Home | History | Annotate | Download | only in ADT
      1 //===--- ImmutableSet.h - Immutable (functional) set interface --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the ImutAVLTree and ImmutableSet classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_ADT_IMMUTABLESET_H
     15 #define LLVM_ADT_IMMUTABLESET_H
     16 
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/FoldingSet.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/iterator.h"
     21 #include "llvm/Support/Allocator.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include <cassert>
     24 #include <cstdint>
     25 #include <functional>
     26 #include <iterator>
     27 #include <new>
     28 #include <vector>
     29 
     30 namespace llvm {
     31 
     32 //===----------------------------------------------------------------------===//
     33 // Immutable AVL-Tree Definition.
     34 //===----------------------------------------------------------------------===//
     35 
     36 template <typename ImutInfo> class ImutAVLFactory;
     37 template <typename ImutInfo> class ImutIntervalAVLFactory;
     38 template <typename ImutInfo> class ImutAVLTreeInOrderIterator;
     39 template <typename ImutInfo> class ImutAVLTreeGenericIterator;
     40 
     41 template <typename ImutInfo >
     42 class ImutAVLTree {
     43 public:
     44   using key_type_ref = typename ImutInfo::key_type_ref;
     45   using value_type = typename ImutInfo::value_type;
     46   using value_type_ref = typename ImutInfo::value_type_ref;
     47   using Factory = ImutAVLFactory<ImutInfo>;
     48   using iterator = ImutAVLTreeInOrderIterator<ImutInfo>;
     49 
     50   friend class ImutAVLFactory<ImutInfo>;
     51   friend class ImutIntervalAVLFactory<ImutInfo>;
     52   friend class ImutAVLTreeGenericIterator<ImutInfo>;
     53 
     54   //===----------------------------------------------------===//
     55   // Public Interface.
     56   //===----------------------------------------------------===//
     57 
     58   /// Return a pointer to the left subtree.  This value
     59   ///  is NULL if there is no left subtree.
     60   ImutAVLTree *getLeft() const { return left; }
     61 
     62   /// Return a pointer to the right subtree.  This value is
     63   ///  NULL if there is no right subtree.
     64   ImutAVLTree *getRight() const { return right; }
     65 
     66   /// getHeight - Returns the height of the tree.  A tree with no subtrees
     67   ///  has a height of 1.
     68   unsigned getHeight() const { return height; }
     69 
     70   /// getValue - Returns the data value associated with the tree node.
     71   const value_type& getValue() const { return value; }
     72 
     73   /// find - Finds the subtree associated with the specified key value.
     74   ///  This method returns NULL if no matching subtree is found.
     75   ImutAVLTree* find(key_type_ref K) {
     76     ImutAVLTree *T = this;
     77     while (T) {
     78       key_type_ref CurrentKey = ImutInfo::KeyOfValue(T->getValue());
     79       if (ImutInfo::isEqual(K,CurrentKey))
     80         return T;
     81       else if (ImutInfo::isLess(K,CurrentKey))
     82         T = T->getLeft();
     83       else
     84         T = T->getRight();
     85     }
     86     return nullptr;
     87   }
     88 
     89   /// getMaxElement - Find the subtree associated with the highest ranged
     90   ///  key value.
     91   ImutAVLTree* getMaxElement() {
     92     ImutAVLTree *T = this;
     93     ImutAVLTree *Right = T->getRight();
     94     while (Right) { T = Right; Right = T->getRight(); }
     95     return T;
     96   }
     97 
     98   /// size - Returns the number of nodes in the tree, which includes
     99   ///  both leaves and non-leaf nodes.
    100   unsigned size() const {
    101     unsigned n = 1;
    102     if (const ImutAVLTree* L = getLeft())
    103       n += L->size();
    104     if (const ImutAVLTree* R = getRight())
    105       n += R->size();
    106     return n;
    107   }
    108 
    109   /// begin - Returns an iterator that iterates over the nodes of the tree
    110   ///  in an inorder traversal.  The returned iterator thus refers to the
    111   ///  the tree node with the minimum data element.
    112   iterator begin() const { return iterator(this); }
    113 
    114   /// end - Returns an iterator for the tree that denotes the end of an
    115   ///  inorder traversal.
    116   iterator end() const { return iterator(); }
    117 
    118   bool isElementEqual(value_type_ref V) const {
    119     // Compare the keys.
    120     if (!ImutInfo::isEqual(ImutInfo::KeyOfValue(getValue()),
    121                            ImutInfo::KeyOfValue(V)))
    122       return false;
    123 
    124     // Also compare the data values.
    125     if (!ImutInfo::isDataEqual(ImutInfo::DataOfValue(getValue()),
    126                                ImutInfo::DataOfValue(V)))
    127       return false;
    128 
    129     return true;
    130   }
    131 
    132   bool isElementEqual(const ImutAVLTree* RHS) const {
    133     return isElementEqual(RHS->getValue());
    134   }
    135 
    136   /// isEqual - Compares two trees for structural equality and returns true
    137   ///   if they are equal.  This worst case performance of this operation is
    138   //    linear in the sizes of the trees.
    139   bool isEqual(const ImutAVLTree& RHS) const {
    140     if (&RHS == this)
    141       return true;
    142 
    143     iterator LItr = begin(), LEnd = end();
    144     iterator RItr = RHS.begin(), REnd = RHS.end();
    145 
    146     while (LItr != LEnd && RItr != REnd) {
    147       if (&*LItr == &*RItr) {
    148         LItr.skipSubTree();
    149         RItr.skipSubTree();
    150         continue;
    151       }
    152 
    153       if (!LItr->isElementEqual(&*RItr))
    154         return false;
    155 
    156       ++LItr;
    157       ++RItr;
    158     }
    159 
    160     return LItr == LEnd && RItr == REnd;
    161   }
    162 
    163   /// isNotEqual - Compares two trees for structural inequality.  Performance
    164   ///  is the same is isEqual.
