Home | History | Annotate | Download | only in Scalar
      1 //===- NaryReassociate.h - Reassociate n-ary expressions --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates n-ary add expressions and eliminates the redundancy
     11 // exposed by the reassociation.
     12 //
     13 // A motivating example:
     14 //
     15 //   void foo(int a, int b) {
     16 //     bar(a + b);
     17 //     bar((a + 2) + b);
     18 //   }
     19 //
     20 // An ideal compiler should reassociate (a + 2) + b to (a + b) + 2 and simplify
     21 // the above code to
     22 //
     23 //   int t = a + b;
     24 //   bar(t);
     25 //   bar(t + 2);
     26 //
     27 // However, the Reassociate pass is unable to do that because it processes each
     28 // instruction individually and believes (a + 2) + b is the best form according
     29 // to its rank system.
     30 //
     31 // To address this limitation, NaryReassociate reassociates an expression in a
     32 // form that reuses existing instructions. As a result, NaryReassociate can
     33 // reassociate (a + 2) + b in the example to (a + b) + 2 because it detects that
     34 // (a + b) is computed before.
     35 //
     36 // NaryReassociate works as follows. For every instruction in the form of (a +
     37 // b) + c, it checks whether a + c or b + c is already computed by a dominating
     38 // instruction. If so, it then reassociates (a + b) + c into (a + c) + b or (b +
     39 // c) + a and removes the redundancy accordingly. To efficiently look up whether
     40 // an expression is computed before, we store each instruction seen and its SCEV
     41 // into an SCEV-to-instruction map.
     42 //
     43 // Although the algorithm pattern-matches only ternary additions, it
     44 // automatically handles many >3-ary expressions by walking through the function
     45 // in the depth-first order. For example, given
     46 //
     47 //   (a + c) + d
     48 //   ((a + b) + c) + d
     49 //
     50 // NaryReassociate first rewrites (a + b) + c to (a + c) + b, and then rewrites
     51 // ((a + c) + b) + d into ((a + c) + d) + b.
     52 //
     53 // Finally, the above dominator-based algorithm may need to be run multiple
     54 // iterations before emitting optimal code. One source of this need is that we
     55 // only split an operand when it is used only once. The above algorithm can
     56 // eliminate an instruction and decrease the usage count of its operands. As a
     57 // result, an instruction that previously had multiple uses may become a
     58 // single-use instruction and thus eligible for split consideration. For
     59 // example,
     60 //
     61 //   ac = a + c
     62 //   ab = a + b
     63 //   abc = ab + c
     64 //   ab2 = ab + b
     65 //   ab2c = ab2 + c
     66 //
     67 // In the first iteration, we cannot reassociate abc to ac+b because ab is used
     68 // twice. However, we can reassociate ab2c to abc+b in the first iteration. As a
     69 // result, ab2 becomes dead and ab will be used only once in the second
     70 // iteration.
     71 //
     72 // Limitations and TODO items:
     73 //
     74 // 1) We only considers n-ary adds and muls for now. This should be extended
     75 // and generalized.
     76 //
     77 //===----------------------------------------------------------------------===//
     78 
     79 #ifndef LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
     80 #define LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
     81 
     82 #include "llvm/ADT/DenseMap.h"
     83 #include "llvm/ADT/SmallVector.h"
     84 #include "llvm/IR/PassManager.h"
     85 #include "llvm/IR/ValueHandle.h"
     86 
     87 namespace llvm {
     88 
     89 class AssumptionCache;
     90 class BinaryOperator;
     91 class DataLayout;
     92 class DominatorTree;
     93 class Function;
     94 class GetElementPtrInst;
     95 class Instruction;
     96 class ScalarEvolution;
     97 class SCEV;
     98 class TargetLibraryInfo;
     99 class TargetTransformInfo;
    100 class Type;
    101 class Value;
    102 
    103 class NaryReassociatePass : public PassInfoMixin<NaryReassociatePass> {
    104 public:
    105   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
    106 
    107   // Glue for old PM.
