Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interface for the loop memory dependence framework that
     11 // was originally developed for the Loop Vectorizer.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
     16 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
     17 
     18 #include "llvm/ADT/EquivalenceClasses.h"
     19 #include "llvm/ADT/Optional.h"
     20 #include "llvm/ADT/SetVector.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/Analysis/AliasSetTracker.h"
     23 #include "llvm/Analysis/LoopAnalysisManager.h"
     24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     25 #include "llvm/IR/DiagnosticInfo.h"
     26 #include "llvm/IR/ValueHandle.h"
     27 #include "llvm/Pass.h"
     28 #include "llvm/Support/raw_ostream.h"
     29 
     30 namespace llvm {
     31 
     32 class Value;
     33 class DataLayout;
     34 class ScalarEvolution;
     35 class Loop;
     36 class SCEV;
     37 class SCEVUnionPredicate;
     38 class LoopAccessInfo;
     39 class OptimizationRemarkEmitter;
     40 
     41 /// \brief Collection of parameters shared beetween the Loop Vectorizer and the
     42 /// Loop Access Analysis.
     43 struct VectorizerParams {
     44   /// \brief Maximum SIMD width.
     45   static const unsigned MaxVectorWidth;
     46 
     47   /// \brief VF as overridden by the user.
     48   static unsigned VectorizationFactor;
     49   /// \brief Interleave factor as overridden by the user.
     50   static unsigned VectorizationInterleave;
     51   /// \brief True if force-vector-interleave was specified by the user.
     52   static bool isInterleaveForced();
     53 
     54   /// \\brief When performing memory disambiguation checks at runtime do not
     55   /// make more than this number of comparisons.
     56   static unsigned RuntimeMemoryCheckThreshold;
     57 };
     58 
     59 /// \brief Checks memory dependences among accesses to the same underlying
     60 /// object to determine whether there vectorization is legal or not (and at
     61 /// which vectorization factor).
     62 ///
     63 /// Note: This class will compute a conservative dependence for access to
     64 /// different underlying pointers. Clients, such as the loop vectorizer, will
     65 /// sometimes deal these potential dependencies by emitting runtime checks.
     66 ///
     67 /// We use the ScalarEvolution framework to symbolically evalutate access
     68 /// functions pairs. Since we currently don't restructure the loop we can rely
     69 /// on the program order of memory accesses to determine their safety.
     70 /// At the moment we will only deem accesses as safe for:
     71 ///  * A negative constant distance assuming program order.
     72 ///
     73 ///      Safe: tmp = a[i + 1];     OR     a[i + 1] = x;
     74 ///            a[i] = tmp;                y = a[i];
     75 ///
     76 ///   The latter case is safe because later checks guarantuee that there can't
     77 ///   be a cycle through a phi node (that is, we check that "x" and "y" is not
     78 ///   the same variable: a header phi can only be an induction or a reduction, a
     79 ///   reduction can't have a memory sink, an induction can't have a memory
     80 ///   source). This is important and must not be violated (or we have to
     81 ///   resort to checking for cycles through memory).
     82 ///
     83 ///  * A positive constant distance assuming program order that is bigger
     84 ///    than the biggest memory access.
     85 ///
     86 ///     tmp = a[i]        OR              b[i] = x
     87 ///     a[i+2] = tmp                      y = b[i+2];
     88 ///
     89 ///     Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
     90 ///
     91 ///  * Zero distances and all accesses have the same size.
     92 ///
     93 class MemoryDepChecker {
     94 public:
     95   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
     96   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
     97   /// \brief Set of potential dependent memory accesses.
     98   typedef EquivalenceClasses<MemAccessInfo> DepCandidates;
     99 
    100   /// \brief Dependece between memory access instructions.
    101   struct Dependence {
    102     /// \brief The type of the dependence.
    103     enum DepType {
    104       // No dependence.
    105       NoDep,
    106       // We couldn't determine the direction or the distance.
    107       Unknown,
    108       // Lexically forward.
