Home | History | Annotate | Download | only in crypto
      1 /*
      2  * Wrapper functions for OpenSSL libcrypto
      3  * Copyright (c) 2004-2017, Jouni Malinen <j (at) w1.fi>
      4  *
      5  * This software may be distributed under the terms of the BSD license.
      6  * See README for more details.
      7  */
      8 
      9 #include "includes.h"
     10 #include <openssl/opensslv.h>
     11 #include <openssl/err.h>
     12 #include <openssl/des.h>
     13 #include <openssl/aes.h>
     14 #include <openssl/bn.h>
     15 #include <openssl/evp.h>
     16 #include <openssl/dh.h>
     17 #include <openssl/hmac.h>
     18 #include <openssl/rand.h>
     19 #ifdef CONFIG_OPENSSL_CMAC
     20 #include <openssl/cmac.h>
     21 #endif /* CONFIG_OPENSSL_CMAC */
     22 #ifdef CONFIG_ECC
     23 #include <openssl/ec.h>
     24 #endif /* CONFIG_ECC */
     25 
     26 #include "common.h"
     27 #include "wpabuf.h"
     28 #include "dh_group5.h"
     29 #include "sha1.h"
     30 #include "sha256.h"
     31 #include "sha384.h"
     32 #include "md5.h"
     33 #include "aes_wrap.h"
     34 #include "crypto.h"
     35 
     36 #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
     37 /* Compatibility wrappers for older versions. */
     38 
     39 static HMAC_CTX * HMAC_CTX_new(void)
     40 {
     41 	HMAC_CTX *ctx;
     42 
     43 	ctx = os_zalloc(sizeof(*ctx));
     44 	if (ctx)
     45 		HMAC_CTX_init(ctx);
     46 	return ctx;
     47 }
     48 
     49 
     50 static void HMAC_CTX_free(HMAC_CTX *ctx)
     51 {
     52 	if (!ctx)
     53 		return;
     54 	HMAC_CTX_cleanup(ctx);
     55 	bin_clear_free(ctx, sizeof(*ctx));
     56 }
     57 
     58 
     59 static EVP_MD_CTX * EVP_MD_CTX_new(void)
     60 {
     61 	EVP_MD_CTX *ctx;
     62 
     63 	ctx = os_zalloc(sizeof(*ctx));
     64 	if (ctx)
     65 		EVP_MD_CTX_init(ctx);
     66 	return ctx;
     67 }
     68 
     69 
     70 static void EVP_MD_CTX_free(EVP_MD_CTX *ctx)
     71 {
     72 	if (!ctx)
     73 		return;
     74 	EVP_MD_CTX_cleanup(ctx);
     75 	bin_clear_free(ctx, sizeof(*ctx));
     76 }
     77 
     78 #endif /* OpenSSL version < 1.1.0 */
     79 
     80 static BIGNUM * get_group5_prime(void)
     81 {
     82 #if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER)
     83 	return BN_get_rfc3526_prime_1536(NULL);
     84 #elif !defined(OPENSSL_IS_BORINGSSL)
     85 	return get_rfc3526_prime_1536(NULL);
     86 #else
     87 	static const unsigned char RFC3526_PRIME_1536[] = {
     88 		0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xC9,0x0F,0xDA,0xA2,
     89 		0x21,0x68,0xC2,0x34,0xC4,0xC6,0x62,0x8B,0x80,0xDC,0x1C,0xD1,
     90 		0x29,0x02,0x4E,0x08,0x8A,0x67,0xCC,0x74,0x02,0x0B,0xBE,0xA6,
     91 		0x3B,0x13,0x9B,0x22,0x51,0x4A,0x08,0x79,0x8E,0x34,0x04,0xDD,
     92 		0xEF,0x95,0x19,0xB3,0xCD,0x3A,0x43,0x1B,0x30,0x2B,0x0A,0x6D,
     93 		0xF2,0x5F,0x14,0x37,0x4F,0xE1,0x35,0x6D,0x6D,0x51,0xC2,0x45,
     94 		0xE4,0x85,0xB5,0x76,0x62,0x5E,0x7E,0xC6,0xF4,0x4C,0x42,0xE9,
     95 		0xA6,0x37,0xED,0x6B,0x0B,0xFF,0x5C,0xB6,0xF4,0x06,0xB7,0xED,
     96 		0xEE,0x38,0x6B,0xFB,0x5A,0x89,0x9F,0xA5,0xAE,0x9F,0x24,0x11,
     97 		0x7C,0x4B,0x1F,0xE6,0x49,0x28,0x66,0x51,0xEC,0xE4,0x5B,0x3D,
     98 		0xC2,0x00,0x7C,0xB8,0xA1,0x63,0xBF,0x05,0x98,0xDA,0x48,0x36,
     99 		0x1C,0x55,0xD3,0x9A,0x69,0x16,0x3F,0xA8,0xFD,0x24,0xCF,0x5F,
    100 		0x83,0x65,0x5D,0x23,0xDC,0xA3,0xAD,0x96,0x1C,0x62,0xF3,0x56,
    101 		0x20,0x85,0x52,0xBB,0x9E,0xD5,0x29,0x07,0x70,0x96,0x96,0x6D,
    102 		0x67,0x0C,0x35,0x4E,0x4A,0xBC,0x98,0x04,0xF1,0x74,0x6C,0x08,
    103 		0xCA,0x23,0x73,0x27,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
    104 	};
    105         return BN_bin2bn(RFC3526_PRIME_1536, sizeof(RFC3526_PRIME_1536), NULL);
    106 #endif
    107 }
    108 
    109 #ifdef OPENSSL_NO_SHA256
    110 #define NO_SHA256_WRAPPER
    111 #endif
    112 #ifdef OPENSSL_NO_SHA512
    113 #define NO_SHA384_WRAPPER
    114 #endif
    115 
    116 static int openssl_digest_vector(const EVP_MD *type, size_t num_elem,
    117 				 const u8 *addr[], const size_t *len, u8 *mac)
    118 {
    119 	EVP_MD_CTX *ctx;
    120 	size_t i;
    121 	unsigned int mac_len;
    122 
    123 	if (TEST_FAIL())
    124 		return -1;
    125 
    126 	ctx = EVP_MD_CTX_new();
    127 	if (!ctx)
    128 		return -1;
    129 	if (!EVP_DigestInit_ex(ctx, type, NULL)) {
    130 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestInit_ex failed: %s",
    131 			   ERR_error_string(ERR_get_error(), NULL));
    132 		EVP_MD_CTX_free(ctx);
    133 		return -1;
    134 	}
    135 	for (i = 0; i < num_elem; i++) {
    136 		if (!EVP_DigestUpdate(ctx, addr[i], len[i])) {
    137 			wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestUpdate "
    138 				   "failed: %s",
    139 				   ERR_error_string(ERR_get_error(), NULL));
    140 			EVP_MD_CTX_free(ctx);
    141 			return -1;
    142 		}
    143 	}
    144 	if (!EVP_DigestFinal(ctx, mac, &mac_len)) {
    145 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DigestFinal failed: %s",
    146 			   ERR_error_string(ERR_get_error(), NULL));
    147 		EVP_MD_CTX_free(ctx);
    148 		return -1;
    149 	}
    150 	EVP_MD_CTX_free(ctx);
    151 
    152 	return 0;
    153 }
    154 
    155 
    156 #ifndef CONFIG_FIPS
    157 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
    158 {
    159 	return openssl_digest_vector(EVP_md4(), num_elem, addr, len, mac);
    160 }
    161 #endif /* CONFIG_FIPS */
    162 
    163 
    164 int des_encrypt(const u8 *clear, const u8 *key, u8 *cypher)
    165 {
    166 	u8 pkey[8], next, tmp;
    167 	int i;
    168 	DES_key_schedule ks;
    169 
    170 	/* Add parity bits to the key */
    171 	next = 0;
    172 	for (i = 0; i < 7; i++) {
    173 		tmp = key[i];
    174 		pkey[i] = (tmp >> i) | next | 1;
    175 		next = tmp << (7 - i);
    176 	}
    177 	pkey[i] = next | 1;
    178 
    179 	DES_set_key((DES_cblock *) &pkey, &ks);
    180 	DES_ecb_encrypt((DES_cblock *) clear, (DES_cblock *) cypher, &ks,
    181 			DES_ENCRYPT);
    182 	return 0;
    183 }
    184 
    185 
    186 #ifndef CONFIG_NO_RC4
    187 int rc4_skip(const u8 *key, size_t keylen, size_t skip,
    188 	     u8 *data, size_t data_len)
    189 {
    190 #ifdef OPENSSL_NO_RC4
    191 	return -1;
    192 #else /* OPENSSL_NO_RC4 */
    193 	EVP_CIPHER_CTX *ctx;
    194 	int outl;
    195 	int res = -1;
    196 	unsigned char skip_buf[16];
    197 
    198 	ctx = EVP_CIPHER_CTX_new();
    199 	if (!ctx ||
    200 	    !EVP_CIPHER_CTX_set_padding(ctx, 0) ||
    201 	    !EVP_CipherInit_ex(ctx, EVP_rc4(), NULL, NULL, NULL, 1) ||
    202 	    !EVP_CIPHER_CTX_set_key_length(ctx, keylen) ||
    203 	    !EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, 1))
    204 		goto out;
    205 
    206 	while (skip >= sizeof(skip_buf)) {
    207 		size_t len = skip;
    208 		if (len > sizeof(skip_buf))
    209 			len = sizeof(skip_buf);
    210 		if (!EVP_CipherUpdate(ctx, skip_buf, &outl, skip_buf, len))
    211 			goto out;
    212 		skip -= len;
    213 	}
    214 
    215 	if (EVP_CipherUpdate(ctx, data, &outl, data, data_len))
    216 		res = 0;
    217 
    218 out:
    219 	if (ctx)
    220 		EVP_CIPHER_CTX_free(ctx);
    221 	return res;
    222 #endif /* OPENSSL_NO_RC4 */
    223 }
    224 #endif /* CONFIG_NO_RC4 */
    225 
    226 
    227 #ifndef CONFIG_FIPS
