kStringStartMinusOne));
    870 
    871       if (global_with_zero_length_check()) {
    872         // Special case for zero-length matches.
    873         // rdx: capture start index
    874         __ cmpp(rdi, rdx);
    875         // Not a zero-length match, restart.
    876         __ j(not_equal, &load_char_start_regexp);
    877         // rdi (offset from the end) is zero if we already reached the end.
    878         __ testp(rdi, rdi);
    879         __ j(zero, &exit_label_, Label::kNear);
    880         // Advance current position after a zero-length match.
    881         Label advance;
    882         __ bind(&advance);
    883         if (mode_ == UC16) {
    884           __ addq(rdi, Immediate(2));
    885         } else {
    886           __ incq(rdi);
    887         }
    888         if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
    889       }
    890 
    891       __ jmp(&load_char_start_regexp);
    892     } else {
    893       __ movp(rax, Immediate(SUCCESS));
    894     }
    895   }
    896 
    897   __ bind(&exit_label_);
    898   if (global()) {
    899     // Return the number of successful captures.
    900     __ movp(rax, Operand(rbp, kSuccessfulCaptures));
    901   }
    902 
    903   __ bind(&return_rax);
    904 #ifdef _WIN64
    905   // Restore callee save registers.
    906   __ leap(rsp, Operand(rbp, kLastCalleeSaveRegister));
    907   __ popq(rbx);
    908   __ popq(rdi);
    909   __ popq(rsi);
    910   // Stack now at rbp.
    911 #else
    912   // Restore callee save register.
    913   __ movp(rbx, Operand(rbp, kBackup_rbx));
    914   // Skip rsp to rbp.
    915   __ movp(rsp, rbp);
    916 #endif
    917   // Exit function frame, restore previous one.
    918   __ popq(rbp);
    919   __ ret(0);
    920 
    921   // Backtrack code (branch target for conditional backtracks).
    922   if (backtrack_label_.is_linked()) {
    923     __ bind(&backtrack_label_);
    924     Backtrack();
    925   }
    926 
    927   Label exit_with_exception;
    928 
    929   // Preempt-code
    930   if (check_preempt_label_.is_linked()) {
    931     SafeCallTarget(&check_preempt_label_);
    932 
    933     __ pushq(backtrack_stackpointer());
    934     __ pushq(rdi);
    935 
    936     CallCheckStackGuardState();
    937     __ testp(rax, rax);
    938     // If returning non-zero, we should end execution with the given
    939     // result as return value.
    940     __ j(not_zero, &return_rax);
    941 
    942     // Restore registers.
    943     __ Move(code_object_pointer(), masm_.CodeObject());
    944     __ popq(rdi);
    945     __ popq(backtrack_stackpointer());
    946     // String might have moved: Reload esi from frame.
    947     __ movp(rsi, Operand(rbp, kInputEnd));
    948     SafeReturn();
    949   }
    950 
    951   // Backtrack stack overflow code.
    952   if (stack_overflow_label_.is_linked()) {
    953     SafeCallTarget(&stack_overflow_label_);
    954     // Reached if the backtrack-stack limit has been hit.
    955 
    956     Label grow_failed;
    957     // Save registers before calling C function
    958 #ifndef _WIN64
    959     // Callee-save in Microsoft 64-bit ABI, but not in AMD64 ABI.
    960     __ pushq(rsi);
    961     __ pushq(rdi);
    962 #endif
    963 
    964     // Call GrowStack(backtrack_stackpointer())
    965     static const int num_arguments = 3;
    966     __ PrepareCallCFunction(num_arguments);
    967 #ifdef _WIN64
    968     // Microsoft passes parameters in rcx, rdx, r8.
    969     // First argument, backtrack stackpointer, is already in rcx.
    970     __ leap(rdx, Operand(rbp, kStackHighEnd));  // Second argument
    971     __ LoadAddress(r8, ExternalReference::isolate_address(isolate()));
    972 #else
    973     // AMD64 ABI passes parameters in rdi, rsi, rdx.
    974     __ movp(rdi, backtrack_stackpointer());   // First argument.
    975     __ leap(rsi, Operand(rbp, kStackHighEnd));  // Second argument.
    976     __ LoadAddress(rdx, ExternalReference::isolate_address(isolate()));
    977 #endif
    978     ExternalReference grow_stack =
    979         ExternalReference::re_grow_stack(isolate());
    980     __ CallCFunction(grow_stack, num_arguments);
    981     // If return NULL, we have failed to grow the stack, and
    982     // must exit with a stack-overflow exception.
