1 /* -*- mode: C; c-basic-offset: 3; -*- */ 2 3 /*--------------------------------------------------------------------*/ 4 /*--- Reading of ARM(32) EXIDX unwind information readexidx.c ---*/ 5 /*--------------------------------------------------------------------*/ 6 7 /* 8 This file is part of Valgrind, a dynamic binary instrumentation 9 framework. 10 11 Copyright (C) 2014-2017 Mozilla Foundation 12 13 This program is free software; you can redistribute it and/or 14 modify it under the terms of the GNU General Public License as 15 published by the Free Software Foundation; either version 2 of the 16 License, or (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, but 19 WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 21 General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 26 02111-1307, USA. 27 28 The GNU General Public License is contained in the file COPYING. 29 */ 30 31 /* libunwind - a platform-independent unwind library 32 Copyright 2011 Linaro Limited 33 34 This file is part of libunwind. 35 36 Permission is hereby granted, free of charge, to any person obtaining 37 a copy of this software and associated documentation files (the 38 "Software"), to deal in the Software without restriction, including 39 without limitation the rights to use, copy, modify, merge, publish, 40 distribute, sublicense, and/or sell copies of the Software, and to 41 permit persons to whom the Software is furnished to do so, subject to 42 the following conditions: 43 44 The above copyright notice and this permission notice shall be 45 included in all copies or substantial portions of the Software. 46 47 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 48 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 49 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 50 NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE 51 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION 52 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION 53 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ 54 55 56 // Copyright (c) 2010 Google Inc. 57 // All rights reserved. 58 // 59 // Redistribution and use in source and binary forms, with or without 60 // modification, are permitted provided that the following conditions are 61 // met: 62 // 63 // * Redistributions of source code must retain the above copyright 64 // notice, this list of conditions and the following disclaimer. 65 // * Redistributions in binary form must reproduce the above 66 // copyright notice, this list of conditions and the following disclaimer 67 // in the documentation and/or other materials provided with the 68 // distribution. 69 // * Neither the name of Google Inc. nor the names of its 70 // contributors may be used to endorse or promote products derived from 71 // this software without specific prior written permission. 72 // 73 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 74 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 75 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 76 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 77 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 78 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 79 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 80 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 81 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 82 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 83 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 84 85 86 // Derived originally from libunwind, with very extensive modifications. 87 /* Contributed by Julian Seward <jseward (at) acm.org> */ 88 89 90 // This file translates EXIDX unwind information into the same format 91 // that Valgrind uses for CFI information. Hence Valgrind's CFI 92 // unwinding abilities also become usable for EXIDX. 93 // 94 // See: "Exception Handling ABI for the ARM Architecture", ARM IHI 0038A 95 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0038a/IHI0038A_ehabi.pdf 96 97 // EXIDX data is presented in two parts: 98 // 99 // * an index table. This contains two words per routine, 100 // the first of which identifies the routine, and the second 101 // of which is a reference to the unwind bytecode. If the 102 // bytecode is very compact -- 3 bytes or less -- it can be 103 // stored directly in the second word. 104 // 105 // * an area containing the unwind bytecodes. 106 // 107 // General flow is: ML_(read_exidx) iterates over all 108 // of the index table entries (pairs). For each entry, it: 109 // 110 // * calls ExtabEntryExtract to copy the bytecode out into 111 // an intermediate buffer. 