Home | History | Annotate | Download | only in AST
      1 //===--- ASTContext.h - Context to hold long-lived AST nodes ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Defines the clang::ASTContext interface.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_CLANG_AST_ASTCONTEXT_H
     16 #define LLVM_CLANG_AST_ASTCONTEXT_H
     17 
     18 #include "clang/AST/ASTTypeTraits.h"
     19 #include "clang/AST/CanonicalType.h"
     20 #include "clang/AST/CommentCommandTraits.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/DeclarationName.h"
     23 #include "clang/AST/DeclBase.h"
     24 #include "clang/AST/ExternalASTSource.h"
     25 #include "clang/AST/NestedNameSpecifier.h"
     26 #include "clang/AST/PrettyPrinter.h"
     27 #include "clang/AST/RawCommentList.h"
     28 #include "clang/AST/TemplateBase.h"
     29 #include "clang/AST/TemplateName.h"
     30 #include "clang/AST/Type.h"
     31 #include "clang/Basic/AddressSpaces.h"
     32 #include "clang/Basic/IdentifierTable.h"
     33 #include "clang/Basic/LangOptions.h"
     34 #include "clang/Basic/Linkage.h"
     35 #include "clang/Basic/LLVM.h"
     36 #include "clang/Basic/Module.h"
     37 #include "clang/Basic/OperatorKinds.h"
     38 #include "clang/Basic/PartialDiagnostic.h"
     39 #include "clang/Basic/SanitizerBlacklist.h"
     40 #include "clang/Basic/SourceLocation.h"
     41 #include "clang/Basic/Specifiers.h"
     42 #include "clang/Basic/TargetInfo.h"
     43 #include "clang/Basic/XRayLists.h"
     44 #include "llvm/ADT/APSInt.h"
     45 #include "llvm/ADT/ArrayRef.h"
     46 #include "llvm/ADT/DenseMap.h"
     47 #include "llvm/ADT/FoldingSet.h"
     48 #include "llvm/ADT/IntrusiveRefCntPtr.h"
     49 #include "llvm/ADT/iterator_range.h"
     50 #include "llvm/ADT/MapVector.h"
     51 #include "llvm/ADT/None.h"
     52 #include "llvm/ADT/Optional.h"
     53 #include "llvm/ADT/PointerIntPair.h"
     54 #include "llvm/ADT/PointerUnion.h"
     55 #include "llvm/ADT/SmallPtrSet.h"
     56 #include "llvm/ADT/SmallVector.h"
     57 #include "llvm/ADT/TinyPtrVector.h"
     58 #include "llvm/ADT/StringMap.h"
     59 #include "llvm/ADT/StringRef.h"
     60 #include "llvm/Support/AlignOf.h"
     61 #include "llvm/Support/Allocator.h"
     62 #include "llvm/Support/Casting.h"
     63 #include "llvm/Support/Compiler.h"
     64 #include <cassert>
     65 #include <cstddef>
     66 #include <cstdint>
     67 #include <iterator>
     68 #include <memory>
     69 #include <new>
     70 #include <string>
     71 #include <type_traits>
     72 #include <utility>
     73 #include <vector>
     74 
     75 namespace llvm {
     76 
     77 struct fltSemantics;
     78 
     79 } // end namespace llvm
     80 
     81 namespace clang {
     82 
     83 class ASTMutationListener;
     84 class ASTRecordLayout;
     85 class AtomicExpr;
     86 class BlockExpr;
     87 class CharUnits;
     88 class CXXABI;
     89 class DiagnosticsEngine;
     90 class Expr;
     91 class MangleNumberingContext;
     92 class MaterializeTemporaryExpr;
     93 // Decls
     94 class MangleContext;
     95 class ObjCIvarDecl;
     96 class ObjCPropertyDecl;
     97 class UnresolvedSetIterator;
     98 class UsingDecl;
     99 class UsingShadowDecl;
    100 class VTableContextBase;
    101 
    102 namespace Builtin {
    103 
    104   class Context;
    105 
    106 } // end namespace Builtin
    107 
    108 enum BuiltinTemplateKind : int;
    109 
    110 namespace comments {
    111 
    112   class FullComment;
    113 
    114 } // end namespace comments
    115 
    116 struct TypeInfo {
    117   uint64_t Width;
    118   unsigned Align;
    119   bool AlignIsRequired : 1;
    120 
    121   TypeInfo() : Width(0), Align(0), AlignIsRequired(false) {}
    122   TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
    123       : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
    124 };
    125 
    126 /// \brief Holds long-lived AST nodes (such as types and decls) that can be
    127 /// referred to throughout the semantic analysis of a file.
    128 class ASTContext : public RefCountedBase<ASTContext> {
    129   ASTContext &this_() { return *this; }
    130 
    131   mutable SmallVector<Type *, 0> Types;
    132   mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
    133   mutable llvm::FoldingSet<ComplexType> ComplexTypes;
    134   mutable llvm::FoldingSet<PointerType> PointerTypes;
    135   mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
    136   mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
    137   mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
    138   mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
    139   mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
    140   mutable llvm::FoldingSet<ConstantArrayType> ConstantArrayTypes;
    141   mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
    142   mutable std::vector<VariableArrayType*> VariableArrayTypes;
    143   mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
    144   mutable llvm::FoldingSet<DependentSizedExtVectorType>
    145     DependentSizedExtVectorTypes;
    146   mutable llvm::FoldingSet<DependentAddressSpaceType>
    147       DependentAddressSpaceTypes;
    148   mutable llvm::FoldingSet<VectorType> VectorTypes;
    149   mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
    150   mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
    151     FunctionProtoTypes;
    152   mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
    153   mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
    154   mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
    155   mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
    156   mutable llvm::FoldingSet<SubstTemplateTypeParmType>
    157     SubstTemplateTypeParmTypes;
    158   mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
    159     SubstTemplateTypeParmPackTypes;
    160   mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
    161     TemplateSpecializationTypes;
    162   mutable llvm::FoldingSet<ParenType> ParenTypes;
    163   mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
    164   mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
    165   mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
    166                                      ASTContext&>
    167     DependentTemplateSpecializationTypes;
    168   llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
    169   mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
    170   mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
    171   mutable llvm::FoldingSet<DependentUnaryTransformType>
    172     DependentUnaryTransformTypes;
    173   mutable llvm::FoldingSet<AutoType> AutoTypes;
    174   mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
    175     DeducedTemplateSpecializationTypes;
    176   mutable llvm::FoldingSet<AtomicType> AtomicTypes;
    177   llvm::FoldingSet<AttributedType> AttributedTypes;
    178   mutable llvm::FoldingSet<PipeType> PipeTypes;
    179 
    180   mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
    181   mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
    182   mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
    183     SubstTemplateTemplateParms;
    184   mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
    185                                      ASTContext&>
    186     SubstTemplateTemplateParmPacks;
    187 
    188   /// \brief The set of nested name specifiers.
    189   ///
    190   /// This set is managed by the NestedNameSpecifier class.
    191   mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
    192   mutable NestedNameSpecifier *GlobalNestedNameSpecifier;
    193   friend class NestedNameSpecifier;
    194 
    195   /// \brief A cache mapping from RecordDecls to ASTRecordLayouts.
    196   ///
    197   /// This is lazily created.  This is intentionally not serialized.
    198   mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
    199     ASTRecordLayouts;
    200   mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
    201     ObjCLayouts;
    202 
    203   /// \brief A cache from types to size and alignment information.
    204   typedef llvm::DenseMap<const Type *, struct TypeInfo> TypeInfoMap;
    205   mutable TypeInfoMap MemoizedTypeInfo;
    206 
    207   /// \brief A cache mapping from CXXRecordDecls to key functions.
    208   llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
    209 
    210   /// \brief Mapping from ObjCContainers to their ObjCImplementations.
    211   llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
    212 
    213   /// \brief Mapping from ObjCMethod to its duplicate declaration in the same
    214   /// interface.
    215   llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
    216 
    217   /// \brief Mapping from __block VarDecls to their copy initialization expr.
    218   llvm::DenseMap<const VarDecl*, Expr*> BlockVarCopyInits;
    219 
    220   /// \brief Mapping from class scope functions specialization to their
    221   /// template patterns.
    222   llvm::DenseMap<const FunctionDecl*, FunctionDecl*>
    223     ClassScopeSpecializationPattern;
    224 
    225   /// \brief Mapping from materialized temporaries with static storage duration
    226   /// that appear in constant initializers to their evaluated values.  These are
    227   /// allocated in a std::map because their address must be stable.
    228   llvm::DenseMap<const MaterializeTemporaryExpr *, APValue *>
    229     MaterializedTemporaryValues;
    230 
    231   /// \brief Representation of a "canonical" template template parameter that
    232   /// is used in canonical template names.
    233   class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
    234     TemplateTemplateParmDecl *Parm;
    235 
    236   public:
    237     CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
    238       : Parm(Parm) { }
    239 
    240     TemplateTemplateParmDecl *getParam() const { return Parm; }
    241 
    242     void Profile(llvm::FoldingSetNodeID &ID) { Profile(ID, Parm); }
    243 
    244     static void Profile(llvm::FoldingSetNodeID &ID,
    245                         TemplateTemplateParmDecl *Parm);
    246   };
    247   mutable llvm::FoldingSet<CanonicalTemplateTemplateParm>
    248     CanonTemplateTemplateParms;
    249 
    250   TemplateTemplateParmDecl *
    251     getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
    252 
    253   /// \brief The typedef for the __int128_t type.
    254   mutable TypedefDecl *Int128Decl;
    255 
    256   /// \brief The typedef for the __uint128_t type.
    257   mutable TypedefDecl *UInt128Decl;
    258 
    259   /// \brief The typedef for the target specific predefined
    260   /// __builtin_va_list type.
    261   mutable TypedefDecl *BuiltinVaListDecl;
    262 
    263   /// The typedef for the predefined \c __builtin_ms_va_list type.
    264   mutable TypedefDecl *BuiltinMSVaListDecl;
    265 
    266   /// \brief The typedef for the predefined \c id type.
    267   mutable TypedefDecl *ObjCIdDecl;
    268 
    269   /// \brief The typedef for the predefined \c SEL type.
    270   mutable TypedefDecl *ObjCSelDecl;
    271 
    272   /// \brief The typedef for the predefined \c Class type.
    273   mutable TypedefDecl *ObjCClassDecl;
    274 
    275   /// \brief The typedef for the predefined \c Protocol class in Objective-C.
    276   mutable ObjCInterfaceDecl *ObjCProtocolClassDecl;
    277 
    278   /// \brief The typedef for the predefined 'BOOL' type.
    279   mutable TypedefDecl *BOOLDecl;
    280 
    281   // Typedefs which may be provided defining the structure of Objective-C
    282   // pseudo-builtins
    283   QualType ObjCIdRedefinitionType;
    284   QualType ObjCClassRedefinitionType;
    285   QualType ObjCSelRedefinitionType;
    286 
    287   /// The identifier 'bool'.
    288   mutable IdentifierInfo *BoolName = nullptr;
    289 
    290   /// The identifier 'NSObject'.
    291   IdentifierInfo *NSObjectName = nullptr;
    292 
    293   /// The identifier 'NSCopying'.
    294   IdentifierInfo *NSCopyingName = nullptr;
    295 
    296   /// The identifier '__make_integer_seq'.
    297   mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
    298 
    299   /// The identifier '__type_pack_element'.
    300   mutable IdentifierInfo *TypePackElementName = nullptr;
    301 
    302   QualType ObjCConstantStringType;
    303   mutable RecordDecl *CFConstantStringTagDecl;
    304   mutable TypedefDecl *CFConstantStringTypeDecl;
    305 
    306   mutable QualType ObjCSuperType;
    307 
    308   QualType ObjCNSStringType;
    309 
    310   /// \brief The typedef declaration for the Objective-C "instancetype" type.
    311   TypedefDecl *ObjCInstanceTypeDecl;
    312 
    313   /// \brief The type for the C FILE type.
    314   TypeDecl *FILEDecl;
    315 
    316   /// \brief The type for the C jmp_buf type.
    317   TypeDecl *jmp_bufDecl;
    318 
    319   /// \brief The type for the C sigjmp_buf type.
    320   TypeDecl *sigjmp_bufDecl;
    321 
    322   /// \brief The type for the C ucontext_t type.
    323   TypeDecl *ucontext_tDecl;
    324 
    325   /// \brief Type for the Block descriptor for Blocks CodeGen.
    326   ///
    327   /// Since this is only used for generation of debug info, it is not
    328   /// serialized.