    983     __ testp(rax, rax);
    984     __ j(equal, &exit_with_exception);
    985     // Otherwise use return value as new stack pointer.
    986     __ movp(backtrack_stackpointer(), rax);
    987     // Restore saved registers and continue.
    988     __ Move(code_object_pointer(), masm_.CodeObject());
    989 #ifndef _WIN64
    990     __ popq(rdi);
    991     __ popq(rsi);
    992 #endif
    993     SafeReturn();
    994   }
    995 
    996   if (exit_with_exception.is_linked()) {
    997     // If any of the code above needed to exit with an exception.
    998     __ bind(&exit_with_exception);
    999     // Exit with Result EXCEPTION(-1) to signal thrown exception.
   1000     __ Set(rax, EXCEPTION);
   1001     __ jmp(&return_rax);
   1002   }
   1003 
   1004   FixupCodeRelativePositions();
   1005 
   1006   CodeDesc code_desc;
   1007   masm_.GetCode(&code_desc);
   1008   Isolate* isolate = this->isolate();
   1009   Handle<Code> code = isolate->factory()->NewCode(
   1010       code_desc, Code::ComputeFlags(Code::REGEXP),
   1011       masm_.CodeObject());
   1012   PROFILE(isolate, RegExpCodeCreateEvent(AbstractCode::cast(*code), *source));
   1013   return Handle<HeapObject>::cast(code);
   1014 }
   1015 
   1016 
   1017 void RegExpMacroAssemblerX64::GoTo(Label* to) {
   1018   BranchOrBacktrack(no_condition, to);
   1019 }
   1020 
   1021 
   1022 void RegExpMacroAssemblerX64::IfRegisterGE(int reg,
   1023                                            int comparand,
   1024                                            Label* if_ge) {
   1025   __ cmpp(register_location(reg), Immediate(comparand));
   1026   BranchOrBacktrack(greater_equal, if_ge);
   1027 }
   1028 
   1029 
   1030 void RegExpMacroAssemblerX64::IfRegisterLT(int reg,
   1031                                            int comparand,
   1032                                            Label* if_lt) {
   1033   __ cmpp(register_location(reg), Immediate(comparand));
   1034   BranchOrBacktrack(less, if_lt);
   1035 }
   1036 
   1037 
   1038 void RegExpMacroAssemblerX64::IfRegisterEqPos(int reg,
   1039                                               Label* if_eq) {
   1040   __ cmpp(rdi, register_location(reg));
   1041   BranchOrBacktrack(equal, if_eq);
   1042 }
   1043 
   1044 
   1045 RegExpMacroAssembler::IrregexpImplementation
   1046     RegExpMacroAssemblerX64::Implementation() {
   1047   return kX64Implementation;
   1048 }
   1049 
   1050 
   1051 void RegExpMacroAssemblerX64::LoadCurrentCharacter(int cp_offset,
   1052                                                    Label* on_end_of_input,
   1053                                                    bool check_bounds,
   1054                                                    int characters) {
   1055   DCHECK(cp_offset < (1<<30));  // Be sane! (And ensure negation works)
   1056   if (check_bounds) {
   1057     if (cp_offset >= 0) {
   1058       CheckPosition(cp_offset + characters - 1, on_end_of_input);
   1059     } else {
   1060       CheckPosition(cp_offset, on_end_of_input);
   1061     }
   1062   }
   1063   LoadCurrentCharacterUnchecked(cp_offset, characters);
   1064 }
   1065 
   1066 
   1067 void RegExpMacroAssemblerX64::PopCurrentPosition() {
   1068   Pop(rdi);
   1069 }
   1070 
   1071 
   1072 void RegExpMacroAssemblerX64::PopRegister(int register_index) {
   1073   Pop(rax);
   1074   __ movp(register_location(register_index), rax);
   1075 }
   1076 
   1077 
   1078 void RegExpMacroAssemblerX64::PushBacktrack(Label* label) {
   1079   Push(label);
   1080   CheckStackLimit();
   1081 }
   1082 
   1083 
   1084 void RegExpMacroAssemblerX64::PushCurrentPosition() {
   1085   Push(rdi);
   1086 }
   1087 
   1088 
   1089 void RegExpMacroAssemblerX64::PushRegister(int register_index,
   1090                                            StackCheckFlag check_stack_limit) {
   1091   __ movp(rax, register_location(register_index));
   1092   Push(rax);
   1093   if (check_stack_limit) CheckStackLimit();
   1094 }
   1095 
   1096 
   1097 STATIC_ASSERT(kPointerSize == kInt64Size || kPointerSize == kInt32Size);
   1098 
   1099 
   1100 void RegExpMacroAssemblerX64::ReadCurrentPositionFromRegister(int reg) {
   1101   if (kPointerSize == kInt64Size) {
   1102     __ movq(rdi, register_location(reg));
   1103   } else {
   1104     // Need sign extension for x32 as rdi might be used as an index register.
