Home | History | Annotate | Download | only in ADT
      1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains some templates that are useful if you are working with the
     11 // STL at all.
     12 //
     13 // No library is required when using these functions.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #ifndef LLVM_ADT_STLEXTRAS_H
     18 #define LLVM_ADT_STLEXTRAS_H
     19 
     20 #include <algorithm> // for std::all_of
     21 #include <cassert>
     22 #include <cstddef> // for std::size_t
     23 #include <cstdlib> // for qsort
     24 #include <functional>
     25 #include <iterator>
     26 #include <limits>
     27 #include <memory>
     28 #include <tuple>
     29 #include <utility> // for std::pair
     30 
     31 #include "llvm/ADT/Optional.h"
     32 #include "llvm/ADT/SmallVector.h"
     33 #include "llvm/ADT/iterator.h"
     34 #include "llvm/ADT/iterator_range.h"
     35 #include "llvm/Support/Compiler.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 
     38 namespace llvm {
     39 
     40 // Only used by compiler if both template types are the same.  Useful when
     41 // using SFINAE to test for the existence of member functions.
     42 template <typename T, T> struct SameType;
     43 
     44 namespace detail {
     45 
     46 template <typename RangeT>
     47 using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
     48 
     49 template <typename RangeT>
     50 using ValueOfRange = typename std::remove_reference<decltype(
     51     *std::begin(std::declval<RangeT &>()))>::type;
     52 
     53 } // End detail namespace
     54 
     55 //===----------------------------------------------------------------------===//
     56 //     Extra additions to <functional>
     57 //===----------------------------------------------------------------------===//
     58 
     59 template <class Ty> struct identity {
     60   using argument_type = Ty;
     61   Ty &operator()(Ty &self) const {
     62     return self;
     63   }
     64   const Ty &operator()(const Ty &self) const {
     65     return self;
     66   }
     67 };
     68 
     69 template <class Ty> struct less_ptr {
     70   bool operator()(const Ty* left, const Ty* right) const {
     71     return *left < *right;
     72   }
     73 };
     74 
     75 template <class Ty> struct greater_ptr {
     76   bool operator()(const Ty* left, const Ty* right) const {
     77     return *right < *left;
     78   }
     79 };
     80 
     81 /// An efficient, type-erasing, non-owning reference to a callable. This is
     82 /// intended for use as the type of a function parameter that is not used
     83 /// after the function in question returns.
     84 ///
     85 /// This class does not own the callable, so it is not in general safe to store
     86 /// a function_ref.
     87 template<typename Fn> class function_ref;
     88 
     89 template<typename Ret, typename ...Params>
     90 class function_ref<Ret(Params...)> {
     91   Ret (*callback)(intptr_t callable, Params ...params);
     92   intptr_t callable;
     93 
     94   template<typename Callable>
     95   static Ret callback_fn(intptr_t callable, Params ...params) {
     96     return (*reinterpret_cast<Callable*>(callable))(
     97         std::forward<Params>(params)...);
     98   }
     99 
    100 public:
    101   function_ref() : callback(nullptr) {}
    102 
    103   template <typename Callable>
    104   function_ref(Callable &&callable,
    105                typename std::enable_if<
    106                    !std::is_same<typename std::remove_reference<Callable>::type,
    107                                  function_ref>::value>::type * = nullptr)
    108       : callback(callback_fn<typename std::remove_reference<Callable>::type>),
    109         callable(reinterpret_cast<intptr_t>(&callable)) {}
    110   Ret operator()(Params ...params) const {
    111     return callback(callable, std::forward<Params>(params)...);
    112   }
    113 
    114   operator bool() const { return callback; }
    115 };
    116 
    117 // deleter - Very very very simple method that is used to invoke operator
    118 // delete on something.  It is used like this:
    119 //
    120 //   for_each(V.begin(), B.end(), deleter<Interval>);
    121 //
    122 template <class T>
    123 inline void deleter(T *Ptr) {
    124   delete Ptr;
    125 }
    126 
    127 
    128 
    129 //===----------------------------------------------------------------------===//
    130 //     Extra additions to <iterator>
    131 //===----------------------------------------------------------------------===//
    132 
    133 // mapped_iterator - This is a simple iterator adapter that causes a function to
    134 // be applied whenever operator* is invoked on the iterator.
