Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for the loop memory dependence framework that
     11 // was originally developed for the Loop Vectorizer.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
     16 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
     17 
     18 #include "llvm/ADT/EquivalenceClasses.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Analysis/AliasSetTracker.h"
     23 #include "llvm/Analysis/LoopAnalysisManager.h"
     24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     25 #include "llvm/IR/DiagnosticInfo.h"
     26 #include "llvm/IR/ValueHandle.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 
     30 namespace llvm {
     31 
     32 class Value;
     33 class DataLayout;
     34 class ScalarEvolution;
     35 class Loop;
     36 class SCEV;
     37 class SCEVUnionPredicate;
     38 class LoopAccessInfo;
     39 class OptimizationRemarkEmitter;
     40 
     41 /// \brief Collection of parameters shared beetween the Loop Vectorizer and the
     42 /// Loop Access Analysis.
     43 struct VectorizerParams {
     44   /// \brief Maximum SIMD width.
     45   static const unsigned MaxVectorWidth;
     46 
     47   /// \brief VF as overridden by the user.
     48   static unsigned VectorizationFactor;
     49   /// \brief Interleave factor as overridden by the user.
     50   static unsigned VectorizationInterleave;
     51   /// \brief True if force-vector-interleave was specified by the user.
     52   static bool isInterleaveForced();
     53 
     54   /// \\brief When performing memory disambiguation checks at runtime do not
     55   /// make more than this number of comparisons.
     56   static unsigned RuntimeMemoryCheckThreshold;
     57 };
     58 
     59 /// \brief Checks memory dependences among accesses to the same underlying
     60 /// object to determine whether there vectorization is legal or not (and at
     61 /// which vectorization factor).
     62 ///
     63 /// Note: This class will compute a conservative dependence for access to
     64 /// different underlying pointers. Clients, such as the loop vectorizer, will
     65 /// sometimes deal these potential dependencies by emitting runtime checks.
     66 ///
     67 /// We use the ScalarEvolution framework to symbolically evalutate access
     68 /// functions pairs. Since we currently don't restructure the loop we can rely
     69 /// on the program order of memory accesses to determine their safety.
     70 /// At the moment we will only deem accesses as safe for:
     71 ///  * A negative constant distance assuming program order.
     72 ///
     73 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
     74 ///            a[i] = tmp;                y = a[i];
     75 ///
     76 ///   The latter case is safe because later checks guarantuee that there can't
     77 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
     78 ///   the same variable: a header phi can only be an induction or a reduction, a
     79 ///   reduction can't have a memory sink, an induction can't have a memory
     80 ///   source). This is important and must not be violated (or we have to
     81 ///   resort to checking for cycles through memory).
     82 ///
     83 ///  * A positive constant distance assuming program order that is bigger
     84 ///    than the biggest memory access.
     85 ///
     86 ///     tmp = a[i]        OR              b[i] = x
     87 ///     a[i+2] = tmp                      y = b[i+2];
     88 ///
     89 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
     90 ///
     91 ///  * Zero distances and all accesses have the same size.
     92 ///
     93 class MemoryDepChecker {
     94 public:
     95   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
     96   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
     97   /// \brief Set of potential dependent memory accesses.
     98   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
     99 
    100   /// \brief Dependece between memory access instructions.
    101   struct Dependence {
    102     /// \brief The type of the dependence.
    103     enum DepType {
    104       // No dependence.
    105       NoDep,
    106       // We couldn't determine the direction or the distance.
    107       Unknown,
    108       // Lexically forward.
    109       //
    110       // FIXME: If we only have loop-independent forward dependences (e.g. a
    111       // read and write of A[i]), LAA will locally deem the dependence "safe"
    112       // without querying the MemoryDepChecker.  Therefore we can miss
    113       // enumerating loop-independent forward dependences in
    114       // getDependences.  Note that as soon as there are different
    115       // indices used to access the same array, the MemoryDepChecker *is*
    116       // queried and the dependence list is complete.
    117       Forward,
    118       // Forward, but if vectorized, is likely to prevent store-to-load
    119       // forwarding.
    120       ForwardButPreventsForwarding,
    121       // Lexically backward.
