Home | History | Annotate | Download | only in ADT
      1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ImutAVLTree and ImmutableSet classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_IMMUTABLESET_H
     15 #define LLVM_ADT_IMMUTABLESET_H
     16 
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/FoldingSet.h"
     19 #include "llvm/ADT/iterator.h"
     20 #include "llvm/ADT/SmallVector.h"
     21 #include "llvm/Support/Allocator.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include <cassert>
     24 #include <functional>
     25 #include <vector>
     26 #include <cstdint>
     27 #include <iterator>
     28 #include <new>
     29 
     30 namespace llvm {
     31 
     32 //===----------------------------------------------------------------------===//
     33 // Immutable AVL-Tree Definition.
     34 //===----------------------------------------------------------------------===//
     35 
     36 template <typename ImutInfo> class ImutAVLFactory;
     37 template <typename ImutInfo> class ImutIntervalAVLFactory;
     38 template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
     39 template <typename ImutInfo> class ImutAVLTreeGenericIterator;
     40 
     41 template <typename ImutInfo >
     42 class ImutAVLTree {
     43 public:
     44   typedef typename ImutInfo::key_type_ref   key_type_ref;
     45   typedef typename ImutInfo::value_type     value_type;
     46   typedef typename ImutInfo::value_type_ref value_type_ref;
     47 
     48   typedef ImutAVLFactory<ImutInfo>          Factory;
     49   friend class ImutAVLFactory<ImutInfo>;
     50   friend class ImutIntervalAVLFactory<ImutInfo>;
     51 
     52   friend class ImutAVLTreeGenericIterator<ImutInfo>;
     53 
     54   typedef ImutAVLTreeInOrderIterator<ImutInfo>  iterator;
     55 
     56   //===----------------------------------------------------===//
     57   // Public Interface.
     58   //===----------------------------------------------------===//
     59 
     60   /// Return a pointer to the left subtree.  This value
     61   ///  is NULL if there is no left subtree.
     62   ImutAVLTree *getLeft() const { return left; }
     63 
     64   /// Return a pointer to the right subtree.  This value is
     65   ///  NULL if there is no right subtree.
     66   ImutAVLTree *getRight() const { return right; }
     67 
     68   /// getHeight - Returns the height of the tree.  A tree with no subtrees
     69   ///  has a height of 1.
     70   unsigned getHeight() const { return height; }
     71 
     72   /// getValue - Returns the data value associated with the tree node.
     73   const value_type& getValue() const { return value; }
     74 
     75   /// find - Finds the subtree associated with the specified key value.
     76   ///  This method returns NULL if no matching subtree is found.
     77   ImutAVLTree* find(key_type_ref K) {
     78     ImutAVLTree *T = this;
     79     while (T) {
     80       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
     81       if (ImutInfo::isEqual(K,CurrentKey))
     82         return T;
     83       else if (ImutInfo::isLess(K,CurrentKey))
     84         T = T->getLeft();
     85       else
     86         T = T->getRight();
     87     }
     88     return nullptr;
     89   }
     90 
     91   /// getMaxElement - Find the subtree associated with the highest ranged
     92   ///  key value.
     93   ImutAVLTree* getMaxElement() {
     94     ImutAVLTree *T = this;
     95     ImutAVLTree *Right = T->getRight();
     96     while (Right) { T = Right; Right = T->getRight(); }
     97     return T;
     98   }
     99 
    100   /// size - Returns the number of nodes in the tree, which includes
    101   ///  both leaves and non-leaf nodes.
    102   unsigned size() const {
    103     unsigned n = 1;
    104     if (const ImutAVLTree* L = getLeft())
    105       n += L->size();
    106     if (const ImutAVLTree* R = getRight())
    107       n += R->size();
    108     return n;
    109   }
    110 
    111   /// begin - Returns an iterator that iterates over the nodes of the tree
    112   ///  in an inorder traversal.  The returned iterator thus refers to the
    113   ///  the tree node with the minimum data element.
    114   iterator begin() const { return iterator(this); }
    115 
    116   /// end - Returns an iterator for the tree that denotes the end of an
    117   ///  inorder traversal.
    118   iterator end() const { return iterator(); }
    119 
    120   bool isElementEqual(value_type_ref V) const {
    121     // Compare the keys.
    122     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
    123                            ImutInfo::KeyOfValue(V)))
    124       return false;
    125 
    126     // Also compare the data values.
    127     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
    128                                ImutInfo::DataOfValue(V)))
    129       return false;
    130 
    131     return true;
    132   }
    133 
    134   bool isElementEqual(const ImutAVLTree* RHS) const {
    135     return isElementEqual(RHS->getValue());
    136   }
    137 
    138   /// isEqual - Compares two trees for structural equality and returns true
    139   ///   if they are equal.  This worst case performance of this operation is
    140   //    linear in the sizes of the trees.
