Home | History | Annotate | Download | only in tests
      1 /*
      2  * Copyright (c) 2015-2016 The Khronos Group Inc.
      3  * Copyright (c) 2015-2016 Valve Corporation
      4  * Copyright (c) 2015-2016 LunarG, Inc.
      5  *
      6  * Licensed under the Apache License, Version 2.0 (the "License");
      7  * you may not use this file except in compliance with the License.
      8  * You may obtain a copy of the License at
      9  *
     10  *     http://www.apache.org/licenses/LICENSE-2.0
     11  *
     12  * Unless required by applicable law or agreed to in writing, software
     13  * distributed under the License is distributed on an "AS IS" BASIS,
     14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     15  * See the License for the specific language governing permissions and
     16  * limitations under the License.
     17  *
     18  * Author: Courtney Goeltzenleuchter <courtney (at) LunarG.com>
     19  * Author: Tony Barbour <tony (at) LunarG.com>
     20  */
     21 
     22 #include "test_common.h"    // NOEXCEPT macro (must precede vktestbinding.h)
     23 #include "vktestbinding.h"  // Left for clarity, no harm, already included via test_common.h
     24 #include <algorithm>
     25 #include <assert.h>
     26 #include <iostream>
     27 #include <stdarg.h>
     28 #include <string.h>  // memset(), memcmp()
     29 
     30 namespace {
     31 
     32 #define NON_DISPATCHABLE_HANDLE_INIT(create_func, dev, ...)                              \
     33     do {                                                                                 \
     34         handle_type handle;                                                              \
     35         if (EXPECT(create_func(dev.handle(), __VA_ARGS__, NULL, &handle) == VK_SUCCESS)) \
     36             NonDispHandle::init(dev.handle(), handle);                                   \
     37     } while (0)
     38 
     39 #define NON_DISPATCHABLE_HANDLE_DTOR(cls, destroy_func)            \
     40     cls::~cls() {                                                  \
     41         if (initialized()) destroy_func(device(), handle(), NULL); \
     42     }
     43 
     44 #define STRINGIFY(x) #x
     45 #define EXPECT(expr) ((expr) ? true : expect_failure(STRINGIFY(expr), __FILE__, __LINE__, __FUNCTION__))
     46 
     47 vk_testing::ErrorCallback error_callback;
     48 
     49 bool expect_failure(const char *expr, const char *file, unsigned int line, const char *function) {
     50     if (error_callback) {
     51         error_callback(expr, file, line, function);
     52     } else {
     53         std::cerr << file << ":" << line << ": " << function << ": Expectation `" << expr << "' failed.\n";
     54     }
     55 
     56     return false;
     57 }
     58 
     59 }  // namespace
     60 
     61 namespace vk_testing {
     62 
     63 void set_error_callback(ErrorCallback callback) { error_callback = callback; }
     64 
     65 VkPhysicalDeviceProperties PhysicalDevice::properties() const {
     66     VkPhysicalDeviceProperties info;
     67 
     68     vkGetPhysicalDeviceProperties(handle(), &info);
     69 
     70     return info;
     71 }
     72 
     73 std::vector<VkQueueFamilyProperties> PhysicalDevice::queue_properties() const {
     74     std::vector<VkQueueFamilyProperties> info;
     75     uint32_t count;
     76 
     77     // Call once with NULL data to receive count
     78     vkGetPhysicalDeviceQueueFamilyProperties(handle(), &count, NULL);
     79     info.resize(count);
     80     vkGetPhysicalDeviceQueueFamilyProperties(handle(), &count, info.data());
     81 
     82     return info;
     83 }
     84 
     85 VkPhysicalDeviceMemoryProperties PhysicalDevice::memory_properties() const {
     86     VkPhysicalDeviceMemoryProperties info;
     87 
     88     vkGetPhysicalDeviceMemoryProperties(handle(), &info);
     89 
     90     return info;
     91 }
     92 
     93 VkPhysicalDeviceFeatures PhysicalDevice::features() const {
     94     VkPhysicalDeviceFeatures features;
     95     vkGetPhysicalDeviceFeatures(handle(), &features);
     96     return features;
     97 }
     98 
     99 /*
    100  * Return list of Global layers available
    101  */
    102 std::vector<VkLayerProperties> GetGlobalLayers() {
    103     VkResult err;