   1105     __ movsxlq(rdi, register_location(reg));
   1106   }
   1107 }
   1108 
   1109 
   1110 void RegExpMacroAssemblerX64::ReadPositionFromRegister(Register dst, int reg) {
   1111   if (kPointerSize == kInt64Size) {
   1112     __ movq(dst, register_location(reg));
   1113   } else {
   1114     // Need sign extension for x32 as dst might be used as an index register.
   1115     __ movsxlq(dst, register_location(reg));
   1116   }
   1117 }
   1118 
   1119 
   1120 void RegExpMacroAssemblerX64::ReadStackPointerFromRegister(int reg) {
   1121   __ movp(backtrack_stackpointer(), register_location(reg));
   1122   __ addp(backtrack_stackpointer(), Operand(rbp, kStackHighEnd));
   1123 }
   1124 
   1125 
   1126 void RegExpMacroAssemblerX64::SetCurrentPositionFromEnd(int by) {
   1127   Label after_position;
   1128   __ cmpp(rdi, Immediate(-by * char_size()));
   1129   __ j(greater_equal, &after_position, Label::kNear);
   1130   __ movq(rdi, Immediate(-by * char_size()));
   1131   // On RegExp code entry (where this operation is used), the character before
   1132   // the current position is expected to be already loaded.
   1133   // We have advanced the position, so it's safe to read backwards.
   1134   LoadCurrentCharacterUnchecked(-1, 1);
   1135   __ bind(&after_position);
   1136 }
   1137 
   1138 
   1139 void RegExpMacroAssemblerX64::SetRegister(int register_index, int to) {
   1140   DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
   1141   __ movp(register_location(register_index), Immediate(to));
   1142 }
   1143 
   1144 
   1145 bool RegExpMacroAssemblerX64::Succeed() {
   1146   __ jmp(&success_label_);
   1147   return global();
   1148 }
   1149 
   1150 
   1151 void RegExpMacroAssemblerX64::WriteCurrentPositionToRegister(int reg,
   1152                                                              int cp_offset) {
   1153   if (cp_offset == 0) {
   1154     __ movp(register_location(reg), rdi);
   1155   } else {
   1156     __ leap(rax, Operand(rdi, cp_offset * char_size()));
   1157     __ movp(register_location(reg), rax);
   1158   }
   1159 }
   1160 
   1161 
   1162 void RegExpMacroAssemblerX64::ClearRegisters(int reg_from, int reg_to) {
   1163   DCHECK(reg_from <= reg_to);
   1164   __ movp(rax, Operand(rbp, kStringStartMinusOne));
   1165   for (int reg = reg_from; reg <= reg_to; reg++) {
   1166     __ movp(register_location(reg), rax);
   1167   }
   1168 }
   1169 
   1170 
   1171 void RegExpMacroAssemblerX64::WriteStackPointerToRegister(int reg) {
   1172   __ movp(rax, backtrack_stackpointer());
   1173   __ subp(rax, Operand(rbp, kStackHighEnd));
   1174   __ movp(register_location(reg), rax);
   1175 }
   1176 
   1177 
   1178 // Private methods:
   1179 
   1180 void RegExpMacroAssemblerX64::CallCheckStackGuardState() {
   1181   // This function call preserves no register values. Caller should
   1182   // store anything volatile in a C call or overwritten by this function.
   1183   static const int num_arguments = 3;
   1184   __ PrepareCallCFunction(num_arguments);
   1185 #ifdef _WIN64
   1186   // Second argument: Code* of self. (Do this before overwriting r8).
   1187   __ movp(rdx, code_object_pointer());
   1188   // Third argument: RegExp code frame pointer.