    141   bool isEqual(const ImutAVLTree& RHS) const {
    142     if (&RHS == this)
    143       return true;
    144 
    145     iterator LItr = begin(), LEnd = end();
    146     iterator RItr = RHS.begin(), REnd = RHS.end();
    147 
    148     while (LItr != LEnd && RItr != REnd) {
    149       if (&*LItr == &*RItr) {
    150         LItr.skipSubTree();
    151         RItr.skipSubTree();
    152         continue;
    153       }
    154 
    155       if (!LItr->isElementEqual(&*RItr))
    156         return false;
    157 
    158       ++LItr;
    159       ++RItr;
    160     }
    161 
    162     return LItr == LEnd && RItr == REnd;
    163   }
    164 
    165   /// isNotEqual - Compares two trees for structural inequality.  Performance
    166   ///  is the same is isEqual.
    167   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
    168 
    169   /// contains - Returns true if this tree contains a subtree (node) that
    170   ///  has an data element that matches the specified key.  Complexity
    171   ///  is logarithmic in the size of the tree.
    172   bool contains(key_type_ref K) { return (bool) find(K); }
    173 
    174   /// foreach - A member template the accepts invokes operator() on a functor
    175   ///  object (specifed by Callback) for every node/subtree in the tree.
    176   ///  Nodes are visited using an inorder traversal.
    177   template <typename Callback>
    178   void foreach(Callback& C) {
    179     if (ImutAVLTree* L = getLeft())
    180       L->foreach(C);
    181 
    182     C(value);
    183 
    184     if (ImutAVLTree* R = getRight())
    185       R->foreach(C);
    186   }
    187 
    188   /// validateTree - A utility method that checks that the balancing and
    189   ///  ordering invariants of the tree are satisifed.  It is a recursive
    190   ///  method that returns the height of the tree, which is then consumed
    191   ///  by the enclosing validateTree call.  External callers should ignore the
    192   ///  return value.  An invalid tree will cause an assertion to fire in
    193   ///  a debug build.
    194   unsigned validateTree() const {
    195     unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
    196     unsigned HR = getRight() ? getRight()->validateTree() : 0;
    197     (void) HL;
    198     (void) HR;
    199 
    200     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
    201             && "Height calculation wrong");
    202 
    203     assert((HL > HR ? HL-HR : HR-HL) <= 2
    204            && "Balancing invariant violated");
    205 
    206     assert((!getLeft() ||
    207             ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
    208                              ImutInfo::KeyOfValue(getValue()))) &&
    209            "Value in left child is not less that current value");
    210 
    211 
    212     assert(!(getRight() ||
    213              ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
    214                               ImutInfo::KeyOfValue(getRight()->getValue()))) &&
    215            "Current value is not less that value of right child");
    216 
    217     return getHeight();
    218   }
    219 
    220   //===----------------------------------------------------===//
    221   // Internal values.
    222   //===----------------------------------------------------===//
    223 
    224 private:
    225   Factory *factory;
    226   ImutAVLTree *left;
    227   ImutAVLTree *right;
    228   ImutAVLTree *prev;
    229   ImutAVLTree *next;
    230 
    231   unsigned height         : 28;
    232   unsigned IsMutable      : 1;
    233   unsigned IsDigestCached : 1;
    234   unsigned IsCanonicalized : 1;
    235 
    236   value_type value;
    237   uint32_t digest;
    238   uint32_t refCount;
    239 
    240   //===----------------------------------------------------===//
    241   // Internal methods (node manipulation; used by Factory).
    242   //===----------------------------------------------------===//
    243 
    244 private:
    245   /// ImutAVLTree - Internal constructor that is only called by
    246   ///   ImutAVLFactory.
    247   ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
    248               unsigned height)
    249     : factory(f), left(l), right(r), prev(nullptr), next(nullptr),
    250       height(height), IsMutable(true), IsDigestCached(false),
    251       IsCanonicalized(0), value(v), digest(0), refCount(0)
    252   {
    253     if (left) left->retain();
    254     if (right) right->retain();
    255   }
    256 
    257   /// isMutable - Returns true if the left and right subtree references
    258   ///  (as well as height) can be changed.  If this method returns false,
    259   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
    260   ///  object should always have this method return true.  Further, if this
    261   ///  method returns false for an instance of ImutAVLTree, all subtrees
    262   ///  will also have this method return false.  The converse is not true.
    263   bool isMutable() const { return IsMutable; }
    264 
    265   /// hasCachedDigest - Returns true if the digest for this tree is cached.
    266   ///  This can only be true if the tree is immutable.
    267   bool hasCachedDigest() const { return IsDigestCached; }
    268 
    269   //===----------------------------------------------------===//
    270   // Mutating operations.  A tree root can be manipulated as
    271   // long as its reference has not "escaped" from internal
    272   // methods of a factory object (see below).  When a tree
    273   // pointer is externally viewable by client code, the
    274   // internal "mutable bit" is cleared to mark the tree
    275   // immutable.  Note that a tree that still has its mutable
    276   // bit set may have children (subtrees) that are themselves
    277   // immutable.
    278   //===----------------------------------------------------===//
    279 
    280   /// markImmutable - Clears the mutable flag for a tree.  After this happens,
    281   ///   it is an error to call setLeft(), setRight(), and setHeight().
    282   void markImmutable() {
    283     assert(isMutable() && "Mutable flag already removed.");
    284     IsMutable = false;
    285   }
    286 
    287   /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
    288   void markedCachedDigest() {
    289     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
    290     IsDigestCached = true;
    291   }
    292 
    293   /// setHeight - Changes the height of the tree.  Used internally by
    294   ///  ImutAVLFactory.