    104     std::vector<VkLayerProperties> layers;
    105     uint32_t layer_count;
    106 
    107     do {
    108         layer_count = 0;
    109         err = vkEnumerateInstanceLayerProperties(&layer_count, NULL);
    110 
    111         if (err == VK_SUCCESS) {
    112             layers.reserve(layer_count);
    113             err = vkEnumerateInstanceLayerProperties(&layer_count, layers.data());
    114         }
    115     } while (err == VK_INCOMPLETE);
    116 
    117     assert(err == VK_SUCCESS);
    118 
    119     return layers;
    120 }
    121 
    122 /*
    123  * Return list of Global extensions provided by the ICD / Loader
    124  */
    125 std::vector<VkExtensionProperties> GetGlobalExtensions() { return GetGlobalExtensions(NULL); }
    126 
    127 /*
    128  * Return list of Global extensions provided by the specified layer
    129  * If pLayerName is NULL, will return extensions implemented by the loader /
    130  * ICDs
    131  */
    132 std::vector<VkExtensionProperties> GetGlobalExtensions(const char *pLayerName) {
    133     std::vector<VkExtensionProperties> exts;
    134     uint32_t ext_count;
    135     VkResult err;
    136 
    137     do {
    138         ext_count = 0;
    139         err = vkEnumerateInstanceExtensionProperties(pLayerName, &ext_count, NULL);
    140 
    141         if (err == VK_SUCCESS) {
    142             exts.resize(ext_count);
    143             err = vkEnumerateInstanceExtensionProperties(pLayerName, &ext_count, exts.data());
    144         }
    145     } while (err == VK_INCOMPLETE);
    146 
    147     assert(err == VK_SUCCESS);
    148 
    149     return exts;
    150 }
    151 
    152 /*
    153  * Return list of PhysicalDevice extensions provided by the ICD / Loader
    154  */
    155 std::vector<VkExtensionProperties> PhysicalDevice::extensions() const { return extensions(NULL); }
    156 
    157 /*
    158  * Return list of PhysicalDevice extensions provided by the specified layer
    159  * If pLayerName is NULL, will return extensions for ICD / loader.
    160  */
    161 std::vector<VkExtensionProperties> PhysicalDevice::extensions(const char *pLayerName) const {
    162     std::vector<VkExtensionProperties> exts;
    163     VkResult err;
    164 
    165     do {
    166         uint32_t extCount = 0;
    167         err = vkEnumerateDeviceExtensionProperties(handle(), pLayerName, &extCount, NULL);
    168 
    169         if (err == VK_SUCCESS) {
    170             exts.resize(extCount);
    171             err = vkEnumerateDeviceExtensionProperties(handle(), pLayerName, &extCount, exts.data());
    172         }
    173     } while (err == VK_INCOMPLETE);
    174 
    175     assert(err == VK_SUCCESS);
    176 
    177     return exts;
    178 }
    179 
    180 bool PhysicalDevice::set_memory_type(const uint32_t type_bits, VkMemoryAllocateInfo *info, const VkFlags properties,
    181                                      const VkFlags forbid) const {
    182     uint32_t type_mask = type_bits;
    183     // Search memtypes to find first index with those properties
    184     for (uint32_t i = 0; i < memory_properties_.memoryTypeCount; i++) {
    185         if ((type_mask & 1) == 1) {
    186             // Type is available, does it match user properties?
    187             if ((memory_properties_.memoryTypes[i].propertyFlags & properties) == properties &&
    188                 (memory_properties_.memoryTypes[i].propertyFlags & forbid) == 0) {
    189                 info->memoryTypeIndex = i;
    190                 return true;
    191             }
    192         }
    193         type_mask >>= 1;
    194     }
    195     // No memory types matched, return failure
    196     return false;
    197 }
    198 
    199 /*
    200  * Return list of PhysicalDevice layers
    201  */
    202 std::vector<VkLayerProperties> PhysicalDevice::layers() const {
    203     std::vector<VkLayerProperties> layer_props;
    204     VkResult err;
    205 
    206     do {
    207         uint32_t layer_count = 0;
    208         err = vkEnumerateDeviceLayerProperties(handle(), &layer_count, NULL);
    209 
    210         if (err == VK_SUCCESS) {
    211             layer_props.reserve(layer_count);
    212             err = vkEnumerateDeviceLayerProperties(handle(), &layer_count, layer_props.data());
