Home | History | Annotate | Download | only in MC
      1 //===- llvm/MC/MCInstrItineraries.h - Scheduling ----------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the structures used for instruction
     11 // itineraries, stages, and operand reads/writes.  This is used by
     12 // schedulers to determine instruction stages and latencies.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_MC_MCINSTRITINERARIES_H
     17 #define LLVM_MC_MCINSTRITINERARIES_H
     18 
     19 #include "llvm/MC/MCSchedule.h"
     20 #include <algorithm>
     21 
     22 namespace llvm {
     23 
     24 //===----------------------------------------------------------------------===//
     25 /// These values represent a non-pipelined step in
     26 /// the execution of an instruction.  Cycles represents the number of
     27 /// discrete time slots needed to complete the stage.  Units represent
     28 /// the choice of functional units that can be used to complete the
     29 /// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
     30 /// cycles should elapse from the start of this stage to the start of
     31 /// the next stage in the itinerary. A value of -1 indicates that the
     32 /// next stage should start immediately after the current one.
     33 /// For example:
     34 ///
     35 ///   { 1, x, -1 }
     36 ///      indicates that the stage occupies FU x for 1 cycle and that
     37 ///      the next stage starts immediately after this one.
     38 ///
     39 ///   { 2, x|y, 1 }
     40 ///      indicates that the stage occupies either FU x or FU y for 2
     41 ///      consecutive cycles and that the next stage starts one cycle
     42 ///      after this stage starts. That is, the stage requirements
     43 ///      overlap in time.
     44 ///
     45 ///   { 1, x, 0 }
     46 ///      indicates that the stage occupies FU x for 1 cycle and that
     47 ///      the next stage starts in this same cycle. This can be used to
     48 ///      indicate that the instruction requires multiple stages at the
     49 ///      same time.
     50 ///
     51 /// FU reservation can be of two different kinds:
     52 ///  - FUs which instruction actually requires
     53 ///  - FUs which instruction just reserves. Reserved unit is not available for
     54 ///    execution of other instruction. However, several instructions can reserve
     55 ///    the same unit several times.
     56 /// Such two types of units reservation is used to model instruction domain
     57 /// change stalls, FUs using the same resource (e.g. same register file), etc.
     58 
     59 struct InstrStage {
     60   enum ReservationKinds {
     61     Required = 0,
     62     Reserved = 1
     63   };
     64 
     65   unsigned Cycles_;  ///< Length of stage in machine cycles
     66   unsigned Units_;   ///< Choice of functional units
     67   int NextCycles_;   ///< Number of machine cycles to next stage
     68   ReservationKinds Kind_; ///< Kind of the FU reservation
     69 
     70   /// \brief Returns the number of cycles the stage is occupied.
     71   unsigned getCycles() const {
     72     return Cycles_;
     73   }
     74 
     75   /// \brief Returns the choice of FUs.
     76   unsigned getUnits() const {
     77     return Units_;
     78   }
     79 
     80   ReservationKinds getReservationKind() const {
     81     return Kind_;
     82   }
     83 
     84   /// \brief Returns the number of cycles from the start of this stage to the
     85   /// start of the next stage in the itinerary
     86   unsigned getNextCycles() const {
     87     return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
     88   }
     89 };
     90 
     91 //===----------------------------------------------------------------------===//
     92 /// An itinerary represents the scheduling information for an instruction.
     93 /// This includes a set of stages occupied by the instruction and the pipeline
     94 /// cycle in which operands are read and written.
     95 ///
     96 struct InstrItinerary {
     97   int      NumMicroOps;        ///< # of micro-ops, -1 means it's variable
     98   unsigned FirstStage;         ///< Index of first stage in itinerary
     99   unsigned LastStage;          ///< Index of last + 1 stage in itinerary
    100   unsigned FirstOperandCycle;  ///< Index of first operand rd/wr
    101   unsigned LastOperandCycle;   ///< Index of last + 1 operand rd/wr
    102 };
    103 
    104 //===----------------------------------------------------------------------===//
    105 /// Itinerary data supplied by a subtarget to be used by a target.
    106 ///
    107 class InstrItineraryData {
    108 public:
    109   MCSchedModel SchedModel =
    110       MCSchedModel::GetDefaultSchedModel(); ///< Basic machine properties.
    111   const InstrStage *Stages = nullptr;       ///< Array of stages selected
    112   const unsigned *OperandCycles = nullptr; ///< Array of operand cycles selected
    113   const unsigned *Forwardings = nullptr; ///< Array of pipeline forwarding paths
    114   const InstrItinerary *Itineraries =
    115       nullptr; ///< Array of itineraries selected
    116 
    117   InstrItineraryData() = default;
    118   InstrItineraryData(const MCSchedModel &SM, const InstrStage *S,
    119                      const unsigned *OS, const unsigned *F)
    120     : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
    121       Itineraries(SchedModel.InstrItineraries) {}
    122 
    123   /// \brief Returns true if there are no itineraries.