    122       Backward,
    123       // Backward, but the distance allows a vectorization factor of
    124       // MaxSafeDepDistBytes.
    125       BackwardVectorizable,
    126       // Same, but may prevent store-to-load forwarding.
    127       BackwardVectorizableButPreventsForwarding
    128     };
    129 
    130     /// \brief String version of the types.
    131     static const char *DepName[];
    132 
    133     /// \brief Index of the source of the dependence in the InstMap vector.
    134     unsigned Source;
    135     /// \brief Index of the destination of the dependence in the InstMap vector.
    136     unsigned Destination;
    137     /// \brief The type of the dependence.
    138     DepType Type;
    139 
    140     Dependence(unsigned Source, unsigned Destination, DepType Type)
    141         : Source(Source), Destination(Destination), Type(Type) {}
    142 
    143     /// \brief Return the source instruction of the dependence.
    144     Instruction *getSource(const LoopAccessInfo &LAI) const;
    145     /// \brief Return the destination instruction of the dependence.
    146     Instruction *getDestination(const LoopAccessInfo &LAI) const;
    147 
    148     /// \brief Dependence types that don't prevent vectorization.
    149     static bool isSafeForVectorization(DepType Type);
    150 
    151     /// \brief Lexically forward dependence.
    152     bool isForward() const;
    153     /// \brief Lexically backward dependence.
    154     bool isBackward() const;
    155 
    156     /// \brief May be a lexically backward dependence type (includes Unknown).
    157     bool isPossiblyBackward() const;
    158 
    159     /// \brief Print the dependence.  \p Instr is used to map the instruction
    160     /// indices to instructions.
    161     void print(raw_ostream &OS, unsigned Depth,
    162                const SmallVectorImpl<Instruction *> &Instrs) const;
    163   };
    164 
    165   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
    166       : PSE(PSE), InnermostLoop(L), AccessIdx(0),
    167         ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
    168         RecordDependences(true) {}
    169 
    170   /// \brief Register the location (instructions are given increasing numbers)
    171   /// of a write access.
    172   void addAccess(StoreInst *SI) {
    173     Value *Ptr = SI->getPointerOperand();
    174     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
    175     InstMap.push_back(SI);
    176     ++AccessIdx;
    177   }
    178 
    179   /// \brief Register the location (instructions are given increasing numbers)
    180   /// of a write access.
    181   void addAccess(LoadInst *LI) {
    182     Value *Ptr = LI->getPointerOperand();
    183     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
    184     InstMap.push_back(LI);
    185     ++AccessIdx;
    186   }
    187 
    188   /// \brief Check whether the dependencies between the accesses are safe.
    189   ///
    190   /// Only checks sets with elements in \p CheckDeps.
    191   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
    192                    const ValueToValueMap &Strides);
    193 
    194   /// \brief No memory dependence was encountered that would inhibit
    195   /// vectorization.
    196   bool isSafeForVectorization() const { return SafeForVectorization; }
    197 
    198   /// \brief The maximum number of bytes of a vector register we can vectorize
    199   /// the accesses safely with.
    200   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
    201 
    202   /// \brief In same cases when the dependency check fails we can still
    203   /// vectorize the loop with a dynamic array access check.
    204   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
    205 
    206   /// \brief Returns the memory dependences.  If null is returned we exceeded
    207   /// the MaxDependences threshold and this information is not
    208   /// available.
    209   const SmallVectorImpl<Dependence> *getDependences() const {
    210     return RecordDependences ? &Dependences : nullptr;
    211   }
    212 
    213   void clearDependences() { Dependences.clear(); }
    214 
    215   /// \brief The vector of memory access instructions.  The indices are used as
    216   /// instruction identifiers in the Dependence class.
    217   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
    218     return InstMap;
    219   }
    220 
    221   /// \brief Generate a mapping between the memory instructions and their
    222   /// indices according to program order.
    223   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
    224     DenseMap<Instruction *, unsigned> OrderMap;
    225 
    226     for (unsigned I = 0; I < InstMap.size(); ++I)
    227       OrderMap[InstMap[I]] = I;
    228 
    229     return OrderMap;
    230   }
    231 
    232   /// \brief Find the set of instructions that read or write via \p Ptr.