   1189   __ movp(r8, rbp);
   1190   // First argument: Next address on the stack (will be address of
   1191   // return address).
   1192   __ leap(rcx, Operand(rsp, -kPointerSize));
   1193 #else
   1194   // Third argument: RegExp code frame pointer.
   1195   __ movp(rdx, rbp);
   1196   // Second argument: Code* of self.
   1197   __ movp(rsi, code_object_pointer());
   1198   // First argument: Next address on the stack (will be address of
   1199   // return address).
   1200   __ leap(rdi, Operand(rsp, -kRegisterSize));
   1201 #endif
   1202   ExternalReference stack_check =
   1203       ExternalReference::re_check_stack_guard_state(isolate());
   1204   __ CallCFunction(stack_check, num_arguments);
   1205 }
   1206 
   1207 
   1208 // Helper function for reading a value out of a stack frame.
   1209 template <typename T>
   1210 static T& frame_entry(Address re_frame, int frame_offset) {
   1211   return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
   1212 }
   1213 
   1214 
   1215 template <typename T>
   1216 static T* frame_entry_address(Address re_frame, int frame_offset) {
   1217   return reinterpret_cast<T*>(re_frame + frame_offset);
   1218 }
   1219 
   1220 
   1221 int RegExpMacroAssemblerX64::CheckStackGuardState(Address* return_address,
   1222                                                   Code* re_code,
   1223                                                   Address re_frame) {
   1224   return NativeRegExpMacroAssembler::CheckStackGuardState(
   1225       frame_entry<Isolate*>(re_frame, kIsolate),
   1226       frame_entry<int>(re_frame, kStartIndex),
   1227       frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code,
   1228       frame_entry_address<String*>(re_frame, kInputString),
   1229       frame_entry_address<const byte*>(re_frame, kInputStart),
   1230       frame_entry_address<const byte*>(re_frame, kInputEnd));
   1231 }
   1232 
   1233 
   1234 Operand RegExpMacroAssemblerX64::register_location(int register_index) {
   1235   DCHECK(register_index < (1<<30));
   1236   if (num_registers_ <= register_index) {
   1237     num_registers_ = register_index + 1;
   1238   }
   1239   return Operand(rbp, kRegisterZero - register_index * kPointerSize);
   1240 }
   1241 
   1242 
   1243 void RegExpMacroAssemblerX64::CheckPosition(int cp_offset,
   1244                                             Label* on_outside_input) {
   1245   if (cp_offset >= 0) {
   1246     __ cmpl(rdi, Immediate(-cp_offset * char_size()));
   1247     BranchOrBacktrack(greater_equal, on_outside_input);
   1248   } else {
   1249     __ leap(rax, Operand(rdi, cp_offset * char_size()));
   1250     __ cmpp(rax, Operand(rbp, kStringStartMinusOne));
   1251     BranchOrBacktrack(less_equal, on_outside_input);
   1252   }
   1253 }
   1254 
   1255 
   1256 void RegExpMacroAssemblerX64::BranchOrBacktrack(Condition condition,
   1257                                                 Label* to) {
   1258   if (condition < 0) {  // No condition
   1259     if (to == NULL) {
   1260       Backtrack();
   1261       return;
   1262     }
   1263     __ jmp(to);
   1264     return;
   1265   }
   1266   if (to == NULL) {
   1267     __ j(condition, &backtrack_label_);
   1268     return;
   1269   }
   1270   __ j(condition, to);
   1271 }
   1272 
   1273 
   1274 void RegExpMacroAssemblerX64::SafeCall(Label* to) {
   1275   __ call(to);
   1276 }
   1277 
   1278 
   1279 void RegExpMacroAssemblerX64::SafeCallTarget(Label* label) {
   1280   __ bind(label);
   1281   __ subp(Operand(rsp, 0), code_object_pointer());
   1282 }
   1283 
   1284 
   1285 void RegExpMacroAssemblerX64::SafeReturn() {
   1286   __ addp(Operand(rsp, 0), code_object_pointer());
   1287   __ ret(0);
   1288 }
   1289 
   1290 
   1291 void RegExpMacroAssemblerX64::Push(Register source) {
   1292   DCHECK(!source.is(backtrack_stackpointer()));
   1293   // Notice: This updates flags, unlike normal Push.