    213         }
    214     } while (err == VK_INCOMPLETE);
    215 
    216     assert(err == VK_SUCCESS);
    217 
    218     return layer_props;
    219 }
    220 
    221 QueueCreateInfoArray::QueueCreateInfoArray(const std::vector<VkQueueFamilyProperties> &queue_props)
    222     : queue_info_(), queue_priorities_() {
    223     queue_info_.reserve(queue_props.size());
    224 
    225     for (uint32_t i = 0; i < (uint32_t)queue_props.size(); ++i) {
    226         if (queue_props[i].queueCount > 0) {
    227             VkDeviceQueueCreateInfo qi = {};
    228             qi.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
    229             qi.pNext = NULL;
    230             qi.queueFamilyIndex = i;
    231             qi.queueCount = queue_props[i].queueCount;
    232             queue_priorities_.emplace_back(qi.queueCount, 0.0f);
    233             qi.pQueuePriorities = queue_priorities_[i].data();
    234             queue_info_.push_back(qi);
    235         }
    236     }
    237 }
    238 
    239 Device::~Device() {
    240     if (!initialized()) return;
    241 
    242     for (int i = 0; i < QUEUE_COUNT; i++) {
    243         for (std::vector<Queue *>::iterator it = queues_[i].begin(); it != queues_[i].end(); it++) delete *it;
    244         queues_[i].clear();
    245     }
    246 
    247     vkDestroyDevice(handle(), NULL);
    248 }
    249 
    250 void Device::init(std::vector<const char *> &extensions, VkPhysicalDeviceFeatures *features) {
    251     // request all queues
    252     const std::vector<VkQueueFamilyProperties> queue_props = phy_.queue_properties();
    253     QueueCreateInfoArray queue_info(phy_.queue_properties());
    254     for (uint32_t i = 0; i < (uint32_t)queue_props.size(); i++) {
    255         if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
    256             graphics_queue_node_index_ = i;
    257         }
    258     }
    259     // Only request creation with queuefamilies that have at least one queue
    260     std::vector<VkDeviceQueueCreateInfo> create_queue_infos;
    261     auto qci = queue_info.data();
    262     for (uint32_t j = 0; j < queue_info.size(); ++j) {
    263         if (qci[j].queueCount) {
    264             create_queue_infos.push_back(qci[j]);
    265         }
    266     }
    267 
    268     enabled_extensions_ = extensions;
    269 
    270     VkDeviceCreateInfo dev_info = {};
    271     dev_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
    272     dev_info.pNext = NULL;
    273     dev_info.queueCreateInfoCount = create_queue_infos.size();
    274     dev_info.pQueueCreateInfos = create_queue_infos.data();
    275     dev_info.enabledLayerCount = 0;
    276     dev_info.ppEnabledLayerNames = NULL;
    277     dev_info.enabledExtensionCount = extensions.size();
    278     dev_info.ppEnabledExtensionNames = extensions.data();
    279 
    280     VkPhysicalDeviceFeatures all_features;
    281     if (features) {
    282         dev_info.pEnabledFeatures = features;
    283     } else {
    284         // request all supportable features enabled
    285         all_features = phy().features();
    286         dev_info.pEnabledFeatures = &all_features;
    287     }
    288 
    289     init(dev_info);
    290 }
    291 
    292 void Device::init(const VkDeviceCreateInfo &info) {
    293     VkDevice dev;
    294 
    295     if (EXPECT(vkCreateDevice(phy_.handle(), &info, NULL, &dev) == VK_SUCCESS)) Handle::init(dev);
    296 
    297     init_queues();
    298     init_formats();
    299 }
    300 
    301 void Device::init_queues() {
    302     uint32_t queue_node_count;
    303 
    304     // Call with NULL data to get count
    305     vkGetPhysicalDeviceQueueFamilyProperties(phy_.handle(), &queue_node_count, NULL);
    306     EXPECT(queue_node_count >= 1);
    307 
    308     VkQueueFamilyProperties *queue_props = new VkQueueFamilyProperties[queue_node_count];
    309 
    310     vkGetPhysicalDeviceQueueFamilyProperties(phy_.handle(), &queue_node_count, queue_props);
    311 
    312     for (uint32_t i = 0; i < queue_node_count; i++) {
    313         VkQueue queue;
    314 
    315         for (uint32_t j = 0; j < queue_props[i].queueCount; j++) {
    316             // TODO: Need to add support for separate MEMMGR and work queues,