    233   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
    234                                                          bool isWrite) const;
    235 
    236 private:
    237   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
    238   /// applies dynamic knowledge to simplify SCEV expressions and convert them
    239   /// to a more usable form. We need this in case assumptions about SCEV
    240   /// expressions need to be made in order to avoid unknown dependences. For
    241   /// example we might assume a unit stride for a pointer in order to prove
    242   /// that a memory access is strided and doesn't wrap.
    243   PredicatedScalarEvolution &PSE;
    244   const Loop *InnermostLoop;
    245 
    246   /// \brief Maps access locations (ptr, read/write) to program order.
    247   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
    248 
    249   /// \brief Memory access instructions in program order.
    250   SmallVector<Instruction *, 16> InstMap;
    251 
    252   /// \brief The program order index to be used for the next instruction.
    253   unsigned AccessIdx;
    254 
    255   // We can access this many bytes in parallel safely.
    256   uint64_t MaxSafeDepDistBytes;
    257 
    258   /// \brief If we see a non-constant dependence distance we can still try to
    259   /// vectorize this loop with runtime checks.
    260   bool ShouldRetryWithRuntimeCheck;
    261 
    262   /// \brief No memory dependence was encountered that would inhibit
    263   /// vectorization.
    264   bool SafeForVectorization;
    265 
    266   //// \brief True if Dependences reflects the dependences in the
    267   //// loop.  If false we exceeded MaxDependences and
    268   //// Dependences is invalid.
    269   bool RecordDependences;
    270 
    271   /// \brief Memory dependences collected during the analysis.  Only valid if
    272   /// RecordDependences is true.
    273   SmallVector<Dependence, 8> Dependences;
    274 
    275   /// \brief Check whether there is a plausible dependence between the two
    276   /// accesses.
    277   ///
    278   /// Access \p A must happen before \p B in program order. The two indices
    279   /// identify the index into the program order map.
    280   ///
    281   /// This function checks  whether there is a plausible dependence (or the
    282   /// absence of such can't be proved) between the two accesses. If there is a
    283   /// plausible dependence but the dependence distance is bigger than one
    284   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
    285   /// distance is smaller than any other distance encountered so far).
    286   /// Otherwise, this function returns true signaling a possible dependence.
    287   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
    288                                   const MemAccessInfo &B, unsigned BIdx,
    289                                   const ValueToValueMap &Strides);
    290 
    291   /// \brief Check whether the data dependence could prevent store-load
    292   /// forwarding.
    293   ///
    294   /// \return false if we shouldn't vectorize at all or avoid larger
    295   /// vectorization factors by limiting MaxSafeDepDistBytes.
    296   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
    297 };
    298 
    299 /// \brief Holds information about the memory runtime legality checks to verify
    300 /// that a group of pointers do not overlap.
    301 class RuntimePointerChecking {
    302 public:
    303   struct PointerInfo {
    304     /// Holds the pointer value that we need to check.
    305     TrackingVH<Value> PointerValue;
    306     /// Holds the smallest byte address accessed by the pointer throughout all
    307     /// iterations of the loop.
    308     const SCEV *Start;
    309     /// Holds the largest byte address accessed by the pointer throughout all
    310     /// iterations of the loop, plus 1.
    311     const SCEV *End;
    312     /// Holds the information if this pointer is used for writing to memory.
    313     bool IsWritePtr;
    314     /// Holds the id of the set of pointers that could be dependent because of a
    315     /// shared underlying object.
    316     unsigned DependencySetId;
    317     /// Holds the id of the disjoint alias set to which this pointer belongs.
    318     unsigned AliasSetId;
    319     /// SCEV for the access.
    320     const SCEV *Expr;
    321 
    322     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
    323                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
    324                 const SCEV *Expr)
    325         : PointerValue(PointerValue), Start(Start), End(End),
    326           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
    327           AliasSetId(AliasSetId), Expr(Expr) {}
    328   };
    329 
    330   RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
    331 
    332   /// Reset the state of the pointer runtime information.