    109       //
    110       // FIXME: If we only have loop-independent forward dependences (e.g. a
    111       // read and write of A[i]), LAA will locally deem the dependence "safe"
    112       // without querying the MemoryDepChecker.  Therefore we can miss
    113       // enumerating loop-independent forward dependences in
    114       // getDependences.  Note that as soon as there are different
    115       // indices used to access the same array, the MemoryDepChecker *is*
    116       // queried and the dependence list is complete.
    117       Forward,
    118       // Forward, but if vectorized, is likely to prevent store-to-load
    119       // forwarding.
    120       ForwardButPreventsForwarding,
    121       // Lexically backward.
    122       Backward,
    123       // Backward, but the distance allows a vectorization factor of
    124       // MaxSafeDepDistBytes.
    125       BackwardVectorizable,
    126       // Same, but may prevent store-to-load forwarding.
    127       BackwardVectorizableButPreventsForwarding
    128     };
    129 
    130     /// \brief String version of the types.
    131     static const char *DepName[];
    132 
    133     /// \brief Index of the source of the dependence in the InstMap vector.
    134     unsigned Source;
    135     /// \brief Index of the destination of the dependence in the InstMap vector.
    136     unsigned Destination;
    137     /// \brief The type of the dependence.
    138     DepType Type;
    139 
    140     Dependence(unsigned Source, unsigned Destination, DepType Type)
    141         : Source(Source), Destination(Destination), Type(Type) {}
    142 
    143     /// \brief Return the source instruction of the dependence.
    144     Instruction *getSource(const LoopAccessInfo &LAI) const;
    145     /// \brief Return the destination instruction of the dependence.
    146     Instruction *getDestination(const LoopAccessInfo &LAI) const;
    147 
    148     /// \brief Dependence types that don't prevent vectorization.
    149     static bool isSafeForVectorization(DepType Type);
    150 
    151     /// \brief Lexically forward dependence.
    152     bool isForward() const;
    153     /// \brief Lexically backward dependence.
    154     bool isBackward() const;
    155 
    156     /// \brief May be a lexically backward dependence type (includes Unknown).
    157     bool isPossiblyBackward() const;
    158 
    159     /// \brief Print the dependence.  \p Instr is used to map the instruction
    160     /// indices to instructions.
    161     void print(raw_ostream &OS, unsigned Depth,
    162                const SmallVectorImpl<Instruction *> &Instrs) const;
    163   };
    164 
    165   MemoryDepChecker(PredicatedScalarEvolution &PSE, const Loop *L)
    166       : PSE(PSE), InnermostLoop(L), AccessIdx(0), MaxSafeRegisterWidth(-1U),
    167         ShouldRetryWithRuntimeCheck(false), SafeForVectorization(true),
    168         RecordDependences(true) {}
    169 
    170   /// \brief Register the location (instructions are given increasing numbers)
    171   /// of a write access.
    172   void addAccess(StoreInst *SI) {
    173     Value *Ptr = SI->getPointerOperand();
    174     Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
    175     InstMap.push_back(SI);
    176     ++AccessIdx;
    177   }
    178 
    179   /// \brief Register the location (instructions are given increasing numbers)
    180   /// of a write access.
    181   void addAccess(LoadInst *LI) {
    182     Value *Ptr = LI->getPointerOperand();
    183     Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
    184     InstMap.push_back(LI);
    185     ++AccessIdx;
    186   }
    187 
    188   /// \brief Check whether the dependencies between the accesses are safe.
    189   ///
    190   /// Only checks sets with elements in \p CheckDeps.
    191   bool areDepsSafe(DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
    192                    const ValueToValueMap &Strides);
    193 
    194   /// \brief No memory dependence was encountered that would inhibit
    195   /// vectorization.
    196   bool isSafeForVectorization() const { return SafeForVectorization; }
    197 
    198   /// \brief The maximum number of bytes of a vector register we can vectorize
    199   /// the accesses safely with.
    200   uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes; }
    201 
    202   /// \brief Return the number of elements that are safe to operate on
    203   /// simultaneously, multiplied by the size of the element in bits.
    204   uint64_t getMaxSafeRegisterWidth() const { return MaxSafeRegisterWidth; }
    205 
    206   /// \brief In same cases when the dependency check fails we can still
    207   /// vectorize the loop with a dynamic array access check.
