Home | History | Annotate | Download | only in libaudioprocessing
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "AudioResamplerDyn"
     18 //#define LOG_NDEBUG 0
     19 
     20 #include <malloc.h>
     21 #include <string.h>
     22 #include <stdlib.h>
     23 #include <dlfcn.h>
     24 #include <math.h>
     25 
     26 #include <cutils/compiler.h>
     27 #include <cutils/properties.h>
     28 #include <utils/Debug.h>
     29 #include <utils/Log.h>
     30 #include <audio_utils/primitives.h>
     31 
     32 #include "AudioResamplerFirOps.h" // USE_NEON, USE_SSE and USE_INLINE_ASSEMBLY defined here
     33 #include "AudioResamplerFirProcess.h"
     34 #include "AudioResamplerFirProcessNeon.h"
     35 #include "AudioResamplerFirProcessSSE.h"
     36 #include "AudioResamplerFirGen.h" // requires math.h
     37 #include "AudioResamplerDyn.h"
     38 
     39 //#define DEBUG_RESAMPLER
     40 
     41 // use this for our buffer alignment.  Should be at least 32 bytes.
     42 constexpr size_t CACHE_LINE_SIZE = 64;
     43 
     44 namespace android {
     45 
     46 /*
     47  * InBuffer is a type agnostic input buffer.
     48  *
     49  * Layout of the state buffer for halfNumCoefs=8.
     50  *
     51  * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
     52  *  S            I                                R
     53  *
     54  * S = mState
     55  * I = mImpulse
     56  * R = mRingFull
     57  * p = past samples, convoluted with the (p)ositive side of sinc()
     58  * n = future samples, convoluted with the (n)egative side of sinc()
     59  * r = extra space for implementing the ring buffer
     60  */
     61 
     62 template<typename TC, typename TI, typename TO>
     63 AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
     64     : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
     65 {
     66 }
     67 
     68 template<typename TC, typename TI, typename TO>
     69 AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
     70 {
     71     init();
     72 }
     73 
     74 template<typename TC, typename TI, typename TO>
     75 void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
     76 {
     77     free(mState);
     78     mState = NULL;
     79     mImpulse = NULL;
     80     mRingFull = NULL;
     81     mStateCount = 0;
     82 }
     83 
     84 // resizes the state buffer to accommodate the appropriate filter length
     85 template<typename TC, typename TI, typename TO>
     86 void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
     87 {
     88     // calculate desired state size
     89     size_t stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
     90 
     91     // check if buffer needs resizing
     92     if (mState
     93             && stateCount == mStateCount
     94             && mRingFull-mState == (ssize_t) (mStateCount-halfNumCoefs*CHANNELS)) {
     95         return;
     96     }
     97 
     98     // create new buffer
     99     TI* state = NULL;
    100     (void)posix_memalign(
    101             reinterpret_cast<void **>(&state),
    102             CACHE_LINE_SIZE /* alignment */,
    103             stateCount * sizeof(*state));
    104     memset(state, 0, stateCount*sizeof(*state));
    105 
    106     // attempt to preserve state
    107     if (mState) {
    108         TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
    109         TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
    110         TI* dst = state;
    111 
    112         if (srcLo < mState) {
    113             dst += mState-srcLo;
    114             srcLo = mState;
    115         }
    116         if (srcHi > mState + mStateCount) {
    117             srcHi = mState + mStateCount;
    118         }
    119         memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
    120         free(mState);
    121     }
    122 
    123     // set class member vars
    124     mState = state;
    125     mStateCount = stateCount;
    126     mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
    127     mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
    128 }
    129 
    130 // copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
    131 template<typename TC, typename TI, typename TO>
    132 template<int CHANNELS>
    133 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
    134         const TI* const in, const size_t inputIndex)
    135 {
    136     TI* head = impulse + halfNumCoefs*CHANNELS;
    137     for (size_t i=0 ; i<CHANNELS ; i++) {
    138         head[i] = in[inputIndex*CHANNELS + i];
    139     }
    140 }
    141 
    142 // advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
    143 template<typename TC, typename TI, typename TO>
    144 template<int CHANNELS>
    145 void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
    146         const TI* const in, const size_t inputIndex)
    147 {
    148     impulse += CHANNELS;
    149 
    150     if (CC_UNLIKELY(impulse >= mRingFull)) {
    151         const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
    152         memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
    153         impulse -= shiftDown;
    154     }
    155     readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
    156 }
    157 
    158 template<typename TC, typename TI, typename TO>
    159 void AudioResamplerDyn<TC, TI, TO>::InBuffer::reset()
    160 {
    161     // clear resampler state
    162     if (mState != nullptr) {
    163         memset(mState, 0, mStateCount * sizeof(TI));
    164     }
    165 }
    166 
    167 template<typename TC, typename TI, typename TO>
    168 void AudioResamplerDyn<TC, TI, TO>::Constants::set(
    169         int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
    170 {
    171     int bits = 0;
    172     int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
    173             static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
    174     for (int i=lscale; i; ++bits, i>>=1)
    175         ;
    176     mL = L;
    177     mShift = kNumPhaseBits - bits;
    178     mHalfNumCoefs = halfNumCoefs;
    179 }
    180 
    181 template<typename TC, typename TI, typename TO>
    182 AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(
    183         int inChannelCount, int32_t sampleRate, src_quality quality)
    184     : AudioResampler(inChannelCount, sampleRate, quality),
    185       mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
    186     mCoefBuffer(NULL)
    187 {
    188     mVolumeSimd[0] = mVolumeSimd[1] = 0;
    189     // The AudioResampler base class assumes we are always ready for 1:1 resampling.