    165   bool isNotEqual(const ImutAVLTree& RHS) const { return !isEqual(RHS); }
    166 
    167   /// contains - Returns true if this tree contains a subtree (node) that
    168   ///  has an data element that matches the specified key.  Complexity
    169   ///  is logarithmic in the size of the tree.
    170   bool contains(key_type_ref K) { return (bool) find(K); }
    171 
    172   /// foreach - A member template the accepts invokes operator() on a functor
    173   ///  object (specifed by Callback) for every node/subtree in the tree.
    174   ///  Nodes are visited using an inorder traversal.
    175   template <typename Callback>
    176   void foreach(Callback& C) {
    177     if (ImutAVLTree* L = getLeft())
    178       L->foreach(C);
    179 
    180     C(value);
    181 
    182     if (ImutAVLTree* R = getRight())
    183       R->foreach(C);
    184   }
    185 
    186   /// validateTree - A utility method that checks that the balancing and
    187   ///  ordering invariants of the tree are satisifed.  It is a recursive
    188   ///  method that returns the height of the tree, which is then consumed
    189   ///  by the enclosing validateTree call.  External callers should ignore the
    190   ///  return value.  An invalid tree will cause an assertion to fire in
    191   ///  a debug build.
    192   unsigned validateTree() const {
    193     unsigned HL = getLeft() ? getLeft()->validateTree() : 0;
    194     unsigned HR = getRight() ? getRight()->validateTree() : 0;
    195     (void) HL;
    196     (void) HR;
    197 
    198     assert(getHeight() == ( HL > HR ? HL : HR ) + 1
    199             && "Height calculation wrong");
    200 
    201     assert((HL > HR ? HL-HR : HR-HL) <= 2
    202            && "Balancing invariant violated");
    203 
    204     assert((!getLeft() ||
    205             ImutInfo::isLess(ImutInfo::KeyOfValue(getLeft()->getValue()),
    206                              ImutInfo::KeyOfValue(getValue()))) &&
    207            "Value in left child is not less that current value");
    208 
    209 
    210     assert(!(getRight() ||
    211              ImutInfo::isLess(ImutInfo::KeyOfValue(getValue()),
    212                               ImutInfo::KeyOfValue(getRight()->getValue()))) &&
    213            "Current value is not less that value of right child");
    214 
    215     return getHeight();
    216   }
    217 
    218   //===----------------------------------------------------===//
    219   // Internal values.
    220   //===----------------------------------------------------===//
    221 
    222 private:
    223   Factory *factory;
    224   ImutAVLTree *left;
    225   ImutAVLTree *right;
    226   ImutAVLTree *prev = nullptr;
    227   ImutAVLTree *next = nullptr;
    228 
    229   unsigned height : 28;
    230   bool IsMutable : 1;
    231   bool IsDigestCached : 1;
    232   bool IsCanonicalized : 1;
    233 
    234   value_type value;
    235   uint32_t digest = 0;
    236   uint32_t refCount = 0;
    237 
    238   //===----------------------------------------------------===//
    239   // Internal methods (node manipulation; used by Factory).
    240   //===----------------------------------------------------===//
    241 
    242 private:
    243   /// ImutAVLTree - Internal constructor that is only called by
    244   ///   ImutAVLFactory.
    245   ImutAVLTree(Factory *f, ImutAVLTree* l, ImutAVLTree* r, value_type_ref v,
    246               unsigned height)
    247     : factory(f), left(l), right(r), height(height), IsMutable(true),
    248       IsDigestCached(false), IsCanonicalized(false), value(v)
    249   {
    250     if (left) left->retain();
    251     if (right) right->retain();
    252   }
    253 
    254   /// isMutable - Returns true if the left and right subtree references
    255   ///  (as well as height) can be changed.  If this method returns false,
    256   ///  the tree is truly immutable.  Trees returned from an ImutAVLFactory
    257   ///  object should always have this method return true.  Further, if this
    258   ///  method returns false for an instance of ImutAVLTree, all subtrees
    259   ///  will also have this method return false.  The converse is not true.
    260   bool isMutable() const { return IsMutable; }
    261 
    262   /// hasCachedDigest - Returns true if the digest for this tree is cached.
    263   ///  This can only be true if the tree is immutable.
    264   bool hasCachedDigest() const { return IsDigestCached; }
    265 
    266   //===----------------------------------------------------===//
    267   // Mutating operations.  A tree root can be manipulated as
    268   // long as its reference has not "escaped" from internal
    269   // methods of a factory object (see below).  When a tree
    270   // pointer is externally viewable by client code, the
    271   // internal "mutable bit" is cleared to mark the tree
    272   // immutable.  Note that a tree that still has its mutable
    273   // bit set may have children (subtrees) that are themselves
    274   // immutable.
    275   //===----------------------------------------------------===//
    276 
    277   /// markImmutable - Clears the mutable flag for a tree.  After this happens,
    278   ///   it is an error to call setLeft(), setRight(), and setHeight().
    279   void markImmutable() {
    280     assert(isMutable() && "Mutable flag already removed.");
    281     IsMutable = false;
    282   }
    283 
    284   /// markedCachedDigest - Clears the NoCachedDigest flag for a tree.
    285   void markedCachedDigest() {
    286     assert(!hasCachedDigest() && "NoCachedDigest flag already removed.");
    287     IsDigestCached = true;
    288   }
    289 
    290   /// setHeight - Changes the height of the tree.  Used internally by
    291   ///  ImutAVLFactory.
    292   void setHeight(unsigned h) {
    293     assert(isMutable() && "Only a mutable tree can have its height changed.");
    294     height = h;
    295   }
    296 
    297   static uint32_t computeDigest(ImutAVLTree *L, ImutAVLTree *R,
    298                                 value_type_ref V) {
    299     uint32_t digest = 0;
    300 
    301     if (L)
    302       digest += L->computeDigest();
    303 
    304     // Compute digest of stored data.