    208   bool shouldRetryWithRuntimeCheck() { return ShouldRetryWithRuntimeCheck; }
    209 
    210   /// \brief Returns the memory dependences.  If null is returned we exceeded
    211   /// the MaxDependences threshold and this information is not
    212   /// available.
    213   const SmallVectorImpl<Dependence> *getDependences() const {
    214     return RecordDependences ? &Dependences : nullptr;
    215   }
    216 
    217   void clearDependences() { Dependences.clear(); }
    218 
    219   /// \brief The vector of memory access instructions.  The indices are used as
    220   /// instruction identifiers in the Dependence class.
    221   const SmallVectorImpl<Instruction *> &getMemoryInstructions() const {
    222     return InstMap;
    223   }
    224 
    225   /// \brief Generate a mapping between the memory instructions and their
    226   /// indices according to program order.
    227   DenseMap<Instruction *, unsigned> generateInstructionOrderMap() const {
    228     DenseMap<Instruction *, unsigned> OrderMap;
    229 
    230     for (unsigned I = 0; I < InstMap.size(); ++I)
    231       OrderMap[InstMap[I]] = I;
    232 
    233     return OrderMap;
    234   }
    235 
    236   /// \brief Find the set of instructions that read or write via \p Ptr.
    237   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
    238                                                          bool isWrite) const;
    239 
    240 private:
    241   /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
    242   /// applies dynamic knowledge to simplify SCEV expressions and convert them
    243   /// to a more usable form. We need this in case assumptions about SCEV
    244   /// expressions need to be made in order to avoid unknown dependences. For
    245   /// example we might assume a unit stride for a pointer in order to prove
    246   /// that a memory access is strided and doesn't wrap.
    247   PredicatedScalarEvolution &PSE;
    248   const Loop *InnermostLoop;
    249 
    250   /// \brief Maps access locations (ptr, read/write) to program order.
    251   DenseMap<MemAccessInfo, std::vector<unsigned> > Accesses;
    252 
    253   /// \brief Memory access instructions in program order.
    254   SmallVector<Instruction *, 16> InstMap;
    255 
    256   /// \brief The program order index to be used for the next instruction.
    257   unsigned AccessIdx;
    258 
    259   // We can access this many bytes in parallel safely.
    260   uint64_t MaxSafeDepDistBytes;
    261 
    262   /// \brief Number of elements (from consecutive iterations) that are safe to
    263   /// operate on simultaneously, multiplied by the size of the element in bits.
    264   /// The size of the element is taken from the memory access that is most
    265   /// restrictive.
    266   uint64_t MaxSafeRegisterWidth;
    267 
    268   /// \brief If we see a non-constant dependence distance we can still try to
    269   /// vectorize this loop with runtime checks.
    270   bool ShouldRetryWithRuntimeCheck;
    271 
    272   /// \brief No memory dependence was encountered that would inhibit
    273   /// vectorization.
    274   bool SafeForVectorization;
    275 
    276   //// \brief True if Dependences reflects the dependences in the
    277   //// loop.  If false we exceeded MaxDependences and
    278   //// Dependences is invalid.
    279   bool RecordDependences;
    280 
    281   /// \brief Memory dependences collected during the analysis.  Only valid if
    282   /// RecordDependences is true.
    283   SmallVector<Dependence, 8> Dependences;
    284 
    285   /// \brief Check whether there is a plausible dependence between the two
    286   /// accesses.
    287   ///
    288   /// Access \p A must happen before \p B in program order. The two indices
    289   /// identify the index into the program order map.
    290   ///
    291   /// This function checks  whether there is a plausible dependence (or the
    292   /// absence of such can't be proved) between the two accesses. If there is a
    293   /// plausible dependence but the dependence distance is bigger than one
    294   /// element access it records this distance in \p MaxSafeDepDistBytes (if this
    295   /// distance is smaller than any other distance encountered so far).
    296   /// Otherwise, this function returns true signaling a possible dependence.