    329   mutable RecordDecl *BlockDescriptorType;
    330 
    331   /// \brief Type for the Block descriptor for Blocks CodeGen.
    332   ///
    333   /// Since this is only used for generation of debug info, it is not
    334   /// serialized.
    335   mutable RecordDecl *BlockDescriptorExtendedType;
    336 
    337   /// \brief Declaration for the CUDA cudaConfigureCall function.
    338   FunctionDecl *cudaConfigureCallDecl;
    339 
    340   /// \brief Keeps track of all declaration attributes.
    341   ///
    342   /// Since so few decls have attrs, we keep them in a hash map instead of
    343   /// wasting space in the Decl class.
    344   llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
    345 
    346   /// \brief A mapping from non-redeclarable declarations in modules that were
    347   /// merged with other declarations to the canonical declaration that they were
    348   /// merged into.
    349   llvm::DenseMap<Decl*, Decl*> MergedDecls;
    350 
    351   /// \brief A mapping from a defining declaration to a list of modules (other
    352   /// than the owning module of the declaration) that contain merged
    353   /// definitions of that entity.
    354   llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
    355 
    356   /// \brief Initializers for a module, in order. Each Decl will be either
    357   /// something that has a semantic effect on startup (such as a variable with
    358   /// a non-constant initializer), or an ImportDecl (which recursively triggers
    359   /// initialization of another module).
    360   struct PerModuleInitializers {
    361     llvm::SmallVector<Decl*, 4> Initializers;
    362     llvm::SmallVector<uint32_t, 4> LazyInitializers;
    363 
    364     void resolve(ASTContext &Ctx);
    365   };
    366   llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
    367 
    368 public:
    369   /// \brief A type synonym for the TemplateOrInstantiation mapping.
    370   typedef llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>
    371   TemplateOrSpecializationInfo;
    372 
    373 private:
    374   /// \brief A mapping to contain the template or declaration that
    375   /// a variable declaration describes or was instantiated from,
    376   /// respectively.
    377   ///
    378   /// For non-templates, this value will be NULL. For variable
    379   /// declarations that describe a variable template, this will be a
    380   /// pointer to a VarTemplateDecl. For static data members
    381   /// of class template specializations, this will be the
    382   /// MemberSpecializationInfo referring to the member variable that was
    383   /// instantiated or specialized. Thus, the mapping will keep track of
    384   /// the static data member templates from which static data members of
    385   /// class template specializations were instantiated.
    386   ///
    387   /// Given the following example:
    388   ///
    389   /// \code
    390   /// template<typename T>
    391   /// struct X {
    392   ///   static T value;
    393   /// };
    394   ///
    395   /// template<typename T>
    396   ///   T X<T>::value = T(17);
    397   ///
    398   /// int *x = &X<int>::value;
    399   /// \endcode
    400   ///
    401   /// This mapping will contain an entry that maps from the VarDecl for
    402   /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
    403   /// class template X) and will be marked TSK_ImplicitInstantiation.
    404   llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
    405   TemplateOrInstantiation;
    406 
    407   /// \brief Keeps track of the declaration from which a using declaration was
    408   /// created during instantiation.
    409   ///
    410   /// The source and target declarations are always a UsingDecl, an
    411   /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
    412   ///
    413   /// For example:
    414   /// \code
    415   /// template<typename T>
    416   /// struct A {
    417   ///   void f();
    418   /// };
    419   ///
    420   /// template<typename T>
    421   /// struct B : A<T> {
    422   ///   using A<T>::f;
    423   /// };
    424   ///
    425   /// template struct B<int>;
    426   /// \endcode
    427   ///
    428   /// This mapping will contain an entry that maps from the UsingDecl in
    429   /// B<int> to the UnresolvedUsingDecl in B<T>.
    430   llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
    431 
    432   llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
    433     InstantiatedFromUsingShadowDecl;
    434 
    435   llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
    436 
    437   /// \brief Mapping that stores the methods overridden by a given C++
    438   /// member function.
    439   ///
    440   /// Since most C++ member functions aren't virtual and therefore
    441   /// don't override anything, we store the overridden functions in
    442   /// this map on the side rather than within the CXXMethodDecl structure.
    443   typedef llvm::TinyPtrVector<const CXXMethodDecl*> CXXMethodVector;
    444   llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
    445 
    446   /// \brief Mapping from each declaration context to its corresponding
    447   /// mangling numbering context (used for constructs like lambdas which
    448   /// need to be consistently numbered for the mangler).
    449   llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
    450       MangleNumberingContexts;
    451 
    452   /// \brief Side-table of mangling numbers for declarations which rarely
    453   /// need them (like static local vars).
    454   llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
    455   llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
    456 
    457   /// \brief Mapping that stores parameterIndex values for ParmVarDecls when
    458   /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
    459   typedef llvm::DenseMap<const VarDecl *, unsigned> ParameterIndexTable;
    460   ParameterIndexTable ParamIndices;
    461 
    462   ImportDecl *FirstLocalImport;
    463   ImportDecl *LastLocalImport;
    464 
    465   TranslationUnitDecl *TUDecl;
    466   mutable ExternCContextDecl *ExternCContext;
    467   mutable BuiltinTemplateDecl *MakeIntegerSeqDecl;
    468   mutable BuiltinTemplateDecl *TypePackElementDecl;
    469 
    470   /// \brief The associated SourceManager object.
    471   SourceManager &SourceMgr;
    472 
    473   /// \brief The language options used to create the AST associated with
    474   ///  this ASTContext object.
    475   LangOptions &LangOpts;
    476 
    477   /// \brief Blacklist object that is used by sanitizers to decide which
    478   /// entities should not be instrumented.
    479   std::unique_ptr<SanitizerBlacklist> SanitizerBL;
    480 
    481   /// \brief Function filtering mechanism to determine whether a given function
    482   /// should be imbued with the XRay "always" or "never" attributes.
    483   std::unique_ptr<XRayFunctionFilter> XRayFilter;
    484 
    485   /// \brief The allocator used to create AST objects.
    486   ///
    487   /// AST objects are never destructed; rather, all memory associated with the
    488   /// AST objects will be released when the ASTContext itself is destroyed.
    489   mutable llvm::BumpPtrAllocator BumpAlloc;
    490 
    491   /// \brief Allocator for partial diagnostics.
    492   PartialDiagnostic::StorageAllocator DiagAllocator;
    493 
    494   /// \brief The current C++ ABI.
    495   std::unique_ptr<CXXABI> ABI;
    496   CXXABI *createCXXABI(const TargetInfo &T);
    497 
    498   /// \brief The logical -> physical address space map.
    499   const LangASMap *AddrSpaceMap;
    500 
    501   /// \brief Address space map mangling must be used with language specific
    502   /// address spaces (e.g. OpenCL/CUDA)
    503   bool AddrSpaceMapMangling;
    504 
    505   friend class ASTDeclReader;
    506   friend class ASTReader;
    507   friend class ASTWriter;
    508   friend class CXXRecordDecl;
    509 
    510   const TargetInfo *Target;
    511   const TargetInfo *AuxTarget;
    512   clang::PrintingPolicy PrintingPolicy;
    513 
    514 public:
    515   IdentifierTable &Idents;
    516   SelectorTable &Selectors;
    517   Builtin::Context &BuiltinInfo;
    518   mutable DeclarationNameTable DeclarationNames;
    519   IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
    520   ASTMutationListener *Listener;
    521 
    522   /// \brief Contains parents of a node.
    523   typedef llvm::SmallVector<ast_type_traits::DynTypedNode, 2> ParentVector;
    524 
    525   /// \brief Maps from a node to its parents. This is used for nodes that have
    526   /// pointer identity only, which are more common and we can save space by
    527   /// only storing a unique pointer to them.
    528   typedef llvm::DenseMap<const void *,
    529                          llvm::PointerUnion4<const Decl *, const Stmt *,
    530                                              ast_type_traits::DynTypedNode *,
    531                                              ParentVector *>> ParentMapPointers;
    532 
    533   /// Parent map for nodes without pointer identity. We store a full
    534   /// DynTypedNode for all keys.
    535   typedef llvm::DenseMap<
    536       ast_type_traits::DynTypedNode,
    537       llvm::PointerUnion4<const Decl *, const Stmt *,
    538                           ast_type_traits::DynTypedNode *, ParentVector *>>
    539       ParentMapOtherNodes;
    540 
    541   /// Container for either a single DynTypedNode or for an ArrayRef to
    542   /// DynTypedNode. For use with ParentMap.
    543   class DynTypedNodeList {
    544     typedef ast_type_traits::DynTypedNode DynTypedNode;
    545     llvm::AlignedCharArrayUnion<ast_type_traits::DynTypedNode,
    546                                 ArrayRef<DynTypedNode>> Storage;
    547     bool IsSingleNode;
    548 
    549   public:
    550     DynTypedNodeList(const DynTypedNode &N) : IsSingleNode(true) {
    551       new (Storage.buffer) DynTypedNode(N);
    552     }
    553     DynTypedNodeList(ArrayRef<DynTypedNode> A) : IsSingleNode(false) {
    554       new (Storage.buffer) ArrayRef<DynTypedNode>(A);
    555     }
    556 
    557     const ast_type_traits::DynTypedNode *begin() const {
    558       if (!IsSingleNode)
    559         return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
    560             ->begin();
    561       return reinterpret_cast<const DynTypedNode *>(Storage.buffer);
    562     }
    563 
    564     const ast_type_traits::DynTypedNode *end() const {
    565       if (!IsSingleNode)
    566         return reinterpret_cast<const ArrayRef<DynTypedNode> *>(Storage.buffer)
    567             ->end();
    568       return reinterpret_cast<const DynTypedNode *>(Storage.buffer) + 1;
    569     }
    570 
    571     size_t size() const { return end() - begin(); }
    572     bool empty() const { return begin() == end(); }
    573 
    574     const DynTypedNode &operator[](size_t N) const {
    575       assert(N < size() && "Out of bounds!");
    576       return *(begin() + N);
    577     }
    578   };
    579 
    580   /// \brief Returns the parents of the given node.
    581   ///
    582   /// Note that this will lazily compute the parents of all nodes
    583   /// and store them for later retrieval. Thus, the first call is O(n)
    584   /// in the number of AST nodes.
    585   ///
    586   /// Caveats and FIXMEs:
    587   /// Calculating the parent map over all AST nodes will need to load the
    588   /// full AST. This can be undesirable in the case where the full AST is
    589   /// expensive to create (for example, when using precompiled header
    590   /// preambles). Thus, there are good opportunities for optimization here.
    591   /// One idea is to walk the given node downwards, looking for references
    592   /// to declaration contexts - once a declaration context is found, compute
    593   /// the parent map for the declaration context; if that can satisfy the
    594   /// request, loading the whole AST can be avoided. Note that this is made
    595   /// more complex by statements in templates having multiple parents - those
    596   /// problems can be solved by building closure over the templated parts of
    597   /// the AST, which also avoids touching large parts of the AST.
    598   /// Additionally, we will want to add an interface to already give a hint
    599   /// where to search for the parents, for example when looking at a statement
    600   /// inside a certain function.
    601   ///
    602   /// 'NodeT' can be one of Decl, Stmt, Type, TypeLoc,
    603   /// NestedNameSpecifier or NestedNameSpecifierLoc.
    604   template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node) {
    605     return getParents(ast_type_traits::DynTypedNode::create(Node));
    606   }
    607 
    608   DynTypedNodeList getParents(const ast_type_traits::DynTypedNode &Node);
    609 
    610   const clang::PrintingPolicy &getPrintingPolicy() const {
    611     return PrintingPolicy;
    612   }
    613 
    614   void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
    615     PrintingPolicy = Policy;
    616   }
    617 
    618   SourceManager& getSourceManager() { return SourceMgr; }
    619   const SourceManager& getSourceManager() const { return SourceMgr; }
    620 
    621   llvm::BumpPtrAllocator &getAllocator() const {
    622     return BumpAlloc;
    623   }
    624 
    625   void *Allocate(size_t Size, unsigned Align = 8) const {
    626     return BumpAlloc.Allocate(Size, Align);
    627   }
    628   template <typename T> T *Allocate(size_t Num = 1) const {
    629     return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
    630   }
    631   void Deallocate(void *Ptr) const { }
    632 
    633   /// Return the total amount of physical memory allocated for representing
    634   /// AST nodes and type information.
    635   size_t getASTAllocatedMemory() const {
    636     return BumpAlloc.getTotalMemory();
    637   }
    638   /// Return the total memory used for various side tables.