    317             // including synchronization
    318             vkGetDeviceQueue(handle(), i, j, &queue);
    319 
    320             if (queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) {
    321                 queues_[GRAPHICS].push_back(new Queue(queue, i));
    322             }
    323 
    324             if (queue_props[i].queueFlags & VK_QUEUE_COMPUTE_BIT) {
    325                 queues_[COMPUTE].push_back(new Queue(queue, i));
    326             }
    327 
    328             if (queue_props[i].queueFlags & VK_QUEUE_TRANSFER_BIT) {
    329                 queues_[DMA].push_back(new Queue(queue, i));
    330             }
    331         }
    332     }
    333 
    334     delete[] queue_props;
    335 
    336     EXPECT(!queues_[GRAPHICS].empty() || !queues_[COMPUTE].empty());
    337 }
    338 
    339 void Device::init_formats() {
    340     for (int f = VK_FORMAT_BEGIN_RANGE; f <= VK_FORMAT_END_RANGE; f++) {
    341         const VkFormat fmt = static_cast<VkFormat>(f);
    342         const VkFormatProperties props = format_properties(fmt);
    343 
    344         if (props.linearTilingFeatures) {
    345             const Format tmp = {fmt, VK_IMAGE_TILING_LINEAR, props.linearTilingFeatures};
    346             formats_.push_back(tmp);
    347         }
    348 
    349         if (props.optimalTilingFeatures) {
    350             const Format tmp = {fmt, VK_IMAGE_TILING_OPTIMAL, props.optimalTilingFeatures};
    351             formats_.push_back(tmp);
    352         }
    353     }
    354 
    355     EXPECT(!formats_.empty());
    356 }
    357 
    358 bool Device::IsEnbledExtension(const char *extension) {
    359     const auto is_x = [&extension](const char *enabled_extension) { return strcmp(extension, enabled_extension) == 0; };
    360     return std::any_of(enabled_extensions_.begin(), enabled_extensions_.end(), is_x);
    361 }
    362 
    363 VkFormatProperties Device::format_properties(VkFormat format) {
    364     VkFormatProperties data;
    365     vkGetPhysicalDeviceFormatProperties(phy().handle(), format, &data);
    366 
    367     return data;
    368 }
    369 
    370 void Device::wait() { EXPECT(vkDeviceWaitIdle(handle()) == VK_SUCCESS); }
    371 
    372 VkResult Device::wait(const std::vector<const Fence *> &fences, bool wait_all, uint64_t timeout) {
    373     const std::vector<VkFence> fence_handles = MakeVkHandles<VkFence>(fences);
    374     VkResult err = vkWaitForFences(handle(), fence_handles.size(), fence_handles.data(), wait_all, timeout);
    375     EXPECT(err == VK_SUCCESS || err == VK_TIMEOUT);
    376 
    377     return err;
    378 }
    379 
    380 void Device::update_descriptor_sets(const std::vector<VkWriteDescriptorSet> &writes,
    381                                     const std::vector<VkCopyDescriptorSet> &copies) {
    382     vkUpdateDescriptorSets(handle(), writes.size(), writes.data(), copies.size(), copies.data());
    383 }
    384 
    385 void Queue::submit(const std::vector<const CommandBuffer *> &cmds, Fence &fence) {
    386     const std::vector<VkCommandBuffer> cmd_handles = MakeVkHandles<VkCommandBuffer>(cmds);
    387     VkSubmitInfo submit_info;
    388     submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
    389     submit_info.pNext = NULL;
    390     submit_info.waitSemaphoreCount = 0;
    391     submit_info.pWaitSemaphores = NULL;
    392     submit_info.pWaitDstStageMask = NULL;
    393     submit_info.commandBufferCount = (uint32_t)cmd_handles.size();
    394     submit_info.pCommandBuffers = cmd_handles.data();
    395     submit_info.signalSemaphoreCount = 0;
    396     submit_info.pSignalSemaphores = NULL;
    397 
    398     EXPECT(vkQueueSubmit(handle(), 1, &submit_info, fence.handle()) == VK_SUCCESS);
    399 }
    400 
    401 void Queue::submit(const CommandBuffer &cmd, Fence &fence) { submit(std::vector<const CommandBuffer *>(1, &cmd), fence); }
    402 
    403 void Queue::submit(const CommandBuffer &cmd) {
    404     Fence fence;
    405     submit(cmd, fence);
    406 }
    407 
    408 void Queue::wait() { EXPECT(vkQueueWaitIdle(handle()) == VK_SUCCESS); }
    409 
    410 DeviceMemory::~DeviceMemory() {
    411     if (initialized()) vkFreeMemory(device(), handle(), NULL);
    412 }
    413 
    414 void DeviceMemory::init(const Device &dev, const VkMemoryAllocateInfo &info) {