    305     FoldingSetNodeID ID;
    306     ImutInfo::Profile(ID,V);
    307     digest += ID.ComputeHash();
    308 
    309     if (R)
    310       digest += R->computeDigest();
    311 
    312     return digest;
    313   }
    314 
    315   uint32_t computeDigest() {
    316     // Check the lowest bit to determine if digest has actually been
    317     // pre-computed.
    318     if (hasCachedDigest())
    319       return digest;
    320 
    321     uint32_t X = computeDigest(getLeft(), getRight(), getValue());
    322     digest = X;
    323     markedCachedDigest();
    324     return X;
    325   }
    326 
    327   //===----------------------------------------------------===//
    328   // Reference count operations.
    329   //===----------------------------------------------------===//
    330 
    331 public:
    332   void retain() { ++refCount; }
    333 
    334   void release() {
    335     assert(refCount > 0);
    336     if (--refCount == 0)
    337       destroy();
    338   }
    339 
    340   void destroy() {
    341     if (left)
    342       left->release();
    343     if (right)
    344       right->release();
    345     if (IsCanonicalized) {
    346       if (next)
    347         next->prev = prev;
    348 
    349       if (prev)
    350         prev->next = next;
    351       else
    352         factory->Cache[factory->maskCacheIndex(computeDigest())] = next;
    353     }
    354 
    355     // We need to clear the mutability bit in case we are
    356     // destroying the node as part of a sweep in ImutAVLFactory::recoverNodes().
    357     IsMutable = false;
    358     factory->freeNodes.push_back(this);
    359   }
    360 };
    361 
    362 //===----------------------------------------------------------------------===//
    363 // Immutable AVL-Tree Factory class.
    364 //===----------------------------------------------------------------------===//
    365 
    366 template <typename ImutInfo >
    367 class ImutAVLFactory {
    368   friend class ImutAVLTree<ImutInfo>;
    369 
    370   using TreeTy = ImutAVLTree<ImutInfo>;
    371   using value_type_ref = typename TreeTy::value_type_ref;
    372   using key_type_ref = typename TreeTy::key_type_ref;
    373   using CacheTy = DenseMap<unsigned, TreeTy*>;
    374 
    375   CacheTy Cache;
    376   uintptr_t Allocator;
    377   std::vector<TreeTy*> createdNodes;
    378   std::vector<TreeTy*> freeNodes;
    379 
    380   bool ownsAllocator() const {
    381     return (Allocator & 0x1) == 0;
    382   }
    383 
    384   BumpPtrAllocator& getAllocator() const {
    385     return *reinterpret_cast<BumpPtrAllocator*>(Allocator & ~0x1);
    386   }
    387 
    388   //===--------------------------------------------------===//
    389   // Public interface.
    390   //===--------------------------------------------------===//
    391 
    392 public:
    393   ImutAVLFactory()
    394     : Allocator(reinterpret_cast<uintptr_t>(new BumpPtrAllocator())) {}
    395 
    396   ImutAVLFactory(BumpPtrAllocator& Alloc)
    397     : Allocator(reinterpret_cast<uintptr_t>(&Alloc) | 0x1) {}
    398 
    399   ~ImutAVLFactory() {
    400     if (ownsAllocator()) delete &getAllocator();
    401   }
    402 
    403   TreeTy* add(TreeTy* T, value_type_ref V) {
    404     T = add_internal(V,T);
    405     markImmutable(T);
    406     recoverNodes();
    407     return T;
    408   }
    409 
    410   TreeTy* remove(TreeTy* T, key_type_ref V) {
    411     T = remove_internal(V,T);
    412     markImmutable(T);
    413     recoverNodes();
    414     return T;
    415   }
    416 
    417   TreeTy* getEmptyTree() const { return nullptr; }
    418 
    419 protected:
    420   //===--------------------------------------------------===//
    421   // A bunch of quick helper functions used for reasoning
    422   // about the properties of trees and their children.
    423   // These have succinct names so that the balancing code
    424   // is as terse (and readable) as possible.
    425   //===--------------------------------------------------===//
    426 
    427   bool            isEmpty(TreeTy* T) const { return !T; }
    428   unsigned        getHeight(TreeTy* T) const { return T ? T->getHeight() : 0; }
    429   TreeTy*         getLeft(TreeTy* T) const { return T->getLeft(); }
    430   TreeTy*         getRight(TreeTy* T) const { return T->getRight(); }
    431   value_type_ref  getValue(TreeTy* T) const { return T->value; }
    432 
    433   // Make sure the index is not the Tombstone or Entry key of the DenseMap.
    434   static unsigned maskCacheIndex(unsigned I) { return (I & ~0x02); }
    435 
    436   unsigned incrementHeight(TreeTy* L, TreeTy* R) const {
    437     unsigned hl = getHeight(L);
    438     unsigned hr = getHeight(R);
    439     return (hl > hr ? hl : hr) + 1;
    440   }
    441 
    442   static bool compareTreeWithSection(TreeTy* T,
    443                                      typename TreeTy::iterator& TI,
    444                                      typename TreeTy::iterator& TE) {
    445     typename TreeTy::iterator I = T->begin(), E = T->end();
    446     for ( ; I!=E ; ++I, ++TI) {
    447       if (TI == TE || !I->isElementEqual(&*TI))
    448         return false;
    449     }
    450     return true;
    451   }
    452 
    453   //===--------------------------------------------------===//
    454   // "createNode" is used to generate new tree roots that link
    455   // to other trees.  The functon may also simply move links
    456   // in an existing root if that root is still marked mutable.
    457   // This is necessary because otherwise our balancing code
    458   // would leak memory as it would create nodes that are
    459   // then discarded later before the finished tree is
    460   // returned to the caller.