    190     // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
    191     // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
    192     mInSampleRate = 0;
    193     mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
    194 
    195     // fetch property based resampling parameters
    196     mPropertyEnableAtSampleRate = property_get_int32(
    197             "ro.audio.resampler.psd.enable_at_samplerate", mPropertyEnableAtSampleRate);
    198     mPropertyHalfFilterLength = property_get_int32(
    199             "ro.audio.resampler.psd.halflength", mPropertyHalfFilterLength);
    200     mPropertyStopbandAttenuation = property_get_int32(
    201             "ro.audio.resampler.psd.stopband", mPropertyStopbandAttenuation);
    202     mPropertyCutoffPercent = property_get_int32(
    203             "ro.audio.resampler.psd.cutoff_percent", mPropertyCutoffPercent);
    204 }
    205 
    206 template<typename TC, typename TI, typename TO>
    207 AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
    208 {
    209     free(mCoefBuffer);
    210 }
    211 
    212 template<typename TC, typename TI, typename TO>
    213 void AudioResamplerDyn<TC, TI, TO>::init()
    214 {
    215     mFilterSampleRate = 0; // always trigger new filter generation
    216     mInBuffer.init();
    217 }
    218 
    219 template<typename TC, typename TI, typename TO>
    220 void AudioResamplerDyn<TC, TI, TO>::setVolume(float left, float right)
    221 {
    222     AudioResampler::setVolume(left, right);
    223     if (is_same<TO, float>::value || is_same<TO, double>::value) {
    224         mVolumeSimd[0] = static_cast<TO>(left);
    225         mVolumeSimd[1] = static_cast<TO>(right);
    226     } else {  // integer requires scaling to U4_28 (rounding down)
    227         // integer volumes are clamped to 0 to UNITY_GAIN so there
    228         // are no issues with signed overflow.
    229         mVolumeSimd[0] = u4_28_from_float(clampFloatVol(left));
    230         mVolumeSimd[1] = u4_28_from_float(clampFloatVol(right));
    231     }
    232 }
    233 
    234 // TODO: update to C++11
    235 
    236 template<typename T> T max(T a, T b) {return a > b ? a : b;}
    237 
    238 template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
    239 
    240 template<typename TC, typename TI, typename TO>
    241 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
    242         double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
    243 {
    244     // compute the normalized transition bandwidth
    245     const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
    246     const double halfbw = tbw / 2.;
    247 
    248     double fcr; // compute fcr, the 3 dB amplitude cut-off.
    249     if (inSampleRate < outSampleRate) { // upsample
    250         fcr = max(0.5 * tbwCheat - halfbw, halfbw);
    251     } else { // downsample
    252         fcr = max(0.5 * tbwCheat * outSampleRate / inSampleRate - halfbw, halfbw);
    253     }
    254     createKaiserFir(c, stopBandAtten, fcr);
    255 }
    256 
    257 template<typename TC, typename TI, typename TO>
    258 void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
    259         double stopBandAtten, double fcr) {
    260     // compute the normalized transition bandwidth
    261     const double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
    262     const int phases = c.mL;
    263     const int halfLength = c.mHalfNumCoefs;
    264 
    265     // create buffer
    266     TC *coefs = nullptr;
    267     int ret = posix_memalign(
    268             reinterpret_cast<void **>(&coefs),
    269             CACHE_LINE_SIZE /* alignment */,
    270             (phases + 1) * halfLength * sizeof(TC));
    271     LOG_ALWAYS_FATAL_IF(ret != 0, "Cannot allocate buffer memory, ret %d", ret);
    272     c.mFirCoefs = coefs;
    273     free(mCoefBuffer);
    274     mCoefBuffer = coefs;
    275 
    276     // square the computed minimum passband value (extra safety).