    295   void setHeight(unsigned h) {
    296     assert(isMutable() && "Only a mutable tree can have its height changed.");
    297     height = h;
    298   }
    299 
    300   static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
    301                                 value_type_ref V) {
    302     uint32_t digest = 0;
    303 
    304     if (L)
    305       digest += L->computeDigest();
    306 
    307     // Compute digest of stored data.
    308     FoldingSetNodeID ID;
    309     ImutInfo::Profile(ID,V);
    310     digest += ID.ComputeHash();
    311 
    312     if (R)
    313       digest += R->computeDigest();
    314 
    315     return digest;
    316   }
    317 
    318   uint32_t computeDigest() {
    319     // Check the lowest bit to determine if digest has actually been
    320     // pre-computed.
    321     if (hasCachedDigest())
    322       return digest;
    323 
    324     uint32_t X = computeDigest(getLeft(), getRight(), getValue());
    325     digest = X;
    326     markedCachedDigest();
    327     return X;
    328   }
    329 
    330   //===----------------------------------------------------===//
    331   // Reference count operations.
    332   //===----------------------------------------------------===//
    333 
    334 public:
    335   void retain() { ++refCount; }
    336 
    337   void release() {
    338     assert(refCount > 0);
    339     if (--refCount == 0)
    340       destroy();
    341   }
    342 
    343   void destroy() {
    344     if (left)
    345       left->release();
    346     if (right)
    347       right->release();
    348     if (IsCanonicalized) {
    349       if (next)
    350         next->prev = prev;
    351 
    352       if (prev)
    353         prev->next = next;
    354       else
    355         factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
    356     }
    357 
    358     // We need to clear the mutability bit in case we are
    359     // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
    360     IsMutable = false;
    361     factory->freeNodes.push_back(this);
    362   }
    363 };
    364 
    365 //===----------------------------------------------------------------------===//
    366 // Immutable AVL-Tree Factory class.
    367 //===----------------------------------------------------------------------===//
    368 
    369 template <typename ImutInfo >
    370 class ImutAVLFactory {
    371   friend class ImutAVLTree<ImutInfo>;
    372   typedef ImutAVLTree<ImutInfo> TreeTy;
    373   typedef typename TreeTy::value_type_ref value_type_ref;
    374   typedef typename TreeTy::key_type_ref   key_type_ref;
    375 
    376   typedef DenseMap<unsigned, TreeTy*> CacheTy;
    377 
    378   CacheTy Cache;
    379   uintptr_t Allocator;
    380   std::vector<TreeTy*> createdNodes;
    381   std::vector<TreeTy*> freeNodes;
    382 
    383   bool ownsAllocator() const {
    384     return (Allocator & 0x1) == 0;
    385   }
    386 
    387   BumpPtrAllocator& getAllocator() const {
    388     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
    389   }
    390 
    391   //===--------------------------------------------------===//
    392   // Public interface.
    393   //===--------------------------------------------------===//
    394 
    395 public:
    396   ImutAVLFactory()
    397     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
    398 
    399   ImutAVLFactory(BumpPtrAllocator& Alloc)
    400     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
    401 
    402   ~ImutAVLFactory() {
    403     if (ownsAllocator()) delete &getAllocator();
    404   }
    405 
    406   TreeTy* add(TreeTy* T, value_type_ref V) {
    407     T = add_internal(V,T);
    408     markImmutable(T);
    409     recoverNodes();
    410     return T;
    411   }
    412 
    413   TreeTy* remove(TreeTy* T, key_type_ref V) {
    414     T = remove_internal(V,T);
    415     markImmutable(T);
    416     recoverNodes();
    417     return T;
    418   }
    419 
    420   TreeTy* getEmptyTree() const { return nullptr; }
    421 
    422 protected:
    423   //===--------------------------------------------------===//
    424   // A bunch of quick helper functions used for reasoning
    425   // about the properties of trees and their children.
    426   // These have succinct names so that the balancing code
    427   // is as terse (and readable) as possible.
    428   //===--------------------------------------------------===//
    429 
    430   bool            isEmpty(TreeTy* T) const { return !T; }
    431   unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
    432   TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
    433   TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
    434   value_type_ref  getValue(TreeTy* T) const { return T->value; }
    435 
    436   // Make sure the index is not the Tombstone or Entry key of the DenseMap.
    437   static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
    438 
    439   unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
    440     unsigned hl = getHeight(L);
    441     unsigned hr = getHeight(R);
    442     return (hl > hr ? hl : hr) + 1;
    443   }
    444 
    445   static bool compareTreeWithSection(TreeTy* T,
    446                                      typename TreeTy::iterator& TI,
    447                                      typename TreeTy::iterator& TE) {
    448     typename TreeTy::iterator I = T->begin(), E = T->end();
    449     for ( ; I!=E ; ++I, ++TI) {
    450       if (TI == TE || !I->isElementEqual(&*TI))
    451         return false;
    452     }
    453     return true;
    454   }
    455 
    456   //===--------------------------------------------------===//
    457   // "createNode" is used to generate new tree roots that link
    458   // to other trees.  The functon may also simply move links
    459   // in an existing root if that root is still marked mutable.