    639   size_t getSideTableAllocatedMemory() const;
    640 
    641   PartialDiagnostic::StorageAllocator &getDiagAllocator() {
    642     return DiagAllocator;
    643   }
    644 
    645   const TargetInfo &getTargetInfo() const { return *Target; }
    646   const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
    647 
    648   /// getIntTypeForBitwidth -
    649   /// sets integer QualTy according to specified details:
    650   /// bitwidth, signed/unsigned.
    651   /// Returns empty type if there is no appropriate target types.
    652   QualType getIntTypeForBitwidth(unsigned DestWidth,
    653                                  unsigned Signed) const;
    654   /// getRealTypeForBitwidth -
    655   /// sets floating point QualTy according to specified bitwidth.
    656   /// Returns empty type if there is no appropriate target types.
    657   QualType getRealTypeForBitwidth(unsigned DestWidth) const;
    658 
    659   bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
    660 
    661   const LangOptions& getLangOpts() const { return LangOpts; }
    662 
    663   const SanitizerBlacklist &getSanitizerBlacklist() const {
    664     return *SanitizerBL;
    665   }
    666 
    667   const XRayFunctionFilter &getXRayFilter() const {
    668     return *XRayFilter;
    669   }
    670 
    671   DiagnosticsEngine &getDiagnostics() const;
    672 
    673   FullSourceLoc getFullLoc(SourceLocation Loc) const {
    674     return FullSourceLoc(Loc,SourceMgr);
    675   }
    676 
    677   /// \brief All comments in this translation unit.
    678   RawCommentList Comments;
    679 
    680   /// \brief True if comments are already loaded from ExternalASTSource.
    681   mutable bool CommentsLoaded;
    682 
    683   class RawCommentAndCacheFlags {
    684   public:
    685     enum Kind {
    686       /// We searched for a comment attached to the particular declaration, but
    687       /// didn't find any.
    688       ///
    689       /// getRaw() == 0.
    690       NoCommentInDecl = 0,
    691 
    692       /// We have found a comment attached to this particular declaration.
    693       ///
    694       /// getRaw() != 0.
    695       FromDecl,
    696 
    697       /// This declaration does not have an attached comment, and we have
    698       /// searched the redeclaration chain.
    699       ///
    700       /// If getRaw() == 0, the whole redeclaration chain does not have any
    701       /// comments.
    702       ///
    703       /// If getRaw() != 0, it is a comment propagated from other
    704       /// redeclaration.
    705       FromRedecl
    706     };
    707 
    708     Kind getKind() const LLVM_READONLY {
    709       return Data.getInt();
    710     }
    711 
    712     void setKind(Kind K) {
    713       Data.setInt(K);
    714     }
    715 
    716     const RawComment *getRaw() const LLVM_READONLY {
    717       return Data.getPointer();
    718     }
    719 
    720     void setRaw(const RawComment *RC) {
    721       Data.setPointer(RC);
    722     }
    723 
    724     const Decl *getOriginalDecl() const LLVM_READONLY {
    725       return OriginalDecl;
    726     }
    727 
    728     void setOriginalDecl(const Decl *Orig) {
    729       OriginalDecl = Orig;
    730     }
    731 
    732   private:
    733     llvm::PointerIntPair<const RawComment *, 2, Kind> Data;
    734     const Decl *OriginalDecl;
    735   };
    736 
    737   /// \brief Mapping from declarations to comments attached to any
    738   /// redeclaration.
    739   ///
    740   /// Raw comments are owned by Comments list.  This mapping is populated
    741   /// lazily.
    742   mutable llvm::DenseMap<const Decl *, RawCommentAndCacheFlags> RedeclComments;
    743 
    744   /// \brief Mapping from declarations to parsed comments attached to any
    745   /// redeclaration.
    746   mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
    747 
    748   /// \brief Return the documentation comment attached to a given declaration,
    749   /// without looking into cache.
    750   RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
    751 
    752 public:
    753   RawCommentList &getRawCommentList() {
    754     return Comments;
    755   }
    756 
    757   void addComment(const RawComment &RC) {
    758     assert(LangOpts.RetainCommentsFromSystemHeaders ||
    759            !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
    760     Comments.addComment(RC, BumpAlloc);
    761   }
    762 
    763   /// \brief Return the documentation comment attached to a given declaration.
    764   /// Returns NULL if no comment is attached.
    765   ///
    766   /// \param OriginalDecl if not NULL, is set to declaration AST node that had
    767   /// the comment, if the comment we found comes from a redeclaration.
    768   const RawComment *
    769   getRawCommentForAnyRedecl(const Decl *D,
    770                             const Decl **OriginalDecl = nullptr) const;
    771 
    772   /// Return parsed documentation comment attached to a given declaration.
    773   /// Returns NULL if no comment is attached.
    774   ///
    775   /// \param PP the Preprocessor used with this TU.  Could be NULL if
    776   /// preprocessor is not available.
    777   comments::FullComment *getCommentForDecl(const Decl *D,
    778                                            const Preprocessor *PP) const;
    779 
    780   /// Return parsed documentation comment attached to a given declaration.
    781   /// Returns NULL if no comment is attached. Does not look at any
    782   /// redeclarations of the declaration.
    783   comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
    784 
    785   comments::FullComment *cloneFullComment(comments::FullComment *FC,
    786                                          const Decl *D) const;
    787 
    788 private:
    789   mutable comments::CommandTraits CommentCommandTraits;
    790 
    791   /// \brief Iterator that visits import declarations.
    792   class import_iterator {
    793     ImportDecl *Import;
    794 
    795   public:
    796     typedef ImportDecl               *value_type;
    797     typedef ImportDecl               *reference;
    798     typedef ImportDecl               *pointer;
    799     typedef int                       difference_type;
    800     typedef std::forward_iterator_tag iterator_category;
    801 
    802     import_iterator() : Import() {}
    803     explicit import_iterator(ImportDecl *Import) : Import(Import) {}
    804 
    805     reference operator*() const { return Import; }
    806     pointer operator->() const { return Import; }
    807 
    808     import_iterator &operator++() {
    809       Import = ASTContext::getNextLocalImport(Import);
    810       return *this;
    811     }
    812 
    813     import_iterator operator++(int) {
    814       import_iterator Other(*this);
    815       ++(*this);
    816       return Other;
    817     }
    818 
    819     friend bool operator==(import_iterator X, import_iterator Y) {
    820       return X.Import == Y.Import;
    821     }
    822 
    823     friend bool operator!=(import_iterator X, import_iterator Y) {
    824       return X.Import != Y.Import;
    825     }
    826   };
    827 
    828 public:
    829   comments::CommandTraits &getCommentCommandTraits() const {
    830     return CommentCommandTraits;
    831   }
    832 
    833   /// \brief Retrieve the attributes for the given declaration.
    834   AttrVec& getDeclAttrs(const Decl *D);
    835 
    836   /// \brief Erase the attributes corresponding to the given declaration.
    837   void eraseDeclAttrs(const Decl *D);
    838 
    839   /// \brief If this variable is an instantiated static data member of a
    840   /// class template specialization, returns the templated static data member
    841   /// from which it was instantiated.
    842   // FIXME: Remove ?
    843   MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
    844                                                            const VarDecl *Var);
    845 
    846   TemplateOrSpecializationInfo
    847   getTemplateOrSpecializationInfo(const VarDecl *Var);
    848 
    849   FunctionDecl *getClassScopeSpecializationPattern(const FunctionDecl *FD);
    850 
    851   void setClassScopeSpecializationPattern(FunctionDecl *FD,
    852                                           FunctionDecl *Pattern);
    853 
    854   /// \brief Note that the static data member \p Inst is an instantiation of
    855   /// the static data member template \p Tmpl of a class template.
    856   void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
    857                                            TemplateSpecializationKind TSK,
    858                         SourceLocation PointOfInstantiation = SourceLocation());
    859 
    860   void setTemplateOrSpecializationInfo(VarDecl *Inst,
    861                                        TemplateOrSpecializationInfo TSI);
    862 
    863   /// \brief If the given using decl \p Inst is an instantiation of a
    864   /// (possibly unresolved) using decl from a template instantiation,
    865   /// return it.
    866   NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
    867 
    868   /// \brief Remember that the using decl \p Inst is an instantiation
    869   /// of the using decl \p Pattern of a class template.
    870   void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
    871 
    872   void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
    873                                           UsingShadowDecl *Pattern);
    874   UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
    875 
    876   FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
    877 
    878   void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
    879 
    880   // Access to the set of methods overridden by the given C++ method.
    881   typedef CXXMethodVector::const_iterator overridden_cxx_method_iterator;
    882   overridden_cxx_method_iterator
    883   overridden_methods_begin(const CXXMethodDecl *Method) const;
    884 
    885   overridden_cxx_method_iterator
    886   overridden_methods_end(const CXXMethodDecl *Method) const;
    887 
    888   unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
    889   typedef llvm::iterator_range<overridden_cxx_method_iterator>
    890       overridden_method_range;
    891   overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
    892 
    893   /// \brief Note that the given C++ \p Method overrides the given \p
    894   /// Overridden method.
    895   void addOverriddenMethod(const CXXMethodDecl *Method,
    896                            const CXXMethodDecl *Overridden);
    897 
    898   /// \brief Return C++ or ObjC overridden methods for the given \p Method.
    899   ///
    900   /// An ObjC method is considered to override any method in the class's
    901   /// base classes, its protocols, or its categories' protocols, that has
    902   /// the same selector and is of the same kind (class or instance).
    903   /// A method in an implementation is not considered as overriding the same
    904   /// method in the interface or its categories.
    905   void getOverriddenMethods(
    906                         const NamedDecl *Method,
    907                         SmallVectorImpl<const NamedDecl *> &Overridden) const;
    908 
    909   /// \brief Notify the AST context that a new import declaration has been
    910   /// parsed or implicitly created within this translation unit.
    911   void addedLocalImportDecl(ImportDecl *Import);
    912 
    913   static ImportDecl *getNextLocalImport(ImportDecl *Import) {
    914     return Import->NextLocalImport;
    915   }
    916 
    917   typedef llvm::iterator_range<import_iterator> import_range;
    918   import_range local_imports() const {
    919     return import_range(import_iterator(FirstLocalImport), import_iterator());
    920   }
    921 
    922   Decl *getPrimaryMergedDecl(Decl *D) {
    923     Decl *Result = MergedDecls.lookup(D);
    924     return Result ? Result : D;
    925   }
    926   void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
    927     MergedDecls[D] = Primary;
    928   }
    929 
    930   /// \brief Note that the definition \p ND has been merged into module \p M,
    931   /// and should be visible whenever \p M is visible.
    932   void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
    933                                  bool NotifyListeners = true);
    934   /// \brief Clean up the merged definition list. Call this if you might have
    935   /// added duplicates into the list.
    936   void deduplicateMergedDefinitonsFor(NamedDecl *ND);
    937 
    938   /// \brief Get the additional modules in which the definition \p Def has
    939   /// been merged.
    940   ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def) {
    941     auto MergedIt = MergedDefModules.find(Def);
    942     if (MergedIt == MergedDefModules.end())
    943       return None;
    944     return MergedIt->second;
    945   }
    946 
    947   /// Add a declaration to the list of declarations that are initialized
    948   /// for a module. This will typically be a global variable (with internal
    949   /// linkage) that runs module initializers, such as the iostream initializer,
    950   /// or an ImportDecl nominating another module that has initializers.
    951   void addModuleInitializer(Module *M, Decl *Init);
    952 
    953   void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
    954 
    955   /// Get the initializations to perform when importing a module, if any.
    956   ArrayRef<Decl*> getModuleInitializers(Module *M);
    957 
    958   TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
    959 
    960   ExternCContextDecl *getExternCContextDecl() const;
    961   BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
    962   BuiltinTemplateDecl *getTypePackElementDecl() const;
    963 
    964   // Builtin Types.
    965   CanQualType VoidTy;
    966   CanQualType BoolTy;
    967   CanQualType CharTy;
    968   CanQualType WCharTy;  // [C++ 3.9.1p5].
    969   CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
    970   CanQualType WIntTy;   // [C99 7.24.1], integer type unchanged by default promotions.
    971   CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
    972   CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
    973   CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
    974   CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
    975   CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
    976   CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
    977   CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
    978   CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
    979   CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
    980   CanQualType Float128ComplexTy;
    981   CanQualType VoidPtrTy, NullPtrTy;
    982   CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
    983   CanQualType BuiltinFnTy;
    984   CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
    985   CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
    986   CanQualType ObjCBuiltinBoolTy;
    987 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
    988   CanQualType SingletonId;
    989 #include "clang/Basic/OpenCLImageTypes.def"
    990   CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
    991   CanQualType OCLQueueTy, OCLReserveIDTy;
    992   CanQualType OMPArraySectionTy;
    993 
    994   // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
    995   mutable QualType AutoDeductTy;     // Deduction against 'auto'.