    277     double attenuation =
    278             computeWindowedSincMinimumPassbandValue(stopBandAtten);
    279     attenuation *= attenuation;
    280 
    281     // design filter
    282     firKaiserGen(coefs, phases, halfLength, stopBandAtten, fcr, attenuation);
    283 
    284     // update the design criteria
    285     mNormalizedCutoffFrequency = fcr;
    286     mNormalizedTransitionBandwidth = tbw;
    287     mFilterAttenuation = attenuation;
    288     mStopbandAttenuationDb = stopBandAtten;
    289     mPassbandRippleDb = computeWindowedSincPassbandRippleDb(stopBandAtten);
    290 
    291 #if 0
    292     // Keep this debug code in case an app causes resampler design issues.
    293     const double halfbw = tbw / 2.;
    294     // print basic filter stats
    295     ALOGD("L:%d  hnc:%d  stopBandAtten:%lf  fcr:%lf  atten:%lf  tbw:%lf\n",
    296             c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, attenuation, tbw);
    297 
    298     // test the filter and report results.
    299     // Since this is a polyphase filter, normalized fp and fs must be scaled.
    300     const double fp = (fcr - halfbw) / phases;
    301     const double fs = (fcr + halfbw) / phases;
    302 
    303     double passMin, passMax, passRipple;
    304     double stopMax, stopRipple;
    305 
    306     const int32_t passSteps = 1000;
    307 
    308     testFir(coefs, c.mL, c.mHalfNumCoefs, fp, fs, passSteps, passSteps * c.ML /*stopSteps*/,
    309             passMin, passMax, passRipple, stopMax, stopRipple);
    310     ALOGD("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
    311     ALOGD("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
    312 #endif
    313 }
    314 
    315 // recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
    316 static int gcd(int n, int m)
    317 {
    318     if (m == 0) {
    319         return n;
    320     }
    321     return gcd(m, n % m);
    322 }
    323 
    324 static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
    325         int32_t filterSampleRate, int32_t outSampleRate)
    326 {
    327 
    328     // different upsampling ratios do not need a filter change.
    329     if (filterSampleRate != 0
    330             && filterSampleRate < outSampleRate
    331             && newSampleRate < outSampleRate)
    332         return true;
    333 
    334     // check design criteria again if downsampling is detected.
    335     int pdiff = absdiff(newSampleRate, prevSampleRate);
    336     int adiff = absdiff(newSampleRate, filterSampleRate);
    337 
    338     // allow up to 6% relative change increments.
    339     // allow up to 12% absolute change increments (from filter design)
    340     return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
    341 }
    342 
    343 template<typename TC, typename TI, typename TO>
    344 void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
    345 {
    346     if (mInSampleRate == inSampleRate) {
    347         return;
    348     }
    349     int32_t oldSampleRate = mInSampleRate;
    350     uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
    351     bool useS32 = false;
    352 
    353     mInSampleRate = inSampleRate;
    354 
    355     // TODO: Add precalculated Equiripple filters
    356 
    357     if (mFilterQuality != getQuality() ||
    358             !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
    359         mFilterSampleRate = inSampleRate;
    360         mFilterQuality = getQuality();
    361 
    362         double stopBandAtten;
    363         double tbwCheat = 1.; // how much we "cheat" into aliasing
    364         int halfLength;
    365         double fcr = 0.;
    366 
    367         // Begin Kaiser Filter computation
    368         //
    369         // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
    370         // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
    371         //
    372         // For s32 we keep the stop band attenuation at the same as 16b resolution, about
    373         // 96-98dB
    374         //
    375 
    376         if (mPropertyEnableAtSampleRate >= 0 && mSampleRate >= mPropertyEnableAtSampleRate) {
    377             // An alternative method which allows allows a greater fcr
    378             // at the expense of potential aliasing.