    228 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
    229 {
    230 	return openssl_digest_vector(EVP_md5(), num_elem, addr, len, mac);
    231 }
    232 #endif /* CONFIG_FIPS */
    233 
    234 
    235 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac)
    236 {
    237 	return openssl_digest_vector(EVP_sha1(), num_elem, addr, len, mac);
    238 }
    239 
    240 
    241 #ifndef NO_SHA256_WRAPPER
    242 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len,
    243 		  u8 *mac)
    244 {
    245 	return openssl_digest_vector(EVP_sha256(), num_elem, addr, len, mac);
    246 }
    247 #endif /* NO_SHA256_WRAPPER */
    248 
    249 
    250 #ifndef NO_SHA384_WRAPPER
    251 int sha384_vector(size_t num_elem, const u8 *addr[], const size_t *len,
    252 		  u8 *mac)
    253 {
    254 	return openssl_digest_vector(EVP_sha384(), num_elem, addr, len, mac);
    255 }
    256 #endif /* NO_SHA384_WRAPPER */
    257 
    258 
    259 #ifndef NO_SHA512_WRAPPER
    260 int sha512_vector(size_t num_elem, const u8 *addr[], const size_t *len,
    261 		  u8 *mac)
    262 {
    263 	return openssl_digest_vector(EVP_sha512(), num_elem, addr, len, mac);
    264 }
    265 #endif /* NO_SHA512_WRAPPER */
    266 
    267 
    268 static const EVP_CIPHER * aes_get_evp_cipher(size_t keylen)
    269 {
    270 	switch (keylen) {
    271 	case 16:
    272 		return EVP_aes_128_ecb();
    273 #ifndef OPENSSL_IS_BORINGSSL
    274 	case 24:
    275 		return EVP_aes_192_ecb();
    276 #endif /* OPENSSL_IS_BORINGSSL */
    277 	case 32:
    278 		return EVP_aes_256_ecb();
    279 	}
    280 
    281 	return NULL;
    282 }
    283 
    284 
    285 void * aes_encrypt_init(const u8 *key, size_t len)
    286 {
    287 	EVP_CIPHER_CTX *ctx;
    288 	const EVP_CIPHER *type;
    289 
    290 	if (TEST_FAIL())
    291 		return NULL;
    292 
    293 	type = aes_get_evp_cipher(len);
    294 	if (type == NULL)
    295 		return NULL;
    296 
    297 	ctx = EVP_CIPHER_CTX_new();
    298 	if (ctx == NULL)
    299 		return NULL;
    300 	if (EVP_EncryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
    301 		os_free(ctx);
    302 		return NULL;
    303 	}
    304 	EVP_CIPHER_CTX_set_padding(ctx, 0);
    305 	return ctx;
    306 }
    307 
    308 
    309 int aes_encrypt(void *ctx, const u8 *plain, u8 *crypt)
    310 {
    311 	EVP_CIPHER_CTX *c = ctx;
    312 	int clen = 16;
    313 	if (EVP_EncryptUpdate(c, crypt, &clen, plain, 16) != 1) {
    314 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptUpdate failed: %s",
    315 			   ERR_error_string(ERR_get_error(), NULL));
    316 		return -1;
    317 	}
    318 	return 0;
    319 }
    320 
    321 
    322 void aes_encrypt_deinit(void *ctx)
    323 {
    324 	EVP_CIPHER_CTX *c = ctx;
    325 	u8 buf[16];
    326 	int len = sizeof(buf);
    327 	if (EVP_EncryptFinal_ex(c, buf, &len) != 1) {
    328 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_EncryptFinal_ex failed: "
    329 			   "%s", ERR_error_string(ERR_get_error(), NULL));
    330 	}
    331 	if (len != 0) {
    332 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
    333 			   "in AES encrypt", len);
    334 	}
    335 	EVP_CIPHER_CTX_free(c);
    336 }
    337 
    338 
    339 void * aes_decrypt_init(const u8 *key, size_t len)
    340 {
    341 	EVP_CIPHER_CTX *ctx;
    342 	const EVP_CIPHER *type;
    343 
    344 	if (TEST_FAIL())
    345 		return NULL;
    346 
    347 	type = aes_get_evp_cipher(len);
    348 	if (type == NULL)
    349 		return NULL;
    350 
    351 	ctx = EVP_CIPHER_CTX_new();
    352 	if (ctx == NULL)
    353 		return NULL;
    354 	if (EVP_DecryptInit_ex(ctx, type, NULL, key, NULL) != 1) {
    355 		EVP_CIPHER_CTX_free(ctx);
    356 		return NULL;
    357 	}
    358 	EVP_CIPHER_CTX_set_padding(ctx, 0);
    359 	return ctx;
    360 }
    361 
    362 
    363 int aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
    364 {
    365 	EVP_CIPHER_CTX *c = ctx;
    366 	int plen = 16;
    367 	if (EVP_DecryptUpdate(c, plain, &plen, crypt, 16) != 1) {
    368 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptUpdate failed: %s",
    369 			   ERR_error_string(ERR_get_error(), NULL));
    370 		return -1;
    371 	}
    372 	return 0;
    373 }
    374 
    375 
    376 void aes_decrypt_deinit(void *ctx)
    377 {
    378 	EVP_CIPHER_CTX *c = ctx;
    379 	u8 buf[16];
    380 	int len = sizeof(buf);
    381 	if (EVP_DecryptFinal_ex(c, buf, &len) != 1) {
    382 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_DecryptFinal_ex failed: "
    383 			   "%s", ERR_error_string(ERR_get_error(), NULL));
    384 	}
    385 	if (len != 0) {
    386 		wpa_printf(MSG_ERROR, "OpenSSL: Unexpected padding length %d "
    387 			   "in AES decrypt", len);
    388 	}
    389 	EVP_CIPHER_CTX_free(c);
    390 }
    391 
    392 
    393 #ifndef CONFIG_FIPS
    394 #ifndef CONFIG_OPENSSL_INTERNAL_AES_WRAP
    395 
    396 int aes_wrap(const u8 *kek, size_t kek_len, int n, const u8 *plain, u8 *cipher)
    397 {
    398 	AES_KEY actx;
    399 	int res;
    400 
    401 	if (TEST_FAIL())
    402 		return -1;
    403 	if (AES_set_encrypt_key(kek, kek_len << 3, &actx))
    404 		return -1;
    405 	res = AES_wrap_key(&actx, NULL, cipher, plain, n * 8);
    406 	OPENSSL_cleanse(&actx, sizeof(actx));
    407 	return res <= 0 ? -1 : 0;
    408 }
    409 
    410 
    411 int aes_unwrap(const u8 *kek, size_t kek_len, int n, const u8 *cipher,
    412 	       u8 *plain)
    413 {
    414 	AES_KEY actx;
    415 	int res;
    416 
    417 	if (TEST_FAIL())
    418 		return -1;
    419 	if (AES_set_decrypt_key(kek, kek_len << 3, &actx))
    420 		return -1;
    421 	res = AES_unwrap_key(&actx, NULL, plain, cipher, (n + 1) * 8);
    422 	OPENSSL_cleanse(&actx, sizeof(actx));
    423 	return res <= 0 ? -1 : 0;
    424 }
    425 
    426 #endif /* CONFIG_OPENSSL_INTERNAL_AES_WRAP */
    427 #endif /* CONFIG_FIPS */
    428 
    429 
    430 int aes_128_cbc_encrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
    431 {
    432 	EVP_CIPHER_CTX *ctx;
    433 	int clen, len;
    434 	u8 buf[16];
    435 	int res = -1;
    436 
    437 	if (TEST_FAIL())
    438 		return -1;
    439 
    440 	ctx = EVP_CIPHER_CTX_new();
    441 	if (!ctx)
    442 		return -1;
    443 	clen = data_len;
    444 	len = sizeof(buf);
    445 	if (EVP_EncryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
    446 	    EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
    447 	    EVP_EncryptUpdate(ctx, data, &clen, data, data_len) == 1 &&
    448 	    clen == (int) data_len &&
    449 	    EVP_EncryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
    450 		res = 0;
    451 	EVP_CIPHER_CTX_free(ctx);
    452 
    453 	return res;
    454 }
    455 
    456 
    457 int aes_128_cbc_decrypt(const u8 *key, const u8 *iv, u8 *data, size_t data_len)
    458 {
    459 	EVP_CIPHER_CTX *ctx;
    460 	int plen, len;
    461 	u8 buf[16];
    462 	int res = -1;
    463 
    464 	if (TEST_FAIL())
    465 		return -1;
    466 
    467 	ctx = EVP_CIPHER_CTX_new();
    468 	if (!ctx)
    469 		return -1;
    470 	plen = data_len;
    471 	len = sizeof(buf);
    472 	if (EVP_DecryptInit_ex(ctx, EVP_aes_128_cbc(), NULL, key, iv) == 1 &&
    473 	    EVP_CIPHER_CTX_set_padding(ctx, 0) == 1 &&
    474 	    EVP_DecryptUpdate(ctx, data, &plen, data, data_len) == 1 &&
    475 	    plen == (int) data_len &&