    333   void reset() {
    334     Need = false;
    335     Pointers.clear();
    336     Checks.clear();
    337   }
    338 
    339   /// Insert a pointer and calculate the start and end SCEVs.
    340   /// We need \p PSE in order to compute the SCEV expression of the pointer
    341   /// according to the assumptions that we've made during the analysis.
    342   /// The method might also version the pointer stride according to \p Strides,
    343   /// and add new predicates to \p PSE.
    344   void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
    345               unsigned ASId, const ValueToValueMap &Strides,
    346               PredicatedScalarEvolution &PSE);
    347 
    348   /// \brief No run-time memory checking is necessary.
    349   bool empty() const { return Pointers.empty(); }
    350 
    351   /// A grouping of pointers. A single memcheck is required between
    352   /// two groups.
    353   struct CheckingPtrGroup {
    354     /// \brief Create a new pointer checking group containing a single
    355     /// pointer, with index \p Index in RtCheck.
    356     CheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
    357         : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
    358           Low(RtCheck.Pointers[Index].Start) {
    359       Members.push_back(Index);
    360     }
    361 
    362     /// \brief Tries to add the pointer recorded in RtCheck at index
    363     /// \p Index to this pointer checking group. We can only add a pointer
    364     /// to a checking group if we will still be able to get
    365     /// the upper and lower bounds of the check. Returns true in case
    366     /// of success, false otherwise.
    367     bool addPointer(unsigned Index);
    368 
    369     /// Constitutes the context of this pointer checking group. For each
    370     /// pointer that is a member of this group we will retain the index
    371     /// at which it appears in RtCheck.
    372     RuntimePointerChecking &RtCheck;
    373     /// The SCEV expression which represents the upper bound of all the
    374     /// pointers in this group.
    375     const SCEV *High;
    376     /// The SCEV expression which represents the lower bound of all the
    377     /// pointers in this group.
    378     const SCEV *Low;
    379     /// Indices of all the pointers that constitute this grouping.
    380     SmallVector<unsigned, 2> Members;
    381   };
    382 
    383   /// \brief A memcheck which made up of a pair of grouped pointers.
    384   ///
    385   /// These *have* to be const for now, since checks are generated from
    386   /// CheckingPtrGroups in LAI::addRuntimeChecks which is a const member
    387   /// function.  FIXME: once check-generation is moved inside this class (after
    388   /// the PtrPartition hack is removed), we could drop const.
    389   typedef std::pair<const CheckingPtrGroup *, const CheckingPtrGroup *>
    390       PointerCheck;
    391 
    392   /// \brief Generate the checks and store it.  This also performs the grouping
    393   /// of pointers to reduce the number of memchecks necessary.
    394   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
    395                       bool UseDependencies);
    396 
    397   /// \brief Returns the checks that generateChecks created.
    398   const SmallVector<PointerCheck, 4> &getChecks() const { return Checks; }
    399 
    400   /// \brief Decide if we need to add a check between two groups of pointers,
    401   /// according to needsChecking.
    402   bool needsChecking(const CheckingPtrGroup &M,
    403                      const CheckingPtrGroup &N) const;
    404 
    405   /// \brief Returns the number of run-time checks required according to
    406   /// needsChecking.
    407   unsigned getNumberOfChecks() const { return Checks.size(); }
    408 
    409   /// \brief Print the list run-time memory checks necessary.
    410   void print(raw_ostream &OS, unsigned Depth = 0) const;
    411 
    412   /// Print \p Checks.
    413   void printChecks(raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
    414                    unsigned Depth = 0) const;
    415 
    416   /// This flag indicates if we need to add the runtime check.
    417   bool Need;
    418 
    419   /// Information about the pointers that may require checking.
    420   SmallVector<PointerInfo, 2> Pointers;
    421 
    422   /// Holds a partitioning of pointers into "check groups".
    423   SmallVector<CheckingPtrGroup, 2> CheckingGroups;
    424 
    425   /// \brief Check if pointers are in the same partition
    426   ///
    427   /// \p PtrToPartition contains the partition number for pointers (-1 if the
    428   /// pointer belongs to multiple partitions).