    379             halfLength = mPropertyHalfFilterLength;
    380             stopBandAtten = mPropertyStopbandAttenuation;
    381             useS32 = true;
    382             fcr = mInSampleRate <= mSampleRate
    383                     ? 0.5 : 0.5 * mSampleRate / mInSampleRate;
    384             fcr *= mPropertyCutoffPercent / 100.;
    385         } else {
    386             if (mFilterQuality == DYN_HIGH_QUALITY) {
    387                 // 32b coefficients, 64 length
    388                 useS32 = true;
    389                 stopBandAtten = 98.;
    390                 if (inSampleRate >= mSampleRate * 4) {
    391                     halfLength = 48;
    392                 } else if (inSampleRate >= mSampleRate * 2) {
    393                     halfLength = 40;
    394                 } else {
    395                     halfLength = 32;
    396                 }
    397             } else if (mFilterQuality == DYN_LOW_QUALITY) {
    398                 // 16b coefficients, 16-32 length
    399                 useS32 = false;
    400                 stopBandAtten = 80.;
    401                 if (inSampleRate >= mSampleRate * 4) {
    402                     halfLength = 24;
    403                 } else if (inSampleRate >= mSampleRate * 2) {
    404                     halfLength = 16;
    405                 } else {
    406                     halfLength = 8;
    407                 }
    408                 if (inSampleRate <= mSampleRate) {
    409                     tbwCheat = 1.05;
    410                 } else {
    411                     tbwCheat = 1.03;
    412                 }
    413             } else { // DYN_MED_QUALITY
    414                 // 16b coefficients, 32-64 length
    415                 // note: > 64 length filters with 16b coefs can have quantization noise problems
    416                 useS32 = false;
    417                 stopBandAtten = 84.;
    418                 if (inSampleRate >= mSampleRate * 4) {
    419                     halfLength = 32;
    420                 } else if (inSampleRate >= mSampleRate * 2) {
    421                     halfLength = 24;
    422                 } else {
    423                     halfLength = 16;
    424                 }
    425                 if (inSampleRate <= mSampleRate) {
    426                     tbwCheat = 1.03;
    427                 } else {
    428                     tbwCheat = 1.01;
    429                 }
    430             }
    431         }
    432 
    433         // determine the number of polyphases in the filterbank.
    434         // for 16b, it is desirable to have 2^(16/2) = 256 phases.
    435         // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
    436         //
    437         // We are a bit more lax on this.
    438 
    439         int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
    440 
    441         // TODO: Once dynamic sample rate change is an option, the code below
    442         // should be modified to execute only when dynamic sample rate change is enabled.
    443         //
    444         // as above, #phases less than 63 is too few phases for accurate linear interpolation.
    445         // we increase the phases to compensate, but more phases means more memory per
    446         // filter and more time to compute the filter.
    447         //
    448         // if we know that the filter will be used for dynamic sample rate changes,
    449         // that would allow us skip this part for fixed sample rate resamplers.
    450         //
    451         while (phases<63) {
    452             phases *= 2; // this code only needed to support dynamic rate changes
    453         }
    454 
    455         if (phases>=256) {  // too many phases, always interpolate
    456             phases = 127;
    457         }
    458 
    459         // create the filter
    460         mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
    461         if (fcr > 0.) {
    462             createKaiserFir(mConstants, stopBandAtten, fcr);
    463         } else {
    464             createKaiserFir(mConstants, stopBandAtten,
    465                     inSampleRate, mSampleRate, tbwCheat);
    466         }
    467     } // End Kaiser filter
    468 
    469     // update phase and state based on the new filter.
    470     const Constants& c(mConstants);
    471     mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
    472     const uint32_t phaseWrapLimit = c.mL << c.mShift;
    473     // try to preserve as much of the phase fraction as possible for on-the-fly changes
    474     mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
    475             * phaseWrapLimit / oldPhaseWrapLimit;
    476     mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
    477     mPhaseIncrement = static_cast<uint32_t>(static_cast<uint64_t>(phaseWrapLimit)
    478             * inSampleRate / mSampleRate);
    479 
    480     // determine which resampler to use
    481     // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
    482     int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
    483     if (locked) {
    484         mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
    485     }
    486 
    487     // stride is the minimum number of filter coefficients processed per loop iteration.
    488     // We currently only allow a stride of 16 to match with SIMD processing.
    489     // This means that the filter length must be a multiple of 16,
    490     // or half the filter length (mHalfNumCoefs) must be a multiple of 8.
    491     //
    492     // Note: A stride of 2 is achieved with non-SIMD processing.