    476 	    EVP_DecryptFinal_ex(ctx, buf, &len) == 1 && len == 0)
    477 		res = 0;
    478 	EVP_CIPHER_CTX_free(ctx);
    479 
    480 	return res;
    481 
    482 }
    483 
    484 
    485 int crypto_mod_exp(const u8 *base, size_t base_len,
    486 		   const u8 *power, size_t power_len,
    487 		   const u8 *modulus, size_t modulus_len,
    488 		   u8 *result, size_t *result_len)
    489 {
    490 	BIGNUM *bn_base, *bn_exp, *bn_modulus, *bn_result;
    491 	int ret = -1;
    492 	BN_CTX *ctx;
    493 
    494 	ctx = BN_CTX_new();
    495 	if (ctx == NULL)
    496 		return -1;
    497 
    498 	bn_base = BN_bin2bn(base, base_len, NULL);
    499 	bn_exp = BN_bin2bn(power, power_len, NULL);
    500 	bn_modulus = BN_bin2bn(modulus, modulus_len, NULL);
    501 	bn_result = BN_new();
    502 
    503 	if (bn_base == NULL || bn_exp == NULL || bn_modulus == NULL ||
    504 	    bn_result == NULL)
    505 		goto error;
    506 
    507 	if (BN_mod_exp(bn_result, bn_base, bn_exp, bn_modulus, ctx) != 1)
    508 		goto error;
    509 
    510 	*result_len = BN_bn2bin(bn_result, result);
    511 	ret = 0;
    512 
    513 error:
    514 	BN_clear_free(bn_base);
    515 	BN_clear_free(bn_exp);
    516 	BN_clear_free(bn_modulus);
    517 	BN_clear_free(bn_result);
    518 	BN_CTX_free(ctx);
    519 	return ret;
    520 }
    521 
    522 
    523 struct crypto_cipher {
    524 	EVP_CIPHER_CTX *enc;
    525 	EVP_CIPHER_CTX *dec;
    526 };
    527 
    528 
    529 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg,
    530 					  const u8 *iv, const u8 *key,
    531 					  size_t key_len)
    532 {
    533 	struct crypto_cipher *ctx;
    534 	const EVP_CIPHER *cipher;
    535 
    536 	ctx = os_zalloc(sizeof(*ctx));
    537 	if (ctx == NULL)
    538 		return NULL;
    539 
    540 	switch (alg) {
    541 #ifndef CONFIG_NO_RC4
    542 #ifndef OPENSSL_NO_RC4
    543 	case CRYPTO_CIPHER_ALG_RC4:
    544 		cipher = EVP_rc4();
    545 		break;
    546 #endif /* OPENSSL_NO_RC4 */
    547 #endif /* CONFIG_NO_RC4 */
    548 #ifndef OPENSSL_NO_AES
    549 	case CRYPTO_CIPHER_ALG_AES:
    550 		switch (key_len) {
    551 		case 16:
    552 			cipher = EVP_aes_128_cbc();
    553 			break;
    554 #ifndef OPENSSL_IS_BORINGSSL
    555 		case 24:
    556 			cipher = EVP_aes_192_cbc();
    557 			break;
    558 #endif /* OPENSSL_IS_BORINGSSL */
    559 		case 32:
    560 			cipher = EVP_aes_256_cbc();
    561 			break;
    562 		default:
    563 			os_free(ctx);
    564 			return NULL;
    565 		}
    566 		break;
    567 #endif /* OPENSSL_NO_AES */
    568 #ifndef OPENSSL_NO_DES
    569 	case CRYPTO_CIPHER_ALG_3DES:
    570 		cipher = EVP_des_ede3_cbc();
    571 		break;
    572 	case CRYPTO_CIPHER_ALG_DES:
    573 		cipher = EVP_des_cbc();
    574 		break;
    575 #endif /* OPENSSL_NO_DES */
    576 #ifndef OPENSSL_NO_RC2
    577 	case CRYPTO_CIPHER_ALG_RC2:
    578 		cipher = EVP_rc2_ecb();
    579 		break;
    580 #endif /* OPENSSL_NO_RC2 */
    581 	default:
    582 		os_free(ctx);
    583 		return NULL;
    584 	}
    585 
    586 	if (!(ctx->enc = EVP_CIPHER_CTX_new()) ||
    587 	    !EVP_CIPHER_CTX_set_padding(ctx->enc, 0) ||
    588 	    !EVP_EncryptInit_ex(ctx->enc, cipher, NULL, NULL, NULL) ||
    589 	    !EVP_CIPHER_CTX_set_key_length(ctx->enc, key_len) ||
    590 	    !EVP_EncryptInit_ex(ctx->enc, NULL, NULL, key, iv)) {
    591 		if (ctx->enc)
    592 			EVP_CIPHER_CTX_free(ctx->enc);
    593 		os_free(ctx);
    594 		return NULL;
    595 	}
    596 
    597 	if (!(ctx->dec = EVP_CIPHER_CTX_new()) ||
    598 	    !EVP_CIPHER_CTX_set_padding(ctx->dec, 0) ||
    599 	    !EVP_DecryptInit_ex(ctx->dec, cipher, NULL, NULL, NULL) ||
    600 	    !EVP_CIPHER_CTX_set_key_length(ctx->dec, key_len) ||
    601 	    !EVP_DecryptInit_ex(ctx->dec, NULL, NULL, key, iv)) {
    602 		EVP_CIPHER_CTX_free(ctx->enc);
    603 		if (ctx->dec)
    604 			EVP_CIPHER_CTX_free(ctx->dec);
    605 		os_free(ctx);
    606 		return NULL;
    607 	}
    608 
    609 	return ctx;
    610 }
    611 
    612 
    613 int crypto_cipher_encrypt(struct crypto_cipher *ctx, const u8 *plain,
    614 			  u8 *crypt, size_t len)
    615 {
    616 	int outl;
    617 	if (!EVP_EncryptUpdate(ctx->enc, crypt, &outl, plain, len))
    618 		return -1;
    619 	return 0;
    620 }
    621 
    622 
    623 int crypto_cipher_decrypt(struct crypto_cipher *ctx, const u8 *crypt,
    624 			  u8 *plain, size_t len)
    625 {
    626 	int outl;
    627 	outl = len;
    628 	if (!EVP_DecryptUpdate(ctx->dec, plain, &outl, crypt, len))
    629 		return -1;
    630 	return 0;
    631 }
    632 
    633 
    634 void crypto_cipher_deinit(struct crypto_cipher *ctx)
    635 {
    636 	EVP_CIPHER_CTX_free(ctx->enc);
    637 	EVP_CIPHER_CTX_free(ctx->dec);
    638 	os_free(ctx);
    639 }
    640 
    641 
    642 void * dh5_init(struct wpabuf **priv, struct wpabuf **publ)
    643 {
    644 #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
    645 	DH *dh;
    646 	struct wpabuf *pubkey = NULL, *privkey = NULL;
    647 	size_t publen, privlen;
    648 
    649 	*priv = NULL;
    650 	wpabuf_free(*publ);
    651 	*publ = NULL;
    652 
    653 	dh = DH_new();
    654 	if (dh == NULL)
    655 		return NULL;
    656 
    657 	dh->g = BN_new();
    658 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
    659 		goto err;
    660 
    661 	dh->p = get_group5_prime();
    662 	if (dh->p == NULL)
    663 		goto err;
    664 
    665 	if (DH_generate_key(dh) != 1)
    666 		goto err;
    667 
    668 	publen = BN_num_bytes(dh->pub_key);
    669 	pubkey = wpabuf_alloc(publen);
    670 	if (pubkey == NULL)
    671 		goto err;
    672 	privlen = BN_num_bytes(dh->priv_key);
    673 	privkey = wpabuf_alloc(privlen);
    674 	if (privkey == NULL)
    675 		goto err;
    676 
    677 	BN_bn2bin(dh->pub_key, wpabuf_put(pubkey, publen));
    678 	BN_bn2bin(dh->priv_key, wpabuf_put(privkey, privlen));
    679 
    680 	*priv = privkey;
    681 	*publ = pubkey;
    682 	return dh;
    683 
    684 err:
    685 	wpabuf_clear_free(pubkey);
    686 	wpabuf_clear_free(privkey);
    687 	DH_free(dh);
    688 	return NULL;
    689 #else
    690 	DH *dh;
    691 	struct wpabuf *pubkey = NULL, *privkey = NULL;
    692 	size_t publen, privlen;
    693 	BIGNUM *p = NULL, *g;
    694 	const BIGNUM *priv_key = NULL, *pub_key = NULL;
    695 
    696 	*priv = NULL;
    697 	wpabuf_free(*publ);
    698 	*publ = NULL;
    699 
    700 	dh = DH_new();
    701 	if (dh == NULL)
    702 		return NULL;
    703 
    704 	g = BN_new();
    705 	p = get_group5_prime();
    706 	if (!g || BN_set_word(g, 2) != 1 || !p ||
    707 	    DH_set0_pqg(dh, p, NULL, g) != 1)
    708 		goto err;
    709 	p = NULL;
    710 	g = NULL;
    711 
    712 	if (DH_generate_key(dh) != 1)
    713 		goto err;
    714 
    715 	DH_get0_key(dh, &pub_key, &priv_key);
    716 	publen = BN_num_bytes(pub_key);
    717 	pubkey = wpabuf_alloc(publen);
    718 	if (!pubkey)
    719 		goto err;
    720 	privlen = BN_num_bytes(priv_key);
    721 	privkey = wpabuf_alloc(privlen);
    722 	if (!privkey)
    723 		goto err;
    724 
    725 	BN_bn2bin(pub_key, wpabuf_put(pubkey, publen));
    726 	BN_bn2bin(priv_key, wpabuf_put(privkey, privlen));
    727 
    728 	*priv = privkey;
    729 	*publ = pubkey;
    730 	return dh;
    731 
    732 err:
    733 	BN_free(p);
    734 	BN_free(g);