    996   mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
    997 
    998   // Decl used to help define __builtin_va_list for some targets.
    999   // The decl is built when constructing 'BuiltinVaListDecl'.
   1000   mutable Decl *VaListTagDecl;
   1001 
   1002   ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
   1003              SelectorTable &sels, Builtin::Context &builtins);
   1004   ASTContext(const ASTContext &) = delete;
   1005   ASTContext &operator=(const ASTContext &) = delete;
   1006   ~ASTContext();
   1007 
   1008   /// \brief Attach an external AST source to the AST context.
   1009   ///
   1010   /// The external AST source provides the ability to load parts of
   1011   /// the abstract syntax tree as needed from some external storage,
   1012   /// e.g., a precompiled header.
   1013   void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
   1014 
   1015   /// \brief Retrieve a pointer to the external AST source associated
   1016   /// with this AST context, if any.
   1017   ExternalASTSource *getExternalSource() const {
   1018     return ExternalSource.get();
   1019   }
   1020 
   1021   /// \brief Attach an AST mutation listener to the AST context.
   1022   ///
   1023   /// The AST mutation listener provides the ability to track modifications to
   1024   /// the abstract syntax tree entities committed after they were initially
   1025   /// created.
   1026   void setASTMutationListener(ASTMutationListener *Listener) {
   1027     this->Listener = Listener;
   1028   }
   1029 
   1030   /// \brief Retrieve a pointer to the AST mutation listener associated
   1031   /// with this AST context, if any.
   1032   ASTMutationListener *getASTMutationListener() const { return Listener; }
   1033 
   1034   void PrintStats() const;
   1035   const SmallVectorImpl<Type *>& getTypes() const { return Types; }
   1036 
   1037   BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
   1038                                                 const IdentifierInfo *II) const;
   1039 
   1040   /// \brief Create a new implicit TU-level CXXRecordDecl or RecordDecl
   1041   /// declaration.
   1042   RecordDecl *buildImplicitRecord(StringRef Name,
   1043                                   RecordDecl::TagKind TK = TTK_Struct) const;
   1044 
   1045   /// \brief Create a new implicit TU-level typedef declaration.
   1046   TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
   1047 
   1048   /// \brief Retrieve the declaration for the 128-bit signed integer type.
   1049   TypedefDecl *getInt128Decl() const;
   1050 
   1051   /// \brief Retrieve the declaration for the 128-bit unsigned integer type.
   1052   TypedefDecl *getUInt128Decl() const;
   1053 
   1054   //===--------------------------------------------------------------------===//
   1055   //                           Type Constructors
   1056   //===--------------------------------------------------------------------===//
   1057 
   1058 private:
   1059   /// \brief Return a type with extended qualifiers.
   1060   QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
   1061 
   1062   QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
   1063 
   1064   QualType getPipeType(QualType T, bool ReadOnly) const;
   1065 
   1066 public:
   1067   /// \brief Return the uniqued reference to the type for an address space
   1068   /// qualified type with the specified type and address space.
   1069   ///
   1070   /// The resulting type has a union of the qualifiers from T and the address
   1071   /// space. If T already has an address space specifier, it is silently
   1072   /// replaced.
   1073   QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
   1074 
   1075   /// \brief Remove any existing address space on the type and returns the type
   1076   /// with qualifiers intact (or that's the idea anyway)
   1077   ///
   1078   /// The return type should be T with all prior qualifiers minus the address
   1079   /// space.
   1080   QualType removeAddrSpaceQualType(QualType T) const;
   1081 
   1082   /// \brief Apply Objective-C protocol qualifiers to the given type.
   1083   /// \param allowOnPointerType specifies if we can apply protocol
   1084   /// qualifiers on ObjCObjectPointerType. It can be set to true when
   1085   /// contructing the canonical type of a Objective-C type parameter.
   1086   QualType applyObjCProtocolQualifiers(QualType type,
   1087       ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
   1088       bool allowOnPointerType = false) const;
   1089 
   1090   /// \brief Return the uniqued reference to the type for an Objective-C
   1091   /// gc-qualified type.
   1092   ///
   1093   /// The retulting type has a union of the qualifiers from T and the gc
   1094   /// attribute.
   1095   QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
   1096 
   1097   /// \brief Return the uniqued reference to the type for a \c restrict
   1098   /// qualified type.
   1099   ///
   1100   /// The resulting type has a union of the qualifiers from \p T and
   1101   /// \c restrict.
   1102   QualType getRestrictType(QualType T) const {
   1103     return T.withFastQualifiers(Qualifiers::Restrict);
   1104   }
   1105 
   1106   /// \brief Return the uniqued reference to the type for a \c volatile
   1107   /// qualified type.
   1108   ///
   1109   /// The resulting type has a union of the qualifiers from \p T and
   1110   /// \c volatile.
   1111   QualType getVolatileType(QualType T) const {
   1112     return T.withFastQualifiers(Qualifiers::Volatile);
   1113   }
   1114 
   1115   /// \brief Return the uniqued reference to the type for a \c const
   1116   /// qualified type.
   1117   ///
   1118   /// The resulting type has a union of the qualifiers from \p T and \c const.
   1119   ///
   1120   /// It can be reasonably expected that this will always be equivalent to
   1121   /// calling T.withConst().
   1122   QualType getConstType(QualType T) const { return T.withConst(); }
   1123 
   1124   /// \brief Change the ExtInfo on a function type.
   1125   const FunctionType *adjustFunctionType(const FunctionType *Fn,
   1126                                          FunctionType::ExtInfo EInfo);
   1127 
   1128   /// Adjust the given function result type.
   1129   CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
   1130 
   1131   /// \brief Change the result type of a function type once it is deduced.
   1132   void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
   1133 
   1134   /// \brief Determine whether two function types are the same, ignoring
   1135   /// exception specifications in cases where they're part of the type.
   1136   bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
   1137 
   1138   /// \brief Change the exception specification on a function once it is
   1139   /// delay-parsed, instantiated, or computed.
   1140   void adjustExceptionSpec(FunctionDecl *FD,
   1141                            const FunctionProtoType::ExceptionSpecInfo &ESI,
   1142                            bool AsWritten = false);
   1143 
   1144   /// \brief Return the uniqued reference to the type for a complex
   1145   /// number with the specified element type.
   1146   QualType getComplexType(QualType T) const;
   1147   CanQualType getComplexType(CanQualType T) const {
   1148     return CanQualType::CreateUnsafe(getComplexType((QualType) T));
   1149   }
   1150 
   1151   /// \brief Return the uniqued reference to the type for a pointer to
   1152   /// the specified type.
   1153   QualType getPointerType(QualType T) const;
   1154   CanQualType getPointerType(CanQualType T) const {
   1155     return CanQualType::CreateUnsafe(getPointerType((QualType) T));
   1156   }
   1157 
   1158   /// \brief Return the uniqued reference to a type adjusted from the original
   1159   /// type to a new type.
   1160   QualType getAdjustedType(QualType Orig, QualType New) const;
   1161   CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
   1162     return CanQualType::CreateUnsafe(
   1163         getAdjustedType((QualType)Orig, (QualType)New));
   1164   }
   1165 
   1166   /// \brief Return the uniqued reference to the decayed version of the given
   1167   /// type.  Can only be called on array and function types which decay to
   1168   /// pointer types.
   1169   QualType getDecayedType(QualType T) const;
   1170   CanQualType getDecayedType(CanQualType T) const {
   1171     return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
   1172   }
   1173 
   1174   /// \brief Return the uniqued reference to the atomic type for the specified
   1175   /// type.
   1176   QualType getAtomicType(QualType T) const;
   1177 
   1178   /// \brief Return the uniqued reference to the type for a block of the
   1179   /// specified type.
   1180   QualType getBlockPointerType(QualType T) const;
   1181 
   1182   /// Gets the struct used to keep track of the descriptor for pointer to
   1183   /// blocks.
   1184   QualType getBlockDescriptorType() const;
   1185 
   1186   /// \brief Return a read_only pipe type for the specified type.
   1187   QualType getReadPipeType(QualType T) const;
   1188   /// \brief Return a write_only pipe type for the specified type.
   1189   QualType getWritePipeType(QualType T) const;
   1190 
   1191   /// Gets the struct used to keep track of the extended descriptor for
   1192   /// pointer to blocks.
   1193   QualType getBlockDescriptorExtendedType() const;
   1194 
   1195   void setcudaConfigureCallDecl(FunctionDecl *FD) {
   1196     cudaConfigureCallDecl = FD;
   1197   }
   1198   FunctionDecl *getcudaConfigureCallDecl() {
   1199     return cudaConfigureCallDecl;
   1200   }
   1201 
   1202   /// Returns true iff we need copy/dispose helpers for the given type.
   1203   bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
   1204 
   1205 
   1206   /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout is set
   1207   /// to false in this case. If HasByrefExtendedLayout returns true, byref variable
   1208   /// has extended lifetime.
   1209   bool getByrefLifetime(QualType Ty,
   1210                         Qualifiers::ObjCLifetime &Lifetime,
   1211                         bool &HasByrefExtendedLayout) const;
   1212 
   1213   /// \brief Return the uniqued reference to the type for an lvalue reference
   1214   /// to the specified type.
   1215   QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
   1216     const;
   1217 
   1218   /// \brief Return the uniqued reference to the type for an rvalue reference
   1219   /// to the specified type.
   1220   QualType getRValueReferenceType(QualType T) const;
   1221 
   1222   /// \brief Return the uniqued reference to the type for a member pointer to
   1223   /// the specified type in the specified class.
   1224   ///
   1225   /// The class \p Cls is a \c Type because it could be a dependent name.
   1226   QualType getMemberPointerType(QualType T, const Type *Cls) const;
   1227 
   1228   /// \brief Return a non-unique reference to the type for a variable array of
   1229   /// the specified element type.
   1230   QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
   1231                                 ArrayType::ArraySizeModifier ASM,
   1232                                 unsigned IndexTypeQuals,
   1233                                 SourceRange Brackets) const;
   1234 
   1235   /// \brief Return a non-unique reference to the type for a dependently-sized
   1236   /// array of the specified element type.
   1237   ///
   1238   /// FIXME: We will need these to be uniqued, or at least comparable, at some
   1239   /// point.
   1240   QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
   1241                                       ArrayType::ArraySizeModifier ASM,
   1242                                       unsigned IndexTypeQuals,
   1243                                       SourceRange Brackets) const;
   1244 
   1245   /// \brief Return a unique reference to the type for an incomplete array of
   1246   /// the specified element type.
   1247   QualType getIncompleteArrayType(QualType EltTy,
   1248                                   ArrayType::ArraySizeModifier ASM,
   1249                                   unsigned IndexTypeQuals) const;
   1250 
   1251   /// \brief Return the unique reference to the type for a constant array of
   1252   /// the specified element type.
   1253   QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
   1254                                 ArrayType::ArraySizeModifier ASM,
   1255                                 unsigned IndexTypeQuals) const;
   1256 
   1257   /// \brief Returns a vla type where known sizes are replaced with [*].
   1258   QualType getVariableArrayDecayedType(QualType Ty) const;
   1259 
   1260   /// \brief Return the unique reference to a vector type of the specified
   1261   /// element type and size.
   1262   ///
   1263   /// \pre \p VectorType must be a built-in type.
   1264   QualType getVectorType(QualType VectorType, unsigned NumElts,
   1265                          VectorType::VectorKind VecKind) const;
   1266 
   1267   /// \brief Return the unique reference to an extended vector type
   1268   /// of the specified element type and size.
   1269   ///
   1270   /// \pre \p VectorType must be a built-in type.
   1271   QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
   1272 
   1273   /// \pre Return a non-unique reference to the type for a dependently-sized
   1274   /// vector of the specified element type.
   1275   ///
   1276   /// FIXME: We will need these to be uniqued, or at least comparable, at some
   1277   /// point.
   1278   QualType getDependentSizedExtVectorType(QualType VectorType,
   1279                                           Expr *SizeExpr,
   1280                                           SourceLocation AttrLoc) const;
   1281 
   1282   QualType getDependentAddressSpaceType(QualType PointeeType,
   1283                                         Expr *AddrSpaceExpr,
   1284                                         SourceLocation AttrLoc) const;
   1285 
   1286   /// \brief Return a K&R style C function type like 'int()'.