    461   //===--------------------------------------------------===//
    462 
    463   TreeTy* createNode(TreeTy* L, value_type_ref V, TreeTy* R) {
    464     BumpPtrAllocator& A = getAllocator();
    465     TreeTy* T;
    466     if (!freeNodes.empty()) {
    467       T = freeNodes.back();
    468       freeNodes.pop_back();
    469       assert(T != L);
    470       assert(T != R);
    471     } else {
    472       T = (TreeTy*) A.Allocate<TreeTy>();
    473     }
    474     new (T) TreeTy(this, L, R, V, incrementHeight(L,R));
    475     createdNodes.push_back(T);
    476     return T;
    477   }
    478 
    479   TreeTy* createNode(TreeTy* newLeft, TreeTy* oldTree, TreeTy* newRight) {
    480     return createNode(newLeft, getValue(oldTree), newRight);
    481   }
    482 
    483   void recoverNodes() {
    484     for (unsigned i = 0, n = createdNodes.size(); i < n; ++i) {
    485       TreeTy *N = createdNodes[i];
    486       if (N->isMutable() && N->refCount == 0)
    487         N->destroy();
    488     }
    489     createdNodes.clear();
    490   }
    491 
    492   /// balanceTree - Used by add_internal and remove_internal to
    493   ///  balance a newly created tree.
    494   TreeTy* balanceTree(TreeTy* L, value_type_ref V, TreeTy* R) {
    495     unsigned hl = getHeight(L);
    496     unsigned hr = getHeight(R);
    497 
    498     if (hl > hr + 2) {
    499       assert(!isEmpty(L) && "Left tree cannot be empty to have a height >= 2");
    500 
    501       TreeTy *LL = getLeft(L);
    502       TreeTy *LR = getRight(L);
    503 
    504       if (getHeight(LL) >= getHeight(LR))
    505         return createNode(LL, L, createNode(LR,V,R));
    506 
    507       assert(!isEmpty(LR) && "LR cannot be empty because it has a height >= 1");
    508 
    509       TreeTy *LRL = getLeft(LR);
    510       TreeTy *LRR = getRight(LR);
    511 
    512       return createNode(createNode(LL,L,LRL), LR, createNode(LRR,V,R));
    513     }
    514 
    515     if (hr > hl + 2) {
    516       assert(!isEmpty(R) && "Right tree cannot be empty to have a height >= 2");
    517 
    518       TreeTy *RL = getLeft(R);
    519       TreeTy *RR = getRight(R);
    520 
    521       if (getHeight(RR) >= getHeight(RL))
    522         return createNode(createNode(L,V,RL), R, RR);
    523 
    524       assert(!isEmpty(RL) && "RL cannot be empty because it has a height >= 1");
    525 
    526       TreeTy *RLL = getLeft(RL);
    527       TreeTy *RLR = getRight(RL);
    528 
    529       return createNode(createNode(L,V,RLL), RL, createNode(RLR,R,RR));
    530     }
    531 
    532     return createNode(L,V,R);
    533   }
    534 
    535   /// add_internal - Creates a new tree that includes the specified
    536   ///  data and the data from the original tree.  If the original tree
    537   ///  already contained the data item, the original tree is returned.
    538   TreeTy* add_internal(value_type_ref V, TreeTy* T) {
    539     if (isEmpty(T))
    540       return createNode(T, V, T);
    541     assert(!T->isMutable());
    542 
    543     key_type_ref K = ImutInfo::KeyOfValue(V);
    544     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    545 
    546     if (ImutInfo::isEqual(K,KCurrent))
    547       return createNode(getLeft(T), V, getRight(T));
    548     else if (ImutInfo::isLess(K,KCurrent))
    549       return balanceTree(add_internal(V, getLeft(T)), getValue(T), getRight(T));
    550     else
    551       return balanceTree(getLeft(T), getValue(T), add_internal(V, getRight(T)));
    552   }
    553 
    554   /// remove_internal - Creates a new tree that includes all the data
    555   ///  from the original tree except the specified data.  If the
    556   ///  specified data did not exist in the original tree, the original
    557   ///  tree is returned.
    558   TreeTy* remove_internal(key_type_ref K, TreeTy* T) {
    559     if (isEmpty(T))
    560       return T;
    561 
    562     assert(!T->isMutable());
    563 
    564     key_type_ref KCurrent = ImutInfo::KeyOfValue(getValue(T));
    565 
    566     if (ImutInfo::isEqual(K,KCurrent)) {
    567       return combineTrees(getLeft(T), getRight(T));
    568     } else if (ImutInfo::isLess(K,KCurrent)) {
    569       return balanceTree(remove_internal(K, getLeft(T)),
    570                                             getValue(T), getRight(T));
    571     } else {
    572       return balanceTree(getLeft(T), getValue(T),
    573                          remove_internal(K, getRight(T)));
    574     }
    575   }
    576 
    577   TreeTy* combineTrees(TreeTy* L, TreeTy* R) {
    578     if (isEmpty(L))
    579       return R;
    580     if (isEmpty(R))
    581       return L;
    582     TreeTy* OldNode;
    583     TreeTy* newRight = removeMinBinding(R,OldNode);
    584     return balanceTree(L, getValue(OldNode), newRight);
    585   }
    586 
    587   TreeTy* removeMinBinding(TreeTy* T, TreeTy*& Noderemoved) {
    588     assert(!isEmpty(T));
    589     if (isEmpty(getLeft(T))) {
    590       Noderemoved = T;
    591       return getRight(T);
    592     }
    593     return balanceTree(removeMinBinding(getLeft(T), Noderemoved),
    594                        getValue(T), getRight(T));
    595   }
    596 
    597   /// markImmutable - Clears the mutable bits of a root and all of its
    598   ///  descendants.