    735 	wpabuf_clear_free(pubkey);
    736 	wpabuf_clear_free(privkey);
    737 	DH_free(dh);
    738 	return NULL;
    739 #endif
    740 }
    741 
    742 
    743 void * dh5_init_fixed(const struct wpabuf *priv, const struct wpabuf *publ)
    744 {
    745 #if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
    746 	DH *dh;
    747 
    748 	dh = DH_new();
    749 	if (dh == NULL)
    750 		return NULL;
    751 
    752 	dh->g = BN_new();
    753 	if (dh->g == NULL || BN_set_word(dh->g, 2) != 1)
    754 		goto err;
    755 
    756 	dh->p = get_group5_prime();
    757 	if (dh->p == NULL)
    758 		goto err;
    759 
    760 	dh->priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
    761 	if (dh->priv_key == NULL)
    762 		goto err;
    763 
    764 	dh->pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
    765 	if (dh->pub_key == NULL)
    766 		goto err;
    767 
    768 	if (DH_generate_key(dh) != 1)
    769 		goto err;
    770 
    771 	return dh;
    772 
    773 err:
    774 	DH_free(dh);
    775 	return NULL;
    776 #else
    777 	DH *dh;
    778 	BIGNUM *p = NULL, *g, *priv_key = NULL, *pub_key = NULL;
    779 
    780 	dh = DH_new();
    781 	if (dh == NULL)
    782 		return NULL;
    783 
    784 	g = BN_new();
    785 	p = get_group5_prime();
    786 	if (!g || BN_set_word(g, 2) != 1 || !p ||
    787 	    DH_set0_pqg(dh, p, NULL, g) != 1)
    788 		goto err;
    789 	p = NULL;
    790 	g = NULL;
    791 
    792 	priv_key = BN_bin2bn(wpabuf_head(priv), wpabuf_len(priv), NULL);
    793 	pub_key = BN_bin2bn(wpabuf_head(publ), wpabuf_len(publ), NULL);
    794 	if (!priv_key || !pub_key || DH_set0_key(dh, pub_key, priv_key) != 1)
    795 		goto err;
    796 	pub_key = NULL;
    797 	priv_key = NULL;
    798 
    799 	if (DH_generate_key(dh) != 1)
    800 		goto err;
    801 
    802 	return dh;
    803 
    804 err:
    805 	BN_free(p);
    806 	BN_free(g);
    807 	BN_free(pub_key);
    808 	BN_clear_free(priv_key);
    809 	DH_free(dh);
    810 	return NULL;
    811 #endif
    812 }
    813 
    814 
    815 struct wpabuf * dh5_derive_shared(void *ctx, const struct wpabuf *peer_public,
    816 				  const struct wpabuf *own_private)
    817 {
    818 	BIGNUM *pub_key;
    819 	struct wpabuf *res = NULL;
    820 	size_t rlen;
    821 	DH *dh = ctx;
    822 	int keylen;
    823 
    824 	if (ctx == NULL)
    825 		return NULL;
    826 
    827 	pub_key = BN_bin2bn(wpabuf_head(peer_public), wpabuf_len(peer_public),
    828 			    NULL);
    829 	if (pub_key == NULL)
    830 		return NULL;
    831 
    832 	rlen = DH_size(dh);
    833 	res = wpabuf_alloc(rlen);
    834 	if (res == NULL)
    835 		goto err;
    836 
    837 	keylen = DH_compute_key(wpabuf_mhead(res), pub_key, dh);
    838 	if (keylen < 0)
    839 		goto err;
    840 	wpabuf_put(res, keylen);
    841 	BN_clear_free(pub_key);
    842 
    843 	return res;
    844 
    845 err:
    846 	BN_clear_free(pub_key);
    847 	wpabuf_clear_free(res);
    848 	return NULL;
    849 }
    850 
    851 
    852 void dh5_free(void *ctx)
    853 {
    854 	DH *dh;
    855 	if (ctx == NULL)
    856 		return;
    857 	dh = ctx;
    858 	DH_free(dh);
    859 }
    860 
    861 
    862 struct crypto_hash {
    863 	HMAC_CTX *ctx;
    864 };
    865 
    866 
    867 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key,
    868 				      size_t key_len)
    869 {
    870 	struct crypto_hash *ctx;
    871 	const EVP_MD *md;
    872 
    873 	switch (alg) {
    874 #ifndef OPENSSL_NO_MD5
    875 	case CRYPTO_HASH_ALG_HMAC_MD5:
    876 		md = EVP_md5();
    877 		break;
    878 #endif /* OPENSSL_NO_MD5 */
    879 #ifndef OPENSSL_NO_SHA
    880 	case CRYPTO_HASH_ALG_HMAC_SHA1:
    881 		md = EVP_sha1();
    882 		break;
    883 #endif /* OPENSSL_NO_SHA */
    884 #ifndef OPENSSL_NO_SHA256
    885 #ifdef CONFIG_SHA256
    886 	case CRYPTO_HASH_ALG_HMAC_SHA256:
    887 		md = EVP_sha256();
    888 		break;
    889 #endif /* CONFIG_SHA256 */
    890 #endif /* OPENSSL_NO_SHA256 */
    891 	default:
    892 		return NULL;
    893 	}
    894 
    895 	ctx = os_zalloc(sizeof(*ctx));
    896 	if (ctx == NULL)
    897 		return NULL;
    898 	ctx->ctx = HMAC_CTX_new();
    899 	if (!ctx->ctx) {
    900 		os_free(ctx);
    901 		return NULL;
    902 	}
    903 
    904 	if (HMAC_Init_ex(ctx->ctx, key, key_len, md, NULL) != 1) {
    905 		HMAC_CTX_free(ctx->ctx);
    906 		bin_clear_free(ctx, sizeof(*ctx));
    907 		return NULL;
    908 	}
    909 
    910 	return ctx;
    911 }
    912 
    913 
    914 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len)
    915 {
    916 	if (ctx == NULL)
    917 		return;
    918 	HMAC_Update(ctx->ctx, data, len);
    919 }
    920 
    921 
    922 int crypto_hash_finish(struct crypto_hash *ctx, u8 *mac, size_t *len)
    923 {
    924 	unsigned int mdlen;
    925 	int res;
    926 
    927 	if (ctx == NULL)
    928 		return -2;
    929 
    930 	if (mac == NULL || len == NULL) {
    931 		HMAC_CTX_free(ctx->ctx);
    932 		bin_clear_free(ctx, sizeof(*ctx));
    933 		return 0;
    934 	}
    935 
    936 	mdlen = *len;
    937 	res = HMAC_Final(ctx->ctx, mac, &mdlen);
    938 	HMAC_CTX_free(ctx->ctx);
    939 	bin_clear_free(ctx, sizeof(*ctx));
    940 
    941 	if (res == 1) {
    942 		*len = mdlen;
    943 		return 0;
    944 	}
    945 
    946 	return -1;
    947 }
    948 
    949 
    950 static int openssl_hmac_vector(const EVP_MD *type, const u8 *key,
    951 			       size_t key_len, size_t num_elem,
    952 			       const u8 *addr[], const size_t *len, u8 *mac,
    953 			       unsigned int mdlen)
    954 {
    955 	HMAC_CTX *ctx;
    956 	size_t i;
    957 	int res;
    958 
    959 	if (TEST_FAIL())
    960 		return -1;
    961 
    962 	ctx = HMAC_CTX_new();
    963 	if (!ctx)
    964 		return -1;
    965 	res = HMAC_Init_ex(ctx, key, key_len, type, NULL);
    966 	if (res != 1)
    967 		goto done;
    968 
    969 	for (i = 0; i < num_elem; i++)
    970 		HMAC_Update(ctx, addr[i], len[i]);
    971 
    972 	res = HMAC_Final(ctx, mac, &mdlen);
    973 done:
    974 	HMAC_CTX_free(ctx);
    975 
    976 	return res == 1 ? 0 : -1;
    977 }
    978 
    979 
    980 #ifndef CONFIG_FIPS
    981 
    982 int hmac_md5_vector(const u8 *key, size_t key_len, size_t num_elem,
    983 		    const u8 *addr[], const size_t *len, u8 *mac)
    984 {
    985 	return openssl_hmac_vector(EVP_md5(), key ,key_len, num_elem, addr, len,
    986 				   mac, 16);
    987 }
    988 
    989 
    990 int hmac_md5(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
    991 	     u8 *mac)
    992 {
    993 	return hmac_md5_vector(key, key_len, 1, &data, &data_len, mac);
    994 }
    995 
    996 #endif /* CONFIG_FIPS */
    997 
    998 
    999 int pbkdf2_sha1(const char *passphrase, const u8 *ssid, size_t ssid_len,
   1000 		int iterations, u8 *buf, size_t buflen)
   1001 {
   1002 	if (PKCS5_PBKDF2_HMAC_SHA1(passphrase, os_strlen(passphrase), ssid,
   1003 				   ssid_len, iterations, buflen, buf) != 1)
   1004 		return -1;
   1005 	return 0;
   1006 }
   1007 
   1008 
   1009 int hmac_sha1_vector(const u8 *key, size_t key_len, size_t num_elem,
   1010 		     const u8 *addr[], const size_t *len, u8 *mac)
   1011 {
   1012 	return openssl_hmac_vector(EVP_sha1(), key, key_len, num_elem, addr,
   1013 				   len, mac, 20);
   1014 }
   1015 
   1016 