    135 //
    136 template <class RootIt, class UnaryFunc>
    137 class mapped_iterator {
    138   RootIt current;
    139   UnaryFunc Fn;
    140 public:
    141   typedef typename std::iterator_traits<RootIt>::iterator_category
    142           iterator_category;
    143   typedef typename std::iterator_traits<RootIt>::difference_type
    144           difference_type;
    145   typedef decltype(std::declval<UnaryFunc>()(*std::declval<RootIt>()))
    146           value_type;
    147 
    148   typedef void pointer;
    149   //typedef typename UnaryFunc::result_type *pointer;
    150   typedef void reference;        // Can't modify value returned by fn
    151 
    152   typedef RootIt iterator_type;
    153 
    154   inline const RootIt &getCurrent() const { return current; }
    155   inline const UnaryFunc &getFunc() const { return Fn; }
    156 
    157   inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
    158     : current(I), Fn(F) {}
    159 
    160   inline value_type operator*() const {   // All this work to do this
    161     return Fn(*current);         // little change
    162   }
    163 
    164   mapped_iterator &operator++() {
    165     ++current;
    166     return *this;
    167   }
    168   mapped_iterator &operator--() {
    169     --current;
    170     return *this;
    171   }
    172   mapped_iterator operator++(int) {
    173     mapped_iterator __tmp = *this;
    174     ++current;
    175     return __tmp;
    176   }
    177   mapped_iterator operator--(int) {
    178     mapped_iterator __tmp = *this;
    179     --current;
    180     return __tmp;
    181   }
    182   mapped_iterator operator+(difference_type n) const {
    183     return mapped_iterator(current + n, Fn);
    184   }
    185   mapped_iterator &operator+=(difference_type n) {
    186     current += n;
    187     return *this;
    188   }
    189   mapped_iterator operator-(difference_type n) const {
    190     return mapped_iterator(current - n, Fn);
    191   }
    192   mapped_iterator &operator-=(difference_type n) {
    193     current -= n;
    194     return *this;
    195   }
    196   reference operator[](difference_type n) const { return *(*this + n); }
    197 
    198   bool operator!=(const mapped_iterator &X) const { return !operator==(X); }
    199   bool operator==(const mapped_iterator &X) const {
    200     return current == X.current;
    201   }
    202   bool operator<(const mapped_iterator &X) const { return current < X.current; }
    203 
    204   difference_type operator-(const mapped_iterator &X) const {
    205     return current - X.current;
    206   }
    207 };
    208 
    209 template <class Iterator, class Func>
    210 inline mapped_iterator<Iterator, Func>
    211 operator+(typename mapped_iterator<Iterator, Func>::difference_type N,
    212           const mapped_iterator<Iterator, Func> &X) {
    213   return mapped_iterator<Iterator, Func>(X.getCurrent() - N, X.getFunc());
    214 }
    215 
    216 
    217 // map_iterator - Provide a convenient way to create mapped_iterators, just like
    218 // make_pair is useful for creating pairs...
    219 //
    220 template <class ItTy, class FuncTy>
    221 inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
    222   return mapped_iterator<ItTy, FuncTy>(I, F);
    223 }
    224 
    225 /// Helper to determine if type T has a member called rbegin().
    226 template <typename Ty> class has_rbegin_impl {
    227   typedef char yes[1];
    228   typedef char no[2];
    229 
    230   template <typename Inner>
    231   static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
    232 
    233   template <typename>
    234   static no& test(...);
    235 
    236 public:
    237   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
    238 };
    239 
    240 /// Metafunction to determine if T& or T has a member called rbegin().
    241 template <typename Ty>
    242 struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
    243 };
    244 
    245 // Returns an iterator_range over the given container which iterates in reverse.
    246 // Note that the container must have rbegin()/rend() methods for this to work.
    247 template <typename ContainerTy>
    248 auto reverse(ContainerTy &&C,
    249              typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
    250                  nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
    251   return make_range(C.rbegin(), C.rend());
    252 }
    253 
    254 // Returns a std::reverse_iterator wrapped around the given iterator.
    255 template <typename IteratorTy>
    256 std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
    257   return std::reverse_iterator<IteratorTy>(It);
    258 }
    259 
    260 // Returns an iterator_range over the given container which iterates in reverse.
    261 // Note that the container must have begin()/end() methods which return
    262 // bidirectional iterators for this to work.
    263 template <typename ContainerTy>
    264 auto reverse(
    265     ContainerTy &&C,
    266     typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
    267     -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
    268                            llvm::make_reverse_iterator(std::begin(C)))) {
    269   return make_range(llvm::make_reverse_iterator(std::end(C)),
    270                     llvm::make_reverse_iterator(std::begin(C)));
    271 }
    272 
    273 /// An iterator adaptor that filters the elements of given inner iterators.
    274 ///
    275 /// The predicate parameter should be a callable object that accepts the wrapped
    276 /// iterator's reference type and returns a bool. When incrementing or
    277 /// decrementing the iterator, it will call the predicate on each element and
    278 /// skip any where it returns false.
    279 ///
    280 /// \code
    281 ///   int A[] = { 1, 2, 3, 4 };
    282 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
    283 ///   // R contains { 1, 3 }.
    284 /// \endcode
    285 template <typename WrappedIteratorT, typename PredicateT>
    286 class filter_iterator
    287     : public iterator_adaptor_base<
    288           filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
    289           typename std::common_type<
    290               std::forward_iterator_tag,
    291               typename std::iterator_traits<
    292                   WrappedIteratorT>::iterator_category>::type> {
    293   using BaseT = iterator_adaptor_base<
    294       filter_iterator<WrappedIteratorT, PredicateT>, WrappedIteratorT,
    295       typename std::common_type<
    296           std::forward_iterator_tag,
    297           typename std::iterator_traits<WrappedIteratorT>::iterator_category>::
    298           type>;
    299 
    300   struct PayloadType {
    301     WrappedIteratorT End;
    302     PredicateT Pred;
    303   };
    304 
    305   Optional<PayloadType> Payload;
    306 
    307   void findNextValid() {
    308     assert(Payload && "Payload should be engaged when findNextValid is called");
    309     while (this->I != Payload->End && !Payload->Pred(*this->I))
    310       BaseT::operator++();
    311   }
    312 
    313   // Construct the begin iterator. The begin iterator requires to know where end
    314   // is, so that it can properly stop when it hits end.