   1287   QualType getFunctionNoProtoType(QualType ResultTy,
   1288                                   const FunctionType::ExtInfo &Info) const;
   1289 
   1290   QualType getFunctionNoProtoType(QualType ResultTy) const {
   1291     return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
   1292   }
   1293 
   1294   /// \brief Return a normal function type with a typed argument list.
   1295   QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
   1296                            const FunctionProtoType::ExtProtoInfo &EPI) const {
   1297     return getFunctionTypeInternal(ResultTy, Args, EPI, false);
   1298   }
   1299 
   1300 private:
   1301   /// \brief Return a normal function type with a typed argument list.
   1302   QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
   1303                                    const FunctionProtoType::ExtProtoInfo &EPI,
   1304                                    bool OnlyWantCanonical) const;
   1305 
   1306 public:
   1307   /// \brief Return the unique reference to the type for the specified type
   1308   /// declaration.
   1309   QualType getTypeDeclType(const TypeDecl *Decl,
   1310                            const TypeDecl *PrevDecl = nullptr) const {
   1311     assert(Decl && "Passed null for Decl param");
   1312     if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
   1313 
   1314     if (PrevDecl) {
   1315       assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
   1316       Decl->TypeForDecl = PrevDecl->TypeForDecl;
   1317       return QualType(PrevDecl->TypeForDecl, 0);
   1318     }
   1319 
   1320     return getTypeDeclTypeSlow(Decl);
   1321   }
   1322 
   1323   /// \brief Return the unique reference to the type for the specified
   1324   /// typedef-name decl.
   1325   QualType getTypedefType(const TypedefNameDecl *Decl,
   1326                           QualType Canon = QualType()) const;
   1327 
   1328   QualType getRecordType(const RecordDecl *Decl) const;
   1329 
   1330   QualType getEnumType(const EnumDecl *Decl) const;
   1331 
   1332   QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
   1333 
   1334   QualType getAttributedType(AttributedType::Kind attrKind,
   1335                              QualType modifiedType,
   1336                              QualType equivalentType);
   1337 
   1338   QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
   1339                                         QualType Replacement) const;
   1340   QualType getSubstTemplateTypeParmPackType(
   1341                                           const TemplateTypeParmType *Replaced,
   1342                                             const TemplateArgument &ArgPack);
   1343 
   1344   QualType
   1345   getTemplateTypeParmType(unsigned Depth, unsigned Index,
   1346                           bool ParameterPack,
   1347                           TemplateTypeParmDecl *ParmDecl = nullptr) const;
   1348 
   1349   QualType getTemplateSpecializationType(TemplateName T,
   1350                                          ArrayRef<TemplateArgument> Args,
   1351                                          QualType Canon = QualType()) const;
   1352 
   1353   QualType
   1354   getCanonicalTemplateSpecializationType(TemplateName T,
   1355                                          ArrayRef<TemplateArgument> Args) const;
   1356 
   1357   QualType getTemplateSpecializationType(TemplateName T,
   1358                                          const TemplateArgumentListInfo &Args,
   1359                                          QualType Canon = QualType()) const;
   1360 
   1361   TypeSourceInfo *
   1362   getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
   1363                                     const TemplateArgumentListInfo &Args,
   1364                                     QualType Canon = QualType()) const;
   1365 
   1366   QualType getParenType(QualType NamedType) const;
   1367 
   1368   QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
   1369                              NestedNameSpecifier *NNS,
   1370                              QualType NamedType) const;
   1371   QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
   1372                                 NestedNameSpecifier *NNS,
   1373                                 const IdentifierInfo *Name,
   1374                                 QualType Canon = QualType()) const;
   1375 
   1376   QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
   1377                                                   NestedNameSpecifier *NNS,
   1378                                                   const IdentifierInfo *Name,
   1379                                     const TemplateArgumentListInfo &Args) const;
   1380   QualType getDependentTemplateSpecializationType(
   1381       ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
   1382       const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
   1383 
   1384   TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
   1385 
   1386   /// Get a template argument list with one argument per template parameter
   1387   /// in a template parameter list, such as for the injected class name of
   1388   /// a class template.
   1389   void getInjectedTemplateArgs(const TemplateParameterList *Params,
   1390                                SmallVectorImpl<TemplateArgument> &Args);
   1391 
   1392   QualType getPackExpansionType(QualType Pattern,
   1393                                 Optional<unsigned> NumExpansions);
   1394 
   1395   QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
   1396                                 ObjCInterfaceDecl *PrevDecl = nullptr) const;
   1397 
   1398   /// Legacy interface: cannot provide type arguments or __kindof.
   1399   QualType getObjCObjectType(QualType Base,
   1400                              ObjCProtocolDecl * const *Protocols,
   1401                              unsigned NumProtocols) const;
   1402 
   1403   QualType getObjCObjectType(QualType Base,
   1404                              ArrayRef<QualType> typeArgs,
   1405                              ArrayRef<ObjCProtocolDecl *> protocols,
   1406                              bool isKindOf) const;
   1407 
   1408   QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
   1409                                 ArrayRef<ObjCProtocolDecl *> protocols,
   1410                                 QualType Canonical = QualType()) const;
   1411 
   1412   bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
   1413   /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
   1414   /// QT's qualified-id protocol list adopt all protocols in IDecl's list
   1415   /// of protocols.
   1416   bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
   1417                                             ObjCInterfaceDecl *IDecl);
   1418 
   1419   /// \brief Return a ObjCObjectPointerType type for the given ObjCObjectType.
   1420   QualType getObjCObjectPointerType(QualType OIT) const;
   1421 
   1422   /// \brief GCC extension.
   1423   QualType getTypeOfExprType(Expr *e) const;
   1424   QualType getTypeOfType(QualType t) const;
   1425 
   1426   /// \brief C++11 decltype.
   1427   QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
   1428 
   1429   /// \brief Unary type transforms
   1430   QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
   1431                                  UnaryTransformType::UTTKind UKind) const;
   1432 
   1433   /// \brief C++11 deduced auto type.
   1434   QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
   1435                        bool IsDependent) const;
   1436 
   1437   /// \brief C++11 deduction pattern for 'auto' type.
   1438   QualType getAutoDeductType() const;
   1439 
   1440   /// \brief C++11 deduction pattern for 'auto &&' type.
   1441   QualType getAutoRRefDeductType() const;
   1442 
   1443   /// \brief C++1z deduced class template specialization type.
   1444   QualType getDeducedTemplateSpecializationType(TemplateName Template,
   1445                                                 QualType DeducedType,
   1446                                                 bool IsDependent) const;
   1447 
   1448   /// \brief Return the unique reference to the type for the specified TagDecl
   1449   /// (struct/union/class/enum) decl.
   1450   QualType getTagDeclType(const TagDecl *Decl) const;
   1451 
   1452   /// \brief Return the unique type for "size_t" (C99 7.17), defined in
   1453   /// <stddef.h>.
   1454   ///
   1455   /// The sizeof operator requires this (C99 6.5.3.4p4).
   1456   CanQualType getSizeType() const;
   1457 
   1458   /// \brief Return the unique signed counterpart of
   1459   /// the integer type corresponding to size_t.
   1460   CanQualType getSignedSizeType() const;
   1461 
   1462   /// \brief Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
   1463   /// <stdint.h>.
   1464   CanQualType getIntMaxType() const;
   1465 
   1466   /// \brief Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
   1467   /// <stdint.h>.
   1468   CanQualType getUIntMaxType() const;
   1469 
   1470   /// \brief Return the unique wchar_t type available in C++ (and available as
   1471   /// __wchar_t as a Microsoft extension).
   1472   QualType getWCharType() const { return WCharTy; }
   1473 
   1474   /// \brief Return the type of wide characters. In C++, this returns the
   1475   /// unique wchar_t type. In C99, this returns a type compatible with the type
   1476   /// defined in <stddef.h> as defined by the target.
   1477   QualType getWideCharType() const { return WideCharTy; }
   1478 
   1479   /// \brief Return the type of "signed wchar_t".
   1480   ///
   1481   /// Used when in C++, as a GCC extension.
   1482   QualType getSignedWCharType() const;
   1483 
   1484   /// \brief Return the type of "unsigned wchar_t".
   1485   ///
   1486   /// Used when in C++, as a GCC extension.
   1487   QualType getUnsignedWCharType() const;
   1488 
   1489   /// \brief In C99, this returns a type compatible with the type
   1490   /// defined in <stddef.h> as defined by the target.
   1491   QualType getWIntType() const { return WIntTy; }
   1492 
   1493   /// \brief Return a type compatible with "intptr_t" (C99 7.18.1.4),
   1494   /// as defined by the target.
   1495   QualType getIntPtrType() const;
   1496 
   1497   /// \brief Return a type compatible with "uintptr_t" (C99 7.18.1.4),
   1498   /// as defined by the target.
   1499   QualType getUIntPtrType() const;
   1500 
   1501   /// \brief Return the unique type for "ptrdiff_t" (C99 7.17) defined in
   1502   /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
   1503   QualType getPointerDiffType() const;
   1504 
   1505   /// \brief Return the unique unsigned counterpart of "ptrdiff_t"
   1506   /// integer type. The standard (C11 7.21.6.1p7) refers to this type
   1507   /// in the definition of %tu format specifier.
   1508   QualType getUnsignedPointerDiffType() const;
   1509 
   1510   /// \brief Return the unique type for "pid_t" defined in
   1511   /// <sys/types.h>. We need this to compute the correct type for vfork().
   1512   QualType getProcessIDType() const;
   1513 
   1514   /// \brief Return the C structure type used to represent constant CFStrings.
   1515   QualType getCFConstantStringType() const;
   1516 
   1517   /// \brief Returns the C struct type for objc_super
   1518   QualType getObjCSuperType() const;
   1519   void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
   1520 
   1521   /// Get the structure type used to representation CFStrings, or NULL
   1522   /// if it hasn't yet been built.
   1523   QualType getRawCFConstantStringType() const {
   1524     if (CFConstantStringTypeDecl)
   1525       return getTypedefType(CFConstantStringTypeDecl);
   1526     return QualType();
   1527   }
   1528   void setCFConstantStringType(QualType T);
   1529   TypedefDecl *getCFConstantStringDecl() const;
   1530   RecordDecl *getCFConstantStringTagDecl() const;
   1531 
   1532   // This setter/getter represents the ObjC type for an NSConstantString.
   1533   void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
   1534   QualType getObjCConstantStringInterface() const {
   1535     return ObjCConstantStringType;
   1536   }
   1537 
   1538   QualType getObjCNSStringType() const {
   1539     return ObjCNSStringType;
   1540   }
   1541 
   1542   void setObjCNSStringType(QualType T) {
   1543     ObjCNSStringType = T;
   1544   }
   1545 
   1546   /// \brief Retrieve the type that \c id has been defined to, which may be
   1547   /// different from the built-in \c id if \c id has been typedef'd.
   1548   QualType getObjCIdRedefinitionType() const {
   1549     if (ObjCIdRedefinitionType.isNull())
   1550       return getObjCIdType();
   1551     return ObjCIdRedefinitionType;
   1552   }
   1553 
   1554   /// \brief Set the user-written type that redefines \c id.
   1555   void setObjCIdRedefinitionType(QualType RedefType) {
   1556     ObjCIdRedefinitionType = RedefType;
   1557   }
   1558 
   1559   /// \brief Retrieve the type that \c Class has been defined to, which may be
   1560   /// different from the built-in \c Class if \c Class has been typedef'd.
   1561   QualType getObjCClassRedefinitionType() const {
   1562     if (ObjCClassRedefinitionType.isNull())
   1563       return getObjCClassType();
   1564     return ObjCClassRedefinitionType;
   1565   }
   1566 
   1567   /// \brief Set the user-written type that redefines 'SEL'.
   1568   void setObjCClassRedefinitionType(QualType RedefType) {
   1569     ObjCClassRedefinitionType = RedefType;
   1570   }
   1571 
   1572   /// \brief Retrieve the type that 'SEL' has been defined to, which may be
   1573   /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
   1574   QualType getObjCSelRedefinitionType() const {
   1575     if (ObjCSelRedefinitionType.isNull())
   1576       return getObjCSelType();
   1577     return ObjCSelRedefinitionType;
   1578   }
   1579 
   1580   /// \brief Set the user-written type that redefines 'SEL'.
   1581   void setObjCSelRedefinitionType(QualType RedefType) {
   1582     ObjCSelRedefinitionType = RedefType;
   1583   }
   1584 
   1585   /// Retrieve the identifier 'NSObject'.