   1294   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
   1295   __ movl(Operand(backtrack_stackpointer(), 0), source);
   1296 }
   1297 
   1298 
   1299 void RegExpMacroAssemblerX64::Push(Immediate value) {
   1300   // Notice: This updates flags, unlike normal Push.
   1301   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
   1302   __ movl(Operand(backtrack_stackpointer(), 0), value);
   1303 }
   1304 
   1305 
   1306 void RegExpMacroAssemblerX64::FixupCodeRelativePositions() {
   1307   for (int i = 0, n = code_relative_fixup_positions_.length(); i < n; i++) {
   1308     int position = code_relative_fixup_positions_[i];
   1309     // The position succeeds a relative label offset from position.
   1310     // Patch the relative offset to be relative to the Code object pointer
   1311     // instead.
   1312     int patch_position = position - kIntSize;
   1313     int offset = masm_.long_at(patch_position);
   1314     masm_.long_at_put(patch_position,
   1315                        offset
   1316                        + position
   1317                        + Code::kHeaderSize
   1318                        - kHeapObjectTag);
   1319   }
   1320   code_relative_fixup_positions_.Clear();
   1321 }
   1322 
   1323 
   1324 void RegExpMacroAssemblerX64::Push(Label* backtrack_target) {
   1325   __ subp(backtrack_stackpointer(), Immediate(kIntSize));
   1326   __ movl(Operand(backtrack_stackpointer(), 0), backtrack_target);
   1327   MarkPositionForCodeRelativeFixup();
   1328 }
   1329 
   1330 
   1331 void RegExpMacroAssemblerX64::Pop(Register target) {
   1332   DCHECK(!target.is(backtrack_stackpointer()));
   1333   __ movsxlq(target, Operand(backtrack_stackpointer(), 0));
   1334   // Notice: This updates flags, unlike normal Pop.
   1335   __ addp(backtrack_stackpointer(), Immediate(kIntSize));
   1336 }
   1337 
   1338 
   1339 void RegExpMacroAssemblerX64::Drop() {
   1340   __ addp(backtrack_stackpointer(), Immediate(kIntSize));
   1341 }
   1342 
   1343 
   1344 void RegExpMacroAssemblerX64::CheckPreemption() {
   1345   // Check for preemption.
   1346   Label no_preempt;
   1347   ExternalReference stack_limit =
   1348       ExternalReference::address_of_stack_limit(isolate());
   1349   __ load_rax(stack_limit);
   1350   __ cmpp(rsp, rax);
   1351   __ j(above, &no_preempt);
   1352 
   1353   SafeCall(&check_preempt_label_);
   1354 
   1355   __ bind(&no_preempt);
   1356 }
   1357 
   1358 
   1359 void RegExpMacroAssemblerX64::CheckStackLimit() {
   1360   Label no_stack_overflow;
   1361   ExternalReference stack_limit =
   1362       ExternalReference::address_of_regexp_stack_limit(isolate());
   1363   __ load_rax(stack_limit);
   1364   __ cmpp(backtrack_stackpointer(), rax);
   1365   __ j(above, &no_stack_overflow);
   1366 
   1367   SafeCall(&stack_overflow_label_);
   1368 
   1369   __ bind(&no_stack_overflow);
   1370 }
   1371 
   1372 
   1373 void RegExpMacroAssemblerX64::LoadCurrentCharacterUnchecked(int cp_offset,
   1374                                                             int characters) {
   1375   if (mode_ == LATIN1) {
   1376     if (characters == 4) {
   1377       __ movl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1378     } else if (characters == 2) {
   1379       __ movzxwl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1380     } else {
   1381       DCHECK(characters == 1);
   1382       __ movzxbl(current_character(), Operand(rsi, rdi, times_1, cp_offset));
   1383     }
   1384   } else {
   1385     DCHECK(mode_ == UC16);
   1386     if (characters == 2) {
   1387       __ movl(current_character(),
   1388               Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
   1389     } else {
   1390       DCHECK(characters == 1);
   1391       __ movzxwl(current_character(),
   1392                  Operand(rsi, rdi, times_1, cp_offset * sizeof(uc16)));
   1393     }
   1394   }
   1395 }
   1396 
   1397 #undef __
   1398 
   1399 #endif  // V8_INTERPRETED_REGEXP
   1400 
   1401 }  // namespace internal
   1402 }  // namespace v8
   1403 
   1404 #endif  // V8_TARGET_ARCH_X64
   1405