    297   Dependence::DepType isDependent(const MemAccessInfo &A, unsigned AIdx,
    298                                   const MemAccessInfo &B, unsigned BIdx,
    299                                   const ValueToValueMap &Strides);
    300 
    301   /// \brief Check whether the data dependence could prevent store-load
    302   /// forwarding.
    303   ///
    304   /// \return false if we shouldn't vectorize at all or avoid larger
    305   /// vectorization factors by limiting MaxSafeDepDistBytes.
    306   bool couldPreventStoreLoadForward(uint64_t Distance, uint64_t TypeByteSize);
    307 };
    308 
    309 /// \brief Holds information about the memory runtime legality checks to verify
    310 /// that a group of pointers do not overlap.
    311 class RuntimePointerChecking {
    312 public:
    313   struct PointerInfo {
    314     /// Holds the pointer value that we need to check.
    315     TrackingVH<Value> PointerValue;
    316     /// Holds the smallest byte address accessed by the pointer throughout all
    317     /// iterations of the loop.
    318     const SCEV *Start;
    319     /// Holds the largest byte address accessed by the pointer throughout all
    320     /// iterations of the loop, plus 1.
    321     const SCEV *End;
    322     /// Holds the information if this pointer is used for writing to memory.
    323     bool IsWritePtr;
    324     /// Holds the id of the set of pointers that could be dependent because of a
    325     /// shared underlying object.
    326     unsigned DependencySetId;
    327     /// Holds the id of the disjoint alias set to which this pointer belongs.
    328     unsigned AliasSetId;
    329     /// SCEV for the access.
    330     const SCEV *Expr;
    331 
    332     PointerInfo(Value *PointerValue, const SCEV *Start, const SCEV *End,
    333                 bool IsWritePtr, unsigned DependencySetId, unsigned AliasSetId,
    334                 const SCEV *Expr)
    335         : PointerValue(PointerValue), Start(Start), End(End),
    336           IsWritePtr(IsWritePtr), DependencySetId(DependencySetId),
    337           AliasSetId(AliasSetId), Expr(Expr) {}
    338   };
    339 
    340   RuntimePointerChecking(ScalarEvolution *SE) : Need(false), SE(SE) {}
    341 
    342   /// Reset the state of the pointer runtime information.
    343   void reset() {
    344     Need = false;
    345     Pointers.clear();
    346     Checks.clear();
    347   }
    348 
    349   /// Insert a pointer and calculate the start and end SCEVs.
    350   /// We need \p PSE in order to compute the SCEV expression of the pointer
    351   /// according to the assumptions that we've made during the analysis.
    352   /// The method might also version the pointer stride according to \p Strides,
    353   /// and add new predicates to \p PSE.
    354   void insert(Loop *Lp, Value *Ptr, bool WritePtr, unsigned DepSetId,
    355               unsigned ASId, const ValueToValueMap &Strides,
    356               PredicatedScalarEvolution &PSE);
    357 
    358   /// \brief No run-time memory checking is necessary.
    359   bool empty() const { return Pointers.empty(); }
    360 
    361   /// A grouping of pointers. A single memcheck is required between
    362   /// two groups.
    363   struct CheckingPtrGroup {
    364     /// \brief Create a new pointer checking group containing a single
    365     /// pointer, with index \p Index in RtCheck.
    366     CheckingPtrGroup(unsigned Index, RuntimePointerChecking &RtCheck)
    367         : RtCheck(RtCheck), High(RtCheck.Pointers[Index].End),
    368           Low(RtCheck.Pointers[Index].Start) {
    369       Members.push_back(Index);
    370     }
    371 
    372     /// \brief Tries to add the pointer recorded in RtCheck at index
    373     /// \p Index to this pointer checking group. We can only add a pointer
    374     /// to a checking group if we will still be able to get
    375     /// the upper and lower bounds of the check. Returns true in case
    376     /// of success, false otherwise.
    377     bool addPointer(unsigned Index);
    378 
    379     /// Constitutes the context of this pointer checking group. For each
    380     /// pointer that is a member of this group we will retain the index
    381     /// at which it appears in RtCheck.