    460   // This is necessary because otherwise our balancing code
    461   // would leak memory as it would create nodes that are
    462   // then discarded later before the finished tree is
    463   // returned to the caller.
    464   //===--------------------------------------------------===//
    465 
    466   TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
    467     BumpPtrAllocator& A = getAllocator();
    468     TreeTy* T;
    469     if (!freeNodes.empty()) {
    470       T = freeNodes.back();
    471       freeNodes.pop_back();
    472       assert(T != L);
    473       assert(T != R);
    474     } else {
    475       T = (TreeTy*) A.Allocate<TreeTy>();
    476     }
    477     new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
    478     createdNodes.push_back(T);
    479     return T;
    480   }
    481 
    482   TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
    483     return createNode(newLeft, getValue(oldTree), newRight);
    484   }
    485 
    486   void recoverNodes() {
    487     for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
    488       TreeTy *N = createdNodes[i];
    489       if (N->isMutable() && N->refCount == 0)
    490         N->destroy();
    491     }
    492     createdNodes.clear();
    493   }
    494 
    495   /// balanceTree - Used by add_internal and remove_internal to
    496   ///  balance a newly created tree.
    497   TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
    498     unsigned hl = getHeight(L);
    499     unsigned hr = getHeight(R);
    500 
    501     if (hl > hr + 2) {
    502       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
    503 
    504       TreeTy *LL = getLeft(L);
    505       TreeTy *LR = getRight(L);
    506 
    507       if (getHeight(LL) >= getHeight(LR))
    508         return createNode(LL, L, createNode(LR,V,R));
    509 
    510       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
    511 
    512       TreeTy *LRL = getLeft(LR);
    513       TreeTy *LRR = getRight(LR);
    514 
    515       return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
    516     }
    517 
    518     if (hr > hl + 2) {
    519       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
    520 
    521       TreeTy *RL = getLeft(R);
    522       TreeTy *RR = getRight(R);
    523 
    524       if (getHeight(RR) >= getHeight(RL))
    525         return createNode(createNode(L,V,RL), R, RR);
    526 
    527       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
    528 
    529       TreeTy *RLL = getLeft(RL);
    530       TreeTy *RLR = getRight(RL);
    531 
    532       return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
    533     }
    534 
    535     return createNode(L,V,R);
    536   }
    537 
    538   /// add_internal - Creates a new tree that includes the specified
    539   ///  data and the data from the original tree.  If the original tree
    540   ///  already contained the data item, the original tree is returned.
    541   TreeTy* add_internal(value_type_ref V, TreeTy* T) {
    542     if (isEmpty(T))
    543       return createNode(T, V, T);
    544     assert(!T->isMutable());
    545 
    546     key_type_ref K = ImutInfo::KeyOfValue(V);
    547     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    548 
    549     if (ImutInfo::isEqual(K,KCurrent))
    550       return createNode(getLeft(T), V, getRight(T));
    551     else if (ImutInfo::isLess(K,KCurrent))
    552       return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
    553     else
    554       return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
    555   }
    556 
    557   /// remove_internal - Creates a new tree that includes all the data
    558   ///  from the original tree except the specified data.  If the
    559   ///  specified data did not exist in the original tree, the original
    560   ///  tree is returned.
    561   TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
    562     if (isEmpty(T))
    563       return T;
    564 
    565     assert(!T->isMutable());
    566 
    567     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    568 
    569     if (ImutInfo::isEqual(K,KCurrent)) {
    570       return combineTrees(getLeft(T), getRight(T));
    571     } else if (ImutInfo::isLess(K,KCurrent)) {
    572       return balanceTree(remove_internal(K, getLeft(T)),
    573                                             getValue(T), getRight(T));
    574     } else {
    575       return balanceTree(getLeft(T), getValue(T),
    576                          remove_internal(K, getRight(T)));
    577     }
    578   }
    579 
    580   TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
    581     if (isEmpty(L))
    582       return R;
    583     if (isEmpty(R))
    584       return L;
    585     TreeTy* OldNode;
    586     TreeTy* newRight = removeMinBinding(R,OldNode);
    587     return balanceTree(L, getValue(OldNode), newRight);
    588   }
    589 
    590   TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
    591     assert(!isEmpty(T));
    592     if (isEmpty(getLeft(T))) {
    593       Noderemoved = T;
    594       return getRight(T);
    595     }
    596     return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
    597                        getValue(T), getRight(T));
    598   }
    599 
    600   /// markImmutable - Clears the mutable bits of a root and all of its
    601   ///  descendants.
    602   void markImmutable(TreeTy* T) {
    603     if (!T || !T->isMutable())
    604       return;
    605     T->markImmutable();
    606     markImmutable(getLeft(T));
    607     markImmutable(getRight(T));
    608   }
    609 
    610 public:
    611   TreeTy *getCanonicalTree(TreeTy *TNew) {
    612     if (!TNew)
    613       return nullptr;
    614 
    615     if (TNew->IsCanonicalized)
    616       return TNew;
    617 
    618     // Search the hashtable for another tree with the same digest, and
    619     // if find a collision compare those trees by their contents.