    599   void markImmutable(TreeTy* T) {
    600     if (!T || !T->isMutable())
    601       return;
    602     T->markImmutable();
    603     markImmutable(getLeft(T));
    604     markImmutable(getRight(T));
    605   }
    606 
    607 public:
    608   TreeTy *getCanonicalTree(TreeTy *TNew) {
    609     if (!TNew)
    610       return nullptr;
    611 
    612     if (TNew->IsCanonicalized)
    613       return TNew;
    614 
    615     // Search the hashtable for another tree with the same digest, and
    616     // if find a collision compare those trees by their contents.
    617     unsigned digest = TNew->computeDigest();
    618     TreeTy *&entry = Cache[maskCacheIndex(digest)];
    619     do {
    620       if (!entry)
    621         break;
    622       for (TreeTy *T = entry ; T != nullptr; T = T->next) {
    623         // Compare the Contents('T') with Contents('TNew')
    624         typename TreeTy::iterator TI = T->begin(), TE = T->end();
    625         if (!compareTreeWithSection(TNew, TI, TE))
    626           continue;
    627         if (TI != TE)
    628           continue; // T has more contents than TNew.
    629         // Trees did match!  Return 'T'.
    630         if (TNew->refCount == 0)
    631           TNew->destroy();
    632         return T;
    633       }
    634       entry->prev = TNew;
    635       TNew->next = entry;
    636     }
    637     while (false);
    638 
    639     entry = TNew;
    640     TNew->IsCanonicalized = true;
    641     return TNew;
    642   }
    643 };
    644 
    645 //===----------------------------------------------------------------------===//
    646 // Immutable AVL-Tree Iterators.
    647 //===----------------------------------------------------------------------===//
    648 
    649 template <typename ImutInfo>
    650 class ImutAVLTreeGenericIterator
    651     : public std::iterator<std::bidirectional_iterator_tag,
    652                            ImutAVLTree<ImutInfo>> {
    653   SmallVector<uintptr_t,20> stack;
    654 
    655 public:
    656   enum VisitFlag { VisitedNone=0x0, VisitedLeft=0x1, VisitedRight=0x3,
    657                    Flags=0x3 };
    658 
    659   using TreeTy = ImutAVLTree<ImutInfo>;
    660 
    661   ImutAVLTreeGenericIterator() = default;
    662   ImutAVLTreeGenericIterator(const TreeTy *Root) {
    663     if (Root) stack.push_back(reinterpret_cast<uintptr_t>(Root));
    664   }
    665 
    666   TreeTy &operator*() const {
    667     assert(!stack.empty());
    668     return *reinterpret_cast<TreeTy *>(stack.back() & ~Flags);
    669   }
    670   TreeTy *operator->() const { return &*this; }
    671 
    672   uintptr_t getVisitState() const {
    673     assert(!stack.empty());
    674     return stack.back() & Flags;
    675   }
    676 
    677   bool atEnd() const { return stack.empty(); }
    678 
    679   bool atBeginning() const {
    680     return stack.size() == 1 && getVisitState() == VisitedNone;
    681   }
    682 
    683   void skipToParent() {
    684     assert(!stack.empty());
    685     stack.pop_back();
    686     if (stack.empty())
    687       return;
    688     switch (getVisitState()) {
    689       case VisitedNone:
    690         stack.back() |= VisitedLeft;
    691         break;
    692       case VisitedLeft:
    693         stack.back() |= VisitedRight;
    694         break;
    695       default:
    696         llvm_unreachable("Unreachable.");
    697     }
    698   }
    699 
    700   bool operator==(const ImutAVLTreeGenericIterator &x) const {
    701     return stack == x.stack;
    702   }
    703 
    704   bool operator!=(const ImutAVLTreeGenericIterator &x) const {
    705     return !(*this == x);
    706   }
    707 
    708   ImutAVLTreeGenericIterator &operator++() {
    709     assert(!stack.empty());
    710     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    711     assert(Current);
    712     switch (getVisitState()) {
    713       case VisitedNone:
    714         if (TreeTy* L = Current->getLeft())
    715           stack.push_back(reinterpret_cast<uintptr_t>(L));
    716         else
    717           stack.back() |= VisitedLeft;
    718         break;
    719       case VisitedLeft:
    720         if (TreeTy* R = Current->getRight())
    721           stack.push_back(reinterpret_cast<uintptr_t>(R));
    722         else
    723           stack.back() |= VisitedRight;
    724         break;
    725       case VisitedRight:
    726         skipToParent();
    727         break;
    728       default:
    729         llvm_unreachable("Unreachable.");
    730     }
    731     return *this;
    732   }
    733 
    734   ImutAVLTreeGenericIterator &operator--() {
    735     assert(!stack.empty());
    736     TreeTy* Current = reinterpret_cast<TreeTy*>(stack.back() & ~Flags);
    737     assert(Current);
    738     switch (getVisitState()) {
    739       case VisitedNone:
    740         stack.pop_back();
    741         break;
    742       case VisitedLeft:
    743         stack.back() &= ~Flags; // Set state to "VisitedNone."
    744         if (TreeTy* L = Current->getLeft())
    745           stack.push_back(reinterpret_cast<uintptr_t>(L) | VisitedRight);
    746         break;
    747       case VisitedRight:
    748         stack.back() &= ~Flags;
    749         stack.back() |= VisitedLeft;
    750         if (TreeTy* R = Current->getRight())
    751           stack.push_back(reinterpret_cast<uintptr_t>(R) | VisitedRight);
    752         break;
    753       default:
    754         llvm_unreachable("Unreachable.");
    755     }
    756     return *this;
    757   }
    758 };
    759 
    760 template <typename ImutInfo>
    761 class ImutAVLTreeInOrderIterator
    762     : public std::iterator<std::bidirectional_iterator_tag,
    763                            ImutAVLTree<ImutInfo>> {
    764   using InternalIteratorTy = ImutAVLTreeGenericIterator<ImutInfo>;
    765 
    766   InternalIteratorTy InternalItr;
    767 
    768 public:
    769   using TreeTy = ImutAVLTree<ImutInfo>;
    770 
    771   ImutAVLTreeInOrderIterator(const TreeTy* Root) : InternalItr(Root) {
    772     if (Root)
    773       ++*this; // Advance to first element.