   1017 int hmac_sha1(const u8 *key, size_t key_len, const u8 *data, size_t data_len,
   1018 	       u8 *mac)
   1019 {
   1020 	return hmac_sha1_vector(key, key_len, 1, &data, &data_len, mac);
   1021 }
   1022 
   1023 
   1024 #ifdef CONFIG_SHA256
   1025 
   1026 int hmac_sha256_vector(const u8 *key, size_t key_len, size_t num_elem,
   1027 		       const u8 *addr[], const size_t *len, u8 *mac)
   1028 {
   1029 	return openssl_hmac_vector(EVP_sha256(), key, key_len, num_elem, addr,
   1030 				   len, mac, 32);
   1031 }
   1032 
   1033 
   1034 int hmac_sha256(const u8 *key, size_t key_len, const u8 *data,
   1035 		size_t data_len, u8 *mac)
   1036 {
   1037 	return hmac_sha256_vector(key, key_len, 1, &data, &data_len, mac);
   1038 }
   1039 
   1040 #endif /* CONFIG_SHA256 */
   1041 
   1042 
   1043 #ifdef CONFIG_SHA384
   1044 
   1045 int hmac_sha384_vector(const u8 *key, size_t key_len, size_t num_elem,
   1046 		       const u8 *addr[], const size_t *len, u8 *mac)
   1047 {
   1048 	return openssl_hmac_vector(EVP_sha384(), key, key_len, num_elem, addr,
   1049 				   len, mac, 48);
   1050 }
   1051 
   1052 
   1053 int hmac_sha384(const u8 *key, size_t key_len, const u8 *data,
   1054 		size_t data_len, u8 *mac)
   1055 {
   1056 	return hmac_sha384_vector(key, key_len, 1, &data, &data_len, mac);
   1057 }
   1058 
   1059 #endif /* CONFIG_SHA384 */
   1060 
   1061 
   1062 #ifdef CONFIG_SHA512
   1063 
   1064 int hmac_sha512_vector(const u8 *key, size_t key_len, size_t num_elem,
   1065 		       const u8 *addr[], const size_t *len, u8 *mac)
   1066 {
   1067 	return openssl_hmac_vector(EVP_sha512(), key, key_len, num_elem, addr,
   1068 				   len, mac, 64);
   1069 }
   1070 
   1071 
   1072 int hmac_sha512(const u8 *key, size_t key_len, const u8 *data,
   1073 		size_t data_len, u8 *mac)
   1074 {
   1075 	return hmac_sha512_vector(key, key_len, 1, &data, &data_len, mac);
   1076 }
   1077 
   1078 #endif /* CONFIG_SHA512 */
   1079 
   1080 
   1081 int crypto_get_random(void *buf, size_t len)
   1082 {
   1083 	if (RAND_bytes(buf, len) != 1)
   1084 		return -1;
   1085 	return 0;
   1086 }
   1087 
   1088 
   1089 #ifdef CONFIG_OPENSSL_CMAC
   1090 int omac1_aes_vector(const u8 *key, size_t key_len, size_t num_elem,
   1091 		     const u8 *addr[], const size_t *len, u8 *mac)
   1092 {
   1093 	CMAC_CTX *ctx;
   1094 	int ret = -1;
   1095 	size_t outlen, i;
   1096 
   1097 	if (TEST_FAIL())
   1098 		return -1;
   1099 
   1100 	ctx = CMAC_CTX_new();
   1101 	if (ctx == NULL)
   1102 		return -1;
   1103 
   1104 	if (key_len == 32) {
   1105 		if (!CMAC_Init(ctx, key, 32, EVP_aes_256_cbc(), NULL))
   1106 			goto fail;
   1107 	} else if (key_len == 16) {
   1108 		if (!CMAC_Init(ctx, key, 16, EVP_aes_128_cbc(), NULL))
   1109 			goto fail;
   1110 	} else {
   1111 		goto fail;
   1112 	}
   1113 	for (i = 0; i < num_elem; i++) {
   1114 		if (!CMAC_Update(ctx, addr[i], len[i]))
   1115 			goto fail;
   1116 	}
   1117 	if (!CMAC_Final(ctx, mac, &outlen) || outlen != 16)
   1118 		goto fail;
   1119 
   1120 	ret = 0;
   1121 fail:
   1122 	CMAC_CTX_free(ctx);
   1123 	return ret;
   1124 }
   1125 
   1126 
   1127 int omac1_aes_128_vector(const u8 *key, size_t num_elem,
   1128 			 const u8 *addr[], const size_t *len, u8 *mac)
   1129 {
   1130 	return omac1_aes_vector(key, 16, num_elem, addr, len, mac);
   1131 }
   1132 
   1133 
   1134 int omac1_aes_128(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
   1135 {
   1136 	return omac1_aes_128_vector(key, 1, &data, &data_len, mac);
   1137 }
   1138 
   1139 
   1140 int omac1_aes_256(const u8 *key, const u8 *data, size_t data_len, u8 *mac)
   1141 {
   1142 	return omac1_aes_vector(key, 32, 1, &data, &data_len, mac);
   1143 }
   1144 #endif /* CONFIG_OPENSSL_CMAC */
   1145 
   1146 
   1147 struct crypto_bignum * crypto_bignum_init(void)
   1148 {
   1149 	if (TEST_FAIL())
   1150 		return NULL;
   1151 	return (struct crypto_bignum *) BN_new();
   1152 }
   1153 
   1154 
   1155 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len)
   1156 {
   1157 	BIGNUM *bn;
   1158 
   1159 	if (TEST_FAIL())
   1160 		return NULL;
   1161 
   1162 	bn = BN_bin2bn(buf, len, NULL);
   1163 	return (struct crypto_bignum *) bn;
   1164 }
   1165 
   1166 
   1167 void crypto_bignum_deinit(struct crypto_bignum *n, int clear)
   1168 {
   1169 	if (clear)
   1170 		BN_clear_free((BIGNUM *) n);
   1171 	else
   1172 		BN_free((BIGNUM *) n);
   1173 }
   1174 
   1175 
   1176 int crypto_bignum_to_bin(const struct crypto_bignum *a,
   1177 			 u8 *buf, size_t buflen, size_t padlen)
   1178 {
   1179 	int num_bytes, offset;
   1180 
   1181 	if (TEST_FAIL())
   1182 		return -1;
   1183 
   1184 	if (padlen > buflen)
   1185 		return -1;
   1186 
   1187 	num_bytes = BN_num_bytes((const BIGNUM *) a);
   1188 	if ((size_t) num_bytes > buflen)
   1189 		return -1;
   1190 	if (padlen > (size_t) num_bytes)
   1191 		offset = padlen - num_bytes;
   1192 	else
   1193 		offset = 0;
   1194 
   1195 	os_memset(buf, 0, offset);
   1196 	BN_bn2bin((const BIGNUM *) a, buf + offset);
   1197 
   1198 	return num_bytes + offset;
   1199 }
   1200 
   1201 
   1202 int crypto_bignum_add(const struct crypto_bignum *a,
   1203 		      const struct crypto_bignum *b,
   1204 		      struct crypto_bignum *c)
   1205 {
   1206 	return BN_add((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
   1207 		0 : -1;
   1208 }
   1209 
   1210 
   1211 int crypto_bignum_mod(const struct crypto_bignum *a,
   1212 		      const struct crypto_bignum *b,
   1213 		      struct crypto_bignum *c)
   1214 {
   1215 	int res;
   1216 	BN_CTX *bnctx;
   1217 
   1218 	bnctx = BN_CTX_new();
   1219 	if (bnctx == NULL)
   1220 		return -1;
   1221 	res = BN_mod((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b,
   1222 		     bnctx);
   1223 	BN_CTX_free(bnctx);
   1224 
   1225 	return res ? 0 : -1;
   1226 }
   1227 
   1228 
   1229 int crypto_bignum_exptmod(const struct crypto_bignum *a,
   1230 			  const struct crypto_bignum *b,
   1231 			  const struct crypto_bignum *c,
   1232 			  struct crypto_bignum *d)
   1233 {
   1234 	int res;
   1235 	BN_CTX *bnctx;
   1236 
   1237 	if (TEST_FAIL())
   1238 		return -1;
   1239 
   1240 	bnctx = BN_CTX_new();
   1241 	if (bnctx == NULL)
   1242 		return -1;
   1243 	res = BN_mod_exp((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
   1244 			 (const BIGNUM *) c, bnctx);
   1245 	BN_CTX_free(bnctx);
   1246 
   1247 	return res ? 0 : -1;
   1248 }
   1249 
   1250 
   1251 int crypto_bignum_inverse(const struct crypto_bignum *a,
   1252 			  const struct crypto_bignum *b,
   1253 			  struct crypto_bignum *c)
   1254 {
   1255 	BIGNUM *res;
   1256 	BN_CTX *bnctx;
   1257 
   1258 	if (TEST_FAIL())
   1259 		return -1;
   1260 	bnctx = BN_CTX_new();
   1261 	if (bnctx == NULL)
   1262 		return -1;
   1263 	res = BN_mod_inverse((BIGNUM *) c, (const BIGNUM *) a,
   1264 			     (const BIGNUM *) b, bnctx);
   1265 	BN_CTX_free(bnctx);
   1266 
   1267 	return res ? 0 : -1;
   1268 }
   1269 
   1270 
   1271 int crypto_bignum_sub(const struct crypto_bignum *a,
   1272 		      const struct crypto_bignum *b,
   1273 		      struct crypto_bignum *c)
   1274 {
   1275 	if (TEST_FAIL())
   1276 		return -1;
   1277 	return BN_sub((BIGNUM *) c, (const BIGNUM *) a, (const BIGNUM *) b) ?