    620     unsigned digest = TNew->computeDigest();
    621     TreeTy *&entry = Cache[maskCacheIndex(digest)];
    622     do {
    623       if (!entry)
    624         break;
    625       for (TreeTy *T = entry ; T != nullptr; T = T->next) {
    626         // Compare the Contents('T') with Contents('TNew')
    627         typename TreeTy::iterator TI = T->begin(), TE = T->end();
    628         if (!compareTreeWithSection(TNew, TI, TE))
    629           continue;
    630         if (TI != TE)
    631           continue; // T has more contents than TNew.
    632         // Trees did match!  Return 'T'.
    633         if (TNew->refCount == 0)
    634           TNew->destroy();
    635         return T;
    636       }
    637       entry->prev = TNew;
    638       TNew->next = entry;
    639     }
    640     while (false);
    641 
    642     entry = TNew;
    643     TNew->IsCanonicalized = true;
    644     return TNew;
    645   }
    646 };
    647 
    648 //===----------------------------------------------------------------------===//
    649 // Immutable AVL-Tree Iterators.
    650 //===----------------------------------------------------------------------===//
    651 
    652 template <typename ImutInfo>
    653 class ImutAVLTreeGenericIterator
    654     : public std::iterator<std::bidirectional_iterator_tag,
    655                            ImutAVLTree<ImutInfo>> {
    656   SmallVector<uintptr_t,20> stack;
    657 
    658 public:
    659   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
    660                    Flags=0x3 };
    661 
    662   typedef ImutAVLTree<ImutInfo> TreeTy;
    663 
    664   ImutAVLTreeGenericIterator() = default;
    665   ImutAVLTreeGenericIterator(const TreeTy *Root) {
    666     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
    667   }
    668 
    669   TreeTy &operator*() const {
    670     assert(!stack.empty());
    671     return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
    672   }
    673   TreeTy *operator->() const { return &*this; }
    674 
    675   uintptr_t getVisitState() const {
    676     assert(!stack.empty());
    677     return stack.back() & Flags;
    678   }
    679 
    680   bool atEnd() const { return stack.empty(); }
    681 
    682   bool atBeginning() const {
    683     return stack.size() == 1 && getVisitState() == VisitedNone;
    684   }
    685 
    686   void skipToParent() {
    687     assert(!stack.empty());
    688     stack.pop_back();
    689     if (stack.empty())
    690       return;
    691     switch (getVisitState()) {
    692       case VisitedNone:
    693         stack.back() |= VisitedLeft;
    694         break;
    695       case VisitedLeft:
    696         stack.back() |= VisitedRight;
    697         break;
    698       default:
    699         llvm_unreachable("Unreachable.");
    700     }
    701   }
    702 
    703   bool operator==(const ImutAVLTreeGenericIterator &x) const {
    704     return stack == x.stack;
    705   }
    706 
    707   bool operator!=(const ImutAVLTreeGenericIterator &x) const {
    708     return !(*this == x);
    709   }
    710 
    711   ImutAVLTreeGenericIterator &operator++() {
    712     assert(!stack.empty());
    713     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    714     assert(Current);
    715     switch (getVisitState()) {
    716       case VisitedNone:
    717         if (TreeTy* L = Current->getLeft())
    718           stack.push_back(reinterpret_cast<uintptr_t>(L));
    719         else
    720           stack.back() |= VisitedLeft;
    721         break;
    722       case VisitedLeft:
    723         if (TreeTy* R = Current->getRight())
    724           stack.push_back(reinterpret_cast<uintptr_t>(R));
    725         else
    726           stack.back() |= VisitedRight;
    727         break;
    728       case VisitedRight:
    729         skipToParent();
    730         break;
    731       default:
    732         llvm_unreachable("Unreachable.");
    733     }
    734     return *this;
    735   }
    736 
    737   ImutAVLTreeGenericIterator &operator--() {
    738     assert(!stack.empty());
    739     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    740     assert(Current);
    741     switch (getVisitState()) {
    742       case VisitedNone:
    743         stack.pop_back();
    744         break;
    745       case VisitedLeft:
    746         stack.back() &= ~Flags; // Set state to "VisitedNone."
    747         if (TreeTy* L = Current->getLeft())
    748           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
    749         break;
    750       case VisitedRight:
    751         stack.back() &= ~Flags;
    752         stack.back() |= VisitedLeft;
    753         if (TreeTy* R = Current->getRight())
    754           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
    755         break;
    756       default:
    757         llvm_unreachable("Unreachable.");
    758     }
    759     return *this;
    760   }
    761 };
    762 
    763 template <typename ImutInfo>
    764 class ImutAVLTreeInOrderIterator
    765     : public std::iterator<std::bidirectional_iterator_tag,
    766                            ImutAVLTree<ImutInfo>> {
    767   typedef ImutAVLTreeGenericIterator<ImutInfo> InternalIteratorTy;
    768   InternalIteratorTy InternalItr;
    769 
    770 public:
    771   typedef ImutAVLTree<ImutInfo> TreeTy;
    772 
    773   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
    774     if (Root)
    775       ++*this; // Advance to first element.