    774   }
    775 
    776   ImutAVLTreeInOrderIterator() : InternalItr() {}
    777 
    778   bool operator==(const ImutAVLTreeInOrderIterator &x) const {
    779     return InternalItr == x.InternalItr;
    780   }
    781 
    782   bool operator!=(const ImutAVLTreeInOrderIterator &x) const {
    783     return !(*this == x);
    784   }
    785 
    786   TreeTy &operator*() const { return *InternalItr; }
    787   TreeTy *operator->() const { return &*InternalItr; }
    788 
    789   ImutAVLTreeInOrderIterator &operator++() {
    790     do ++InternalItr;
    791     while (!InternalItr.atEnd() &&
    792            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    793 
    794     return *this;
    795   }
    796 
    797   ImutAVLTreeInOrderIterator &operator--() {
    798     do --InternalItr;
    799     while (!InternalItr.atBeginning() &&
    800            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft);
    801 
    802     return *this;
    803   }
    804 
    805   void skipSubTree() {
    806     InternalItr.skipToParent();
    807 
    808     while (!InternalItr.atEnd() &&
    809            InternalItr.getVisitState() != InternalIteratorTy::VisitedLeft)
    810       ++InternalItr;
    811   }
    812 };
    813 
    814 /// Generic iterator that wraps a T::TreeTy::iterator and exposes
    815 /// iterator::getValue() on dereference.
    816 template <typename T>
    817 struct ImutAVLValueIterator
    818     : iterator_adaptor_base<
    819           ImutAVLValueIterator<T>, typename T::TreeTy::iterator,
    820           typename std::iterator_traits<
    821               typename T::TreeTy::iterator>::iterator_category,
    822           const typename T::value_type> {
    823   ImutAVLValueIterator() = default;
    824   explicit ImutAVLValueIterator(typename T::TreeTy *Tree)
    825       : ImutAVLValueIterator::iterator_adaptor_base(Tree) {}
    826 
    827   typename ImutAVLValueIterator::reference operator*() const {
    828     return this->I->getValue();
    829   }
    830 };
    831 
    832 //===----------------------------------------------------------------------===//
    833 // Trait classes for Profile information.
    834 //===----------------------------------------------------------------------===//
    835 
    836 /// Generic profile template.  The default behavior is to invoke the
    837 /// profile method of an object.  Specializations for primitive integers
    838 /// and generic handling of pointers is done below.
    839 template <typename T>
    840 struct ImutProfileInfo {
    841   using value_type = const T;
    842   using value_type_ref = const T&;
    843 
    844   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    845     FoldingSetTrait<T>::Profile(X,ID);
    846   }
    847 };
    848 
    849 /// Profile traits for integers.
    850 template <typename T>
    851 struct ImutProfileInteger {
    852   using value_type = const T;
    853   using value_type_ref = const T&;
    854 
    855   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    856     ID.AddInteger(X);
    857   }
    858 };
    859 
    860 #define PROFILE_INTEGER_INFO(X)\
    861 template<> struct ImutProfileInfo<X> : ImutProfileInteger<X> {};
    862 
    863 PROFILE_INTEGER_INFO(char)
    864 PROFILE_INTEGER_INFO(unsigned char)
    865 PROFILE_INTEGER_INFO(short)
    866 PROFILE_INTEGER_INFO(unsigned short)
    867 PROFILE_INTEGER_INFO(unsigned)
    868 PROFILE_INTEGER_INFO(signed)
    869 PROFILE_INTEGER_INFO(long)
    870 PROFILE_INTEGER_INFO(unsigned long)
    871 PROFILE_INTEGER_INFO(long long)
    872 PROFILE_INTEGER_INFO(unsigned long long)
    873 
    874 #undef PROFILE_INTEGER_INFO
    875 
    876 /// Profile traits for booleans.
    877 template <>
    878 struct ImutProfileInfo<bool> {
    879   using value_type = const bool;
    880   using value_type_ref = const bool&;
    881 
    882   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    883     ID.AddBoolean(X);
    884   }
    885 };
    886 
    887 /// Generic profile trait for pointer types.  We treat pointers as
    888 /// references to unique objects.
    889 template <typename T>
    890 struct ImutProfileInfo<T*> {
    891   using value_type = const T*;
    892   using value_type_ref = value_type;
    893 
    894   static void Profile(FoldingSetNodeID &ID, value_type_ref X) {
    895     ID.AddPointer(X);
    896   }
    897 };
    898 
    899 //===----------------------------------------------------------------------===//
    900 // Trait classes that contain element comparison operators and type
    901 //  definitions used by ImutAVLTree, ImmutableSet, and ImmutableMap.  These
    902 //  inherit from the profile traits (ImutProfileInfo) to include operations
    903 //  for element profiling.
    904 //===----------------------------------------------------------------------===//
    905 
    906 /// ImutContainerInfo - Generic definition of comparison operations for
    907 ///   elements of immutable containers that defaults to using
    908 ///   std::equal_to<> and std::less<> to perform comparison of elements.
    909 template <typename T>
    910 struct ImutContainerInfo : public ImutProfileInfo<T> {
    911   using value_type = typename ImutProfileInfo<T>::value_type;
    912   using value_type_ref = typename ImutProfileInfo<T>::value_type_ref;
    913   using key_type = value_type;
    914   using key_type_ref = value_type_ref;
    915   using data_type = bool;
    916   using data_type_ref = bool;
    917 
    918   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
    919   static data_type_ref DataOfValue(value_type_ref) { return true; }
    920 
    921   static bool isEqual(key_type_ref LHS, key_type_ref RHS) {
    922     return std::equal_to<key_type>()(LHS,RHS);
    923   }
    924 
    925   static bool isLess(key_type_ref LHS, key_type_ref RHS) {
    926     return std::less<key_type>()(LHS,RHS);
    927   }
    928 
    929   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
    930 };
    931 
    932 /// ImutContainerInfo - Specialization for pointer values to treat pointers
    933 ///  as references to unique objects.  Pointers are thus compared by
    934 ///  their addresses.