    315   filter_iterator(WrappedIteratorT Begin, WrappedIteratorT End, PredicateT Pred)
    316       : BaseT(std::move(Begin)),
    317         Payload(PayloadType{std::move(End), std::move(Pred)}) {
    318     findNextValid();
    319   }
    320 
    321   // Construct the end iterator. It's not incrementable, so Payload doesn't
    322   // have to be engaged.
    323   filter_iterator(WrappedIteratorT End) : BaseT(End) {}
    324 
    325 public:
    326   using BaseT::operator++;
    327 
    328   filter_iterator &operator++() {
    329     BaseT::operator++();
    330     findNextValid();
    331     return *this;
    332   }
    333 
    334   template <typename RT, typename PT>
    335   friend iterator_range<filter_iterator<detail::IterOfRange<RT>, PT>>
    336   make_filter_range(RT &&, PT);
    337 };
    338 
    339 /// Convenience function that takes a range of elements and a predicate,
    340 /// and return a new filter_iterator range.
    341 ///
    342 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
    343 /// lifetime of that temporary is not kept by the returned range object, and the
    344 /// temporary is going to be dropped on the floor after the make_iterator_range
    345 /// full expression that contains this function call.
    346 template <typename RangeT, typename PredicateT>
    347 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
    348 make_filter_range(RangeT &&Range, PredicateT Pred) {
    349   using FilterIteratorT =
    350       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
    351   return make_range(FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
    352                                     std::end(std::forward<RangeT>(Range)),
    353                                     std::move(Pred)),
    354                     FilterIteratorT(std::end(std::forward<RangeT>(Range))));
    355 }
    356 
    357 // forward declarations required by zip_shortest/zip_first
    358 template <typename R, typename UnaryPredicate>
    359 bool all_of(R &&range, UnaryPredicate P);
    360 
    361 template <size_t... I> struct index_sequence;
    362 
    363 template <class... Ts> struct index_sequence_for;
    364 
    365 namespace detail {
    366 using std::declval;
    367 
    368 // We have to alias this since inlining the actual type at the usage site
    369 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
    370 template<typename... Iters> struct ZipTupleType {
    371   typedef std::tuple<decltype(*declval<Iters>())...> type;
    372 };
    373 
    374 template <typename ZipType, typename... Iters>
    375 using zip_traits = iterator_facade_base<
    376     ZipType, typename std::common_type<std::bidirectional_iterator_tag,
    377                                        typename std::iterator_traits<
    378                                            Iters>::iterator_category...>::type,
    379     // ^ TODO: Implement random access methods.
    380     typename ZipTupleType<Iters...>::type,
    381     typename std::iterator_traits<typename std::tuple_element<
    382         0, std::tuple<Iters...>>::type>::difference_type,
    383     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
    384     // inner iterators have the same difference_type. It would fail if, for
    385     // instance, the second field's difference_type were non-numeric while the
    386     // first is.
    387     typename ZipTupleType<Iters...>::type *,
    388     typename ZipTupleType<Iters...>::type>;
    389 
    390 template <typename ZipType, typename... Iters>
    391 struct zip_common : public zip_traits<ZipType, Iters...> {
    392   using Base = zip_traits<ZipType, Iters...>;
    393   using value_type = typename Base::value_type;
    394 
    395   std::tuple<Iters...> iterators;
    396 
    397 protected:
    398   template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
    399     return value_type(*std::get<Ns>(iterators)...);
    400   }
    401 
    402   template <size_t... Ns>
    403   decltype(iterators) tup_inc(index_sequence<Ns...>) const {
    404     return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
    405   }
    406 
    407   template <size_t... Ns>
    408   decltype(iterators) tup_dec(index_sequence<Ns...>) const {
    409     return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
    410   }
    411 
    412 public:
    413   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
    414 
    415   value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
    416 
    417   const value_type operator*() const {
    418     return deref(index_sequence_for<Iters...>{});
    419   }
    420 
    421   ZipType &operator++() {
    422     iterators = tup_inc(index_sequence_for<Iters...>{});
    423     return *reinterpret_cast<ZipType *>(this);
    424   }
    425 
    426   ZipType &operator--() {
    427     static_assert(Base::IsBidirectional,
    428                   "All inner iterators must be at least bidirectional.");
    429     iterators = tup_dec(index_sequence_for<Iters...>{});
    430     return *reinterpret_cast<ZipType *>(this);
    431   }
    432 };
    433 
    434 template <typename... Iters>
    435 struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
    436   using Base = zip_common<zip_first<Iters...>, Iters...>;
    437 
    438   bool operator==(const zip_first<Iters...> &other) const {
    439     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
    440   }
    441 
    442   zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
    443 };
    444 
    445 template <typename... Iters>
    446 class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
    447   template <size_t... Ns>
    448   bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
    449     return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
    450                                               std::get<Ns>(other.iterators)...},
    451                   identity<bool>{});
    452   }
    453 
    454 public:
    455   using Base = zip_common<zip_shortest<Iters...>, Iters...>;
    456 
    457   bool operator==(const zip_shortest<Iters...> &other) const {
    458     return !test(other, index_sequence_for<Iters...>{});
    459   }
    460 
    461   zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
    462 };
    463 
    464 template <template <typename...> class ItType, typename... Args> class zippy {
    465 public:
    466   using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
    467   using iterator_category = typename iterator::iterator_category;
    468   using value_type = typename iterator::value_type;
    469   using difference_type = typename iterator::difference_type;
    470   using pointer = typename iterator::pointer;
    471   using reference = typename iterator::reference;
    472 
    473 private:
    474   std::tuple<Args...> ts;
    475 
    476   template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
    477     return iterator(std::begin(std::get<Ns>(ts))...);
    478   }
    479   template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
    480     return iterator(std::end(std::get<Ns>(ts))...);
    481   }
    482 
    483 public:
    484   iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
    485   iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
    486   zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
    487 };
    488 } // End detail namespace
    489 
    490 /// zip iterator for two or more iteratable types.