    415     NON_DISPATCHABLE_HANDLE_INIT(vkAllocateMemory, dev, &info);
    416 }
    417 
    418 const void *DeviceMemory::map(VkFlags flags) const {
    419     void *data;
    420     if (!EXPECT(vkMapMemory(device(), handle(), 0, VK_WHOLE_SIZE, flags, &data) == VK_SUCCESS)) data = NULL;
    421 
    422     return data;
    423 }
    424 
    425 void *DeviceMemory::map(VkFlags flags) {
    426     void *data;
    427     if (!EXPECT(vkMapMemory(device(), handle(), 0, VK_WHOLE_SIZE, flags, &data) == VK_SUCCESS)) data = NULL;
    428 
    429     return data;
    430 }
    431 
    432 void DeviceMemory::unmap() const { vkUnmapMemory(device(), handle()); }
    433 
    434 VkMemoryAllocateInfo DeviceMemory::get_resource_alloc_info(const Device &dev, const VkMemoryRequirements &reqs,
    435                                                            VkMemoryPropertyFlags mem_props) {
    436     // Find appropriate memory type for given reqs
    437     VkPhysicalDeviceMemoryProperties dev_mem_props = dev.phy().memory_properties();
    438     uint32_t mem_type_index = 0;
    439     for (mem_type_index = 0; mem_type_index < dev_mem_props.memoryTypeCount; ++mem_type_index) {
    440         if (mem_props == (mem_props & dev_mem_props.memoryTypes[mem_type_index].propertyFlags)) break;
    441     }
    442     // If we exceeded types, then this device doesn't have the memory we need
    443     assert(mem_type_index < dev_mem_props.memoryTypeCount);
    444     VkMemoryAllocateInfo info = alloc_info(reqs.size, mem_type_index);
    445     EXPECT(dev.phy().set_memory_type(reqs.memoryTypeBits, &info, mem_props));
    446     return info;
    447 }
    448 
    449 NON_DISPATCHABLE_HANDLE_DTOR(Fence, vkDestroyFence)
    450 
    451 void Fence::init(const Device &dev, const VkFenceCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateFence, dev, &info); }
    452 
    453 NON_DISPATCHABLE_HANDLE_DTOR(Semaphore, vkDestroySemaphore)
    454 
    455 void Semaphore::init(const Device &dev, const VkSemaphoreCreateInfo &info) {
    456     NON_DISPATCHABLE_HANDLE_INIT(vkCreateSemaphore, dev, &info);
    457 }
    458 
    459 NON_DISPATCHABLE_HANDLE_DTOR(Event, vkDestroyEvent)
    460 
    461 void Event::init(const Device &dev, const VkEventCreateInfo &info) { NON_DISPATCHABLE_HANDLE_INIT(vkCreateEvent, dev, &info); }
    462 
    463 void Event::set() { EXPECT(vkSetEvent(device(), handle()) == VK_SUCCESS); }
    464 
    465 void Event::reset() { EXPECT(vkResetEvent(device(), handle()) == VK_SUCCESS); }
    466 
    467 NON_DISPATCHABLE_HANDLE_DTOR(QueryPool, vkDestroyQueryPool)
    468 
    469 void QueryPool::init(const Device &dev, const VkQueryPoolCreateInfo &info) {
    470     NON_DISPATCHABLE_HANDLE_INIT(vkCreateQueryPool, dev, &info);
    471 }
    472 
    473 VkResult QueryPool::results(uint32_t first, uint32_t count, size_t size, void *data, size_t stride) {
    474     VkResult err = vkGetQueryPoolResults(device(), handle(), first, count, size, data, stride, 0);
    475     EXPECT(err == VK_SUCCESS || err == VK_NOT_READY);
    476 
    477     return err;
    478 }
    479 
    480 NON_DISPATCHABLE_HANDLE_DTOR(Buffer, vkDestroyBuffer)
    481 
    482 void Buffer::init(const Device &dev, const VkBufferCreateInfo &info, VkMemoryPropertyFlags mem_props) {
    483     init_no_mem(dev, info);
    484 
    485     internal_mem_.init(dev, DeviceMemory::get_resource_alloc_info(dev, memory_requirements(), mem_props));
    486     bind_memory(internal_mem_, 0);
    487 }
    488 
    489 void Buffer::init_no_mem(const Device &dev, const VkBufferCreateInfo &info) {
    490     NON_DISPATCHABLE_HANDLE_INIT(vkCreateBuffer, dev, &info);
    491     create_info_ = info;
    492 }
    493 
    494 VkMemoryRequirements Buffer::memory_requirements() const {
    495     VkMemoryRequirements reqs;
    496 
    497     vkGetBufferMemoryRequirements(device(), handle(), &reqs);
    498 
    499     return reqs;
    500 }
    501 
    502 void Buffer::bind_memory(const DeviceMemory &mem, VkDeviceSize mem_offset) {
    503     EXPECT(vkBindBufferMemory(device(), handle(), mem.handle(), mem_offset) == VK_SUCCESS);
    504 }
    505 
    506 NON_DISPATCHABLE_HANDLE_DTOR(BufferView, vkDestroyBufferView)
    507 
    508 void BufferView::init(const Device &dev, const VkBufferViewCreateInfo &info) {