    382     RuntimePointerChecking &RtCheck;
    383     /// The SCEV expression which represents the upper bound of all the
    384     /// pointers in this group.
    385     const SCEV *High;
    386     /// The SCEV expression which represents the lower bound of all the
    387     /// pointers in this group.
    388     const SCEV *Low;
    389     /// Indices of all the pointers that constitute this grouping.
    390     SmallVector<unsigned, 2> Members;
    391   };
    392 
    393   /// \brief A memcheck which made up of a pair of grouped pointers.
    394   ///
    395   /// These *have* to be const for now, since checks are generated from
    396   /// CheckingPtrGroups in LAI::addRuntimeChecks which is a const member
    397   /// function.  FIXME: once check-generation is moved inside this class (after
    398   /// the PtrPartition hack is removed), we could drop const.
    399   typedef std::pair<const CheckingPtrGroup *, const CheckingPtrGroup *>
    400       PointerCheck;
    401 
    402   /// \brief Generate the checks and store it.  This also performs the grouping
    403   /// of pointers to reduce the number of memchecks necessary.
    404   void generateChecks(MemoryDepChecker::DepCandidates &DepCands,
    405                       bool UseDependencies);
    406 
    407   /// \brief Returns the checks that generateChecks created.
    408   const SmallVector<PointerCheck, 4> &getChecks() const { return Checks; }
    409 
    410   /// \brief Decide if we need to add a check between two groups of pointers,
    411   /// according to needsChecking.
    412   bool needsChecking(const CheckingPtrGroup &M,
    413                      const CheckingPtrGroup &N) const;
    414 
    415   /// \brief Returns the number of run-time checks required according to
    416   /// needsChecking.
    417   unsigned getNumberOfChecks() const { return Checks.size(); }
    418 
    419   /// \brief Print the list run-time memory checks necessary.
    420   void print(raw_ostream &OS, unsigned Depth = 0) const;
    421 
    422   /// Print \p Checks.
    423   void printChecks(raw_ostream &OS, const SmallVectorImpl<PointerCheck> &Checks,
    424                    unsigned Depth = 0) const;
    425 
    426   /// This flag indicates if we need to add the runtime check.
    427   bool Need;
    428 
    429   /// Information about the pointers that may require checking.
    430   SmallVector<PointerInfo, 2> Pointers;
    431 
    432   /// Holds a partitioning of pointers into "check groups".
    433   SmallVector<CheckingPtrGroup, 2> CheckingGroups;
    434 
    435   /// \brief Check if pointers are in the same partition
    436   ///
    437   /// \p PtrToPartition contains the partition number for pointers (-1 if the
    438   /// pointer belongs to multiple partitions).
    439   static bool
    440   arePointersInSamePartition(const SmallVectorImpl<int> &PtrToPartition,
    441                              unsigned PtrIdx1, unsigned PtrIdx2);
    442 
    443   /// \brief Decide whether we need to issue a run-time check for pointer at
    444   /// index \p I and \p J to prove their independence.
    445   bool needsChecking(unsigned I, unsigned J) const;
    446 
    447   /// \brief Return PointerInfo for pointer at index \p PtrIdx.
    448   const PointerInfo &getPointerInfo(unsigned PtrIdx) const {
    449     return Pointers[PtrIdx];
    450   }
    451 
    452 private:
    453   /// \brief Groups pointers such that a single memcheck is required
    454   /// between two different groups. This will clear the CheckingGroups vector
    455   /// and re-compute it. We will only group dependecies if \p UseDependencies
    456   /// is true, otherwise we will create a separate group for each pointer.
    457   void groupChecks(MemoryDepChecker::DepCandidates &DepCands,
    458                    bool UseDependencies);
    459 
    460   /// Generate the checks and return them.
    461   SmallVector<PointerCheck, 4>
    462   generateChecks() const;
    463 
    464   /// Holds a pointer to the ScalarEvolution analysis.
    465   ScalarEvolution *SE;
    466 
    467   /// \brief Set of run-time checks required to establish independence of
    468   /// otherwise may-aliasing pointers in the loop.