112 113 // * uses ExtabEntryDecode to parse the intermediate 114 // buffer. Each bytecode instruction is bundled into a 115 // arm_ex_to_module::extab_data structure, and handed to .. 116 // 117 // * .. TranslateCmd, which generates the pseudo-CFI 118 // records that Valgrind stores. 119 120 // This file is derived from the following files in the Mozilla tree 121 // toolkit/crashreporter/google-breakpad: 122 // src/common/arm_ex_to_module.cc 123 // src/common/arm_ex_reader.cc 124 125 126 #if defined(VGA_arm) 127 128 #include "pub_core_basics.h" 129 #include "pub_core_libcbase.h" 130 #include "pub_core_libcprint.h" 131 #include "pub_core_libcassert.h" 132 #include "pub_core_options.h" 133 134 #include "priv_storage.h" 135 #include "priv_readexidx.h" 136 137 138 static void complain ( const HChar* str ) 139 { 140 if (!VG_(clo_xml) && VG_(clo_verbosity) > 1) 141 VG_(message)(Vg_UserMsg, 142 " Warning: whilst reading EXIDX: %s\n", str); 143 } 144 145 146 /*------------------------------------------------------------*/ 147 /*--- MemoryRange ---*/ 148 /*------------------------------------------------------------*/ 149 150 typedef struct { Addr start; SizeT len; } MemoryRange; 151 152 /* Initialise |mr| for [start .. start+len). Zero ranges are allowed, 153 but wraparounds are not. Returns True on success. */ 154 static Bool MemoryRange__init ( /*OUT*/MemoryRange* mr, 155 const void* startV, SizeT len ) 156 { 157 VG_(memset)(mr, 0, sizeof(*mr)); 158 /* This relies on Addr being unsigned. */ 159 Addr start = (Addr)startV; 160 if (len > 0 && start + len - 1 < start) { 161 return False; 162 } 163 mr->start = start; 164 mr->len = len; 165 return True; 166 } 167 168 static Bool MemoryRange__covers ( MemoryRange* mr, 169 const void* startV, SizeT len ) 170 { 171 vg_assert(len > 0); 172 if (mr->len == 0) { 173 return False; 174 } 175 Addr start = (Addr)startV; 176 return start >= mr->start && start + len - 1 <= mr->start + mr->len - 1; 177 } 178 179 180 /*------------------------------------------------------------*/ 181 /*--- (Pass 1 of 3) The EXIDX extractor ---*/ 182 /*------------------------------------------------------------*/ 183 184 #define ARM_EXIDX_CANT_UNWIND 0x00000001 185 #define ARM_EXIDX_COMPACT 0x80000000 186 #define ARM_EXTBL_OP_FINISH 0xb0 187 #define ARM_EXIDX_TABLE_LIMIT (255*4) 188 189 /* These are in the ARM-defined format, so their layout is important. */ 190 typedef 191 struct { UInt addr; UInt data; } 192 ExidxEntry; 193 194 195 typedef 196 enum { 197 ExSuccess=1, // success 198 ExInBufOverflow, // out-of-range while reading .exidx 199 ExOutBufOverflow, // output buffer is too small 200 ExCantUnwind, // this function is marked CANT_UNWIND 201 ExCantRepresent, // entry valid, but we can't represent it 202 ExInvalid // entry is invalid 203 } 204 ExExtractResult; 205 206 207 /* Helper function for fishing bits out of the EXIDX representation. */ 208 static const void* Prel31ToAddr(const void* addr) 209 { 210 UInt offset32 = *(const UInt*)addr; 211 // sign extend offset32[30:0] to 64 bits -- copy bit 30 to positions 212 // 63:31 inclusive. 213 ULong offset64 = offset32; 214 if (offset64 & (1ULL << 30)) 215 offset64 |= 0xFFFFFFFF80000000ULL; 216 else 217 offset64 &= 0x000000007FFFFFFFULL; 218 return ((const UChar*)addr) + (UWord)offset64; 219 } 220 221 222 // Extract unwind bytecode for the function denoted by |entry| into |buf|, 223 // and return the number of bytes of |buf| written, along with a code 224 // indicating the outcome. 225 static 226 ExExtractResult ExtabEntryExtract ( MemoryRange* mr_exidx, 227 MemoryRange* mr_extab, 228 const ExidxEntry* entry, 229 UChar* buf, SizeT buf_size, 230 /*OUT*/SizeT* buf_used) 231 { 232 Bool ok; 233 MemoryRange mr_out; 234 ok = MemoryRange__init(&mr_out, buf, buf_size); 235 if (!ok) return ExOutBufOverflow; 236 237 *buf_used = 0; 238 239 # define PUT_BUF_U8(_byte) \ 240 do { if (!MemoryRange__covers(&mr_out, &buf[*buf_used], 1)) \ 241 return ExOutBufOverflow; \ 242 buf[(*buf_used)++] = (_byte); } while (0) 243 244 # define GET_EX_U32(_lval, _addr, _mr) \ 245 do { if (!MemoryRange__covers((_mr), (const void*)(_addr), 4)) \ 246 return ExInBufOverflow; \ 247 (_lval) = *(const UInt*)(_addr); } while (0) 248 249 # define GET_EXIDX_U32(_lval, _addr) \ 250 GET_EX_U32(_lval, _addr, mr_exidx) 251 252 # define GET_EXTAB_U32(_lval, _addr) \ 253 GET_EX_U32(_lval, _addr, mr_extab) 254 255 UInt data; 256 GET_EXIDX_U32(data, &entry->data); 257 258 // A function can be marked CANT_UNWIND if (eg) it is known to be 259 // at the bottom of the stack. 