   1278 		0 : -1;
   1279 }
   1280 
   1281 
   1282 int crypto_bignum_div(const struct crypto_bignum *a,
   1283 		      const struct crypto_bignum *b,
   1284 		      struct crypto_bignum *c)
   1285 {
   1286 	int res;
   1287 
   1288 	BN_CTX *bnctx;
   1289 
   1290 	if (TEST_FAIL())
   1291 		return -1;
   1292 
   1293 	bnctx = BN_CTX_new();
   1294 	if (bnctx == NULL)
   1295 		return -1;
   1296 	res = BN_div((BIGNUM *) c, NULL, (const BIGNUM *) a,
   1297 		     (const BIGNUM *) b, bnctx);
   1298 	BN_CTX_free(bnctx);
   1299 
   1300 	return res ? 0 : -1;
   1301 }
   1302 
   1303 
   1304 int crypto_bignum_mulmod(const struct crypto_bignum *a,
   1305 			 const struct crypto_bignum *b,
   1306 			 const struct crypto_bignum *c,
   1307 			 struct crypto_bignum *d)
   1308 {
   1309 	int res;
   1310 
   1311 	BN_CTX *bnctx;
   1312 
   1313 	if (TEST_FAIL())
   1314 		return -1;
   1315 
   1316 	bnctx = BN_CTX_new();
   1317 	if (bnctx == NULL)
   1318 		return -1;
   1319 	res = BN_mod_mul((BIGNUM *) d, (const BIGNUM *) a, (const BIGNUM *) b,
   1320 			 (const BIGNUM *) c, bnctx);
   1321 	BN_CTX_free(bnctx);
   1322 
   1323 	return res ? 0 : -1;
   1324 }
   1325 
   1326 
   1327 int crypto_bignum_cmp(const struct crypto_bignum *a,
   1328 		      const struct crypto_bignum *b)
   1329 {
   1330 	return BN_cmp((const BIGNUM *) a, (const BIGNUM *) b);
   1331 }
   1332 
   1333 
   1334 int crypto_bignum_bits(const struct crypto_bignum *a)
   1335 {
   1336 	return BN_num_bits((const BIGNUM *) a);
   1337 }
   1338 
   1339 
   1340 int crypto_bignum_is_zero(const struct crypto_bignum *a)
   1341 {
   1342 	return BN_is_zero((const BIGNUM *) a);
   1343 }
   1344 
   1345 
   1346 int crypto_bignum_is_one(const struct crypto_bignum *a)
   1347 {
   1348 	return BN_is_one((const BIGNUM *) a);
   1349 }
   1350 
   1351 
   1352 int crypto_bignum_legendre(const struct crypto_bignum *a,
   1353 			   const struct crypto_bignum *p)
   1354 {
   1355 	BN_CTX *bnctx;
   1356 	BIGNUM *exp = NULL, *tmp = NULL;
   1357 	int res = -2;
   1358 
   1359 	if (TEST_FAIL())
   1360 		return -2;
   1361 
   1362 	bnctx = BN_CTX_new();
   1363 	if (bnctx == NULL)
   1364 		return -2;
   1365 
   1366 	exp = BN_new();
   1367 	tmp = BN_new();
   1368 	if (!exp || !tmp ||
   1369 	    /* exp = (p-1) / 2 */
   1370 	    !BN_sub(exp, (const BIGNUM *) p, BN_value_one()) ||
   1371 	    !BN_rshift1(exp, exp) ||
   1372 	    !BN_mod_exp(tmp, (const BIGNUM *) a, exp, (const BIGNUM *) p,
   1373 			bnctx))
   1374 		goto fail;
   1375 
   1376 	if (BN_is_word(tmp, 1))
   1377 		res = 1;
   1378 	else if (BN_is_zero(tmp))
   1379 		res = 0;
   1380 	else
   1381 		res = -1;
   1382 
   1383 fail:
   1384 	BN_clear_free(tmp);
   1385 	BN_clear_free(exp);
   1386 	BN_CTX_free(bnctx);
   1387 	return res;
   1388 }
   1389 
   1390 
   1391 #ifdef CONFIG_ECC
   1392 
   1393 struct crypto_ec {
   1394 	EC_GROUP *group;
   1395 	int nid;
   1396 	BN_CTX *bnctx;
   1397 	BIGNUM *prime;
   1398 	BIGNUM *order;
   1399 	BIGNUM *a;
   1400 	BIGNUM *b;
   1401 };
   1402 
   1403 struct crypto_ec * crypto_ec_init(int group)
   1404 {
   1405 	struct crypto_ec *e;
   1406 	int nid;
   1407 
   1408 	/* Map from IANA registry for IKE D-H groups to OpenSSL NID */
   1409 	switch (group) {
   1410 	case 19:
   1411 		nid = NID_X9_62_prime256v1;
   1412 		break;
   1413 	case 20:
   1414 		nid = NID_secp384r1;
   1415 		break;
   1416 	case 21:
   1417 		nid = NID_secp521r1;
   1418 		break;
   1419 	case 25:
   1420 		nid = NID_X9_62_prime192v1;
   1421 		break;
   1422 	case 26:
   1423 		nid = NID_secp224r1;
   1424 		break;
   1425 #ifdef NID_brainpoolP224r1
   1426 	case 27:
   1427 		nid = NID_brainpoolP224r1;
   1428 		break;
   1429 #endif /* NID_brainpoolP224r1 */
   1430 #ifdef NID_brainpoolP256r1
   1431 	case 28:
   1432 		nid = NID_brainpoolP256r1;
   1433 		break;
   1434 #endif /* NID_brainpoolP256r1 */
   1435 #ifdef NID_brainpoolP384r1
   1436 	case 29:
   1437 		nid = NID_brainpoolP384r1;
   1438 		break;
   1439 #endif /* NID_brainpoolP384r1 */
   1440 #ifdef NID_brainpoolP512r1
   1441 	case 30:
   1442 		nid = NID_brainpoolP512r1;
   1443 		break;
   1444 #endif /* NID_brainpoolP512r1 */
   1445 	default:
   1446 		return NULL;
   1447 	}
   1448 
   1449 	e = os_zalloc(sizeof(*e));
   1450 	if (e == NULL)
   1451 		return NULL;
   1452 
   1453 	e->nid = nid;
   1454 	e->bnctx = BN_CTX_new();
   1455 	e->group = EC_GROUP_new_by_curve_name(nid);
   1456 	e->prime = BN_new();
   1457 	e->order = BN_new();
   1458 	e->a = BN_new();
   1459 	e->b = BN_new();
   1460 	if (e->group == NULL || e->bnctx == NULL || e->prime == NULL ||
   1461 	    e->order == NULL || e->a == NULL || e->b == NULL ||
   1462 	    !EC_GROUP_get_curve_GFp(e->group, e->prime, e->a, e->b, e->bnctx) ||
   1463 	    !EC_GROUP_get_order(e->group, e->order, e->bnctx)) {
   1464 		crypto_ec_deinit(e);
   1465 		e = NULL;
   1466 	}
   1467 
   1468 	return e;
   1469 }
   1470 
   1471 
   1472 void crypto_ec_deinit(struct crypto_ec *e)
   1473 {
   1474 	if (e == NULL)
   1475 		return;
   1476 	BN_clear_free(e->b);
   1477 	BN_clear_free(e->a);
   1478 	BN_clear_free(e->order);
   1479 	BN_clear_free(e->prime);
   1480 	EC_GROUP_free(e->group);
   1481 	BN_CTX_free(e->bnctx);
   1482 	os_free(e);
   1483 }
   1484 
   1485 
   1486 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e)
   1487 {
   1488 	if (TEST_FAIL())
   1489 		return NULL;
   1490 	if (e == NULL)
   1491 		return NULL;
   1492 	return (struct crypto_ec_point *) EC_POINT_new(e->group);
   1493 }
   1494 
   1495 
   1496 size_t crypto_ec_prime_len(struct crypto_ec *e)
   1497 {
   1498 	return BN_num_bytes(e->prime);
   1499 }
   1500 
   1501 
   1502 size_t crypto_ec_prime_len_bits(struct crypto_ec *e)
   1503 {
   1504 	return BN_num_bits(e->prime);
   1505 }
   1506 
   1507 
   1508 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e)
   1509 {
   1510 	return (const struct crypto_bignum *) e->prime;
   1511 }
   1512 
   1513 
   1514 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e)
   1515 {
   1516 	return (const struct crypto_bignum *) e->order;
   1517 }