    491 template <typename T, typename U, typename... Args>
    492 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
    493                                                        Args &&... args) {
    494   return detail::zippy<detail::zip_shortest, T, U, Args...>(
    495       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
    496 }
    497 
    498 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
    499 /// be the shortest.
    500 template <typename T, typename U, typename... Args>
    501 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
    502                                                           Args &&... args) {
    503   return detail::zippy<detail::zip_first, T, U, Args...>(
    504       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
    505 }
    506 
    507 /// Iterator wrapper that concatenates sequences together.
    508 ///
    509 /// This can concatenate different iterators, even with different types, into
    510 /// a single iterator provided the value types of all the concatenated
    511 /// iterators expose `reference` and `pointer` types that can be converted to
    512 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
    513 /// interesting/customized pointer or reference types.
    514 ///
    515 /// Currently this only supports forward or higher iterator categories as
    516 /// inputs and always exposes a forward iterator interface.
    517 template <typename ValueT, typename... IterTs>
    518 class concat_iterator
    519     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
    520                                   std::forward_iterator_tag, ValueT> {
    521   typedef typename concat_iterator::iterator_facade_base BaseT;
    522 
    523   /// We store both the current and end iterators for each concatenated
    524   /// sequence in a tuple of pairs.
    525   ///
    526   /// Note that something like iterator_range seems nice at first here, but the
    527   /// range properties are of little benefit and end up getting in the way
    528   /// because we need to do mutation on the current iterators.
    529   std::tuple<std::pair<IterTs, IterTs>...> IterPairs;
    530 
    531   /// Attempts to increment a specific iterator.
    532   ///
    533   /// Returns true if it was able to increment the iterator. Returns false if
    534   /// the iterator is already at the end iterator.
    535   template <size_t Index> bool incrementHelper() {
    536     auto &IterPair = std::get<Index>(IterPairs);
    537     if (IterPair.first == IterPair.second)
    538       return false;
    539 
    540     ++IterPair.first;
    541     return true;
    542   }
    543 
    544   /// Increments the first non-end iterator.
    545   ///
    546   /// It is an error to call this with all iterators at the end.
    547   template <size_t... Ns> void increment(index_sequence<Ns...>) {
    548     // Build a sequence of functions to increment each iterator if possible.
    549     bool (concat_iterator::*IncrementHelperFns[])() = {
    550         &concat_iterator::incrementHelper<Ns>...};
    551 
    552     // Loop over them, and stop as soon as we succeed at incrementing one.
    553     for (auto &IncrementHelperFn : IncrementHelperFns)
    554       if ((this->*IncrementHelperFn)())
    555         return;
    556 
    557     llvm_unreachable("Attempted to increment an end concat iterator!");
    558   }
    559 
    560   /// Returns null if the specified iterator is at the end. Otherwise,
    561   /// dereferences the iterator and returns the address of the resulting
    562   /// reference.
    563   template <size_t Index> ValueT *getHelper() const {
    564     auto &IterPair = std::get<Index>(IterPairs);
    565     if (IterPair.first == IterPair.second)
    566       return nullptr;
    567 
    568     return &*IterPair.first;
    569   }
    570 
    571   /// Finds the first non-end iterator, dereferences, and returns the resulting
    572   /// reference.
    573   ///
    574   /// It is an error to call this with all iterators at the end.
    575   template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
    576     // Build a sequence of functions to get from iterator if possible.
    577     ValueT *(concat_iterator::*GetHelperFns[])() const = {
    578         &concat_iterator::getHelper<Ns>...};
    579 
    580     // Loop over them, and return the first result we find.