    776   }
    777 
    778   ImutAVLTreeInOrderIterator() : InternalItr() {}
    779 
    780   bool operator==(const ImutAVLTreeInOrderIterator &x) const {
    781     return InternalItr == x.InternalItr;
    782   }
    783 
    784   bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
    785     return !(*this == x);
    786   }
    787 
    788   TreeTy &operator*() const { return *InternalItr; }
    789   TreeTy *operator->() const { return &*InternalItr; }
    790 
    791   ImutAVLTreeInOrderIterator &operator++() {
    792     do ++InternalItr;
    793     while (!InternalItr.atEnd() &&
    794            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    795 
    796     return *this;
    797   }
    798 
    799   ImutAVLTreeInOrderIterator &operator--() {
    800     do --InternalItr;
    801     while (!InternalItr.atBeginning() &&
    802            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    803 
    804     return *this;
    805   }
    806 
    807   void skipSubTree() {
    808     InternalItr.skipToParent();
    809 
    810     while (!InternalItr.atEnd() &&
    811            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
    812       ++InternalItr;
    813   }
    814 };
    815 
    816 /// Generic iterator that wraps a T::TreeTy::iterator and exposes
    817 /// iterator::getValue() on dereference.
    818 template <typename T>
    819 struct ImutAVLValueIterator
    820     : iterator_adaptor_base<
    821           ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
    822           typename std::iterator_traits<
    823               typename T::TreeTy::iterator>::iterator_category,
    824           const typename T::value_type> {
    825   ImutAVLValueIterator() = default;
    826   explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
    827       : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
    828 
    829   typename ImutAVLValueIterator::reference operator*() const {
    830     return this->I->getValue();
    831   }
    832 };
    833 
    834 //===----------------------------------------------------------------------===//
    835 // Trait classes for Profile information.
    836 //===----------------------------------------------------------------------===//
    837 
    838 /// Generic profile template.  The default behavior is to invoke the
    839 /// profile method of an object.  Specializations for primitive integers
    840 /// and generic handling of pointers is done below.
    841 template <typename T>
    842 struct ImutProfileInfo {
    843   typedef const T  value_type;
    844   typedef const T& value_type_ref;
    845 
    846   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    847     FoldingSetTrait<T>::Profile(X,ID);
    848   }
    849 };
    850 
    851 /// Profile traits for integers.
    852 template <typename T>
    853 struct ImutProfileInteger {
    854   typedef const T  value_type;
    855   typedef const T& value_type_ref;
    856 
    857   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    858     ID.AddInteger(X);
    859   }
    860 };
    861 
    862 #define PROFILE_INTEGER_INFO(X)\
    863 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
    864 
    865 PROFILE_INTEGER_INFO(char)
    866 PROFILE_INTEGER_INFO(unsigned char)
    867 PROFILE_INTEGER_INFO(short)
    868 PROFILE_INTEGER_INFO(unsigned short)
    869 PROFILE_INTEGER_INFO(unsigned)
    870 PROFILE_INTEGER_INFO(signed)
    871 PROFILE_INTEGER_INFO(long)
    872 PROFILE_INTEGER_INFO(unsigned long)
    873 PROFILE_INTEGER_INFO(long long)
    874 PROFILE_INTEGER_INFO(unsigned long long)
    875 
    876 #undef PROFILE_INTEGER_INFO
    877 
    878 /// Profile traits for booleans.
    879 template <>
    880 struct ImutProfileInfo<bool> {
    881   typedef const bool  value_type;
    882   typedef const bool& value_type_ref;
    883 
    884   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    885     ID.AddBoolean(X);
    886   }
    887 };
    888 
    889 /// Generic profile trait for pointer types.  We treat pointers as
    890 /// references to unique objects.
    891 template <typename T>
    892 struct ImutProfileInfo<T*> {
    893   typedef const T*   value_type;
    894   typedef value_type value_type_ref;
    895 
    896   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    897     ID.AddPointer(X);
    898   }
    899 };
    900 
    901 //===----------------------------------------------------------------------===//
    902 // Trait classes that contain element comparison operators and type
    903 //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
    904 //  inherit from the profile traits (ImutProfileInfo) to include operations
    905 //  for element profiling.
    906 //===----------------------------------------------------------------------===//
    907 
    908 /// ImutContainerInfo - Generic definition of comparison operations for
    909 ///   elements of immutable containers that defaults to using
    910 ///   std::equal_to<> and std::less<> to perform comparison of elements.
    911 template <typename T>
    912 struct ImutContainerInfo : public ImutProfileInfo<T> {
    913   typedef typename ImutProfileInfo<T>::value_type      value_type;
    914   typedef typename ImutProfileInfo<T>::value_type_ref  value_type_ref;
    915   typedef value_type      key_type;
    916   typedef value_type_ref  key_type_ref;
    917   typedef bool            data_type;
    918   typedef bool            data_type_ref;
    919 
    920   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
    921   static data_type_ref DataOfValue(value_type_ref) { return true; }
    922 
    923   static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    924     return std::equal_to<key_type>()(LHS,RHS);
    925   }
    926 
    927   static bool isLess(key_type_ref LHS, key_type_ref RHS) {
    928     return std::less<key_type>()(LHS,RHS);
    929   }
    930 
    931   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
    932 };
    933 
    934 /// ImutContainerInfo - Specialization for pointer values to treat pointers
    935 ///  as references to unique objects.  Pointers are thus compared by
    936 ///  their addresses.