    493     int stride = ((c.mHalfNumCoefs & 7) == 0) ? 16 : 2;
    494     LOG_ALWAYS_FATAL_IF(stride < 16, "Resampler stride must be 16 or more");
    495     LOG_ALWAYS_FATAL_IF(mChannelCount < 1 || mChannelCount > 8,
    496             "Resampler channels(%d) must be between 1 to 8", mChannelCount);
    497     // stride 16 (falls back to stride 2 for machines that do not support NEON)
    498     if (locked) {
    499         switch (mChannelCount) {
    500         case 1:
    501             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
    502             break;
    503         case 2:
    504             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
    505             break;
    506         case 3:
    507             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, true, 16>;
    508             break;
    509         case 4:
    510             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, true, 16>;
    511             break;
    512         case 5:
    513             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, true, 16>;
    514             break;
    515         case 6:
    516             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, true, 16>;
    517             break;
    518         case 7:
    519             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, true, 16>;
    520             break;
    521         case 8:
    522             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, true, 16>;
    523             break;
    524         }
    525     } else {
    526         switch (mChannelCount) {
    527         case 1:
    528             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
    529             break;
    530         case 2:
    531             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
    532             break;
    533         case 3:
    534             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<3, false, 16>;
    535             break;
    536         case 4:
    537             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<4, false, 16>;
    538             break;
    539         case 5:
    540             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<5, false, 16>;
    541             break;
    542         case 6:
    543             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<6, false, 16>;
    544             break;
    545         case 7:
    546             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<7, false, 16>;
    547             break;
    548         case 8:
    549             mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<8, false, 16>;
    550             break;
    551         }
    552     }
    553 #ifdef DEBUG_RESAMPLER
    554     printf("channels:%d  %s  stride:%d  %s  coef:%d  shift:%d\n",
    555             mChannelCount, locked ? "locked" : "interpolated",
    556             stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
    557 #endif
    558 }
    559 
    560 template<typename TC, typename TI, typename TO>
    561 size_t AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
    562             AudioBufferProvider* provider)
    563 {
    564     return (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
    565 }
    566 
    567 template<typename TC, typename TI, typename TO>
    568 template<int CHANNELS, bool LOCKED, int STRIDE>
    569 size_t AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
    570         AudioBufferProvider* provider)
    571 {
    572     // TODO Mono -> Mono is not supported. OUTPUT_CHANNELS reflects minimum of stereo out.
    573     const int OUTPUT_CHANNELS = (CHANNELS < 2) ? 2 : CHANNELS;
    574     const Constants& c(mConstants);
    575     const TC* const coefs = mConstants.mFirCoefs;
    576     TI* impulse = mInBuffer.getImpulse();
    577     size_t inputIndex = 0;
    578     uint32_t phaseFraction = mPhaseFraction;
    579     const uint32_t phaseIncrement = mPhaseIncrement;
    580     size_t outputIndex = 0;
    581     size_t outputSampleCount = outFrameCount * OUTPUT_CHANNELS;
    582     const uint32_t phaseWrapLimit = c.mL << c.mShift;
    583     size_t inFrameCount = (phaseIncrement * (uint64_t)outFrameCount + phaseFraction)
    584             / phaseWrapLimit;
    585     // sanity check that inFrameCount is in signed 32 bit integer range.
    586     ALOG_ASSERT(0 <= inFrameCount && inFrameCount < (1U << 31));
    587 
    588     //ALOGV("inFrameCount:%d  outFrameCount:%d"
    589     //        "  phaseIncrement:%u  phaseFraction:%u  phaseWrapLimit:%u",
    590     //        inFrameCount, outFrameCount, phaseIncrement, phaseFraction, phaseWrapLimit);
    591 
    592     // NOTE: be very careful when modifying the code here. register
    593     // pressure is very high and a small change might cause the compiler
    594     // to generate far less efficient code.
    595     // Always sanity check the result with objdump or test-resample.
    596 
    597     // the following logic is a bit convoluted to keep the main processing loop
    598     // as tight as possible with register allocation.
    599     while (outputIndex < outputSampleCount) {
    600         //ALOGV("LOOP: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
    601         //        "  phaseFraction:%u  phaseWrapLimit:%u",
    602         //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
    603 
    604         // check inputIndex overflow
    605         ALOG_ASSERT(inputIndex <= mBuffer.frameCount, "inputIndex%zu > frameCount%zu",
    606                 inputIndex, mBuffer.frameCount);
    607         // Buffer is empty, fetch a new one if necessary (inFrameCount > 0).
    608         // We may not fetch a new buffer if the existing data is sufficient.