    581     for (auto &GetHelperFn : GetHelperFns)
    582       if (ValueT *P = (this->*GetHelperFn)())
    583         return *P;
    584 
    585     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
    586   }
    587 
    588 public:
    589   /// Constructs an iterator from a squence of ranges.
    590   ///
    591   /// We need the full range to know how to switch between each of the
    592   /// iterators.
    593   template <typename... RangeTs>
    594   explicit concat_iterator(RangeTs &&... Ranges)
    595       : IterPairs({std::begin(Ranges), std::end(Ranges)}...) {}
    596 
    597   using BaseT::operator++;
    598   concat_iterator &operator++() {
    599     increment(index_sequence_for<IterTs...>());
    600     return *this;
    601   }
    602 
    603   ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
    604 
    605   bool operator==(const concat_iterator &RHS) const {
    606     return IterPairs == RHS.IterPairs;
    607   }
    608 };
    609 
    610 namespace detail {
    611 /// Helper to store a sequence of ranges being concatenated and access them.
    612 ///
    613 /// This is designed to facilitate providing actual storage when temporaries
    614 /// are passed into the constructor such that we can use it as part of range
    615 /// based for loops.
    616 template <typename ValueT, typename... RangeTs> class concat_range {
    617 public:
    618   typedef concat_iterator<ValueT,
    619                           decltype(std::begin(std::declval<RangeTs &>()))...>
    620       iterator;
    621 
    622 private:
    623   std::tuple<RangeTs...> Ranges;
    624 
    625   template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
    626     return iterator(std::get<Ns>(Ranges)...);
    627   }
    628   template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
    629     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
    630                                std::end(std::get<Ns>(Ranges)))...);
    631   }
    632 
    633 public:
    634   iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
    635   iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
    636   concat_range(RangeTs &&... Ranges)
    637       : Ranges(std::forward<RangeTs>(Ranges)...) {}
    638 };
    639 }
    640 
    641 /// Concatenated range across two or more ranges.
    642 ///
    643 /// The desired value type must be explicitly specified.
    644 template <typename ValueT, typename... RangeTs>
    645 detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
    646   static_assert(sizeof...(RangeTs) > 1,
    647                 "Need more than one range to concatenate!");
    648   return detail::concat_range<ValueT, RangeTs...>(
    649       std::forward<RangeTs>(Ranges)...);
    650 }
    651 
    652 //===----------------------------------------------------------------------===//
    653 //     Extra additions to <utility>
    654 //===----------------------------------------------------------------------===//
    655 
    656 /// \brief Function object to check whether the first component of a std::pair
    657 /// compares less than the first component of another std::pair.
    658 struct less_first {
    659   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    660     return lhs.first < rhs.first;
    661   }
    662 };
    663 
    664 /// \brief Function object to check whether the second component of a std::pair
    665 /// compares less than the second component of another std::pair.
    666 struct less_second {
    667   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
    668     return lhs.second < rhs.second;
    669   }
    670 };
    671 
    672 // A subset of N3658. More stuff can be added as-needed.
    673 
    674 /// \brief Represents a compile-time sequence of integers.
    675 template <class T, T... I> struct integer_sequence {
    676   typedef T value_type;
    677 
    678   static constexpr size_t size() { return sizeof...(I); }
    679 };
    680 
    681 /// \brief Alias for the common case of a sequence of size_ts.
    682 template <size_t... I>
    683 struct index_sequence : integer_sequence<std::size_t, I...> {};
    684 
    685 template <std::size_t N, std::size_t... I>
    686 struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
    687 template <std::size_t... I>
    688 struct build_index_impl<0, I...> : index_sequence<I...> {};
    689 
    690 /// \brief Creates a compile-time integer sequence for a parameter pack.
    691 template <class... Ts>
    692 struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
    693 
    694 /// Utility type to build an inheritance chain that makes it easy to rank
    695 /// overload candidates.
    696 template <int N> struct rank : rank<N - 1> {};
    697 template <> struct rank<0> {};
    698 
    699 /// \brief traits class for checking whether type T is one of any of the given
    700 /// types in the variadic list.
    701 template <typename T, typename... Ts> struct is_one_of {
    702   static const bool value = false;
    703 };
    704 
    705 template <typename T, typename U, typename... Ts>
    706 struct is_one_of<T, U, Ts...> {
    707   static const bool value =
    708       std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
    709 };
    710 
    711 /// \brief traits class for checking whether type T is a base class for all
    712 ///  the given types in the variadic list.
    713 template <typename T, typename... Ts> struct are_base_of {
    714   static const bool value = true;
    715 };
    716 
    717 template <typename T, typename U, typename... Ts>
    718 struct are_base_of<T, U, Ts...> {
    719   static const bool value =
    720       std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
    721 };
    722 
    723 //===----------------------------------------------------------------------===//
    724 //     Extra additions for arrays
    725 //===----------------------------------------------------------------------===//
    726 
    727 /// Find the length of an array.
    728 template <class T, std::size_t N>
    729 constexpr inline size_t array_lengthof(T (&)[N]) {
    730   return N;
    731 }
    732 
    733 /// Adapt std::less<T> for array_pod_sort.