    469   SmallVector<PointerCheck, 4> Checks;
    470 };
    471 
    472 /// \brief Drive the analysis of memory accesses in the loop
    473 ///
    474 /// This class is responsible for analyzing the memory accesses of a loop.  It
    475 /// collects the accesses and then its main helper the AccessAnalysis class
    476 /// finds and categorizes the dependences in buildDependenceSets.
    477 ///
    478 /// For memory dependences that can be analyzed at compile time, it determines
    479 /// whether the dependence is part of cycle inhibiting vectorization.  This work
    480 /// is delegated to the MemoryDepChecker class.
    481 ///
    482 /// For memory dependences that cannot be determined at compile time, it
    483 /// generates run-time checks to prove independence.  This is done by
    484 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
    485 /// RuntimePointerCheck class.
    486 ///
    487 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
    488 /// ScalarEvolution, we will generate run-time checks by emitting a
    489 /// SCEVUnionPredicate.
    490 ///
    491 /// Checks for both memory dependences and the SCEV predicates contained in the
    492 /// PSE must be emitted in order for the results of this analysis to be valid.
    493 class LoopAccessInfo {
    494 public:
    495   LoopAccessInfo(Loop *L, ScalarEvolution *SE, const TargetLibraryInfo *TLI,
    496                  AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI);
    497 
    498   /// Return true we can analyze the memory accesses in the loop and there are
    499   /// no memory dependence cycles.
    500   bool canVectorizeMemory() const { return CanVecMem; }
    501 
    502   const RuntimePointerChecking *getRuntimePointerChecking() const {
    503     return PtrRtChecking.get();
    504   }
    505 
    506   /// \brief Number of memchecks required to prove independence of otherwise
    507   /// may-alias pointers.
    508   unsigned getNumRuntimePointerChecks() const {
    509     return PtrRtChecking->getNumberOfChecks();
    510   }
    511 
    512   /// Return true if the block BB needs to be predicated in order for the loop
    513   /// to be vectorized.
    514   static bool blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
    515                                     DominatorTree *DT);
    516 
    517   /// Returns true if the value V is uniform within the loop.
    518   bool isUniform(Value *V) const;
    519 
    520   uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
    521   unsigned getNumStores() const { return NumStores; }
    522   unsigned getNumLoads() const { return NumLoads;}
    523 
    524   /// \brief Add code that checks at runtime if the accessed arrays overlap.
    525   ///
    526   /// Returns a pair of instructions where the first element is the first
    527   /// instruction generated in possibly a sequence of instructions and the
    528   /// second value is the final comparator value or NULL if no check is needed.
    529   std::pair<Instruction *, Instruction *>
    530   addRuntimeChecks(Instruction *Loc) const;
    531 
    532   /// \brief Generete the instructions for the checks in \p PointerChecks.
    533   ///
    534   /// Returns a pair of instructions where the first element is the first
    535   /// instruction generated in possibly a sequence of instructions and the
    536   /// second value is the final comparator value or NULL if no check is needed.
    537   std::pair<Instruction *, Instruction *>
    538   addRuntimeChecks(Instruction *Loc,
    539                    const SmallVectorImpl<RuntimePointerChecking::PointerCheck>
    540                        &PointerChecks) const;
    541 
    542   /// \brief The diagnostics report generated for the analysis.  E.g. why we
    543   /// couldn't analyze the loop.
    544   const OptimizationRemarkAnalysis *getReport() const { return Report.get(); }
    545 
    546   /// \brief the Memory Dependence Checker which can determine the
    547   /// loop-independent and loop-carried dependences between memory accesses.
    548   const MemoryDepChecker &getDepChecker() const { return *DepChecker; }
    549 
    550   /// \brief Return the list of instructions that use \p Ptr to read or write
    551   /// memory.
    552   SmallVector<Instruction *, 4> getInstructionsForAccess(Value *Ptr,
    553                                                          bool isWrite) const {
    554     return DepChecker->getInstructionsForAccess(Ptr, isWrite);
    555   }
    556 
    557   /// \brief If an access has a symbolic strides, this maps the pointer value to
    558   /// the stride symbol.