    429   static bool
    430   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
    431                              unsigned PtrIdx1, unsigned PtrIdx2);
    432 
    433   /// \brief Decide whether we need to issue a run-time check for pointer at
    434   /// index \p I and \p J to prove their independence.
    435   bool needsChecking(unsigned I, unsigned J) const;
    436 
    437   /// \brief Return PointerInfo for pointer at index \p PtrIdx.
    438   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
    439     return Pointers[PtrIdx];
    440   }
    441 
    442 private:
    443   /// \brief Groups pointers such that a single memcheck is required
    444   /// between two different groups. This will clear the CheckingGroups vector
    445   /// and re-compute it. We will only group dependecies if \p UseDependencies
    446   /// is true, otherwise we will create a separate group for each pointer.
    447   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
    448                    bool UseDependencies);
    449 
    450   /// Generate the checks and return them.
    451   SmallVector<PointerCheck, 4>
    452   generateChecks() const;
    453 
    454   /// Holds a pointer to the ScalarEvolution analysis.
    455   ScalarEvolution *SE;
    456 
    457   /// \brief Set of run-time checks required to establish independence of
    458   /// otherwise may-aliasing pointers in the loop.
    459   SmallVector<PointerCheck, 4> Checks;
    460 };
    461 
    462 /// \brief Drive the analysis of memory accesses in the loop
    463 ///
    464 /// This class is responsible for analyzing the memory accesses of a loop.  It
    465 /// collects the accesses and then its main helper the AccessAnalysis class
    466 /// finds and categorizes the dependences in buildDependenceSets.
    467 ///
    468 /// For memory dependences that can be analyzed at compile time, it determines
    469 /// whether the dependence is part of cycle inhibiting vectorization.  This work
    470 /// is delegated to the MemoryDepChecker class.
    471 ///
    472 /// For memory dependences that cannot be determined at compile time, it
    473 /// generates run-time checks to prove independence.  This is done by
    474 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
    475 /// RuntimePointerCheck class.
    476 ///
    477 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
    478 /// ScalarEvolution, we will generate run-time checks by emitting a
    479 /// SCEVUnionPredicate.
    480 ///
    481 /// Checks for both memory dependences and the SCEV predicates contained in the
    482 /// PSE must be emitted in order for the results of this analysis to be valid.
    483 class LoopAccessInfo {
    484 public:
    485   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
    486                  AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI);
    487 
    488   /// Return true we can analyze the memory accesses in the loop and there are
    489   /// no memory dependence cycles.
    490   bool canVectorizeMemory() const { return CanVecMem; }
    491 
    492   const RuntimePointerChecking *getRuntimePointerChecking() const {
    493     return PtrRtChecking.get();
    494   }
    495 
    496   /// \brief Number of memchecks required to prove independence of otherwise
    497   /// may-alias pointers.
    498   unsigned getNumRuntimePointerChecks() const {
    499     return PtrRtChecking->getNumberOfChecks();
    500   }
    501 
    502   /// Return true if the block BB needs to be predicated in order for the loop
    503   /// to be vectorized.
    504   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
    505                                     DominatorTree *DT);
    506 
    507   /// Returns true if the value V is uniform within the loop.
    508   bool isUniform(Value *V) const;
    509 
    510   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
    511   unsigned getNumStores() const { return NumStores; }
    512   unsigned getNumLoads() const { return NumLoads;}
    513 
    514   /// \brief Add code that checks at runtime if the accessed arrays overlap.
    515   ///
    516   /// Returns a pair of instructions where the first element is the first
    517   /// instruction generated in possibly a sequence of instructions and the
    518   /// second value is the final comparator value or NULL if no check is needed.
    519   std::pair<Instruction *, Instruction *>
    520   addRuntimeChecks(Instruction *Loc) const;
    521 
    522   /// \brief Generete the instructions for the checks in \p PointerChecks.
    523   ///
    524   /// Returns a pair of instructions where the first element is the first
    525   /// instruction generated in possibly a sequence of instructions and the
    526   /// second value is the final comparator value or NULL if no check is needed.