    734 template<typename T>
    735 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
    736   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
    737                      *reinterpret_cast<const T*>(P2)))
    738     return -1;
    739   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
    740                      *reinterpret_cast<const T*>(P1)))
    741     return 1;
    742   return 0;
    743 }
    744 
    745 /// get_array_pod_sort_comparator - This is an internal helper function used to
    746 /// get type deduction of T right.
    747 template<typename T>
    748 inline int (*get_array_pod_sort_comparator(const T &))
    749              (const void*, const void*) {
    750   return array_pod_sort_comparator<T>;
    751 }
    752 
    753 
    754 /// array_pod_sort - This sorts an array with the specified start and end
    755 /// extent.  This is just like std::sort, except that it calls qsort instead of
    756 /// using an inlined template.  qsort is slightly slower than std::sort, but
    757 /// most sorts are not performance critical in LLVM and std::sort has to be
    758 /// template instantiated for each type, leading to significant measured code
    759 /// bloat.  This function should generally be used instead of std::sort where
    760 /// possible.
    761 ///
    762 /// This function assumes that you have simple POD-like types that can be
    763 /// compared with std::less and can be moved with memcpy.  If this isn't true,
    764 /// you should use std::sort.
    765 ///
    766 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
    767 /// default to std::less.
    768 template<class IteratorTy>
    769 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
    770   // Don't inefficiently call qsort with one element or trigger undefined
    771   // behavior with an empty sequence.
    772   auto NElts = End - Start;
    773   if (NElts <= 1) return;
    774   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
    775 }
    776 
    777 template <class IteratorTy>
    778 inline void array_pod_sort(
    779     IteratorTy Start, IteratorTy End,
    780     int (*Compare)(
    781         const typename std::iterator_traits<IteratorTy>::value_type *,
    782         const typename std::iterator_traits<IteratorTy>::value_type *)) {
    783   // Don't inefficiently call qsort with one element or trigger undefined
    784   // behavior with an empty sequence.
    785   auto NElts = End - Start;
    786   if (NElts <= 1) return;
    787   qsort(&*Start, NElts, sizeof(*Start),
    788         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
    789 }
    790 
    791 //===----------------------------------------------------------------------===//
    792 //     Extra additions to <algorithm>
    793 //===----------------------------------------------------------------------===//
    794 
    795 /// For a container of pointers, deletes the pointers and then clears the
    796 /// container.
    797 template<typename Container>
    798 void DeleteContainerPointers(Container &C) {
    799   for (auto V : C)
    800     delete V;
    801   C.clear();
    802 }
    803 
    804 /// In a container of pairs (usually a map) whose second element is a pointer,
    805 /// deletes the second elements and then clears the container.
    806 template<typename Container>
    807 void DeleteContainerSeconds(Container &C) {
    808   for (auto &V : C)
    809     delete V.second;
    810   C.clear();
    811 }
    812 
    813 /// Provide wrappers to std::all_of which take ranges instead of having to pass
    814 /// begin/end explicitly.
    815 template <typename R, typename UnaryPredicate>
    816 bool all_of(R &&Range, UnaryPredicate P) {
    817   return std::all_of(std::begin(Range), std::end(Range), P);
    818 }
    819 
    820 /// Provide wrappers to std::any_of which take ranges instead of having to pass
    821 /// begin/end explicitly.
    822 template <typename R, typename UnaryPredicate>
    823 bool any_of(R &&Range, UnaryPredicate P) {
    824   return std::any_of(std::begin(Range), std::end(Range), P);
    825 }
    826 
    827 /// Provide wrappers to std::none_of which take ranges instead of having to pass
    828 /// begin/end explicitly.
    829 template <typename R, typename UnaryPredicate>
    830 bool none_of(R &&Range, UnaryPredicate P) {
    831   return std::none_of(std::begin(Range), std::end(Range), P);
    832 }
    833 
    834 /// Provide wrappers to std::find which take ranges instead of having to pass
    835 /// begin/end explicitly.
    836 template <typename R, typename T>
    837 auto find(R &&Range, const T &Val) -> decltype(std::begin(Range)) {
    838   return std::find(std::begin(Range), std::end(Range), Val);
    839 }
    840 
    841 /// Provide wrappers to std::find_if which take ranges instead of having to pass
    842 /// begin/end explicitly.
    843 template <typename R, typename UnaryPredicate>
    844 auto find_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
    845   return std::find_if(std::begin(Range), std::end(Range), P);
    846 }
    847 
    848 template <typename R, typename UnaryPredicate>
    849 auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
    850   return std::find_if_not(std::begin(Range), std::end(Range), P);
    851 }
    852 
    853 /// Provide wrappers to std::remove_if which take ranges instead of having to
    854 /// pass begin/end explicitly.
    855 template <typename R, typename UnaryPredicate>
    856 auto remove_if(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
    857   return std::remove_if(std::begin(Range), std::end(Range), P);
    858 }
    859 
    860 /// Provide wrappers to std::copy_if which take ranges instead of having to
    861 /// pass begin/end explicitly.