    937 template <typename T>
    938 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
    939   typedef typename ImutProfileInfo<T*>::value_type      value_type;
    940   typedef typename ImutProfileInfo<T*>::value_type_ref  value_type_ref;
    941   typedef value_type      key_type;
    942   typedef value_type_ref  key_type_ref;
    943   typedef bool            data_type;
    944   typedef bool            data_type_ref;
    945 
    946   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
    947   static data_type_ref DataOfValue(value_type_ref) { return true; }
    948 
    949   static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
    950 
    951   static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
    952 
    953   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
    954 };
    955 
    956 //===----------------------------------------------------------------------===//
    957 // Immutable Set
    958 //===----------------------------------------------------------------------===//
    959 
    960 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
    961 class ImmutableSet {
    962 public:
    963   typedef typename ValInfo::value_type      value_type;
    964   typedef typename ValInfo::value_type_ref  value_type_ref;
    965   typedef ImutAVLTree<ValInfo> TreeTy;
    966 
    967 private:
    968   TreeTy *Root;
    969 
    970 public:
    971   /// Constructs a set from a pointer to a tree root.  In general one
    972   /// should use a Factory object to create sets instead of directly
    973   /// invoking the constructor, but there are cases where make this
    974   /// constructor public is useful.
    975   explicit ImmutableSet(TreeTy* R) : Root(R) {
    976     if (Root) { Root->retain(); }
    977   }
    978 
    979   ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
    980     if (Root) { Root->retain(); }
    981   }
    982 
    983   ImmutableSet &operator=(const ImmutableSet &X) {
    984     if (Root != X.Root) {
    985       if (X.Root) { X.Root->retain(); }
    986       if (Root) { Root->release(); }
    987       Root = X.Root;
    988     }
    989     return *this;
    990   }
    991 
    992   ~ImmutableSet() {
    993     if (Root) { Root->release(); }
    994   }
    995 
    996   class Factory {
    997     typename TreeTy::Factory F;
    998     const bool Canonicalize;
    999 
   1000   public:
   1001     Factory(bool canonicalize = true)
   1002       : Canonicalize(canonicalize) {}
   1003 
   1004     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
   1005       : F(Alloc), Canonicalize(canonicalize) {}
   1006 
   1007     Factory(const Factory& RHS) = delete;
   1008     void operator=(const Factory& RHS) = delete;
   1009 
   1010     /// getEmptySet - Returns an immutable set that contains no elements.
   1011     ImmutableSet getEmptySet() {
   1012       return ImmutableSet(F.getEmptyTree());
   1013     }
   1014 
   1015     /// add - Creates a new immutable set that contains all of the values
   1016     ///  of the original set with the addition of the specified value.  If
   1017     ///  the original set already included the value, then the original set is
   1018     ///  returned and no memory is allocated.  The time and space complexity
   1019     ///  of this operation is logarithmic in the size of the original set.
   1020     ///  The memory allocated to represent the set is released when the
   1021     ///  factory object that created the set is destroyed.
   1022     ImmutableSet add(ImmutableSet Old, value_type_ref V) {
   1023       TreeTy *NewT = F.add(Old.Root, V);
   1024       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
   1025     }
   1026 
   1027     /// remove - Creates a new immutable set that contains all of the values
   1028     ///  of the original set with the exception of the specified value.  If
   1029     ///  the original set did not contain the value, the original set is
   1030     ///  returned and no memory is allocated.  The time and space complexity
   1031     ///  of this operation is logarithmic in the size of the original set.
   1032     ///  The memory allocated to represent the set is released when the
   1033     ///  factory object that created the set is destroyed.
   1034     ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
   1035       TreeTy *NewT = F.remove(Old.Root, V);
   1036       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
   1037     }
   1038 
   1039     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
   1040 
   1041     typename TreeTy::Factory *getTreeFactory() const {
   1042       return const_cast<typename TreeTy::Factory *>(&F);
   1043     }
   1044   };
   1045 
   1046   friend class Factory;
   1047 
   1048   /// Returns true if the set contains the specified value.
   1049   bool contains(value_type_ref V) const {
   1050     return Root ? Root->contains(V) : false;
   1051   }
   1052 
   1053   bool operator==(const ImmutableSet &RHS) const {
   1054     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1055   }
   1056 
   1057   bool operator!=(const ImmutableSet &RHS) const {
   1058     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1059   }
   1060 
   1061   TreeTy *getRoot() {
   1062     if (Root) { Root->retain(); }
   1063     return Root;
   1064   }
   1065 
   1066   TreeTy *getRootWithoutRetain() const {
   1067     return Root;
   1068   }
   1069 
   1070   /// isEmpty - Return true if the set contains no elements.
   1071   bool isEmpty() const { return !Root; }
   1072 
   1073   /// isSingleton - Return true if the set contains exactly one element.
   1074   ///   This method runs in constant time.