    509     NON_DISPATCHABLE_HANDLE_INIT(vkCreateBufferView, dev, &info);
    510 }
    511 
    512 NON_DISPATCHABLE_HANDLE_DTOR(Image, vkDestroyImage)
    513 
    514 void Image::init(const Device &dev, const VkImageCreateInfo &info, VkMemoryPropertyFlags mem_props) {
    515     init_no_mem(dev, info);
    516 
    517     if (initialized()) {
    518         internal_mem_.init(dev, DeviceMemory::get_resource_alloc_info(dev, memory_requirements(), mem_props));
    519         bind_memory(internal_mem_, 0);
    520     }
    521 }
    522 
    523 void Image::init_no_mem(const Device &dev, const VkImageCreateInfo &info) {
    524     NON_DISPATCHABLE_HANDLE_INIT(vkCreateImage, dev, &info);
    525     if (initialized()) {
    526         init_info(dev, info);
    527     }
    528 }
    529 
    530 void Image::init_info(const Device &dev, const VkImageCreateInfo &info) {
    531     create_info_ = info;
    532 
    533     for (std::vector<Device::Format>::const_iterator it = dev.formats().begin(); it != dev.formats().end(); it++) {
    534         if (memcmp(&it->format, &create_info_.format, sizeof(it->format)) == 0 && it->tiling == create_info_.tiling) {
    535             format_features_ = it->features;
    536             break;
    537         }
    538     }
    539 }
    540 
    541 VkMemoryRequirements Image::memory_requirements() const {
    542     VkMemoryRequirements reqs;
    543 
    544     vkGetImageMemoryRequirements(device(), handle(), &reqs);
    545 
    546     return reqs;
    547 }
    548 
    549 void Image::bind_memory(const DeviceMemory &mem, VkDeviceSize mem_offset) {
    550     EXPECT(vkBindImageMemory(device(), handle(), mem.handle(), mem_offset) == VK_SUCCESS);
    551 }
    552 
    553 VkSubresourceLayout Image::subresource_layout(const VkImageSubresource &subres) const {
    554     VkSubresourceLayout data;
    555     size_t size = sizeof(data);
    556     vkGetImageSubresourceLayout(device(), handle(), &subres, &data);
    557     if (size != sizeof(data)) memset(&data, 0, sizeof(data));
    558 
    559     return data;
    560 }
    561 
    562 VkSubresourceLayout Image::subresource_layout(const VkImageSubresourceLayers &subrescopy) const {
    563     VkSubresourceLayout data;
    564     VkImageSubresource subres = subresource(subrescopy.aspectMask, subrescopy.mipLevel, subrescopy.baseArrayLayer);
    565     size_t size = sizeof(data);
    566     vkGetImageSubresourceLayout(device(), handle(), &subres, &data);
    567     if (size != sizeof(data)) memset(&data, 0, sizeof(data));
    568 
    569     return data;
    570 }
    571 
    572 bool Image::transparent() const {
    573     return (create_info_.tiling == VK_IMAGE_TILING_LINEAR && create_info_.samples == VK_SAMPLE_COUNT_1_BIT &&
    574             !(create_info_.usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)));
    575 }
    576 
    577 NON_DISPATCHABLE_HANDLE_DTOR(ImageView, vkDestroyImageView)
    578 
    579 void ImageView::init(const Device &dev, const VkImageViewCreateInfo &info) {
    580     NON_DISPATCHABLE_HANDLE_INIT(vkCreateImageView, dev, &info);
    581 }
    582 
    583 NON_DISPATCHABLE_HANDLE_DTOR(ShaderModule, vkDestroyShaderModule)
    584 
    585 void ShaderModule::init(const Device &dev, const VkShaderModuleCreateInfo &info) {
    586     NON_DISPATCHABLE_HANDLE_INIT(vkCreateShaderModule, dev, &info);
    587 }
    588 
    589 VkResult ShaderModule::init_try(const Device &dev, const VkShaderModuleCreateInfo &info) {
    590     VkShaderModule mod;
    591 
    592     VkResult err = vkCreateShaderModule(dev.handle(), &info, NULL, &mod);
    593     if (err == VK_SUCCESS) NonDispHandle::init(dev.handle(), mod);
    594 
    595     return err;
    596 }
    597 
    598 NON_DISPATCHABLE_HANDLE_DTOR(Pipeline, vkDestroyPipeline)
    599 
    600 void Pipeline::init(const Device &dev, const VkGraphicsPipelineCreateInfo &info) {
    601     VkPipelineCache cache;
    602     VkPipelineCacheCreateInfo ci;
    603     memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo));
    604     ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
    605     VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache);
    606     if (err == VK_SUCCESS) {
    607         NON_DISPATCHABLE_HANDLE_INIT(vkCreateGraphicsPipelines, dev, cache, 1, &info);