    862 template <typename R, typename OutputIt, typename UnaryPredicate>
    863 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
    864   return std::copy_if(std::begin(Range), std::end(Range), Out, P);
    865 }
    866 
    867 /// Wrapper function around std::find to detect if an element exists
    868 /// in a container.
    869 template <typename R, typename E>
    870 bool is_contained(R &&Range, const E &Element) {
    871   return std::find(std::begin(Range), std::end(Range), Element) !=
    872          std::end(Range);
    873 }
    874 
    875 /// Wrapper function around std::count to count the number of times an element
    876 /// \p Element occurs in the given range \p Range.
    877 template <typename R, typename E>
    878 auto count(R &&Range, const E &Element) -> typename std::iterator_traits<
    879     decltype(std::begin(Range))>::difference_type {
    880   return std::count(std::begin(Range), std::end(Range), Element);
    881 }
    882 
    883 /// Wrapper function around std::count_if to count the number of times an
    884 /// element satisfying a given predicate occurs in a range.
    885 template <typename R, typename UnaryPredicate>
    886 auto count_if(R &&Range, UnaryPredicate P) -> typename std::iterator_traits<
    887     decltype(std::begin(Range))>::difference_type {
    888   return std::count_if(std::begin(Range), std::end(Range), P);
    889 }
    890 
    891 /// Wrapper function around std::transform to apply a function to a range and
    892 /// store the result elsewhere.
    893 template <typename R, typename OutputIt, typename UnaryPredicate>
    894 OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
    895   return std::transform(std::begin(Range), std::end(Range), d_first, P);
    896 }
    897 
    898 /// Provide wrappers to std::partition which take ranges instead of having to
    899 /// pass begin/end explicitly.
    900 template <typename R, typename UnaryPredicate>
    901 auto partition(R &&Range, UnaryPredicate P) -> decltype(std::begin(Range)) {
    902   return std::partition(std::begin(Range), std::end(Range), P);
    903 }
    904 
    905 /// Provide wrappers to std::lower_bound which take ranges instead of having to
    906 /// pass begin/end explicitly.
    907 template <typename R, typename ForwardIt>
    908 auto lower_bound(R &&Range, ForwardIt I) -> decltype(std::begin(Range)) {
    909   return std::lower_bound(std::begin(Range), std::end(Range), I);
    910 }
    911 
    912 /// \brief Given a range of type R, iterate the entire range and return a
    913 /// SmallVector with elements of the vector.  This is useful, for example,
    914 /// when you want to iterate a range and then sort the results.
    915 template <unsigned Size, typename R>
    916 SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
    917 to_vector(R &&Range) {
    918   return {std::begin(Range), std::end(Range)};
    919 }
    920 
    921 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
    922 /// `erase_if` which is equivalent to:
    923 ///
    924 ///   C.erase(remove_if(C, pred), C.end());
    925 ///
    926 /// This version works for any container with an erase method call accepting
    927 /// two iterators.
    928 template <typename Container, typename UnaryPredicate>
    929 void erase_if(Container &C, UnaryPredicate P) {
    930   C.erase(remove_if(C, P), C.end());
    931 }
    932 
    933 //===----------------------------------------------------------------------===//
    934 //     Extra additions to <memory>
    935 //===----------------------------------------------------------------------===//
    936 
    937 // Implement make_unique according to N3656.
    938 
    939 /// \brief Constructs a `new T()` with the given args and returns a
    940 ///        `unique_ptr<T>` which owns the object.
    941 ///
    942 /// Example:
    943 ///
    944 ///     auto p = make_unique<int>();
    945 ///     auto p = make_unique<std::tuple<int, int>>(0, 1);
    946 template <class T, class... Args>
    947 typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
    948 make_unique(Args &&... args) {
    949   return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
    950 }
    951 
    952 /// \brief Constructs a `new T[n]` with the given args and returns a
    953 ///        `unique_ptr<T[]>` which owns the object.
    954 ///
    955 /// \param n size of the new array.
    956 ///
    957 /// Example:
    958 ///
    959 ///     auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
    960 template <class T>
    961 typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
    962                         std::unique_ptr<T>>::type
    963 make_unique(size_t n) {
    964   return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
    965 }
    966 
    967 /// This function isn't used and is only here to provide better compile errors.
    968 template <class T, class... Args>
    969 typename std::enable_if<std::extent<T>::value != 0>::type
    970 make_unique(Args &&...) = delete;
    971 
    972 struct FreeDeleter {
    973   void operator()(void* v) {
    974     ::free(v);
    975   }
    976 };
    977 
    978 template<typename First, typename Second>
    979 struct pair_hash {
    980   size_t operator()(const std::pair<First, Second> &P) const {
    981     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
    982   }
    983 };
    984 
    985 /// A functor like C++14's std::less<void> in its absence.
    986 struct less {
    987   template <typename A, typename B> bool operator()(A &&a, B &&b) const {
    988     return std::forward<A>(a) < std::forward<B>(b);
    989   }
    990 };
    991 
    992 /// A functor like C++14's std::equal<void> in its absence.
    993 struct equal {
    994   template <typename A, typename B> bool operator()(A &&a, B &&b) const {
    995     return std::forward<A>(a) == std::forward<B>(b);
    996   }
    997 };
    998 
    999 /// Binary functor that adapts to any other binary functor after dereferencing
   1000 /// operands.