    559   const ValueToValueMap &getSymbolicStrides() const { return SymbolicStrides; }
    560 
    561   /// \brief Pointer has a symbolic stride.
    562   bool hasStride(Value *V) const { return StrideSet.count(V); }
    563 
    564   /// \brief Print the information about the memory accesses in the loop.
    565   void print(raw_ostream &OS, unsigned Depth = 0) const;
    566 
    567   /// \brief Checks existence of store to invariant address inside loop.
    568   /// If the loop has any store to invariant address, then it returns true,
    569   /// else returns false.
    570   bool hasStoreToLoopInvariantAddress() const {
    571     return StoreToLoopInvariantAddress;
    572   }
    573 
    574   /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
    575   /// them to a more usable form.  All SCEV expressions during the analysis
    576   /// should be re-written (and therefore simplified) according to PSE.
    577   /// A user of LoopAccessAnalysis will need to emit the runtime checks
    578   /// associated with this predicate.
    579   const PredicatedScalarEvolution &getPSE() const { return *PSE; }
    580 
    581 private:
    582   /// \brief Analyze the loop.
    583   void analyzeLoop(AliasAnalysis *AA, LoopInfo *LI,
    584                    const TargetLibraryInfo *TLI, DominatorTree *DT);
    585 
    586   /// \brief Check if the structure of the loop allows it to be analyzed by this
    587   /// pass.
    588   bool canAnalyzeLoop();
    589 
    590   /// \brief Save the analysis remark.
    591   ///
    592   /// LAA does not directly emits the remarks.  Instead it stores it which the
    593   /// client can retrieve and presents as its own analysis
    594   /// (e.g. -Rpass-analysis=loop-vectorize).
    595   OptimizationRemarkAnalysis &recordAnalysis(StringRef RemarkName,
    596                                              Instruction *Instr = nullptr);
    597 
    598   /// \brief Collect memory access with loop invariant strides.
    599   ///
    600   /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
    601   /// invariant.
    602   void collectStridedAccess(Value *LoadOrStoreInst);
    603 
    604   std::unique_ptr<PredicatedScalarEvolution> PSE;
    605 
    606   /// We need to check that all of the pointers in this list are disjoint
    607   /// at runtime. Using std::unique_ptr to make using move ctor simpler.
    608   std::unique_ptr<RuntimePointerChecking> PtrRtChecking;
    609 
    610   /// \brief the Memory Dependence Checker which can determine the
    611   /// loop-independent and loop-carried dependences between memory accesses.
    612   std::unique_ptr<MemoryDepChecker> DepChecker;
    613 
    614   Loop *TheLoop;
    615 
    616   unsigned NumLoads;
    617   unsigned NumStores;
    618 
    619   uint64_t MaxSafeDepDistBytes;
    620 
    621   /// \brief Cache the result of analyzeLoop.
    622   bool CanVecMem;
    623 
    624   /// \brief Indicator for storing to uniform addresses.
    625   /// If a loop has write to a loop invariant address then it should be true.
    626   bool StoreToLoopInvariantAddress;
    627 
    628   /// \brief The diagnostics report generated for the analysis.  E.g. why we
    629   /// couldn't analyze the loop.
    630   std::unique_ptr<OptimizationRemarkAnalysis> Report;
    631 
    632   /// \brief If an access has a symbolic strides, this maps the pointer value to
    633   /// the stride symbol.
    634   ValueToValueMap SymbolicStrides;
    635 
    636   /// \brief Set of symbolic strides values.
    637   SmallPtrSet<Value *, 8> StrideSet;
    638 };
    639 
    640 Value *stripIntegerCast(Value *V);
    641 
    642 /// \brief Return the SCEV corresponding to a pointer with the symbolic stride
    643 /// replaced with constant one, assuming the SCEV predicate associated with
    644 /// \p PSE is true.
    645 ///
    646 /// If necessary this method will version the stride of the pointer according
    647 /// to \p PtrToStride and therefore add further predicates to \p PSE.