260 if (data == ARM_EXIDX_CANT_UNWIND) 261 return ExCantUnwind; 262 263 UInt pers; // personality number 264 UInt extra; // number of extra data words required 265 UInt extra_allowed; // number of extra data words allowed 266 const UInt* extbl_data; // the handler entry, if not inlined 267 268 if (data & ARM_EXIDX_COMPACT) { 269 // The handler table entry has been inlined into the index table entry. 270 // In this case it can only be an ARM-defined compact model, since 271 // bit 31 is 1. Only personalities 0, 1 and 2 are defined for the 272 // ARM compact model, but 1 and 2 are "Long format" and may require 273 // extra data words. Hence the allowable personalities here are: 274 // personality 0, in which case 'extra' has no meaning 275 // personality 1, with zero extra words 276 // personality 2, with zero extra words 277 extbl_data = NULL; 278 pers = (data >> 24) & 0x0F; 279 extra = (data >> 16) & 0xFF; 280 extra_allowed = 0; 281 } 282 else { 283 // The index table entry is a pointer to the handler entry. Note 284 // that Prel31ToAddr will read the given address, but we already 285 // range-checked above. 286 extbl_data = Prel31ToAddr(&entry->data); 287 GET_EXTAB_U32(data, extbl_data); 288 if (!(data & ARM_EXIDX_COMPACT)) { 289 // This denotes a "generic model" handler. That will involve 290 // executing arbitrary machine code, which is something we 291 // can't represent here; hence reject it. 292 return ExCantRepresent; 293 } 294 // So we have a compact model representation. Again, 3 possible 295 // personalities, but this time up to 255 allowable extra words. 296 pers = (data >> 24) & 0x0F; 297 extra = (data >> 16) & 0xFF; 298 extra_allowed = 255; 299 extbl_data++; 300 } 301 302 // Now look at the handler table entry. The first word is |data| 303 // and subsequent words start at |*extbl_data|. The number of 304 // extra words to use is |extra|, provided that the personality 305 // allows extra words. Even if it does, none may be available -- 306 // extra_allowed is the maximum number of extra words allowed. */ 307 if (pers == 0) { 308 // "Su16" in the documentation -- 3 unwinding insn bytes 309 // |extra| has no meaning here; instead that byte is an unwind-info byte 310 PUT_BUF_U8(data >> 16); 311 PUT_BUF_U8(data >> 8); 312 PUT_BUF_U8(data); 313 } 314 else if ((pers == 1 || pers == 2) && extra <= extra_allowed) { 315 // "Lu16" or "Lu32" respectively -- 2 unwinding insn bytes, 316 // and up to 255 extra words. 317 PUT_BUF_U8(data >> 8); 318 PUT_BUF_U8(data); 319 UInt j; 320 for (j = 0; j < extra; j++) { 321 GET_EXTAB_U32(data, extbl_data); 322 extbl_data++; 323 PUT_BUF_U8(data >> 24); 324 PUT_BUF_U8(data >> 16); 325 PUT_BUF_U8(data >> 8); 326 PUT_BUF_U8(data >> 0); 327 } 328 } 329 else { 330 // The entry is invalid. 331 return ExInvalid; 332 } 333 334 // Make sure the entry is terminated with "FINISH" 335 if (*buf_used > 0 && buf[(*buf_used) - 1] != ARM_EXTBL_OP_FINISH) 336 PUT_BUF_U8(ARM_EXTBL_OP_FINISH); 337 338 return ExSuccess; 339 340 # undef GET_EXTAB_U32 341 # undef GET_EXIDX_U32 342 # undef GET_U32 343 # undef PUT_BUF_U8 344 } 345 346 347 /*------------------------------------------------------------*/ 348 /*--- (Pass 2 of 3) The EXIDX decoder ---*/ 349 /*------------------------------------------------------------*/ 350 351 /* This (ExtabData) is an intermediate structure, used to carry 352 information from the decoder (pass 2) to the summariser (pass 3). 353 I don't think its layout is important. */ 354 typedef 355 enum { 356 ARM_EXIDX_CMD_FINISH=0x100, 357 ARM_EXIDX_CMD_SUB_FROM_VSP, 358 ARM_EXIDX_CMD_ADD_TO_VSP, 359 ARM_EXIDX_CMD_REG_POP, 360 ARM_EXIDX_CMD_REG_TO_SP, 361 ARM_EXIDX_CMD_VFP_POP, 362 ARM_EXIDX_CMD_WREG_POP, 363 ARM_EXIDX_CMD_WCGR_POP, 364 ARM_EXIDX_CMD_RESERVED, 365 ARM_EXIDX_CMD_REFUSED 366 } 367 ExtabCmd; 368 369 static const HChar* showExtabCmd ( ExtabCmd cmd ) { 370 switch (cmd) { 371 case ARM_EXIDX_CMD_FINISH: return "FINISH"; 372 case ARM_EXIDX_CMD_SUB_FROM_VSP: return "SUB_FROM_VSP"; 373 case ARM_EXIDX_CMD_ADD_TO_VSP: return "ADD_TO_VSP"; 374 case ARM_EXIDX_CMD_REG_POP: return "REG_POP"; 375 case ARM_EXIDX_CMD_REG_TO_SP: return "REG_TO_SP"; 376 case ARM_EXIDX_CMD_VFP_POP: return "VFP_POP"; 377 case ARM_EXIDX_CMD_WREG_POP: return "WREG_POP"; 378 case ARM_EXIDX_CMD_WCGR_POP: return "WCGR_POP"; 379 case ARM_EXIDX_CMD_RESERVED: return "RESERVED"; 380 case ARM_EXIDX_CMD_REFUSED: return "REFUSED"; 381 default: return "???"; 382 } 383 } 384 385 386 typedef 387 struct { ExtabCmd cmd; UInt data; } 388 ExtabData; 389 390 static void ppExtabData ( const ExtabData* etd ) { 391 VG_(printf)("ExtabData{%-12s 0x%08x}", showExtabCmd(etd->cmd), etd->data); 392 } 393 394 395 enum extab_cmd_flags { 396 ARM_EXIDX_VFP_SHIFT_16 = 1 << 16, 397 ARM_EXIDX_VFP_FSTMD = 1 << 17, // distinguishes FSTMxxD from FSTMxxX 398 }; 399 400 401 /* Forwards */ 402 typedef struct _SummState SummState; 403 static Int TranslateCmd(/*MOD*/SummState* state, const ExtabData* edata); 404 405 406 // Take the unwind information extracted by ExtabEntryExtract 407 // and parse it into frame-unwind instructions. These are as 408 // specified in "Table 4, ARM-defined frame-unwinding instructions" 409 // in the specification document detailed in comments at the top 410 // of this file. 411 // 412 // This reads from |buf[0, +data_size)|. It checks for overruns of 413 // the input buffer and returns a negative value if that happens, or 414 // for any other failure cases. It returns zero in case of success. 415 // Whilst reading the input, it dumps the result in |*state|. 416 static 417 Int ExtabEntryDecode(/*OUT*/SummState* state, const UChar* buf, SizeT buf_size) 418 { 419 if (buf == NULL || buf_size == 0) 420 return -3; 421 422 MemoryRange mr_in; 423 Bool ok = MemoryRange__init(&mr_in, buf, buf_size); 424 if (!ok) 425 return -2; 426 427 # define GET_BUF_U8(_lval) \ 428 do { if (!MemoryRange__covers(&mr_in, buf, 1)) \ 429 return -4; \ 430 (_lval) = *(buf++); } while (0) 431 432 const UChar* end = buf + buf_size; 433 434 while (buf < end) { 435 ExtabData edata; 436 VG_(bzero_inline)(&edata, sizeof(edata)); 437 438 UChar op; 439 GET_BUF_U8(op); 440 if ((op & 0xc0) == 0x00) { 441 // vsp = vsp + (xxxxxx << 2) + 4 442 edata.cmd = ARM_EXIDX_CMD_ADD_TO_VSP; 443 edata.data = (((Int)op & 0x3f) << 2) + 4; 444 } 445 else if ((op & 0xc0) == 0x40) { 446 // vsp = vsp - (xxxxxx << 2) - 4 447 edata.cmd = ARM_EXIDX_CMD_SUB_FROM_VSP; 448 edata.data = (((Int)op & 0x3f) << 2) + 4; 449 } 450 else if ((op & 0xf0) == 0x80) { 451 UChar op2; 452 GET_BUF_U8(op2); 453 if (op == 0x80 && op2 == 0x00) { 454 // Refuse to unwind 455 edata.cmd = ARM_EXIDX_CMD_REFUSED; 456 } else { 457 // Pop up to 12 integer registers under masks {r15-r12},{r11-r4} 458 edata.cmd = ARM_EXIDX_CMD_REG_POP; 459 edata.data = ((op & 0xf) << 8) | op2; 460 edata.data = edata.data << 4; 461 } 462 } 463 else if ((op & 0xf0) == 0x90) { 464 if (op == 0x9d || op == 0x9f) { 465 // 9d: Reserved as prefix for ARM register to register moves 466 // 9f: Reserved as prefix for Intel Wireless MMX reg to reg moves 467 edata.cmd = ARM_EXIDX_CMD_RESERVED; 468 } else { 469 // Set vsp = r[nnnn] 470 edata.cmd = ARM_EXIDX_CMD_REG_TO_SP; 471 edata.data = op & 0x0f; 472 } 473 } 474 else if ((op & 0xf0) == 0xa0) { 475 // Pop r4 to r[4+nnn], or 476 // Pop r4 to r[4+nnn] and r14 477 Int nnn = (op & 0x07); 478 edata.data = (1 << (nnn + 1)) - 1; 479 edata.data = edata.data << 4; 480 if (op & 0x08) edata.data |= 1 << 14; 481 edata.cmd = ARM_EXIDX_CMD_REG_POP; 482 } 483 else if (op == ARM_EXTBL_OP_FINISH) { 484 // Finish 485 edata.cmd = ARM_EXIDX_CMD_FINISH; 486 buf = end; 487 } 488 else if (op == 0xb1) { 489 UChar op2; 490 GET_BUF_U8(op2); 491 if (op2 == 0 || (op2 & 0xf0)) { 492 // Spare 493 edata.cmd = ARM_EXIDX_CMD_RESERVED; 494 } else { 495 // Pop integer registers under mask {r3,r2,r1,r0} 496 edata.cmd = ARM_EXIDX_CMD_REG_POP; 497 edata.data = op2 & 0x0f; 498 } 499 } 500 else if (op == 0xb2) { 501 // vsp = vsp + 0x204 + (uleb128 << 2) 502 ULong offset = 0; 503 UChar byte, shift = 0; 504 do { 505 GET_BUF_U8(byte); 506 offset |= (byte & 0x7f) << shift; 507 shift += 7; 508 } while ((byte & 0x80) && buf < end); 509 edata.data = offset * 4 + 0x204; 510 edata.cmd = ARM_EXIDX_CMD_ADD_TO_VSP; 511 } 512 else if (op == 0xb3 || op == 0xc8 || op == 0xc9) { 513 // b3: Pop VFP regs D[ssss] to D[ssss+cccc], FSTMFDX-ishly 514 // c8: Pop VFP regs D[16+ssss] to D[16+ssss+cccc], FSTMFDD-ishly 515 // c9: Pop VFP regs D[ssss] to D[ssss+cccc], FSTMFDD-ishly 516 edata.cmd = ARM_EXIDX_CMD_VFP_POP; 517 GET_BUF_U8(edata.data); 518 if (op == 0xc8) edata.data |= ARM_EXIDX_VFP_SHIFT_16; 519 if (op != 0xb3) edata.data |= ARM_EXIDX_VFP_FSTMD; 520 } 521 else if ((op & 0xf8) == 0xb8 || (op & 0xf8) == 0xd0) { 522 // b8: Pop VFP regs D[8] to D[8+nnn], FSTMFDX-ishly 523 // d0: Pop VFP regs D[8] to D[8+nnn], FSTMFDD-ishly 524 edata.cmd = ARM_EXIDX_CMD_VFP_POP; 525 edata.data = 0x80 | (op & 0x07); 526 if ((op & 0xf8) == 0xd0) edata.data |= ARM_EXIDX_VFP_FSTMD; 527 } 528 else if (op >= 0xc0 && op <= 0xc5) { 529 // Intel Wireless MMX pop wR[10]-wr[10+nnn], nnn != 6,7 530 edata.cmd = ARM_EXIDX_CMD_WREG_POP; 531 edata.data = 0xa0 | (op & 0x07); 532 } 533 else if (op == 0xc6) { 534 // Intel Wireless MMX pop wR[ssss] to wR[ssss+cccc] 535 edata.cmd = ARM_EXIDX_CMD_WREG_POP; 536 GET_BUF_U8(edata.data); 537 } 538 else if (op == 0xc7) { 539 UChar op2; 540 GET_BUF_U8(op2); 541 if (op2 == 0 || (op2 & 0xf0)) { 542 // Spare 543 edata.cmd = ARM_EXIDX_CMD_RESERVED; 544 } else { 545 // Intel Wireless MMX pop wCGR registers under mask {wCGR3,2,1,0} 546 edata.cmd = ARM_EXIDX_CMD_WCGR_POP; 547 edata.data = op2 & 0x0f; 548 } 549 } 550 else { 551 // Spare 552 edata.cmd = ARM_EXIDX_CMD_RESERVED; 553 } 554 555 if (0) 556 VG_(printf)(" edata: cmd %08x data %08x\n", 557 (UInt)edata.cmd, edata.data); 558 559 Int ret = TranslateCmd ( state, &edata ); 560 if (ret < 0) return ret; 561 } 562 return 0; 563 564 # undef GET_BUF_U8 565 } 566 567 568 /*------------------------------------------------------------*/ 569 /*--- (Pass 3 of 3) The EXIDX summariser ---*/ 570 /*------------------------------------------------------------*/ 571 572 /* In this translation into DiCfSI_m, we're going to have the CFA play 573 the role of the VSP. That means that the VSP can be exactly any of 574 the CFA expressions, viz: {r7,r11,r12,r13) +/- offset. 575 576 All of this would be a lot simpler if the DiCfSI_m representation 577 was just a bit more expressive and orthogonal. But it isn't. 578 579 The central difficulty is that, although we can track changes 580 to the offset of VSP (via vsp_off), we can't deal with assignments 581 of an entirely new expression to it, because the existing 582 rules in |cfi| will almost certainly refer to the CFA, and so 583 changing it will make them invalid. Hence, below: 584 585 * for the case ARM_EXIDX_CMD_REG_TO_SP we simply disallow 586 assignment, and hence give up, if any rule refers to CFA 587 588 * for the case ARM_EXIDX_CMD_REG_POP, the SP (hence, VSP) is 589 updated by the pop, give up. 590 591 This is an ugly hack to work around not having a better (LUL-like) 592 expression representation. That said, these restrictions don't 593 appear to be a big problem in practice. 594 */ 595 596 struct _SummState { 597 // The DiCfSI_m under construction 598 DiCfSI_m cfi; 599 Int vsp_off; 600 // For generating CFI register expressions, if needed. 601 DebugInfo* di; 602 }; 603 604 605 /* Generate a trivial CfiExpr, for the ARM(32) integer register 606 numbered |gprNo|. First ensure this DebugInfo has a cfsi_expr 607 array in which to park it. Returns -1 if |gprNo| cannot be 608 represented, otherwise returns a value >= 0. */ 609 static 610 Int gen_CfiExpr_CfiReg_ARM_GPR ( /*MB_MOD*/DebugInfo* di, UInt gprNo ) 611 { 612 CfiReg creg = Creg_INVALID; 613 switch (gprNo) { 614 case 13: creg = Creg_ARM_R13; break; 615 case 12: creg = Creg_ARM_R12; break; 616 case 15: creg = Creg_ARM_R15; break; 617 case 14: creg = Creg_ARM_R14; break; 618 case 7: creg = Creg_ARM_R7; break; 619 default: break; 620 } 621 if (creg == Creg_INVALID) { 622 return -1; 623 } 624 if (!di->cfsi_exprs) { 625 di->cfsi_exprs = VG_(newXA)( ML_(dinfo_zalloc), "di.gCCAG", 626 ML_(dinfo_free), sizeof(CfiExpr) ); 627 } 628 Int res = ML_(CfiExpr_CfiReg)( di->cfsi_exprs, creg ); 629 vg_assert(res >= 0); 630 return res; 631 } 632 633 634 /* Given a DiCfSI_m, find the _how/_off pair for the given ARM(32) GPR 635 number inside |cfsi_m|, or return NULL for both if that register 636 number is not represented. */ 637 static 638 void maybeFindExprForRegno( /*OUT*/UChar** howPP, /*OUT*/Int** offPP, 639 DiCfSI_m* cfsi_m, Int regNo ) 640 { 641 switch (regNo) { 642 case 15: *howPP = &cfsi_m->ra_how; *offPP = &cfsi_m->ra_off; return; 643 case 14: *howPP = &cfsi_m->r14_how; *offPP = &cfsi_m->r14_off; return; 644 case 13: *howPP = &cfsi_m->r13_how; *offPP = &cfsi_m->r13_off; return; 645 case 12: *howPP = &cfsi_m->r12_how; *offPP = &cfsi_m->r12_off; return; 646 case 11: *howPP = &cfsi_m->r11_how; *offPP = &cfsi_m->r11_off; return; 647 case 7: *howPP = &cfsi_m->r7_how; *offPP = &cfsi_m->r7_off; return; 648 default: break; 649 } 650 *howPP = NULL; *offPP = NULL; 651 } 652 653 654 /* Set cfi.cfa_{how,off} so as to be a copy of the expression denoted 655 by (how,off), if it is possible to do so. Returns True on 656 success. */ 657 static 658 Bool setCFAfromCFIR( /*MOD*/DiCfSI_m* cfi, XArray*/*CfiExpr*/ cfsi_exprs, 659 UChar how, Int off ) 660 { 661 switch (how) { 662 case CFIR_EXPR: 663 if (!cfsi_exprs) return False; 664 CfiExpr* e = (CfiExpr*)VG_(indexXA)(cfsi_exprs, off); 665 if (e->tag != Cex_CfiReg) return False; 666 if (e->Cex.CfiReg.reg == Creg_ARM_R7) { 667 cfi->cfa_how = CFIC_ARM_R7REL; 668 cfi->cfa_off = 0; 669 return True; 670 } 671 ML_(ppCfiExpr)(cfsi_exprs, off); 672 vg_assert(0); 673 default: 674 break; 675 } 676 VG_(printf)("setCFAfromCFIR: FAIL: how %d off %d\n", how, off); 677 vg_assert(0); 678 return False; 679 } 680 681 682 #define ARM_EXBUF_START(x) (((x) >> 4) & 0x0f) 683 #define ARM_EXBUF_COUNT(x) ((x) & 0x0f) 684 #define ARM_EXBUF_END(x) (ARM_EXBUF_START(x) + ARM_EXBUF_COUNT(x)) 685 686 687 static Bool mentionsCFA ( DiCfSI_m* cfi ) 688 { 689 # define MENTIONS_CFA(_how) ((_how) == CFIR_CFAREL || (_how) == CFIR_MEMCFAREL) 690 if (MENTIONS_CFA(cfi->ra_how)) return True; 691 if (MENTIONS_CFA(cfi->r14_how)) return True; 692 if (MENTIONS_CFA(cfi->r13_how)) return True; 693 if (MENTIONS_CFA(cfi->r12_how)) return True; 694 if (MENTIONS_CFA(cfi->r11_how)) return True; 695 if (MENTIONS_CFA(cfi->r7_how)) return True; 696 return False; 697 # undef MENTIONS_CFA 698 } 699 700 701 // Translate command from extab_data to command for Module. 702 static 703 Int TranslateCmd(/*MOD*/SummState* state, const ExtabData* edata) 704 { 705 /* Stay sane: check that the CFA has the expected form. */ 706 vg_assert(state); 707 switch (state->cfi.cfa_how) { 708 case CFIC_ARM_R13REL: case CFIC_ARM_R12REL: 709 case CFIC_ARM_R11REL: case CFIC_ARM_R7REL: break; 710 default: vg_assert(0); 711 } 712 713 if (0) { 714 VG_(printf)(" TranslateCmd: "); 715 ppExtabData(edata); 716 VG_(printf)("\n"); 717 } 718 719 Int ret = 0; 720 switch (edata->cmd) { 721 case ARM_EXIDX_CMD_FINISH: 722 /* Copy LR to PC if there isn't currently a rule for PC in force. */ 723 if (state->cfi.ra_how == CFIR_UNKNOWN) { 724 if (state->cfi.r14_how == CFIR_UNKNOWN) { 725 state->cfi.ra_how = CFIR_EXPR; 726 state->cfi.ra_off = gen_CfiExpr_CfiReg_ARM_GPR(state->di, 14); 727 vg_assert(state->cfi.ra_off >= 0); 728 } else { 729 state->cfi.ra_how = state->cfi.r14_how; 730 state->cfi.ra_off = state->cfi.r14_off; 731 } 732 } 733 break; 734 case ARM_EXIDX_CMD_SUB_FROM_VSP: 735 state->vsp_off -= (Int)(edata->data); 736 break; 737 case ARM_EXIDX_CMD_ADD_TO_VSP: 738 state->vsp_off += (Int)(edata->data); 739 break; 740 case ARM_EXIDX_CMD_REG_POP: { 741 UInt i; 742 for (i = 0; i < 16; i++) { 743 if (edata->data & (1 << i)) { 744 // See if we're summarising for int register |i|. If so, 745 // describe how to pull it off the stack. The cast of |i| is 746 // a bit of a kludge but works because DW_REG_ARM_Rn has the 747 // value |n|, for 0 <= |n| <= 15 -- that is, for the ARM 748 // general-purpose registers. 749 UChar* rX_howP = NULL; 750 Int* rX_offP = NULL; 751 maybeFindExprForRegno(&rX_howP, &rX_offP, &state->cfi, i); 752 if (rX_howP) { 753 vg_assert(rX_offP); 754 /* rX_howP and rX_offP point at one of the rX fields 755 in |state->cfi|. Hence the following assignments 756 are really updating |state->cfi|. */ 757 *rX_howP = CFIR_MEMCFAREL; 758 *rX_offP = state->vsp_off; 759 } else { 760 /* We're not tracking this register, so ignore it. */ 761 vg_assert(!rX_offP); 762 } 763 state->vsp_off += 4; 764 } 765 } 766 /* Set cfa in case the SP got popped. */ 767 if (edata->data & (1 << 13)) { 768 // vsp = curr_rules_.mR13expr; 769 //state->cfi.cfa_how = 770 //state->cfi.cfa_off = 771 //state->vsp_off = 0; 772 // If this happens, it would make the existing CFA references 773 // in the summary invalid. So give up instead. 774 goto cant_summarise; 775 } 776 break; 777 } 778 case ARM_EXIDX_CMD_REG_TO_SP: { 779 /* We're generating a new value for the CFA/VSP here. Hence, 780 if the summary already refers to the CFA at all, we can't 781 go any further, and have to abandon summarisation. */ 782 if (mentionsCFA(&state->cfi)) 783 goto cant_summarise; 784 vg_assert(edata->data < 16); 785 Int reg_no = edata->data; 786 // Same comment as above, re the casting of |reg_no|, applies. 787 UChar* rX_howP = NULL; 788 Int* rX_offP = NULL; 789 maybeFindExprForRegno(&rX_howP, &rX_offP, &state->cfi, reg_no); 790 if (rX_howP) { 791 vg_assert(rX_offP); 792 if (*rX_howP == CFIR_UNKNOWN) { 793 //curr_rules_.mR13expr = LExpr(LExpr::NODEREF, reg_no, 0); 794 Int expr_ix = gen_CfiExpr_CfiReg_ARM_GPR(state->di, reg_no); 795 if (expr_ix >= 0) { 796 state->cfi.r13_how = CFIR_EXPR; 797 state->cfi.r13_off = expr_ix; 798 } else { 799 goto cant_summarise; 800 } 801 } else { 802 //curr_rules_.mR13expr = *reg_exprP; 803 state->cfi.r13_how = *rX_howP; 804 state->cfi.r13_off = *rX_offP; 805 } 806 //vsp = curr_rules_.mR13expr; 807 Bool ok = setCFAfromCFIR( &state->cfi, state->di->cfsi_exprs, 808 state->cfi.r13_how, state->cfi.r13_off ); 809 if (!ok) goto cant_summarise; 810 state->vsp_off = 0; 811 } else { 812 vg_assert(!rX_offP); 813 } 814 break; 815 } 816 case ARM_EXIDX_CMD_VFP_POP: { 817 /* Don't recover VFP registers, but be sure to adjust the stack 818 pointer. */ 819 UInt i; 820 for (i = ARM_EXBUF_START(edata->data); 821 i <= ARM_EXBUF_END(edata->data); i++) { 822 state->vsp_off += 8; 823 } 824 if (!