    527   std::pair<Instruction *, Instruction *>
    528   addRuntimeChecks(Instruction *Loc,
    529                    const SmallVectorImpl<RuntimePointerChecking::PointerCheck>
    530                        &PointerChecks) const;
    531 
    532   /// \brief The diagnostics report generated for the analysis.  E.g. why we
    533   /// couldn't analyze the loop.
    534   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
    535 
    536   /// \brief the Memory Dependence Checker which can determine the
    537   /// loop-independent and loop-carried dependences between memory accesses.
    538   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
    539 
    540   /// \brief Return the list of instructions that use \p Ptr to read or write
    541   /// memory.
    542   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
    543                                                          bool isWrite) const {
    544     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
    545   }
    546 
    547   /// \brief If an access has a symbolic strides, this maps the pointer value to
    548   /// the stride symbol.
    549   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
    550 
    551   /// \brief Pointer has a symbolic stride.
    552   bool hasStride(Value *V) const { return StrideSet.count(V); }
    553 
    554   /// \brief Print the information about the memory accesses in the loop.
    555   void print(raw_ostream &OS, unsigned Depth = 0) const;
    556 
    557   /// \brief Checks existence of store to invariant address inside loop.
    558   /// If the loop has any store to invariant address, then it returns true,
    559   /// else returns false.
    560   bool hasStoreToLoopInvariantAddress() const {
    561     return StoreToLoopInvariantAddress;
    562   }
    563 
    564   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
    565   /// them to a more usable form.  All SCEV expressions during the analysis
    566   /// should be re-written (and therefore simplified) according to PSE.
    567   /// A user of LoopAccessAnalysis will need to emit the runtime checks
    568   /// associated with this predicate.
    569   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
    570 
    571 private:
    572   /// \brief Analyze the loop.
    573   void analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
    574                    const TargetLibraryInfo *TLI, DominatorTree *DT);
    575 
    576   /// \brief Check if the structure of the loop allows it to be analyzed by this
    577   /// pass.
    578   bool canAnalyzeLoop();
    579 
    580   /// \brief Save the analysis remark.
    581   ///
    582   /// LAA does not directly emits the remarks.  Instead it stores it which the
    583   /// client can retrieve and presents as its own analysis
    584   /// (e.g. -Rpass-analysis=loop-vectorize).
    585   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
    586                                              Instruction *Instr = nullptr);
    587 
    588   /// \brief Collect memory access with loop invariant strides.
    589   ///
    590   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
    591   /// invariant.
    592   void collectStridedAccess(Value *LoadOrStoreInst);
    593 
    594   std::unique_ptr<PredicatedScalarEvolution> PSE;
    595 
    596   /// We need to check that all of the pointers in this list are disjoint
    597   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
    598   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
    599 
    600   /// \brief the Memory Dependence Checker which can determine the
    601   /// loop-independent and loop-carried dependences between memory accesses.
    602   std::unique_ptr<MemoryDepChecker> DepChecker;
    603 
    604   Loop *TheLoop;
    605 
    606   unsigned NumLoads;
    607   unsigned NumStores;
    608 
    609   uint64_t MaxSafeDepDistBytes;
    610 
    611   /// \brief Cache the result of analyzeLoop.
    612   bool CanVecMem;
    613 
    614   /// \brief Indicator for storing to uniform addresses.
    615   /// If a loop has write to a loop invariant address then it should be true.
    616   bool StoreToLoopInvariantAddress;
    617 
    618   /// \brief The diagnostics report generated for the analysis.  E.g. why we
    619   /// couldn't analyze the loop.
    620   std::unique_ptr<OptimizationRemarkAnalysis> Report;
    621 
    622   /// \brief If an access has a symbolic strides, this maps the pointer value to
    623   /// the stride symbol.
    624   ValueToValueMap SymbolicStrides;
    625 
    626   /// \brief Set of symbolic strides values.
    627   SmallPtrSet<Value *, 8> StrideSet;
    628 };
    629 
    630 Value *stripIntegerCast(Value *V);
    631 
    632 /// \brief Return the SCEV corresponding to a pointer with the symbolic stride
    633 /// replaced with constant one, assuming the SCEV predicate associated with
    634 /// \p PSE is true.