    609         while (mBuffer.frameCount == 0 && inFrameCount > 0) {
    610             mBuffer.frameCount = inFrameCount;
    611             provider->getNextBuffer(&mBuffer);
    612             if (mBuffer.raw == NULL) {
    613                 // We are either at the end of playback or in an underrun situation.
    614                 // Reset buffer to prevent pop noise at the next buffer.
    615                 mInBuffer.reset();
    616                 goto resample_exit;
    617             }
    618             inFrameCount -= mBuffer.frameCount;
    619             if (phaseFraction >= phaseWrapLimit) { // read in data
    620                 mInBuffer.template readAdvance<CHANNELS>(
    621                         impulse, c.mHalfNumCoefs,
    622                         reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
    623                 inputIndex++;
    624                 phaseFraction -= phaseWrapLimit;
    625                 while (phaseFraction >= phaseWrapLimit) {
    626                     if (inputIndex >= mBuffer.frameCount) {
    627                         inputIndex = 0;
    628                         provider->releaseBuffer(&mBuffer);
    629                         break;
    630                     }
    631                     mInBuffer.template readAdvance<CHANNELS>(
    632                             impulse, c.mHalfNumCoefs,
    633                             reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
    634                     inputIndex++;
    635                     phaseFraction -= phaseWrapLimit;
    636                 }
    637             }
    638         }
    639         const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
    640         const size_t frameCount = mBuffer.frameCount;
    641         const int coefShift = c.mShift;
    642         const int halfNumCoefs = c.mHalfNumCoefs;
    643         const TO* const volumeSimd = mVolumeSimd;
    644 
    645         // main processing loop
    646         while (CC_LIKELY(outputIndex < outputSampleCount)) {
    647             // caution: fir() is inlined and may be large.
    648             // output will be loaded with the appropriate values
    649             //
    650             // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
    651             // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
    652             //
    653             //ALOGV("LOOP2: inFrameCount:%d  outputIndex:%d  outFrameCount:%d"
    654             //        "  phaseFraction:%u  phaseWrapLimit:%u",
    655             //        inFrameCount, outputIndex, outFrameCount, phaseFraction, phaseWrapLimit);
    656             ALOG_ASSERT(phaseFraction < phaseWrapLimit);
    657             fir<CHANNELS, LOCKED, STRIDE>(
    658                     &out[outputIndex],
    659                     phaseFraction, phaseWrapLimit,
    660                     coefShift, halfNumCoefs, coefs,
    661                     impulse, volumeSimd);
    662 
    663             outputIndex += OUTPUT_CHANNELS;
    664 
    665             phaseFraction += phaseIncrement;
    666             while (phaseFraction >= phaseWrapLimit) {
    667                 if (inputIndex >= frameCount) {
    668                     goto done;  // need a new buffer
    669                 }
    670                 mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
    671                 inputIndex++;
    672                 phaseFraction -= phaseWrapLimit;
    673             }
    674         }
    675 done:
    676         // We arrive here when we're finished or when the input buffer runs out.
    677         // Regardless we need to release the input buffer if we've acquired it.
    678         if (inputIndex > 0) {  // we've acquired a buffer (alternatively could check frameCount)
    679             ALOG_ASSERT(inputIndex == frameCount, "inputIndex(%zu) != frameCount(%zu)",
    680                     inputIndex, frameCount);  // must have been fully read.
    681             inputIndex = 0;
    682             provider->releaseBuffer(&mBuffer);
    683             ALOG_ASSERT(mBuffer.frameCount == 0);
    684         }
    685     }
    686 
    687 resample_exit:
    688     // inputIndex must be zero in all three cases:
    689     // (1) the buffer never was been acquired; (2) the buffer was
    690     // released at "done:"; or (3) getNextBuffer() failed.
    691     ALOG_ASSERT(inputIndex == 0, "Releasing: inputindex:%zu frameCount:%zu  phaseFraction:%u",
    692             inputIndex, mBuffer.frameCount, phaseFraction);
    693     ALOG_ASSERT(mBuffer.frameCount == 0); // there must be no frames in the buffer
    694     mInBuffer.setImpulse(impulse);
    695     mPhaseFraction = phaseFraction;
    696     return outputIndex / OUTPUT_CHANNELS;
    697 }
    698 
    699 /* instantiate templates used by AudioResampler::create */
    700 template class AudioResamplerDyn<float, float, float>;
    701 template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
    702 template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
    703 
    704 // ----------------------------------------------------------------------------
    705 } // namespace android
    706