    935 template <typename T>
    936 struct ImutContainerInfo<T*> : public ImutProfileInfo<T*> {
    937   using value_type = typename ImutProfileInfo<T*>::value_type;
    938   using value_type_ref = typename ImutProfileInfo<T*>::value_type_ref;
    939   using key_type = value_type;
    940   using key_type_ref = value_type_ref;
    941   using data_type = bool;
    942   using data_type_ref = bool;
    943 
    944   static key_type_ref KeyOfValue(value_type_ref D) { return D; }
    945   static data_type_ref DataOfValue(value_type_ref) { return true; }
    946 
    947   static bool isEqual(key_type_ref LHS, key_type_ref RHS) { return LHS == RHS; }
    948 
    949   static bool isLess(key_type_ref LHS, key_type_ref RHS) { return LHS < RHS; }
    950 
    951   static bool isDataEqual(data_type_ref, data_type_ref) { return true; }
    952 };
    953 
    954 //===----------------------------------------------------------------------===//
    955 // Immutable Set
    956 //===----------------------------------------------------------------------===//
    957 
    958 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
    959 class ImmutableSet {
    960 public:
    961   using value_type = typename ValInfo::value_type;
    962   using value_type_ref = typename ValInfo::value_type_ref;
    963   using TreeTy = ImutAVLTree<ValInfo>;
    964 
    965 private:
    966   TreeTy *Root;
    967 
    968 public:
    969   /// Constructs a set from a pointer to a tree root.  In general one
    970   /// should use a Factory object to create sets instead of directly
    971   /// invoking the constructor, but there are cases where make this
    972   /// constructor public is useful.
    973   explicit ImmutableSet(TreeTy* R) : Root(R) {
    974     if (Root) { Root->retain(); }
    975   }
    976 
    977   ImmutableSet(const ImmutableSet &X) : Root(X.Root) {
    978     if (Root) { Root->retain(); }
    979   }
    980 
    981   ~ImmutableSet() {
    982     if (Root) { Root->release(); }
    983   }
    984 
    985   ImmutableSet &operator=(const ImmutableSet &X) {
    986     if (Root != X.Root) {
    987       if (X.Root) { X.Root->retain(); }
    988       if (Root) { Root->release(); }
    989       Root = X.Root;
    990     }
    991     return *this;
    992   }
    993 
    994   class Factory {
    995     typename TreeTy::Factory F;
    996     const bool Canonicalize;
    997 
    998   public:
    999     Factory(bool canonicalize = true)
   1000       : Canonicalize(canonicalize) {}
   1001 
   1002     Factory(BumpPtrAllocator& Alloc, bool canonicalize = true)
   1003       : F(Alloc), Canonicalize(canonicalize) {}
   1004 
   1005     Factory(const Factory& RHS) = delete;
   1006     void operator=(const Factory& RHS) = delete;
   1007 
   1008     /// getEmptySet - Returns an immutable set that contains no elements.
   1009     ImmutableSet getEmptySet() {
   1010       return ImmutableSet(F.getEmptyTree());
   1011     }
   1012 
   1013     /// add - Creates a new immutable set that contains all of the values
   1014     ///  of the original set with the addition of the specified value.  If
   1015     ///  the original set already included the value, then the original set is
   1016     ///  returned and no memory is allocated.  The time and space complexity
   1017     ///  of this operation is logarithmic in the size of the original set.
   1018     ///  The memory allocated to represent the set is released when the
   1019     ///  factory object that created the set is destroyed.
   1020     ImmutableSet add(ImmutableSet Old, value_type_ref V) {
   1021       TreeTy *NewT = F.add(Old.Root, V);
   1022       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
   1023     }
   1024 
   1025     /// remove - Creates a new immutable set that contains all of the values
   1026     ///  of the original set with the exception of the specified value.  If
   1027     ///  the original set did not contain the value, the original set is
   1028     ///  returned and no memory is allocated.  The time and space complexity
   1029     ///  of this operation is logarithmic in the size of the original set.
   1030     ///  The memory allocated to represent the set is released when the
   1031     ///  factory object that created the set is destroyed.
   1032     ImmutableSet remove(ImmutableSet Old, value_type_ref V) {
   1033       TreeTy *NewT = F.remove(Old.Root, V);
   1034       return ImmutableSet(Canonicalize ? F.getCanonicalTree(NewT) : NewT);
   1035     }
   1036 
   1037     BumpPtrAllocator& getAllocator() { return F.getAllocator(); }
   1038 
   1039     typename TreeTy::Factory *getTreeFactory() const {
   1040       return const_cast<typename TreeTy::Factory *>(&F);
   1041     }
   1042   };
   1043 
   1044   friend class Factory;
   1045 
   1046   /// Returns true if the set contains the specified value.
   1047   bool contains(value_type_ref V) const {
   1048     return Root ? Root->contains(V) : false;
   1049   }
   1050 
   1051   bool operator==(const ImmutableSet &RHS) const {
   1052     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1053   }
   1054 
   1055   bool operator!=(const ImmutableSet &RHS) const {
   1056     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1057   }
   1058 
   1059   TreeTy *getRoot() {
   1060     if (Root) { Root->retain(); }
   1061     return Root;
   1062   }
   1063 
   1064   TreeTy *getRootWithoutRetain() const {
   1065     return Root;
   1066   }
   1067 
   1068   /// isEmpty - Return true if the set contains no elements.
   1069   bool isEmpty() const { return !Root; }
   1070 
   1071   /// isSingleton - Return true if the set contains exactly one element.
   1072   ///   This method runs in constant time.