    608         vkDestroyPipelineCache(dev.handle(), cache, NULL);
    609     }
    610 }
    611 
    612 VkResult Pipeline::init_try(const Device &dev, const VkGraphicsPipelineCreateInfo &info) {
    613     VkPipeline pipe;
    614     VkPipelineCache cache;
    615     VkPipelineCacheCreateInfo ci;
    616     memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo));
    617     ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
    618     VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache);
    619     EXPECT(err == VK_SUCCESS);
    620     if (err == VK_SUCCESS) {
    621         err = vkCreateGraphicsPipelines(dev.handle(), cache, 1, &info, NULL, &pipe);
    622         if (err == VK_SUCCESS) {
    623             NonDispHandle::init(dev.handle(), pipe);
    624         }
    625         vkDestroyPipelineCache(dev.handle(), cache, NULL);
    626     }
    627 
    628     return err;
    629 }
    630 
    631 void Pipeline::init(const Device &dev, const VkComputePipelineCreateInfo &info) {
    632     VkPipelineCache cache;
    633     VkPipelineCacheCreateInfo ci;
    634     memset((void *)&ci, 0, sizeof(VkPipelineCacheCreateInfo));
    635     ci.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
    636     VkResult err = vkCreatePipelineCache(dev.handle(), &ci, NULL, &cache);
    637     if (err == VK_SUCCESS) {
    638         NON_DISPATCHABLE_HANDLE_INIT(vkCreateComputePipelines, dev, cache, 1, &info);
    639         vkDestroyPipelineCache(dev.handle(), cache, NULL);
    640     }
    641 }
    642 
    643 NON_DISPATCHABLE_HANDLE_DTOR(PipelineLayout, vkDestroyPipelineLayout)
    644 
    645 void PipelineLayout::init(const Device &dev, VkPipelineLayoutCreateInfo &info,
    646                           const std::vector<const DescriptorSetLayout *> &layouts) {
    647     const std::vector<VkDescriptorSetLayout> layout_handles = MakeVkHandles<VkDescriptorSetLayout>(layouts);
    648     info.setLayoutCount = layout_handles.size();
    649     info.pSetLayouts = layout_handles.data();
    650 
    651     NON_DISPATCHABLE_HANDLE_INIT(vkCreatePipelineLayout, dev, &info);
    652 }
    653 
    654 NON_DISPATCHABLE_HANDLE_DTOR(Sampler, vkDestroySampler)
    655 
    656 void Sampler::init(const Device &dev, const VkSamplerCreateInfo &info) {
    657     NON_DISPATCHABLE_HANDLE_INIT(vkCreateSampler, dev, &info);
    658 }
    659 
    660 NON_DISPATCHABLE_HANDLE_DTOR(DescriptorSetLayout, vkDestroyDescriptorSetLayout)
    661 
    662 void DescriptorSetLayout::init(const Device &dev, const VkDescriptorSetLayoutCreateInfo &info) {
    663     NON_DISPATCHABLE_HANDLE_INIT(vkCreateDescriptorSetLayout, dev, &info);
    664 }
    665 
    666 NON_DISPATCHABLE_HANDLE_DTOR(DescriptorPool, vkDestroyDescriptorPool)
    667 
    668 void DescriptorPool::init(const Device &dev, const VkDescriptorPoolCreateInfo &info) {
    669     setDynamicUsage(info.flags & VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT);
    670     NON_DISPATCHABLE_HANDLE_INIT(vkCreateDescriptorPool, dev, &info);
    671 }
    672 
    673 void DescriptorPool::reset() { EXPECT(vkResetDescriptorPool(device(), handle(), 0) == VK_SUCCESS); }
    674 
    675 std::vector<DescriptorSet *> DescriptorPool::alloc_sets(const Device &dev,
    676                                                         const std::vector<const DescriptorSetLayout *> &layouts) {
    677     const std::vector<VkDescriptorSetLayout> layout_handles = MakeVkHandles<VkDescriptorSetLayout>(layouts);
    678 
    679     std::vector<VkDescriptorSet> set_handles;
    680     set_handles.resize(layout_handles.size());
    681 
    682     VkDescriptorSetAllocateInfo alloc_info = {};
    683     alloc_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
    684     alloc_info.descriptorSetCount = layout_handles.size();
    685     alloc_info.descriptorPool = handle();
    686     alloc_info.pSetLayouts = layout_handles.data();
    687     VkResult err = vkAllocateDescriptorSets(device(), &alloc_info, set_handles.data());
    688     EXPECT(err == VK_SUCCESS);
    689 
    690     std::vector<DescriptorSet *> sets;
    691     for (std::vector<VkDescriptorSet>::const_iterator it = set_handles.begin(); it != set_handles.end(); it++) {
    692         // do descriptor sets need memories bound?