    635 ///
    636 /// If necessary this method will version the stride of the pointer according
    637 /// to \p PtrToStride and therefore add further predicates to \p PSE.
    638 ///
    639 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
    640 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
    641 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
    642 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
    643                                       const ValueToValueMap &PtrToStride,
    644                                       Value *Ptr, Value *OrigPtr = nullptr);
    645 
    646 /// \brief If the pointer has a constant stride return it in units of its
    647 /// element size.  Otherwise return zero.
    648 ///
    649 /// Ensure that it does not wrap in the address space, assuming the predicate
    650 /// associated with \p PSE is true.
    651 ///
    652 /// If necessary this method will version the stride of the pointer according
    653 /// to \p PtrToStride and therefore add further predicates to \p PSE.
    654 /// The \p Assume parameter indicates if we are allowed to make additional
    655 /// run-time assumptions.
    656 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
    657                      const ValueToValueMap &StridesMap = ValueToValueMap(),
    658                      bool Assume = false, bool ShouldCheckWrap = true);
    659 
    660 /// \brief Returns true if the memory operations \p A and \p B are consecutive.
    661 /// This is a simple API that does not depend on the analysis pass.
    662 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
    663                          ScalarEvolution &SE, bool CheckType = true);
    664 
    665 /// \brief This analysis provides dependence information for the memory accesses
    666 /// of a loop.
    667 ///
    668 /// It runs the analysis for a loop on demand.  This can be initiated by
    669 /// querying the loop access info via LAA::getInfo.  getInfo return a
    670 /// LoopAccessInfo object.  See this class for the specifics of what information
    671 /// is provided.
    672 class LoopAccessLegacyAnalysis : public FunctionPass {
    673 public:
    674   static char ID;
    675 
    676   LoopAccessLegacyAnalysis() : FunctionPass(ID) {
    677     initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
    678   }
    679 
    680   bool runOnFunction(Function &F) override;
    681 
    682   void getAnalysisUsage(AnalysisUsage &AU) const override;
    683 
    684   /// \brief Query the result of the loop access information for the loop \p L.
    685   ///
    686   /// If there is no cached result available run the analysis.
    687   const LoopAccessInfo &getInfo(Loop *L);
    688 
    689   void releaseMemory() override {
    690     // Invalidate the cache when the pass is freed.
    691     LoopAccessInfoMap.clear();
    692   }
    693 
    694   /// \brief Print the result of the analysis when invoked with -analyze.
    695   void print(raw_ostream &OS, const Module *M = nullptr) const override;
    696 
    697 private:
    698   /// \brief The cache.
    699   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
    700 
    701   // The used analysis passes.
    702   ScalarEvolution *SE;
    703   const TargetLibraryInfo *TLI;
    704   AliasAnalysis *AA;
    705   DominatorTree *DT;
    706   LoopInfo *LI;
    707 };
    708 
    709 /// \brief This analysis provides dependence information for the memory
    710 /// accesses of a loop.
    711 ///
    712 /// It runs the analysis for a loop on demand.  This can be initiated by
    713 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
    714 /// getResult return a LoopAccessInfo object.  See this class for the
    715 /// specifics of what information is provided.
    716 class LoopAccessAnalysis
    717     : public AnalysisInfoMixin<LoopAccessAnalysis> {
    718   friend AnalysisInfoMixin<LoopAccessAnalysis>;
    719   static AnalysisKey Key;
    720 
    721 public:
    722   typedef LoopAccessInfo Result;
    723 
    724   Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
    725 };
    726 
    727 inline Instruction *MemoryDepChecker::Dependence::getSource(
    728     const LoopAccessInfo &LAI) const {
    729   return LAI.getDepChecker().getMemoryInstructions()[Source];
    730 }
    731 
    732 inline Instruction *MemoryDepChecker::Dependence::getDestination(
    733     const LoopAccessInfo &LAI) const {
    734   return LAI.getDepChecker().getMemoryInstructions()[Destination];
    735 }
    736 
    737 } // End llvm namespace
    738 
    739 #endif
    740