(edata->data & ARM_EXIDX_VFP_FSTMD)) { 825 state->vsp_off += 4; 826 } 827 break; 828 } 829 case ARM_EXIDX_CMD_WREG_POP: { 830 UInt i; 831 for (i = ARM_EXBUF_START(edata->data); 832 i <= ARM_EXBUF_END(edata->data); i++) { 833 state->vsp_off += 8; 834 } 835 break; 836 } 837 case ARM_EXIDX_CMD_WCGR_POP: { 838 UInt i; 839 // Pop wCGR registers under mask {wCGR3,2,1,0}, hence "i < 4" 840 for (i = 0; i < 4; i++) { 841 if (edata->data & (1 << i)) { 842 state->vsp_off += 4; 843 } 844 } 845 break; 846 } 847 case ARM_EXIDX_CMD_REFUSED: 848 case ARM_EXIDX_CMD_RESERVED: 849 ret = -1; 850 break; 851 } 852 return ret; 853 854 cant_summarise: 855 return -10; 856 } 857 858 859 /* Initialise the EXIDX summariser, by writing initial values in |state|. */ 860 static 861 void AddStackFrame ( /*OUT*/SummState* state, 862 DebugInfo* di ) 863 { 864 VG_(bzero_inline)(state, sizeof(*state)); 865 state->vsp_off = 0; 866 state->di = di; 867 /* Initialise the DiCfSI_m that we are building. */ 868 state->cfi.cfa_how = CFIC_ARM_R13REL; 869 state->cfi.cfa_off = 0; 870 state->cfi.ra_how = CFIR_UNKNOWN; 871 state->cfi.r14_how = CFIR_UNKNOWN; 872 state->cfi.r13_how = CFIR_UNKNOWN; 873 state->cfi.r12_how = CFIR_UNKNOWN; 874 state->cfi.r11_how = CFIR_UNKNOWN; 875 state->cfi.r7_how = CFIR_UNKNOWN; 876 } 877 878 static 879 void SubmitStackFrame( /*MOD*/DebugInfo* di, 880 SummState* state, Addr avma, SizeT len ) 881 { 882 // JRS: I'm really not sure what this means, or if it is necessary 883 // return address always winds up in pc 884 //stack_frame_entry_->initial_rules[ustr__ZDra()] // ".ra" 885 // = stack_frame_entry_->initial_rules[ustr__pc()]; 886 // maybe don't need to do anything here? 887 888 // the final value of vsp is the new value of sp. 889 switch (state->cfi.cfa_how) { 890 case CFIC_ARM_R13REL: case CFIC_ARM_R12REL: 891 case CFIC_ARM_R11REL: case CFIC_ARM_R7REL: break; 892 default: vg_assert(0); 893 } 894 state->cfi.r13_how = CFIR_CFAREL; 895 state->cfi.r13_off = state->vsp_off; 896 897 // Finally, add the completed RuleSet to the SecMap 898 if (len > 0) { 899 900 // Futz with the rules for r4 .. r11 in the same way as happens 901 // with the CFI summariser: 902 /* Mark callee-saved registers (r4 .. r11) as unchanged, if there is 903 no other information about them. FIXME: do this just once, at 904 the point where the ruleset is committed. */ 905 if (state->cfi.r7_how == CFIR_UNKNOWN) { 906 state->cfi.r7_how = CFIR_SAME; 907 state->cfi.r7_off = 0; 908 } 909 if (state->cfi.r11_how == CFIR_UNKNOWN) { 910 state->cfi.r11_how = CFIR_SAME; 911 state->cfi.r11_off = 0; 912 } 913 if (state->cfi.r12_how == CFIR_UNKNOWN) { 914 state->cfi.r12_how = CFIR_SAME; 915 state->cfi.r12_off = 0; 916 } 917 if (state->cfi.r14_how == CFIR_UNKNOWN) { 918 state->cfi.r14_how = CFIR_SAME; 919 state->cfi.r14_off = 0; 920 } 921 922 // And add them 923 ML_(addDiCfSI)(di, avma, len, &state->cfi); 924 if (di->trace_cfi) 925 ML_(ppDiCfSI)(di->cfsi_exprs, avma, len, &state->cfi); 926 } 927 } 928 929 930 /*------------------------------------------------------------*/ 931 /*--- Top level ---*/ 932 /*------------------------------------------------------------*/ 933 934 void ML_(read_exidx) ( /*MOD*/DebugInfo* di, 935 UChar* exidx_img, SizeT exidx_size, 936 UChar* extab_img, SizeT extab_size, 937 Addr text_last_svma, 938 PtrdiffT text_bias ) 939 { 940 if (di->trace_cfi) 941 VG_(printf)("BEGIN ML_(read_exidx) exidx_img=[%p, +%lu) " 942 "extab_img=[%p, +%lu) text_last_svma=%lx text_bias=%lx\n", 943 exidx_img, exidx_size, extab_img, extab_size, 944 text_last_svma, (UWord)text_bias); 945 Bool ok; 946 MemoryRange mr_exidx, mr_extab; 947 ok = MemoryRange__init(&mr_exidx, exidx_img, exidx_size); 948 ok = ok && MemoryRange__init(&mr_extab, extab_img, extab_size); 949 if (!ok) { 950 complain(".exidx or .extab image area wraparound"); 951 return; 952 } 953 954 const ExidxEntry* start_img = (const ExidxEntry*)exidx_img; 955 const ExidxEntry* end_img = (const ExidxEntry*)(exidx_img + exidx_size); 956 957 if (VG_(clo_verbosity) > 1) 958 VG_(message)(Vg_DebugMsg, " Reading EXIDX entries: %lu available\n", 959 exidx_size / sizeof(ExidxEntry) ); 960 961 // Iterate over each of the EXIDX entries (pairs of 32-bit words). 962 // These occupy the entire .exidx section. 