   1586   IdentifierInfo *getNSObjectName() {
   1587     if (!NSObjectName) {
   1588       NSObjectName = &Idents.get("NSObject");
   1589     }
   1590 
   1591     return NSObjectName;
   1592   }
   1593 
   1594   /// Retrieve the identifier 'NSCopying'.
   1595   IdentifierInfo *getNSCopyingName() {
   1596     if (!NSCopyingName) {
   1597       NSCopyingName = &Idents.get("NSCopying");
   1598     }
   1599 
   1600     return NSCopyingName;
   1601   }
   1602 
   1603   CanQualType getNSUIntegerType() const {
   1604     assert(Target && "Expected target to be initialized");
   1605     const llvm::Triple &T = Target->getTriple();
   1606     // Windows is LLP64 rather than LP64
   1607     if (T.isOSWindows() && T.isArch64Bit())
   1608       return UnsignedLongLongTy;
   1609     return UnsignedLongTy;
   1610   }
   1611 
   1612   CanQualType getNSIntegerType() const {
   1613     assert(Target && "Expected target to be initialized");
   1614     const llvm::Triple &T = Target->getTriple();
   1615     // Windows is LLP64 rather than LP64
   1616     if (T.isOSWindows() && T.isArch64Bit())
   1617       return LongLongTy;
   1618     return LongTy;
   1619   }
   1620 
   1621   /// Retrieve the identifier 'bool'.
   1622   IdentifierInfo *getBoolName() const {
   1623     if (!BoolName)
   1624       BoolName = &Idents.get("bool");
   1625     return BoolName;
   1626   }
   1627 
   1628   IdentifierInfo *getMakeIntegerSeqName() const {
   1629     if (!MakeIntegerSeqName)
   1630       MakeIntegerSeqName = &Idents.get("__make_integer_seq");
   1631     return MakeIntegerSeqName;
   1632   }
   1633 
   1634   IdentifierInfo *getTypePackElementName() const {
   1635     if (!TypePackElementName)
   1636       TypePackElementName = &Idents.get("__type_pack_element");
   1637     return TypePackElementName;
   1638   }
   1639 
   1640   /// \brief Retrieve the Objective-C "instancetype" type, if already known;
   1641   /// otherwise, returns a NULL type;
   1642   QualType getObjCInstanceType() {
   1643     return getTypeDeclType(getObjCInstanceTypeDecl());
   1644   }
   1645 
   1646   /// \brief Retrieve the typedef declaration corresponding to the Objective-C
   1647   /// "instancetype" type.
   1648   TypedefDecl *getObjCInstanceTypeDecl();
   1649 
   1650   /// \brief Set the type for the C FILE type.
   1651   void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
   1652 
   1653   /// \brief Retrieve the C FILE type.
   1654   QualType getFILEType() const {
   1655     if (FILEDecl)
   1656       return getTypeDeclType(FILEDecl);
   1657     return QualType();
   1658   }
   1659 
   1660   /// \brief Set the type for the C jmp_buf type.
   1661   void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
   1662     this->jmp_bufDecl = jmp_bufDecl;
   1663   }
   1664 
   1665   /// \brief Retrieve the C jmp_buf type.
   1666   QualType getjmp_bufType() const {
   1667     if (jmp_bufDecl)
   1668       return getTypeDeclType(jmp_bufDecl);
   1669     return QualType();
   1670   }
   1671 
   1672   /// \brief Set the type for the C sigjmp_buf type.
   1673   void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
   1674     this->sigjmp_bufDecl = sigjmp_bufDecl;
   1675   }
   1676 
   1677   /// \brief Retrieve the C sigjmp_buf type.
   1678   QualType getsigjmp_bufType() const {
   1679     if (sigjmp_bufDecl)
   1680       return getTypeDeclType(sigjmp_bufDecl);
   1681     return QualType();
   1682   }
   1683 
   1684   /// \brief Set the type for the C ucontext_t type.
   1685   void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
   1686     this->ucontext_tDecl = ucontext_tDecl;
   1687   }
   1688 
   1689   /// \brief Retrieve the C ucontext_t type.
   1690   QualType getucontext_tType() const {
   1691     if (ucontext_tDecl)
   1692       return getTypeDeclType(ucontext_tDecl);
   1693     return QualType();
   1694   }
   1695 
   1696   /// \brief The result type of logical operations, '<', '>', '!=', etc.
   1697   QualType getLogicalOperationType() const {
   1698     return getLangOpts().CPlusPlus ? BoolTy : IntTy;
   1699   }
   1700 
   1701   /// \brief Emit the Objective-CC type encoding for the given type \p T into
   1702   /// \p S.
   1703   ///
   1704   /// If \p Field is specified then record field names are also encoded.
   1705   void getObjCEncodingForType(QualType T, std::string &S,
   1706                               const FieldDecl *Field=nullptr,
   1707                               QualType *NotEncodedT=nullptr) const;
   1708 
   1709   /// \brief Emit the Objective-C property type encoding for the given
   1710   /// type \p T into \p S.
   1711   void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
   1712 
   1713   void getLegacyIntegralTypeEncoding(QualType &t) const;
   1714 
   1715   /// \brief Put the string version of the type qualifiers \p QT into \p S.
   1716   void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
   1717                                        std::string &S) const;
   1718 
   1719   /// \brief Emit the encoded type for the function \p Decl into \p S.
   1720   ///
   1721   /// This is in the same format as Objective-C method encodings.
   1722   ///
   1723   /// \returns true if an error occurred (e.g., because one of the parameter
   1724   /// types is incomplete), false otherwise.
   1725   std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
   1726 
   1727   /// \brief Emit the encoded type for the method declaration \p Decl into
   1728   /// \p S.
   1729   std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
   1730                                            bool Extended = false) const;
   1731 
   1732   /// \brief Return the encoded type for this block declaration.
   1733   std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
   1734 
   1735   /// getObjCEncodingForPropertyDecl - Return the encoded type for
   1736   /// this method declaration. If non-NULL, Container must be either
   1737   /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
   1738   /// only be NULL when getting encodings for protocol properties.
   1739   std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
   1740                                              const Decl *Container) const;
   1741 
   1742   bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
   1743                                       ObjCProtocolDecl *rProto) const;
   1744 
   1745   ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
   1746                                                   const ObjCPropertyDecl *PD,
   1747                                                   const Decl *Container) const;
   1748 
   1749   /// \brief Return the size of type \p T for Objective-C encoding purpose,
   1750   /// in characters.
   1751   CharUnits getObjCEncodingTypeSize(QualType T) const;
   1752 
   1753   /// \brief Retrieve the typedef corresponding to the predefined \c id type
   1754   /// in Objective-C.
   1755   TypedefDecl *getObjCIdDecl() const;
   1756 
   1757   /// \brief Represents the Objective-CC \c id type.
   1758   ///
   1759   /// This is set up lazily, by Sema.  \c id is always a (typedef for a)
   1760   /// pointer type, a pointer to a struct.
   1761   QualType getObjCIdType() const {
   1762     return getTypeDeclType(getObjCIdDecl());
   1763   }
   1764 
   1765   /// \brief Retrieve the typedef corresponding to the predefined 'SEL' type
   1766   /// in Objective-C.
   1767   TypedefDecl *getObjCSelDecl() const;
   1768 
   1769   /// \brief Retrieve the type that corresponds to the predefined Objective-C
   1770   /// 'SEL' type.
   1771   QualType getObjCSelType() const {
   1772     return getTypeDeclType(getObjCSelDecl());
   1773   }
   1774 
   1775   /// \brief Retrieve the typedef declaration corresponding to the predefined
   1776   /// Objective-C 'Class' type.
   1777   TypedefDecl *getObjCClassDecl() const;
   1778 
   1779   /// \brief Represents the Objective-C \c Class type.
   1780   ///
   1781   /// This is set up lazily, by Sema.  \c Class is always a (typedef for a)
   1782   /// pointer type, a pointer to a struct.
   1783   QualType getObjCClassType() const {
   1784     return getTypeDeclType(getObjCClassDecl());
   1785   }
   1786 
   1787   /// \brief Retrieve the Objective-C class declaration corresponding to
   1788   /// the predefined \c Protocol class.
   1789   ObjCInterfaceDecl *getObjCProtocolDecl() const;
   1790 
   1791   /// \brief Retrieve declaration of 'BOOL' typedef
   1792   TypedefDecl *getBOOLDecl() const {
   1793     return BOOLDecl;
   1794   }
   1795 
   1796   /// \brief Save declaration of 'BOOL' typedef
   1797   void setBOOLDecl(TypedefDecl *TD) {
   1798     BOOLDecl = TD;
   1799   }
   1800 
   1801   /// \brief type of 'BOOL' type.
   1802   QualType getBOOLType() const {
   1803     return getTypeDeclType(getBOOLDecl());
   1804   }
   1805 
   1806   /// \brief Retrieve the type of the Objective-C \c Protocol class.
   1807   QualType getObjCProtoType() const {
   1808     return getObjCInterfaceType(getObjCProtocolDecl());
   1809   }
   1810 
   1811   /// \brief Retrieve the C type declaration corresponding to the predefined
   1812   /// \c __builtin_va_list type.
   1813   TypedefDecl *getBuiltinVaListDecl() const;
   1814 
   1815   /// \brief Retrieve the type of the \c __builtin_va_list type.
   1816   QualType getBuiltinVaListType() const {
   1817     return getTypeDeclType(getBuiltinVaListDecl());
   1818   }
   1819 
   1820   /// \brief Retrieve the C type declaration corresponding to the predefined
   1821   /// \c __va_list_tag type used to help define the \c __builtin_va_list type
   1822   /// for some targets.
   1823   Decl *getVaListTagDecl() const;
   1824 
   1825   /// Retrieve the C type declaration corresponding to the predefined
   1826   /// \c __builtin_ms_va_list type.
   1827   TypedefDecl *getBuiltinMSVaListDecl() const;
   1828 
   1829   /// Retrieve the type of the \c __builtin_ms_va_list type.
   1830   QualType getBuiltinMSVaListType() const {
   1831     return getTypeDeclType(getBuiltinMSVaListDecl());
   1832   }
   1833 
   1834   /// \brief Return a type with additional \c const, \c volatile, or
   1835   /// \c restrict qualifiers.
   1836   QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
   1837     return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
   1838   }
   1839 
   1840   /// \brief Un-split a SplitQualType.
   1841   QualType getQualifiedType(SplitQualType split) const {
   1842     return getQualifiedType(split.Ty, split.Quals);
   1843   }
   1844 
   1845   /// \brief Return a type with additional qualifiers.
   1846   QualType getQualifiedType(QualType T, Qualifiers Qs) const {
   1847     if (!Qs.hasNonFastQualifiers())
   1848       return T.withFastQualifiers(Qs.getFastQualifiers());
   1849     QualifierCollector Qc(Qs);
   1850     const Type *Ptr = Qc.strip(T);
   1851     return getExtQualType(Ptr, Qc);
   1852   }
   1853 
   1854   /// \brief Return a type with additional qualifiers.
   1855   QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
   1856     if (!Qs.hasNonFastQualifiers())
   1857       return QualType(T, Qs.getFastQualifiers());
   1858     return getExtQualType(T, Qs);
   1859   }
   1860 
   1861   /// \brief Return a type with the given lifetime qualifier.
   1862   ///
   1863   /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
   1864   QualType getLifetimeQualifiedType(QualType type,
   1865                                     Qualifiers::ObjCLifetime lifetime) {
   1866     assert(type.getObjCLifetime() == Qualifiers::OCL_None);
   1867     assert(lifetime != Qualifiers::OCL_None);
   1868 
   1869     Qualifiers qs;
   1870     qs.addObjCLifetime(lifetime);
   1871     return getQualifiedType(type, qs);
   1872   }
   1873 
   1874   /// getUnqualifiedObjCPointerType - Returns version of
   1875   /// Objective-C pointer type with lifetime qualifier removed.