    648 ///
    649 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
    650 /// Ptr.  \p PtrToStride provides the mapping between the pointer value and its
    651 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
    652 const SCEV *replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
    653                                       const ValueToValueMap &PtrToStride,
    654                                       Value *Ptr, Value *OrigPtr = nullptr);
    655 
    656 /// \brief If the pointer has a constant stride return it in units of its
    657 /// element size.  Otherwise return zero.
    658 ///
    659 /// Ensure that it does not wrap in the address space, assuming the predicate
    660 /// associated with \p PSE is true.
    661 ///
    662 /// If necessary this method will version the stride of the pointer according
    663 /// to \p PtrToStride and therefore add further predicates to \p PSE.
    664 /// The \p Assume parameter indicates if we are allowed to make additional
    665 /// run-time assumptions.
    666 int64_t getPtrStride(PredicatedScalarEvolution &PSE, Value *Ptr, const Loop *Lp,
    667                      const ValueToValueMap &StridesMap = ValueToValueMap(),
    668                      bool Assume = false, bool ShouldCheckWrap = true);
    669 
    670 /// \brief Returns true if the memory operations \p A and \p B are consecutive.
    671 /// This is a simple API that does not depend on the analysis pass.
    672 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
    673                          ScalarEvolution &SE, bool CheckType = true);
    674 
    675 /// \brief This analysis provides dependence information for the memory accesses
    676 /// of a loop.
    677 ///
    678 /// It runs the analysis for a loop on demand.  This can be initiated by
    679 /// querying the loop access info via LAA::getInfo.  getInfo return a
    680 /// LoopAccessInfo object.  See this class for the specifics of what information
    681 /// is provided.
    682 class LoopAccessLegacyAnalysis : public FunctionPass {
    683 public:
    684   static char ID;
    685 
    686   LoopAccessLegacyAnalysis() : FunctionPass(ID) {
    687     initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
    688   }
    689 
    690   bool runOnFunction(Function &F) override;
    691 
    692   void getAnalysisUsage(AnalysisUsage &AU) const override;
    693 
    694   /// \brief Query the result of the loop access information for the loop \p L.
    695   ///
    696   /// If there is no cached result available run the analysis.
    697   const LoopAccessInfo &getInfo(Loop *L);
    698 
    699   void releaseMemory() override {
    700     // Invalidate the cache when the pass is freed.
    701     LoopAccessInfoMap.clear();
    702   }
    703 
    704   /// \brief Print the result of the analysis when invoked with -analyze.
    705   void print(raw_ostream &OS, const Module *M = nullptr) const override;
    706 
    707 private:
    708   /// \brief The cache.
    709   DenseMap<Loop *, std::unique_ptr<LoopAccessInfo>> LoopAccessInfoMap;
    710 
    711   // The used analysis passes.
    712   ScalarEvolution *SE;
    713   const TargetLibraryInfo *TLI;
    714   AliasAnalysis *AA;
    715   DominatorTree *DT;
    716   LoopInfo *LI;
    717 };
    718 
    719 /// \brief This analysis provides dependence information for the memory
    720 /// accesses of a loop.
    721 ///
    722 /// It runs the analysis for a loop on demand.  This can be initiated by
    723 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
    724 /// getResult return a LoopAccessInfo object.  See this class for the
    725 /// specifics of what information is provided.
    726 class LoopAccessAnalysis
    727     : public AnalysisInfoMixin<LoopAccessAnalysis> {
    728   friend AnalysisInfoMixin<LoopAccessAnalysis>;
    729   static AnalysisKey Key;
    730 
    731 public:
    732   typedef LoopAccessInfo Result;
    733 
    734   Result run(Loop &L, LoopAnalysisManager &AM, LoopStandardAnalysisResults &AR);
    735 };
    736 
    737 inline Instruction *MemoryDepChecker::Dependence::getSource(
    738     const LoopAccessInfo &LAI) const {
    739   return LAI.getDepChecker().getMemoryInstructions()[Source];
    740 }
    741 
    742 inline Instruction *MemoryDepChecker::Dependence::getDestination(
    743     const LoopAccessInfo &LAI) const {
    744   return LAI.getDepChecker().getMemoryInstructions()[Destination];
    745 }
    746 
    747 } // End llvm namespace
    748 
    749 #endif
    750