963 UWord n_attempted = 0, n_successful = 0; 964 965 const ExidxEntry* entry_img; 966 for (entry_img = start_img; entry_img < end_img; ++entry_img) { 967 968 n_attempted++; 969 // Figure out the code address range that this table entry_img is 970 // associated with. 971 Addr avma = (Addr)Prel31ToAddr(&entry_img->addr); 972 if (di->trace_cfi) 973 VG_(printf)("XXX1 entry: entry->addr 0x%x, avma 0x%lx\n", 974 entry_img->addr, avma); 975 976 Addr next_avma; 977 if (entry_img < end_img - 1) { 978 next_avma = (Addr)Prel31ToAddr(&(entry_img+1)->addr); 979 } else { 980 // This is the last EXIDX entry in the sequence, so we don't 981 // have an address for the start of the next function, to limit 982 // this one. Instead use the address of the last byte of the 983 // text section associated with this .exidx section, that we 984 // have been given. So as to avoid junking up the CFI unwind 985 // tables with absurdly large address ranges in the case where 986 // text_last_svma_ is wrong, only use the value if it is nonzero 987 // and within one page of |svma|. Otherwise assume a length of 1. 988 // 989 // In some cases, gcc has been observed to finish the exidx 990 // section with an entry of length 1 marked CANT_UNWIND, 991 // presumably exactly for the purpose of giving a definite 992 // length for the last real entry, without having to look at 993 // text segment boundaries. 994 Addr text_last_avma = text_last_svma + text_bias; 995 996 Bool plausible; 997 Addr maybe_next_avma = text_last_avma + 1; 998 if (maybe_next_avma > avma && maybe_next_avma - avma <= 4096) { 999 next_avma = maybe_next_avma; 1000 plausible = True; 1001 } else { 1002 next_avma = avma + 1; 1003 plausible = False; 1004 } 1005 1006 if (!plausible && avma != text_last_avma + 1) { 1007 HChar buf[100]; 1008 VG_(snprintf)(buf, sizeof(buf), 1009 "Implausible EXIDX last entry size %lu" 1010 "; using 1 instead.", text_last_avma - avma); 1011 buf[sizeof(buf)-1] = 0; 1012 complain(buf); 1013 } 1014 } 1015 1016 // Extract the unwind info into |buf|. This might fail for 1017 // various reasons. It involves reading both the .exidx and 1018 // .extab sections. All accesses to those sections are 1019 // bounds-checked. 1020 if (di->trace_cfi) 1021 VG_(printf)("XXX1 entry is for AVMA 0x%lx 0x%lx\n", 1022 avma, next_avma-1); 1023 UChar buf[ARM_EXIDX_TABLE_LIMIT]; 1024 SizeT buf_used = 0; 1025 ExExtractResult res 1026 = ExtabEntryExtract(&mr_exidx, &mr_extab, 1027 entry_img, buf, sizeof(buf), &buf_used); 1028 if (res != ExSuccess) { 1029 // Couldn't extract the unwind info, for some reason. Move on. 1030 switch (res) { 1031 case ExInBufOverflow: 1032 complain("ExtabEntryExtract: .exidx/.extab section overrun"); 1033 break; 1034 case ExOutBufOverflow: 1035 complain("ExtabEntryExtract: bytecode buffer overflow"); 1036 break; 1037 case ExCantUnwind: 1038 // Some functions are marked CantUnwind by the compiler. 1039 // Don't record these as attempted, since that's just 1040 // confusing, and failure to summarise them is not the fault 1041 // of this code. 1042 n_attempted--; 1043 if (0) 1044 complain("ExtabEntryExtract: function is marked CANT_UNWIND"); 1045 break; 1046 case ExCantRepresent: 1047 complain("ExtabEntryExtract: bytecode can't be represented"); 1048 break; 1049 case ExInvalid: 1050 complain("ExtabEntryExtract: index table entry is invalid"); 1051 break; 1052 default: { 1053 HChar mbuf[100]; 1054 VG_(snprintf)(mbuf, sizeof(mbuf), 1055 "ExtabEntryExtract: unknown error: %d", (Int)res); 1056 buf[sizeof(mbuf)-1] = 0; 1057 complain(mbuf); 1058 break; 1059 } 1060 } 1061 continue; 1062 } 1063 1064 // Finally, work through the unwind instructions in |buf| and 1065 // create CFI entries that Valgrind can use. This can also fail. 1066 // First, initialise the summariser's running state, into which 1067 // ExtabEntryDecode will write the CFI entries. 1068 1069 SummState state; 1070 AddStackFrame( &state, di ); 1071 Int ret = ExtabEntryDecode( &state, buf, buf_used ); 1072 if (ret < 0) { 1073 /* Failed summarisation. Ignore and move on. */ 1074 HChar mbuf[100]; 1075 VG_(snprintf)(mbuf, sizeof(mbuf), 1076 "ExtabEntryDecode: failed with error code: %d", ret); 1077 mbuf[sizeof(mbuf)-1] = 0; 1078 complain(mbuf); 1079 } else { 1080 /* Successful summarisation. Add it to the collection. */ 1081 SubmitStackFrame( di, &state, avma, next_avma - avma ); 1082 n_successful++; 1083 } 1084 1085 } /* iterating over .exidx */ 1086 1087 if (VG_(clo_verbosity) > 1) 1088 VG_(message)(Vg_DebugMsg, 1089 " Reading EXIDX entries: %lu attempted, %lu successful\n", 1090 n_attempted, n_successful); 1091 } 1092 1093 #endif /* defined(VGA_arm) */ 1094 1095 /*--------------------------------------------------------------------*/ 1096 /*--- end readexidx.c ---*/ 1097 /*--------------------------------------------------------------------*/ 1098