   1876   QualType getUnqualifiedObjCPointerType(QualType type) const {
   1877     if (!type.getTypePtr()->isObjCObjectPointerType() ||
   1878         !type.getQualifiers().hasObjCLifetime())
   1879       return type;
   1880     Qualifiers Qs = type.getQualifiers();
   1881     Qs.removeObjCLifetime();
   1882     return getQualifiedType(type.getUnqualifiedType(), Qs);
   1883   }
   1884 
   1885   DeclarationNameInfo getNameForTemplate(TemplateName Name,
   1886                                          SourceLocation NameLoc) const;
   1887 
   1888   TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
   1889                                          UnresolvedSetIterator End) const;
   1890 
   1891   TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
   1892                                         bool TemplateKeyword,
   1893                                         TemplateDecl *Template) const;
   1894 
   1895   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
   1896                                         const IdentifierInfo *Name) const;
   1897   TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
   1898                                         OverloadedOperatorKind Operator) const;
   1899   TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
   1900                                             TemplateName replacement) const;
   1901   TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
   1902                                         const TemplateArgument &ArgPack) const;
   1903 
   1904   enum GetBuiltinTypeError {
   1905     GE_None,              ///< No error
   1906     GE_Missing_stdio,     ///< Missing a type from <stdio.h>
   1907     GE_Missing_setjmp,    ///< Missing a type from <setjmp.h>
   1908     GE_Missing_ucontext   ///< Missing a type from <ucontext.h>
   1909   };
   1910 
   1911   /// \brief Return the type for the specified builtin.
   1912   ///
   1913   /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
   1914   /// arguments to the builtin that are required to be integer constant
   1915   /// expressions.
   1916   QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
   1917                           unsigned *IntegerConstantArgs = nullptr) const;
   1918 
   1919 private:
   1920   CanQualType getFromTargetType(unsigned Type) const;
   1921   TypeInfo getTypeInfoImpl(const Type *T) const;
   1922 
   1923   //===--------------------------------------------------------------------===//
   1924   //                         Type Predicates.
   1925   //===--------------------------------------------------------------------===//
   1926 
   1927 public:
   1928   /// \brief Return one of the GCNone, Weak or Strong Objective-C garbage
   1929   /// collection attributes.
   1930   Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
   1931 
   1932   /// \brief Return true if the given vector types are of the same unqualified
   1933   /// type or if they are equivalent to the same GCC vector type.
   1934   ///
   1935   /// \note This ignores whether they are target-specific (AltiVec or Neon)
   1936   /// types.
   1937   bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
   1938 
   1939   /// \brief Return true if this is an \c NSObject object with its \c NSObject
   1940   /// attribute set.
   1941   static bool isObjCNSObjectType(QualType Ty) {
   1942     return Ty->isObjCNSObjectType();
   1943   }
   1944 
   1945   //===--------------------------------------------------------------------===//
   1946   //                         Type Sizing and Analysis
   1947   //===--------------------------------------------------------------------===//
   1948 
   1949   /// \brief Return the APFloat 'semantics' for the specified scalar floating
   1950   /// point type.
   1951   const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
   1952 
   1953   /// \brief Get the size and alignment of the specified complete type in bits.
   1954   TypeInfo getTypeInfo(const Type *T) const;
   1955   TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
   1956 
   1957   /// \brief Get default simd alignment of the specified complete type in bits.
   1958   unsigned getOpenMPDefaultSimdAlign(QualType T) const;
   1959 
   1960   /// \brief Return the size of the specified (complete) type \p T, in bits.
   1961   uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
   1962   uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
   1963 
   1964   /// \brief Return the size of the character type, in bits.
   1965   uint64_t getCharWidth() const {
   1966     return getTypeSize(CharTy);
   1967   }
   1968 
   1969   /// \brief Convert a size in bits to a size in characters.
   1970   CharUnits toCharUnitsFromBits(int64_t BitSize) const;
   1971 
   1972   /// \brief Convert a size in characters to a size in bits.
   1973   int64_t toBits(CharUnits CharSize) const;
   1974 
   1975   /// \brief Return the size of the specified (complete) type \p T, in
   1976   /// characters.
   1977   CharUnits getTypeSizeInChars(QualType T) const;
   1978   CharUnits getTypeSizeInChars(const Type *T) const;
   1979 
   1980   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
   1981   /// bits.
   1982   unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
   1983   unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
   1984 
   1985   /// \brief Return the ABI-specified alignment of a type, in bits, or 0 if
   1986   /// the type is incomplete and we cannot determine the alignment (for
   1987   /// example, from alignment attributes).
   1988   unsigned getTypeAlignIfKnown(QualType T) const;
   1989 
   1990   /// \brief Return the ABI-specified alignment of a (complete) type \p T, in
   1991   /// characters.
   1992   CharUnits getTypeAlignInChars(QualType T) const;
   1993   CharUnits getTypeAlignInChars(const Type *T) const;
   1994 
   1995   // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
   1996   // type is a record, its data size is returned.
   1997   std::pair<CharUnits, CharUnits> getTypeInfoDataSizeInChars(QualType T) const;
   1998 
   1999   std::pair<CharUnits, CharUnits> getTypeInfoInChars(const Type *T) const;
   2000   std::pair<CharUnits, CharUnits> getTypeInfoInChars(QualType T) const;
   2001 
   2002   /// \brief Determine if the alignment the type has was required using an
   2003   /// alignment attribute.
   2004   bool isAlignmentRequired(const Type *T) const;
   2005   bool isAlignmentRequired(QualType T) const;
   2006 
   2007   /// \brief Return the "preferred" alignment of the specified type \p T for
   2008   /// the current target, in bits.
   2009   ///
   2010   /// This can be different than the ABI alignment in cases where it is
   2011   /// beneficial for performance to overalign a data type.
   2012   unsigned getPreferredTypeAlign(const Type *T) const;
   2013 
   2014   /// \brief Return the default alignment for __attribute__((aligned)) on
   2015   /// this target, to be used if no alignment value is specified.
   2016   unsigned getTargetDefaultAlignForAttributeAligned() const;
   2017 
   2018   /// \brief Return the alignment in bits that should be given to a
   2019   /// global variable with type \p T.
   2020   unsigned getAlignOfGlobalVar(QualType T) const;
   2021 
   2022   /// \brief Return the alignment in characters that should be given to a
   2023   /// global variable with type \p T.
   2024   CharUnits getAlignOfGlobalVarInChars(QualType T) const;
   2025 
   2026   /// \brief Return a conservative estimate of the alignment of the specified
   2027   /// decl \p D.
   2028   ///
   2029   /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
   2030   /// alignment.
   2031   ///
   2032   /// If \p ForAlignof, references are treated like their underlying type
   2033   /// and  large arrays don't get any special treatment. If not \p ForAlignof
   2034   /// it computes the value expected by CodeGen: references are treated like
   2035   /// pointers and large arrays get extra alignment.
   2036   CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
   2037 
   2038   /// \brief Get or compute information about the layout of the specified
   2039   /// record (struct/union/class) \p D, which indicates its size and field
   2040   /// position information.
   2041   const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
   2042 
   2043   /// \brief Get or compute information about the layout of the specified
   2044   /// Objective-C interface.
   2045   const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
   2046     const;
   2047 
   2048   void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
   2049                         bool Simple = false) const;
   2050 
   2051   /// \brief Get or compute information about the layout of the specified
   2052   /// Objective-C implementation.
   2053   ///
   2054   /// This may differ from the interface if synthesized ivars are present.
   2055   const ASTRecordLayout &
   2056   getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
   2057 
   2058   /// \brief Get our current best idea for the key function of the
   2059   /// given record decl, or NULL if there isn't one.
   2060   ///
   2061   /// The key function is, according to the Itanium C++ ABI section 5.2.3:
   2062   ///   ...the first non-pure virtual function that is not inline at the
   2063   ///   point of class definition.
   2064   ///
   2065   /// Other ABIs use the same idea.  However, the ARM C++ ABI ignores
   2066   /// virtual functions that are defined 'inline', which means that
   2067   /// the result of this computation can change.
   2068   const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
   2069 
   2070   /// \brief Observe that the given method cannot be a key function.
   2071   /// Checks the key-function cache for the method's class and clears it
   2072   /// if matches the given declaration.
   2073   ///
   2074   /// This is used in ABIs where out-of-line definitions marked
   2075   /// inline are not considered to be key functions.
   2076   ///
   2077   /// \param method should be the declaration from the class definition
   2078   void setNonKeyFunction(const CXXMethodDecl *method);
   2079 
   2080   /// Loading virtual member pointers using the virtual inheritance model
   2081   /// always results in an adjustment using the vbtable even if the index is
   2082   /// zero.
   2083   ///
   2084   /// This is usually OK because the first slot in the vbtable points
   2085   /// backwards to the top of the MDC.  However, the MDC might be reusing a
   2086   /// vbptr from an nv-base.  In this case, the first slot in the vbtable
   2087   /// points to the start of the nv-base which introduced the vbptr and *not*
   2088   /// the MDC.  Modify the NonVirtualBaseAdjustment to account for this.
   2089   CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
   2090 
   2091   /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
   2092   uint64_t getFieldOffset(const ValueDecl *FD) const;
   2093 
   2094   /// Get the offset of an ObjCIvarDecl in bits.
   2095   uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
   2096                                 const ObjCImplementationDecl *ID,
   2097                                 const ObjCIvarDecl *Ivar) const;
   2098 
   2099   bool isNearlyEmpty(const CXXRecordDecl *RD) const;
   2100 
   2101   VTableContextBase *getVTableContext();
   2102 
   2103   MangleContext *createMangleContext();
   2104 
   2105   void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
   2106                             SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
   2107 
   2108   unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
   2109   void CollectInheritedProtocols(const Decl *CDecl,
   2110                           llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
   2111 
   2112   //===--------------------------------------------------------------------===//
   2113   //                            Type Operators
   2114   //===--------------------------------------------------------------------===//
   2115 
   2116   /// \brief Return the canonical (structural) type corresponding to the
   2117   /// specified potentially non-canonical type \p T.
   2118   ///
   2119   /// The non-canonical version of a type may have many "decorated" versions of
   2120   /// types.  Decorators can include typedefs, 'typeof' operators, etc. The
   2121   /// returned type is guaranteed to be free of any of these, allowing two
   2122   /// canonical types to be compared for exact equality with a simple pointer
   2123   /// comparison.
   2124   CanQualType getCanonicalType(QualType T) const {
   2125     return CanQualType::CreateUnsafe(T.getCanonicalType());
   2126   }
   2127 
   2128   const Type *getCanonicalType(const Type *T) const {
   2129     return T->getCanonicalTypeInternal().getTypePtr();
   2130   }
   2131 
   2132   /// \brief Return the canonical parameter type corresponding to the specific
   2133   /// potentially non-canonical one.
   2134   ///
   2135   /// Qualifiers are stripped off, functions are turned into function
   2136   /// pointers, and arrays decay one level into pointers.
   2137   CanQualType getCanonicalParamType(QualType T) const;
   2138 
   2139   /// \brief Determine whether the given types \p T1 and \p T2 are equivalent.
   2140   bool hasSameType(QualType T1, QualType T2) const {
   2141     return getCanonicalType(T1) == getCanonicalType(T2);
   2142   }
   2143 
   2144   bool hasSameType(const Type *T1, const Type *T2) const {
   2145     return getCanonicalType(T1) == getCanonicalType(T2);
   2146   }
   2147 
   2148   /// \brief Return this type as a completely-unqualified array type,
   2149   /// capturing the qualifiers in \p Quals.
   2150   ///
   2151   /// This will remove the minimal amount of sugaring from the types, similar
   2152   /// to the behavior of QualType::getUnqualifiedType().
   2153   ///
   2154   /// \param T is the qualified type, which may be an ArrayType
   2155   ///
   2156   /// \param Quals will receive the full set of qualifiers that were
   2157   /// applied to the array.
   2158   ///
   2159   /// \returns if this is an array type, the completely unqualified array type
   2160   /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
   2161   QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
   2162 
   2163   /// \brief Determine whether the given types are equivalent after
   2164   /// cvr-qualifiers have been removed.
   2165   bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
   2166     return getCanonicalType(T1).getTypePtr() ==
   2167            getCanonicalType(T2).getTypePtr();
   2168   }
   2169 
   2170   bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
   2171                                        bool IsParam) const {
   2172     auto SubTnullability = SubT->getNullability(*this);
   2173     auto SuperTnullability = SuperT->getNullability(*this);
   2174     if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
   2175       // Neither has nullability; return true
   2176       if (!SubTnullability)
   2177         return true;
   2178       // Both have nullability qualifier.