    693         DescriptorSet *descriptorSet = new DescriptorSet(dev, this, *it);
    694         sets.push_back(descriptorSet);
    695     }
    696     return sets;
    697 }
    698 
    699 std::vector<DescriptorSet *> DescriptorPool::alloc_sets(const Device &dev, const DescriptorSetLayout &layout, uint32_t count) {
    700     return alloc_sets(dev, std::vector<const DescriptorSetLayout *>(count, &layout));
    701 }
    702 
    703 DescriptorSet *DescriptorPool::alloc_sets(const Device &dev, const DescriptorSetLayout &layout) {
    704     std::vector<DescriptorSet *> set = alloc_sets(dev, layout, 1);
    705     return (set.empty()) ? NULL : set[0];
    706 }
    707 
    708 DescriptorSet::~DescriptorSet() {
    709     if (initialized()) {
    710         // Only call vkFree* on sets allocated from pool with usage *_DYNAMIC
    711         if (containing_pool_->getDynamicUsage()) {
    712             VkDescriptorSet sets[1] = {handle()};
    713             EXPECT(vkFreeDescriptorSets(device(), containing_pool_->GetObj(), 1, sets) == VK_SUCCESS);
    714         }
    715     }
    716 }
    717 
    718 NON_DISPATCHABLE_HANDLE_DTOR(CommandPool, vkDestroyCommandPool)
    719 
    720 void CommandPool::init(const Device &dev, const VkCommandPoolCreateInfo &info) {
    721     NON_DISPATCHABLE_HANDLE_INIT(vkCreateCommandPool, dev, &info);
    722 }
    723 
    724 CommandBuffer::~CommandBuffer() {
    725     if (initialized()) {
    726         VkCommandBuffer cmds[] = {handle()};
    727         vkFreeCommandBuffers(dev_handle_, cmd_pool_, 1, cmds);
    728     }
    729 }
    730 
    731 void CommandBuffer::init(const Device &dev, const VkCommandBufferAllocateInfo &info) {
    732     VkCommandBuffer cmd;
    733 
    734     // Make sure commandPool is set
    735     assert(info.commandPool);
    736 
    737     if (EXPECT(vkAllocateCommandBuffers(dev.handle(), &info, &cmd) == VK_SUCCESS)) {
    738         Handle::init(cmd);
    739         dev_handle_ = dev.handle();
    740         cmd_pool_ = info.commandPool;
    741     }
    742 }
    743 
    744 void CommandBuffer::begin(const VkCommandBufferBeginInfo *info) { EXPECT(vkBeginCommandBuffer(handle(), info) == VK_SUCCESS); }
    745 
    746 void CommandBuffer::begin() {
    747     VkCommandBufferBeginInfo info = {};
    748     VkCommandBufferInheritanceInfo hinfo = {};
    749     info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
    750     info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
    751     info.pInheritanceInfo = &hinfo;
    752     hinfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_INHERITANCE_INFO;
    753     hinfo.pNext = NULL;
    754     hinfo.renderPass = VK_NULL_HANDLE;
    755     hinfo.subpass = 0;
    756     hinfo.framebuffer = VK_NULL_HANDLE;
    757     hinfo.occlusionQueryEnable = VK_FALSE;
    758     hinfo.queryFlags = 0;
    759     hinfo.pipelineStatistics = 0;
    760 
    761     begin(&info);
    762 }
    763 
    764 void CommandBuffer::end() { EXPECT(vkEndCommandBuffer(handle()) == VK_SUCCESS); }
    765 
    766 void CommandBuffer::reset(VkCommandBufferResetFlags flags) { EXPECT(vkResetCommandBuffer(handle(), flags) == VK_SUCCESS); }
    767 
    768 }  // namespace vk_testing
    769