   1001 template <typename T> struct deref {
   1002   T func;
   1003   // Could be further improved to cope with non-derivable functors and
   1004   // non-binary functors (should be a variadic template member function
   1005   // operator()).
   1006   template <typename A, typename B>
   1007   auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
   1008     assert(lhs);
   1009     assert(rhs);
   1010     return func(*lhs, *rhs);
   1011   }
   1012 };
   1013 
   1014 namespace detail {
   1015 template <typename R> class enumerator_iter;
   1016 
   1017 template <typename R> struct result_pair {
   1018   friend class enumerator_iter<R>;
   1019 
   1020   result_pair() : Index(-1) {}
   1021   result_pair(std::size_t Index, IterOfRange<R> Iter)
   1022       : Index(Index), Iter(Iter) {}
   1023 
   1024   result_pair<R> &operator=(const result_pair<R> &Other) {
   1025     Index = Other.Index;
   1026     Iter = Other.Iter;
   1027     return *this;
   1028   }
   1029 
   1030   std::size_t index() const { return Index; }
   1031   const ValueOfRange<R> &value() const { return *Iter; }
   1032   ValueOfRange<R> &value() { return *Iter; }
   1033 
   1034 private:
   1035   std::size_t Index;
   1036   IterOfRange<R> Iter;
   1037 };
   1038 
   1039 template <typename R>
   1040 class enumerator_iter
   1041     : public iterator_facade_base<
   1042           enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
   1043           typename std::iterator_traits<IterOfRange<R>>::difference_type,
   1044           typename std::iterator_traits<IterOfRange<R>>::pointer,
   1045           typename std::iterator_traits<IterOfRange<R>>::reference> {
   1046   using result_type = result_pair<R>;
   1047 
   1048 public:
   1049   explicit enumerator_iter(IterOfRange<R> EndIter)
   1050     : Result(std::numeric_limits<size_t>::max(), EndIter) { }
   1051 
   1052   enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
   1053       : Result(Index, Iter) {}
   1054 
   1055   result_type &operator*() { return Result; }
   1056   const result_type &operator*() const { return Result; }
   1057 
   1058   enumerator_iter<R> &operator++() {
   1059     assert(Result.Index != std::numeric_limits<size_t>::max());
   1060     ++Result.Iter;
   1061     ++Result.Index;
   1062     return *this;
   1063   }
   1064 
   1065   bool operator==(const enumerator_iter<R> &RHS) const {
   1066     // Don't compare indices here, only iterators.  It's possible for an end
   1067     // iterator to have different indices depending on whether it was created
   1068     // by calling std::end() versus incrementing a valid iterator.
   1069     return Result.Iter == RHS.Result.Iter;
   1070   }
   1071 
   1072   enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
   1073     Result = Other.Result;
   1074     return *this;
   1075   }
   1076 
   1077 private:
   1078   result_type Result;
   1079 };
   1080 
   1081 template <typename R> class enumerator {
   1082 public:
   1083   explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
   1084 
   1085   enumerator_iter<R> begin() {
   1086     return enumerator_iter<R>(0, std::begin(TheRange));
   1087   }
   1088   enumerator_iter<R> end() {
   1089     return enumerator_iter<R>(std::end(TheRange));
   1090   }
   1091 
   1092 private:
   1093   R TheRange;
   1094 };
   1095 }
   1096 
   1097 /// Given an input range, returns a new range whose values are are pair (A,B)
   1098 /// such that A is the 0-based index of the item in the sequence, and B is
   1099 /// the value from the original sequence.  Example:
   1100 ///
   1101 /// std::vector<char> Items = {'A', 'B', 'C', 'D'};
   1102 /// for (auto X : enumerate(Items)) {
   1103 ///   printf("Item %d - %c\n", X.index(), X.value());
   1104 /// }
   1105 ///
   1106 /// Output:
   1107 ///   Item 0 - A
   1108 ///   Item 1 - B
   1109 ///   Item 2 - C
   1110 ///   Item 3 - D
   1111 ///
   1112 template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
   1113   return detail::enumerator<R>(std::forward<R>(TheRange));
   1114 }
   1115 
   1116 namespace detail {
   1117 template <typename F, typename Tuple, std::size_t... I>
   1118 auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
   1119     -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
   1120   return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
   1121 }
   1122 }
   1123 
   1124 /// Given an input tuple (a1, a2, ..., an), pass the arguments of the
   1125 /// tuple variadically to f as if by calling f(a1, a2, ..., an) and
   1126 /// return the result.
   1127 template <typename F, typename Tuple>
   1128 auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
   1129     std::forward<F>(f), std::forward<Tuple>(t),
   1130     build_index_impl<
   1131         std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
   1132   using Indices = build_index_impl<
   1133       std::tuple_size<typename std::decay<Tuple>::type>::value>;
   1134 
   1135   return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
   1136                                   Indices{});
   1137 }
   1138 } // End llvm namespace
   1139 
   1140 #endif
   1141