   1518 
   1519 
   1520 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear)
   1521 {
   1522 	if (clear)
   1523 		EC_POINT_clear_free((EC_POINT *) p);
   1524 	else
   1525 		EC_POINT_free((EC_POINT *) p);
   1526 }
   1527 
   1528 
   1529 int crypto_ec_point_to_bin(struct crypto_ec *e,
   1530 			   const struct crypto_ec_point *point, u8 *x, u8 *y)
   1531 {
   1532 	BIGNUM *x_bn, *y_bn;
   1533 	int ret = -1;
   1534 	int len = BN_num_bytes(e->prime);
   1535 
   1536 	if (TEST_FAIL())
   1537 		return -1;
   1538 
   1539 	x_bn = BN_new();
   1540 	y_bn = BN_new();
   1541 
   1542 	if (x_bn && y_bn &&
   1543 	    EC_POINT_get_affine_coordinates_GFp(e->group, (EC_POINT *) point,
   1544 						x_bn, y_bn, e->bnctx)) {
   1545 		if (x) {
   1546 			crypto_bignum_to_bin((struct crypto_bignum *) x_bn,
   1547 					     x, len, len);
   1548 		}
   1549 		if (y) {
   1550 			crypto_bignum_to_bin((struct crypto_bignum *) y_bn,
   1551 					     y, len, len);
   1552 		}
   1553 		ret = 0;
   1554 	}
   1555 
   1556 	BN_clear_free(x_bn);
   1557 	BN_clear_free(y_bn);
   1558 	return ret;
   1559 }
   1560 
   1561 
   1562 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e,
   1563 						  const u8 *val)
   1564 {
   1565 	BIGNUM *x, *y;
   1566 	EC_POINT *elem;
   1567 	int len = BN_num_bytes(e->prime);
   1568 
   1569 	if (TEST_FAIL())
   1570 		return NULL;
   1571 
   1572 	x = BN_bin2bn(val, len, NULL);
   1573 	y = BN_bin2bn(val + len, len, NULL);
   1574 	elem = EC_POINT_new(e->group);
   1575 	if (x == NULL || y == NULL || elem == NULL) {
   1576 		BN_clear_free(x);
   1577 		BN_clear_free(y);
   1578 		EC_POINT_clear_free(elem);
   1579 		return NULL;
   1580 	}
   1581 
   1582 	if (!EC_POINT_set_affine_coordinates_GFp(e->group, elem, x, y,
   1583 						 e->bnctx)) {
   1584 		EC_POINT_clear_free(elem);
   1585 		elem = NULL;
   1586 	}
   1587 
   1588 	BN_clear_free(x);
   1589 	BN_clear_free(y);
   1590 
   1591 	return (struct crypto_ec_point *) elem;
   1592 }
   1593 
   1594 
   1595 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a,
   1596 			const struct crypto_ec_point *b,
   1597 			struct crypto_ec_point *c)
   1598 {
   1599 	if (TEST_FAIL())
   1600 		return -1;
   1601 	return EC_POINT_add(e->group, (EC_POINT *) c, (const EC_POINT *) a,
   1602 			    (const EC_POINT *) b, e->bnctx) ? 0 : -1;
   1603 }
   1604 
   1605 
   1606 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p,
   1607 			const struct crypto_bignum *b,
   1608 			struct crypto_ec_point *res)
   1609 {
   1610 	if (TEST_FAIL())
   1611 		return -1;
   1612 	return EC_POINT_mul(e->group, (EC_POINT *) res, NULL,
   1613 			    (const EC_POINT *) p, (const BIGNUM *) b, e->bnctx)
   1614 		? 0 : -1;
   1615 }
   1616 
   1617 
   1618 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p)
   1619 {
   1620 	if (TEST_FAIL())
   1621 		return -1;
   1622 	return EC_POINT_invert(e->group, (EC_POINT *) p, e->bnctx) ? 0 : -1;
   1623 }
   1624 
   1625 
   1626 int crypto_ec_point_solve_y_coord(struct crypto_ec *e,
   1627 				  struct crypto_ec_point *p,
   1628 				  const struct crypto_bignum *x, int y_bit)
   1629 {
   1630 	if (TEST_FAIL())
   1631 		return -1;
   1632 	if (!EC_POINT_set_compressed_coordinates_GFp(e->group, (EC_POINT *) p,
   1633 						     (const BIGNUM *) x, y_bit,
   1634 						     e->bnctx) ||
   1635 	    !EC_POINT_is_on_curve(e->group, (EC_POINT *) p, e->bnctx))
   1636 		return -1;
   1637 	return 0;
   1638 }
   1639 
   1640 
   1641 struct crypto_bignum *
   1642 crypto_ec_point_compute_y_sqr(struct crypto_ec *e,
   1643 			      const struct crypto_bignum *x)
   1644 {
   1645 	BIGNUM *tmp, *tmp2, *y_sqr = NULL;
   1646 
   1647 	if (TEST_FAIL())
   1648 		return NULL;
   1649 
   1650 	tmp = BN_new();
   1651 	tmp2 = BN_new();
   1652 
   1653 	/* y^2 = x^3 + ax + b */
   1654 	if (tmp && tmp2 &&
   1655 	    BN_mod_sqr(tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
   1656 	    BN_mod_mul(tmp, tmp, (const BIGNUM *) x, e->prime, e->bnctx) &&
   1657 	    BN_mod_mul(tmp2, e->a, (const BIGNUM *) x, e->prime, e->bnctx) &&
   1658 	    BN_mod_add_quick(tmp2, tmp2, tmp, e->prime) &&
   1659 	    BN_mod_add_quick(tmp2, tmp2, e->b, e->prime)) {
   1660 		y_sqr = tmp2;
   1661 		tmp2 = NULL;
   1662 	}
   1663 
   1664 	BN_clear_free(tmp);
   1665 	BN_clear_free(tmp2);
   1666 
   1667 	return (struct crypto_bignum *) y_sqr;
   1668 }
   1669 
   1670 
   1671 int crypto_ec_point_is_at_infinity(struct crypto_ec *e,
   1672 				   const struct crypto_ec_point *p)
   1673 {
   1674 	return EC_POINT_is_at_infinity(e->group, (const EC_POINT *) p);
   1675 }
   1676 
   1677 
   1678 int crypto_ec_point_is_on_curve(struct crypto_ec *e,
   1679 				const struct crypto_ec_point *p)
   1680 {
   1681 	return EC_POINT_is_on_curve(e->group, (const EC_POINT *) p,
   1682 				    e->bnctx) == 1;
   1683 }
   1684 
   1685 
   1686 int crypto_ec_point_cmp(const struct crypto_ec *e,
   1687 			const struct crypto_ec_point *a,
   1688 			const struct crypto_ec_point *b)
   1689 {
   1690 	return EC_POINT_cmp(e->group, (const EC_POINT *) a,
   1691 			    (const EC_POINT *) b, e->bnctx);
   1692 }
   1693 
   1694 
   1695 struct crypto_ecdh {
   1696 	struct crypto_ec *ec;
   1697 	EVP_PKEY *pkey;
   1698 };
   1699 
   1700 struct crypto_ecdh * crypto_ecdh_init(int group)
   1701 {
   1702 	struct crypto_ecdh *ecdh;
   1703 	EVP_PKEY *params = NULL;
   1704 	EVP_PKEY_CTX *pctx = NULL;
   1705 	EVP_PKEY_CTX *kctx = NULL;
   1706 
   1707 	ecdh = os_zalloc(sizeof(*ecdh));
   1708 	if (!ecdh)
   1709 		goto fail;
   1710 
   1711 	ecdh->ec = crypto_ec_init(group);
   1712 	if (!ecdh->ec)
   1713 		goto fail;
   1714 
   1715 	pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL);
   1716 	if (!pctx)
   1717 		goto fail;
   1718 
   1719 	if (EVP_PKEY_paramgen_init(pctx) != 1) {
   1720 		wpa_printf(MSG_ERROR,
   1721 			   "OpenSSL: EVP_PKEY_paramgen_init failed: %s",
   1722 			   ERR_error_string(ERR_get_error(), NULL));
   1723 		goto fail;
   1724 	}
   1725 
   1726 	if (EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, ecdh->ec->nid) != 1) {
   1727 		wpa_printf(MSG_ERROR,