   1075   bool isSingleton() const { return getHeight() == 1; }
   1076 
   1077   template <typename Callback>
   1078   void foreach(Callback& C) { if (Root) Root->foreach(C); }
   1079 
   1080   template <typename Callback>
   1081   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
   1082 
   1083   //===--------------------------------------------------===//
   1084   // Iterators.
   1085   //===--------------------------------------------------===//
   1086 
   1087   typedef ImutAVLValueIterator<ImmutableSet> iterator;
   1088 
   1089   iterator begin() const { return iterator(Root); }
   1090   iterator end() const { return iterator(); }
   1091 
   1092   //===--------------------------------------------------===//
   1093   // Utility methods.
   1094   //===--------------------------------------------------===//
   1095 
   1096   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1097 
   1098   static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
   1099     ID.AddPointer(S.Root);
   1100   }
   1101 
   1102   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
   1103 
   1104   //===--------------------------------------------------===//
   1105   // For testing.
   1106   //===--------------------------------------------------===//
   1107 
   1108   void validateTree() const { if (Root) Root->validateTree(); }
   1109 };
   1110 
   1111 // NOTE: This may some day replace the current ImmutableSet.
   1112 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
   1113 class ImmutableSetRef {
   1114 public:
   1115   typedef typename ValInfo::value_type      value_type;
   1116   typedef typename ValInfo::value_type_ref  value_type_ref;
   1117   typedef ImutAVLTree<ValInfo> TreeTy;
   1118   typedef typename TreeTy::Factory          FactoryTy;
   1119 
   1120 private:
   1121   TreeTy *Root;
   1122   FactoryTy *Factory;
   1123 
   1124 public:
   1125   /// Constructs a set from a pointer to a tree root.  In general one
   1126   /// should use a Factory object to create sets instead of directly
   1127   /// invoking the constructor, but there are cases where make this
   1128   /// constructor public is useful.
   1129   explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
   1130     : Root(R),
   1131       Factory(F) {
   1132     if (Root) { Root->retain(); }
   1133   }
   1134 
   1135   ImmutableSetRef(const ImmutableSetRef &X)
   1136     : Root(X.Root),
   1137       Factory(X.Factory) {
   1138     if (Root) { Root->retain(); }
   1139   }
   1140 
   1141   ImmutableSetRef &operator=(const ImmutableSetRef &X) {
   1142     if (Root != X.Root) {
   1143       if (X.Root) { X.Root->retain(); }
   1144       if (Root) { Root->release(); }
   1145       Root = X.Root;
   1146       Factory = X.Factory;
   1147     }
   1148     return *this;
   1149   }
   1150   ~ImmutableSetRef() {
   1151     if (Root) { Root->release(); }
   1152   }
   1153 
   1154   static ImmutableSetRef getEmptySet(FactoryTy *F) {
   1155     return ImmutableSetRef(0, F);
   1156   }
   1157 
   1158   ImmutableSetRef add(value_type_ref V) {
   1159     return ImmutableSetRef(Factory->add(Root, V), Factory);
   1160   }
   1161 
   1162   ImmutableSetRef remove(value_type_ref V) {
   1163     return ImmutableSetRef(Factory->remove(Root, V), Factory);
   1164   }
   1165 
   1166   /// Returns true if the set contains the specified value.
   1167   bool contains(value_type_ref V) const {
   1168     return Root ? Root->contains(V) : false;
   1169   }
   1170 
   1171   ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
   1172     return ImmutableSet<ValT>(canonicalize ?
   1173                               Factory->getCanonicalTree(Root) : Root);
   1174   }
   1175 
   1176   TreeTy *getRootWithoutRetain() const {
   1177     return Root;
   1178   }
   1179 
   1180   bool operator==(const ImmutableSetRef &RHS) const {
   1181     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1182   }
   1183 
   1184   bool operator!=(const ImmutableSetRef &RHS) const {
   1185     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1186   }
   1187 
   1188   /// isEmpty - Return true if the set contains no elements.
   1189   bool isEmpty() const { return !Root; }
   1190 
   1191   /// isSingleton - Return true if the set contains exactly one element.
   1192   ///   This method runs in constant time.
   1193   bool isSingleton() const { return getHeight() == 1; }
   1194 
   1195   //===--------------------------------------------------===//
   1196   // Iterators.
   1197   //===--------------------------------------------------===//
   1198 
   1199   typedef ImutAVLValueIterator<ImmutableSetRef> iterator;
   1200 
   1201   iterator begin() const { return iterator(Root); }
   1202   iterator end() const { return iterator(); }
   1203 
   1204   //===--------------------------------------------------===//
   1205   // Utility methods.
   1206   //===--------------------------------------------------===//
   1207 
   1208   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1209 
   1210   static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
   1211     ID.AddPointer(S.Root);
   1212   }
   1213 
   1214   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
   1215 
   1216   //===--------------------------------------------------===//
   1217   // For testing.
   1218   //===--------------------------------------------------===//
   1219 
   1220   void validateTree() const { if (Root) Root->validateTree(); }
   1221 };
   1222 
   1223 } // end namespace llvm
   1224 
   1225 #endif // LLVM_ADT_IMMUTABLESET_H
   1226