    124   bool isEmpty() const { return Itineraries == nullptr; }
    125 
    126   /// \brief Returns true if the index is for the end marker itinerary.
    127   bool isEndMarker(unsigned ItinClassIndx) const {
    128     return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
    129             (Itineraries[ItinClassIndx].LastStage == ~0U));
    130   }
    131 
    132   /// \brief Return the first stage of the itinerary.
    133   const InstrStage *beginStage(unsigned ItinClassIndx) const {
    134     unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
    135     return Stages + StageIdx;
    136   }
    137 
    138   /// \brief Return the last+1 stage of the itinerary.
    139   const InstrStage *endStage(unsigned ItinClassIndx) const {
    140     unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
    141     return Stages + StageIdx;
    142   }
    143 
    144   /// \brief Return the total stage latency of the given class.  The latency is
    145   /// the maximum completion time for any stage in the itinerary.  If no stages
    146   /// exist, it defaults to one cycle.
    147   unsigned getStageLatency(unsigned ItinClassIndx) const {
    148     // If the target doesn't provide itinerary information, use a simple
    149     // non-zero default value for all instructions.
    150     if (isEmpty())
    151       return 1;
    152 
    153     // Calculate the maximum completion time for any stage.
    154     unsigned Latency = 0, StartCycle = 0;
    155     for (const InstrStage *IS = beginStage(ItinClassIndx),
    156            *E = endStage(ItinClassIndx); IS != E; ++IS) {
    157       Latency = std::max(Latency, StartCycle + IS->getCycles());
    158       StartCycle += IS->getNextCycles();
    159     }
    160     return Latency;
    161   }
    162 
    163   /// \brief Return the cycle for the given class and operand.  Return -1 if no
    164   /// cycle is specified for the operand.
    165   int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
    166     if (isEmpty())
    167       return -1;
    168 
    169     unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
    170     unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
    171     if ((FirstIdx + OperandIdx) >= LastIdx)
    172       return -1;
    173 
    174     return (int)OperandCycles[FirstIdx + OperandIdx];
    175   }
    176 
    177   /// \brief Return true if there is a pipeline forwarding between instructions
    178   /// of itinerary classes DefClass and UseClasses so that value produced by an
    179   /// instruction of itinerary class DefClass, operand index DefIdx can be
    180   /// bypassed when it's read by an instruction of itinerary class UseClass,
    181   /// operand index UseIdx.
    182   bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
    183                              unsigned UseClass, unsigned UseIdx) const {
    184     unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
    185     unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
    186     if ((FirstDefIdx + DefIdx) >= LastDefIdx)
    187       return false;
    188     if (Forwardings[FirstDefIdx + DefIdx] == 0)
    189       return false;
    190 
    191     unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
    192     unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
    193     if ((FirstUseIdx + UseIdx) >= LastUseIdx)
    194       return false;
    195 
    196     return Forwardings[FirstDefIdx + DefIdx] ==
    197       Forwardings[FirstUseIdx + UseIdx];
    198   }
    199 
    200   /// \brief Compute and return the use operand latency of a given itinerary
    201   /// class and operand index if the value is produced by an instruction of the
    202   /// specified itinerary class and def operand index.
    203   int getOperandLatency(unsigned DefClass, unsigned DefIdx,
    204                         unsigned UseClass, unsigned UseIdx) const {
    205     if (isEmpty())
    206       return -1;
    207 
    208     int DefCycle = getOperandCycle(DefClass, DefIdx);
    209     if (DefCycle == -1)
    210       return -1;
    211 
    212     int UseCycle = getOperandCycle(UseClass, UseIdx);
    213     if (UseCycle == -1)
    214       return -1;
    215 
    216     UseCycle = DefCycle - UseCycle + 1;
    217     if (UseCycle > 0 &&
    218         hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
    219       // FIXME: This assumes one cycle benefit for every pipeline forwarding.
    220       --UseCycle;
    221     return UseCycle;
    222   }
    223 
    224   /// \brief Return the number of micro-ops that the given class decodes to.
    225   /// Return -1 for classes that require dynamic lookup via TargetInstrInfo.
    226   int getNumMicroOps(unsigned ItinClassIndx) const {
    227     if (isEmpty())
    228       return 1;
    229     return Itineraries[ItinClassIndx].NumMicroOps;
    230   }
    231 };
    232 
    233 } // end namespace llvm
    234 
    235 #endif // LLVM_MC_MCINSTRITINERARIES_H
    236