    108   bool runImpl(Function &F, AssumptionCache *AC_, DominatorTree *DT_,
    109                ScalarEvolution *SE_, TargetLibraryInfo *TLI_,
    110                TargetTransformInfo *TTI_);
    111 
    112 private:
    113   // Runs only one iteration of the dominator-based algorithm. See the header
    114   // comments for why we need multiple iterations.
    115   bool doOneIteration(Function &F);
    116 
    117   // Reassociates I for better CSE.
    118   Instruction *tryReassociate(Instruction *I);
    119 
    120   // Reassociate GEP for better CSE.
    121   Instruction *tryReassociateGEP(GetElementPtrInst *GEP);
    122 
    123   // Try splitting GEP at the I-th index and see whether either part can be
    124   // CSE'ed. This is a helper function for tryReassociateGEP.
    125   //
    126   // \p IndexedType The element type indexed by GEP's I-th index. This is
    127   //                equivalent to
    128   //                  GEP->getIndexedType(GEP->getPointerOperand(), 0-th index,
    129   //                                      ..., i-th index).
    130   GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
    131                                               unsigned I, Type *IndexedType);
    132 
    133   // Given GEP's I-th index = LHS + RHS, see whether &Base[..][LHS][..] or
    134   // &Base[..][RHS][..] can be CSE'ed and rewrite GEP accordingly.
    135   GetElementPtrInst *tryReassociateGEPAtIndex(GetElementPtrInst *GEP,
    136                                               unsigned I, Value *LHS,
    137                                               Value *RHS, Type *IndexedType);
    138 
    139   // Reassociate binary operators for better CSE.
    140   Instruction *tryReassociateBinaryOp(BinaryOperator *I);
    141 
    142   // A helper function for tryReassociateBinaryOp. LHS and RHS are explicitly
    143   // passed.
    144   Instruction *tryReassociateBinaryOp(Value *LHS, Value *RHS,
    145                                       BinaryOperator *I);
    146   // Rewrites I to (LHS op RHS) if LHS is computed already.
    147   Instruction *tryReassociatedBinaryOp(const SCEV *LHS, Value *RHS,
    148                                        BinaryOperator *I);
    149 
    150   // Tries to match Op1 and Op2 by using V.
    151   bool matchTernaryOp(BinaryOperator *I, Value *V, Value *&Op1, Value *&Op2);
    152 
    153   // Gets SCEV for (LHS op RHS).
    154   const SCEV *getBinarySCEV(BinaryOperator *I, const SCEV *LHS,
    155                             const SCEV *RHS);
    156 
    157   // Returns the closest dominator of \c Dominatee that computes
    158   // \c CandidateExpr. Returns null if not found.
    159   Instruction *findClosestMatchingDominator(const SCEV *CandidateExpr,
    160                                             Instruction *Dominatee);
    161 
    162   // GetElementPtrInst implicitly sign-extends an index if the index is shorter
    163   // than the pointer size. This function returns whether Index is shorter than
    164   // GEP's pointer size, i.e., whether Index needs to be sign-extended in order
    165   // to be an index of GEP.
    166   bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
    167 
    168   AssumptionCache *AC;
    169   const DataLayout *DL;
    170   DominatorTree *DT;
    171   ScalarEvolution *SE;
    172   TargetLibraryInfo *TLI;
    173   TargetTransformInfo *TTI;
    174 
    175   // A lookup table quickly telling which instructions compute the given SCEV.
    176   // Note that there can be multiple instructions at different locations
    177   // computing to the same SCEV, so we map a SCEV to an instruction list.  For
    178   // example,
    179   //
    180   //   if (p1)
    181   //     foo(a + b);
    182   //   if (p2)
    183   //     bar(a + b);
    184   DenseMap<const SCEV *, SmallVector<WeakTrackingVH, 2>> SeenExprs;
    185 };
    186 
    187 } // end namespace llvm
    188 
    189 #endif // LLVM_TRANSFORMS_SCALAR_NARYREASSOCIATE_H
    190