   1728 			   "OpenSSL: EVP_PKEY_CTX_set_ec_paramgen_curve_nid failed: %s",
   1729 			   ERR_error_string(ERR_get_error(), NULL));
   1730 		goto fail;
   1731 	}
   1732 
   1733 	if (EVP_PKEY_paramgen(pctx, &params) != 1) {
   1734 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_PKEY_paramgen failed: %s",
   1735 			   ERR_error_string(ERR_get_error(), NULL));
   1736 		goto fail;
   1737 	}
   1738 
   1739 	kctx = EVP_PKEY_CTX_new(params, NULL);
   1740 	if (!kctx)
   1741 		goto fail;
   1742 
   1743 	if (EVP_PKEY_keygen_init(kctx) != 1) {
   1744 		wpa_printf(MSG_ERROR,
   1745 			   "OpenSSL: EVP_PKEY_keygen_init failed: %s",
   1746 			   ERR_error_string(ERR_get_error(), NULL));
   1747 		goto fail;
   1748 	}
   1749 
   1750 	if (EVP_PKEY_keygen(kctx, &ecdh->pkey) != 1) {
   1751 		wpa_printf(MSG_ERROR, "OpenSSL: EVP_PKEY_keygen failed: %s",
   1752 			   ERR_error_string(ERR_get_error(), NULL));
   1753 		goto fail;
   1754 	}
   1755 
   1756 done:
   1757 	EVP_PKEY_free(params);
   1758 	EVP_PKEY_CTX_free(pctx);
   1759 	EVP_PKEY_CTX_free(kctx);
   1760 
   1761 	return ecdh;
   1762 fail:
   1763 	crypto_ecdh_deinit(ecdh);
   1764 	ecdh = NULL;
   1765 	goto done;
   1766 }
   1767 
   1768 
   1769 struct wpabuf * crypto_ecdh_get_pubkey(struct crypto_ecdh *ecdh, int inc_y)
   1770 {
   1771 	struct wpabuf *buf = NULL;
   1772 	EC_KEY *eckey;
   1773 	const EC_POINT *pubkey;
   1774 	BIGNUM *x, *y = NULL;
   1775 	int len = BN_num_bytes(ecdh->ec->prime);
   1776 	int res;
   1777 
   1778 	eckey = EVP_PKEY_get1_EC_KEY(ecdh->pkey);
   1779 	if (!eckey)
   1780 		return NULL;
   1781 
   1782 	pubkey = EC_KEY_get0_public_key(eckey);
   1783 	if (!pubkey)
   1784 		return NULL;
   1785 
   1786 	x = BN_new();
   1787 	if (inc_y) {
   1788 		y = BN_new();
   1789 		if (!y)
   1790 			goto fail;
   1791 	}
   1792 	buf = wpabuf_alloc(inc_y ? 2 * len : len);
   1793 	if (!x || !buf)
   1794 		goto fail;
   1795 
   1796 	if (EC_POINT_get_affine_coordinates_GFp(ecdh->ec->group, pubkey,
   1797 						x, y, ecdh->ec->bnctx) != 1) {
   1798 		wpa_printf(MSG_ERROR,
   1799 			   "OpenSSL: EC_POINT_get_affine_coordinates_GFp failed: %s",
   1800 			   ERR_error_string(ERR_get_error(), NULL));
   1801 		goto fail;
   1802 	}
   1803 
   1804 	res = crypto_bignum_to_bin((struct crypto_bignum *) x,
   1805 				   wpabuf_put(buf, len), len, len);
   1806 	if (res < 0)
   1807 		goto fail;
   1808 
   1809 	if (inc_y) {
   1810 		res = crypto_bignum_to_bin((struct crypto_bignum *) y,
   1811 					   wpabuf_put(buf, len), len, len);
   1812 		if (res < 0)
   1813 			goto fail;
   1814 	}
   1815 
   1816 done:
   1817 	BN_clear_free(x);
   1818 	BN_clear_free(y);
   1819 	EC_KEY_free(eckey);
   1820 
   1821 	return buf;
   1822 fail:
   1823 	wpabuf_free(buf);
   1824 	buf = NULL;
   1825 	goto done;
   1826 }
   1827 
   1828 
   1829 struct wpabuf * crypto_ecdh_set_peerkey(struct crypto_ecdh *ecdh, int inc_y,
   1830 					const u8 *key, size_t len)
   1831 {
   1832 	BIGNUM *x, *y = NULL;
   1833 	EVP_PKEY_CTX *ctx = NULL;
   1834 	EVP_PKEY *peerkey = NULL;
   1835 	struct wpabuf *secret = NULL;
   1836 	size_t secret_len;
   1837 	EC_POINT *pub;
   1838 	EC_KEY *eckey = NULL;
   1839 
   1840 	x = BN_bin2bn(key, inc_y ? len / 2 : len, NULL);
   1841 	pub = EC_POINT_new(ecdh->ec->group);
   1842 	if (!x || !pub)
   1843 		goto fail;
   1844 
   1845 	if (inc_y) {
   1846 		y = BN_bin2bn(key + len / 2, len / 2, NULL);
   1847 		if (!y)
   1848 			goto fail;
   1849 		if (!EC_POINT_set_affine_coordinates_GFp(ecdh->ec->group, pub,
   1850 							 x, y,
   1851 							 ecdh->ec->bnctx)) {
   1852 			wpa_printf(MSG_ERROR,
   1853 				   "OpenSSL: EC_POINT_set_affine_coordinates_GFp failed: %s",
   1854 				   ERR_error_string(ERR_get_error(), NULL));
   1855 			goto fail;
   1856 		}
   1857 	} else if (!EC_POINT_set_compressed_coordinates_GFp(ecdh->ec->group,
   1858 							    pub, x, 0,
   1859 							    ecdh->ec->bnctx)) {
   1860 		wpa_printf(MSG_ERROR,
   1861 			   "OpenSSL: EC_POINT_set_compressed_coordinates_GFp failed: %s",
   1862 			   ERR_error_string(ERR_get_error(), NULL));
   1863 		goto fail;
   1864 	}
   1865 
   1866 	if (!EC_POINT_is_on_curve(ecdh->ec->group, pub, ecdh->ec->bnctx)) {
   1867 		wpa_printf(MSG_ERROR,
   1868 			   "OpenSSL: ECDH peer public key is not on curve");
   1869 		goto fail;
   1870 	}
   1871 
   1872 	eckey = EC_KEY_new_by_curve_name(ecdh->ec->nid);
   1873 	if (!eckey || EC_KEY_set_public_key(eckey, pub) != 1) {
   1874 		wpa_printf(MSG_ERROR,
   1875 			   "OpenSSL: EC_KEY_set_public_key failed: %s",
   1876 			   ERR_error_string(ERR_get_error(), NULL));
   1877 		goto fail;
   1878 	}
   1879 
   1880 	peerkey = EVP_PKEY_new();
   1881 	if (!peerkey || EVP_PKEY_set1_EC_KEY(peerkey, eckey) != 1)
   1882 		goto fail;
   1883 
   1884 	ctx = EVP_PKEY_CTX_new(ecdh->pkey, NULL);
   1885 	if (!ctx || EVP_PKEY_derive_init(ctx) != 1 ||
   1886 	    EVP_PKEY_derive_set_peer(ctx, peerkey) != 1 ||
   1887 	    EVP_PKEY_derive(ctx, NULL, &secret_len) != 1) {
   1888 		wpa_printf(MSG_ERROR,
   1889 			   "OpenSSL: EVP_PKEY_derive(1) failed: %s",
   1890 			   ERR_error_string(ERR_get_error(), NULL));
   1891 		goto fail;
   1892 	}
   1893 
   1894 	secret = wpabuf_alloc(secret_len);
   1895 	if (!secret)
   1896 		goto fail;
   1897 	if (EVP_PKEY_derive(ctx, wpabuf_put(secret, secret_len),
   1898 			    &secret_len) != 1) {
   1899 		wpa_printf(MSG_ERROR,
   1900 			   "OpenSSL: EVP_PKEY_derive(2) failed: %s",
   1901 			   ERR_error_string(ERR_get_error(), NULL));
   1902 		goto fail;
   1903 	}
   1904 
   1905 done:
   1906 	BN_free(x);
   1907 	BN_free(y);
   1908 	EC_KEY_free(eckey);
   1909 	EC_POINT_free(pub);
   1910 	EVP_PKEY_CTX_free(ctx);
   1911 	EVP_PKEY_free(peerkey);
   1912 	return secret;
   1913 fail:
   1914 	wpabuf_free(secret);
   1915 	secret = NULL;
   1916 	goto done;
   1917 }
   1918 
   1919 
   1920 void crypto_ecdh_deinit(struct crypto_ecdh *ecdh)
   1921 {
   1922 	if (ecdh) {
   1923 		crypto_ec_deinit(ecdh->ec);
   1924 		EVP_PKEY_free(ecdh->pkey);
   1925 		os_free(ecdh);
   1926 	}
   1927 }
   1928 
   1929 #endif /* CONFIG_ECC */
   1930