   1073   bool isSingleton() const { return getHeight() == 1; }
   1074 
   1075   template <typename Callback>
   1076   void foreach(Callback& C) { if (Root) Root->foreach(C); }
   1077 
   1078   template <typename Callback>
   1079   void foreach() { if (Root) { Callback C; Root->foreach(C); } }
   1080 
   1081   //===--------------------------------------------------===//
   1082   // Iterators.
   1083   //===--------------------------------------------------===//
   1084 
   1085   using iterator = ImutAVLValueIterator<ImmutableSet>;
   1086 
   1087   iterator begin() const { return iterator(Root); }
   1088   iterator end() const { return iterator(); }
   1089 
   1090   //===--------------------------------------------------===//
   1091   // Utility methods.
   1092   //===--------------------------------------------------===//
   1093 
   1094   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1095 
   1096   static void Profile(FoldingSetNodeID &ID, const ImmutableSet &S) {
   1097     ID.AddPointer(S.Root);
   1098   }
   1099 
   1100   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
   1101 
   1102   //===--------------------------------------------------===//
   1103   // For testing.
   1104   //===--------------------------------------------------===//
   1105 
   1106   void validateTree() const { if (Root) Root->validateTree(); }
   1107 };
   1108 
   1109 // NOTE: This may some day replace the current ImmutableSet.
   1110 template <typename ValT, typename ValInfo = ImutContainerInfo<ValT>>
   1111 class ImmutableSetRef {
   1112 public:
   1113   using value_type = typename ValInfo::value_type;
   1114   using value_type_ref = typename ValInfo::value_type_ref;
   1115   using TreeTy = ImutAVLTree<ValInfo>;
   1116   using FactoryTy = typename TreeTy::Factory;
   1117 
   1118 private:
   1119   TreeTy *Root;
   1120   FactoryTy *Factory;
   1121 
   1122 public:
   1123   /// Constructs a set from a pointer to a tree root.  In general one
   1124   /// should use a Factory object to create sets instead of directly
   1125   /// invoking the constructor, but there are cases where make this
   1126   /// constructor public is useful.
   1127   explicit ImmutableSetRef(TreeTy* R, FactoryTy *F)
   1128     : Root(R),
   1129       Factory(F) {
   1130     if (Root) { Root->retain(); }
   1131   }
   1132 
   1133   ImmutableSetRef(const ImmutableSetRef &X)
   1134     : Root(X.Root),
   1135       Factory(X.Factory) {
   1136     if (Root) { Root->retain(); }
   1137   }
   1138 
   1139   ~ImmutableSetRef() {
   1140     if (Root) { Root->release(); }
   1141   }
   1142 
   1143   ImmutableSetRef &operator=(const ImmutableSetRef &X) {
   1144     if (Root != X.Root) {
   1145       if (X.Root) { X.Root->retain(); }
   1146       if (Root) { Root->release(); }
   1147       Root = X.Root;
   1148       Factory = X.Factory;
   1149     }
   1150     return *this;
   1151   }
   1152 
   1153   static ImmutableSetRef getEmptySet(FactoryTy *F) {
   1154     return ImmutableSetRef(0, F);
   1155   }
   1156 
   1157   ImmutableSetRef add(value_type_ref V) {
   1158     return ImmutableSetRef(Factory->add(Root, V), Factory);
   1159   }
   1160 
   1161   ImmutableSetRef remove(value_type_ref V) {
   1162     return ImmutableSetRef(Factory->remove(Root, V), Factory);
   1163   }
   1164 
   1165   /// Returns true if the set contains the specified value.
   1166   bool contains(value_type_ref V) const {
   1167     return Root ? Root->contains(V) : false;
   1168   }
   1169 
   1170   ImmutableSet<ValT> asImmutableSet(bool canonicalize = true) const {
   1171     return ImmutableSet<ValT>(canonicalize ?
   1172                               Factory->getCanonicalTree(Root) : Root);
   1173   }
   1174 
   1175   TreeTy *getRootWithoutRetain() const {
   1176     return Root;
   1177   }
   1178 
   1179   bool operator==(const ImmutableSetRef &RHS) const {
   1180     return Root && RHS.Root ? Root->isEqual(*RHS.Root) : Root == RHS.Root;
   1181   }
   1182 
   1183   bool operator!=(const ImmutableSetRef &RHS) const {
   1184     return Root && RHS.Root ? Root->isNotEqual(*RHS.Root) : Root != RHS.Root;
   1185   }
   1186 
   1187   /// isEmpty - Return true if the set contains no elements.
   1188   bool isEmpty() const { return !Root; }
   1189 
   1190   /// isSingleton - Return true if the set contains exactly one element.
   1191   ///   This method runs in constant time.
   1192   bool isSingleton() const { return getHeight() == 1; }
   1193 
   1194   //===--------------------------------------------------===//
   1195   // Iterators.
   1196   //===--------------------------------------------------===//
   1197 
   1198   using iterator = ImutAVLValueIterator<ImmutableSetRef>;
   1199 
   1200   iterator begin() const { return iterator(Root); }
   1201   iterator end() const { return iterator(); }
   1202 
   1203   //===--------------------------------------------------===//
   1204   // Utility methods.
   1205   //===--------------------------------------------------===//
   1206 
   1207   unsigned getHeight() const { return Root ? Root->getHeight() : 0; }
   1208 
   1209   static void Profile(FoldingSetNodeID &ID, const ImmutableSetRef &S) {
   1210     ID.AddPointer(S.Root);
   1211   }
   1212 
   1213   void Profile(FoldingSetNodeID &ID) const { return Profile(ID, *this); }
   1214 
   1215   //===--------------------------------------------------===//
   1216   // For testing.
   1217   //===--------------------------------------------------===//
   1218 
   1219   void validateTree() const { if (Root) Root->validateTree(); }
   1220 };
   1221 
   1222 } // end namespace llvm
   1223 
   1224 #endif // LLVM_ADT_IMMUTABLESET_H
   1225