   2179       if (*SubTnullability == *SuperTnullability ||
   2180           *SubTnullability == NullabilityKind::Unspecified ||
   2181           *SuperTnullability == NullabilityKind::Unspecified)
   2182         return true;
   2183 
   2184       if (IsParam) {
   2185         // Ok for the superclass method parameter to be "nonnull" and the subclass
   2186         // method parameter to be "nullable"
   2187         return (*SuperTnullability == NullabilityKind::NonNull &&
   2188                 *SubTnullability == NullabilityKind::Nullable);
   2189       }
   2190       else {
   2191         // For the return type, it's okay for the superclass method to specify
   2192         // "nullable" and the subclass method specify "nonnull"
   2193         return (*SuperTnullability == NullabilityKind::Nullable &&
   2194                 *SubTnullability == NullabilityKind::NonNull);
   2195       }
   2196     }
   2197     return true;
   2198   }
   2199 
   2200   bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
   2201                            const ObjCMethodDecl *MethodImp);
   2202 
   2203   bool UnwrapSimilarPointerTypes(QualType &T1, QualType &T2);
   2204 
   2205   /// \brief Retrieves the "canonical" nested name specifier for a
   2206   /// given nested name specifier.
   2207   ///
   2208   /// The canonical nested name specifier is a nested name specifier
   2209   /// that uniquely identifies a type or namespace within the type
   2210   /// system. For example, given:
   2211   ///
   2212   /// \code
   2213   /// namespace N {
   2214   ///   struct S {
   2215   ///     template<typename T> struct X { typename T* type; };
   2216   ///   };
   2217   /// }
   2218   ///
   2219   /// template<typename T> struct Y {
   2220   ///   typename N::S::X<T>::type member;
   2221   /// };
   2222   /// \endcode
   2223   ///
   2224   /// Here, the nested-name-specifier for N::S::X<T>:: will be
   2225   /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
   2226   /// by declarations in the type system and the canonical type for
   2227   /// the template type parameter 'T' is template-param-0-0.
   2228   NestedNameSpecifier *
   2229   getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
   2230 
   2231   /// \brief Retrieves the default calling convention for the current target.
   2232   CallingConv getDefaultCallingConvention(bool IsVariadic,
   2233                                           bool IsCXXMethod) const;
   2234 
   2235   /// \brief Retrieves the "canonical" template name that refers to a
   2236   /// given template.
   2237   ///
   2238   /// The canonical template name is the simplest expression that can
   2239   /// be used to refer to a given template. For most templates, this
   2240   /// expression is just the template declaration itself. For example,
   2241   /// the template std::vector can be referred to via a variety of
   2242   /// names---std::vector, \::std::vector, vector (if vector is in
   2243   /// scope), etc.---but all of these names map down to the same
   2244   /// TemplateDecl, which is used to form the canonical template name.
   2245   ///
   2246   /// Dependent template names are more interesting. Here, the
   2247   /// template name could be something like T::template apply or
   2248   /// std::allocator<T>::template rebind, where the nested name
   2249   /// specifier itself is dependent. In this case, the canonical
   2250   /// template name uses the shortest form of the dependent
   2251   /// nested-name-specifier, which itself contains all canonical
   2252   /// types, values, and templates.
   2253   TemplateName getCanonicalTemplateName(TemplateName Name) const;
   2254 
   2255   /// \brief Determine whether the given template names refer to the same
   2256   /// template.
   2257   bool hasSameTemplateName(TemplateName X, TemplateName Y);
   2258 
   2259   /// \brief Retrieve the "canonical" template argument.
   2260   ///
   2261   /// The canonical template argument is the simplest template argument
   2262   /// (which may be a type, value, expression, or declaration) that
   2263   /// expresses the value of the argument.
   2264   TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
   2265     const;
   2266 
   2267   /// Type Query functions.  If the type is an instance of the specified class,
   2268   /// return the Type pointer for the underlying maximally pretty type.  This
   2269   /// is a member of ASTContext because this may need to do some amount of
   2270   /// canonicalization, e.g. to move type qualifiers into the element type.
   2271   const ArrayType *getAsArrayType(QualType T) const;
   2272   const ConstantArrayType *getAsConstantArrayType(QualType T) const {
   2273     return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
   2274   }
   2275   const VariableArrayType *getAsVariableArrayType(QualType T) const {
   2276     return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
   2277   }
   2278   const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
   2279     return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
   2280   }
   2281   const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
   2282     const {
   2283     return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
   2284   }
   2285 
   2286   /// \brief Return the innermost element type of an array type.
   2287   ///
   2288   /// For example, will return "int" for int[m][n]
   2289   QualType getBaseElementType(const ArrayType *VAT) const;
   2290 
   2291   /// \brief Return the innermost element type of a type (which needn't
   2292   /// actually be an array type).
   2293   QualType getBaseElementType(QualType QT) const;
   2294 
   2295   /// \brief Return number of constant array elements.
   2296   uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
   2297 
   2298   /// \brief Perform adjustment on the parameter type of a function.
   2299   ///
   2300   /// This routine adjusts the given parameter type @p T to the actual
   2301   /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
   2302   /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
   2303   QualType getAdjustedParameterType(QualType T) const;
   2304 
   2305   /// \brief Retrieve the parameter type as adjusted for use in the signature
   2306   /// of a function, decaying array and function types and removing top-level
   2307   /// cv-qualifiers.
   2308   QualType getSignatureParameterType(QualType T) const;
   2309 
   2310   QualType getExceptionObjectType(QualType T) const;
   2311 
   2312   /// \brief Return the properly qualified result of decaying the specified
   2313   /// array type to a pointer.
   2314   ///
   2315   /// This operation is non-trivial when handling typedefs etc.  The canonical
   2316   /// type of \p T must be an array type, this returns a pointer to a properly
   2317   /// qualified element of the array.
   2318   ///
   2319   /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
   2320   QualType getArrayDecayedType(QualType T) const;
   2321 
   2322   /// \brief Return the type that \p PromotableType will promote to: C99
   2323   /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
   2324   QualType getPromotedIntegerType(QualType PromotableType) const;
   2325 
   2326   /// \brief Recurses in pointer/array types until it finds an Objective-C
   2327   /// retainable type and returns its ownership.
   2328   Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
   2329 
   2330   /// \brief Whether this is a promotable bitfield reference according
   2331   /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
   2332   ///
   2333   /// \returns the type this bit-field will promote to, or NULL if no
   2334   /// promotion occurs.
   2335   QualType isPromotableBitField(Expr *E) const;
   2336 
   2337   /// \brief Return the highest ranked integer type, see C99 6.3.1.8p1.
   2338   ///
   2339   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
   2340   /// \p LHS < \p RHS, return -1.
   2341   int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
   2342 
   2343   /// \brief Compare the rank of the two specified floating point types,
   2344   /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
   2345   ///
   2346   /// If \p LHS > \p RHS, returns 1.  If \p LHS == \p RHS, returns 0.  If
   2347   /// \p LHS < \p RHS, return -1.
   2348   int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
   2349 
   2350   /// \brief Return a real floating point or a complex type (based on
   2351   /// \p typeDomain/\p typeSize).
   2352   ///
   2353   /// \param typeDomain a real floating point or complex type.
   2354   /// \param typeSize a real floating point or complex type.
   2355   QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
   2356                                              QualType typeDomain) const;
   2357 
   2358   unsigned getTargetAddressSpace(QualType T) const {
   2359     return getTargetAddressSpace(T.getQualifiers());
   2360   }
   2361 
   2362   unsigned getTargetAddressSpace(Qualifiers Q) const {
   2363     return getTargetAddressSpace(Q.getAddressSpace());
   2364   }
   2365 
   2366   unsigned getTargetAddressSpace(LangAS AS) const;
   2367 
   2368   /// Get target-dependent integer value for null pointer which is used for
   2369   /// constant folding.
   2370   uint64_t getTargetNullPointerValue(QualType QT) const;
   2371 
   2372   bool addressSpaceMapManglingFor(LangAS AS) const {
   2373     return AddrSpaceMapMangling || isTargetAddressSpace(AS);
   2374   }
   2375 
   2376 private:
   2377   // Helper for integer ordering
   2378   unsigned getIntegerRank(const Type *T) const;
   2379 
   2380 public:
   2381   //===--------------------------------------------------------------------===//
   2382   //                    Type Compatibility Predicates
   2383   //===--------------------------------------------------------------------===//
   2384 
   2385   /// Compatibility predicates used to check assignment expressions.
   2386   bool typesAreCompatible(QualType T1, QualType T2,
   2387                           bool CompareUnqualified = false); // C99 6.2.7p1
   2388 
   2389   bool propertyTypesAreCompatible(QualType, QualType);
   2390   bool typesAreBlockPointerCompatible(QualType, QualType);
   2391 
   2392   bool isObjCIdType(QualType T) const {
   2393     return T == getObjCIdType();
   2394   }
   2395   bool isObjCClassType(QualType T) const {
   2396     return T == getObjCClassType();
   2397   }
   2398   bool isObjCSelType(QualType T) const {
   2399     return T == getObjCSelType();
   2400   }
   2401   bool ObjCQualifiedIdTypesAreCompatible(QualType LHS, QualType RHS,
   2402                                          bool ForCompare);
   2403 
   2404   bool ObjCQualifiedClassTypesAreCompatible(QualType LHS, QualType RHS);
   2405 
   2406   // Check the safety of assignment from LHS to RHS
   2407   bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
   2408                                const ObjCObjectPointerType *RHSOPT);
   2409   bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
   2410                                const ObjCObjectType *RHS);
   2411   bool canAssignObjCInterfacesInBlockPointer(
   2412                                           const ObjCObjectPointerType *LHSOPT,
   2413                                           const ObjCObjectPointerType *RHSOPT,
   2414                                           bool BlockReturnType);
   2415   bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
   2416   QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
   2417                                    const ObjCObjectPointerType *RHSOPT);
   2418   bool canBindObjCObjectType(QualType To, QualType From);
   2419 
   2420   // Functions for calculating composite types
   2421   QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
   2422                       bool Unqualified = false, bool BlockReturnType = false);
   2423   QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
   2424                               bool Unqualified = false);
   2425   QualType mergeFunctionParameterTypes(QualType, QualType,
   2426                                        bool OfBlockPointer = false,
   2427                                        bool Unqualified = false);
   2428   QualType mergeTransparentUnionType(QualType, QualType,
   2429                                      bool OfBlockPointer=false,
   2430                                      bool Unqualified = false);
   2431 
   2432   QualType mergeObjCGCQualifiers(QualType, QualType);
   2433 
   2434   /// This function merges the ExtParameterInfo lists of two functions. It
   2435   /// returns true if the lists are compatible. The merged list is returned in
   2436   /// NewParamInfos.
   2437   ///
   2438   /// \param FirstFnType The type of the first function.
   2439   ///
   2440   /// \param SecondFnType The type of the second function.
   2441   ///
   2442   /// \param CanUseFirst This flag is set to true if the first function's
   2443   /// ExtParameterInfo list can be used as the composite list of
   2444   /// ExtParameterInfo.
   2445   ///
   2446   /// \param CanUseSecond This flag is set to true if the second function's
   2447   /// ExtParameterInfo list can be used as the composite list of
   2448   /// ExtParameterInfo.
   2449   ///
   2450   /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
   2451   /// empty if none of the flags are set.
   2452   ///
   2453   bool mergeExtParameterInfo(
   2454       const FunctionProtoType *FirstFnType,
   2455       const FunctionProtoType *SecondFnType,
   2456       bool &CanUseFirst, bool &CanUseSecond,
   2457       SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
   2458 
   2459   void ResetObjCLayout(const ObjCContainerDecl *CD);
   2460 
   2461   //===--------------------------------------------------------------------===//
   2462   //                    Integer Predicates
   2463   //===--------------------------------------------------------------------===//
   2464 
   2465   // The width of an integer, as defined in C99 6.2.6.2. This is the number
   2466   // of bits in an integer type excluding any padding bits.
   2467   unsigned getIntWidth(QualType T) const;
   2468 
   2469   // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
   2470   // unsigned integer type.  This method takes a signed type, and returns the
   2471   // corresponding unsigned integer type.
   2472   QualType getCorrespondingUnsignedType(QualType T) const;
   2473 
   2474   //===--------------------------------------------------------------------===//
   2475   //                    Integer Values
   2476   //===--------------------------------------------------------------------===//
   2477 
   2478   /// \brief Make an APSInt of the appropriate width and signedness for the
   2479   /// given \p Value and integer \p Type.
   2480   llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
   2481     // If Type is a signed integer type larger than 64 bits, we need to be sure
   2482     // to sign extend Res appropriately.
   2483     llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
   2484     Res = Value;
   2485     unsigned Width = getIntWidth(Type);
   2486     if (Width != Res.getBitWidth())
   2487       return Res.extOrTrunc(Width);
   2488     return Res;
   2489   }
   2490 
   2491   bool isSentinelNullExpr(const Expr *E);
   2492 
   2493   /// \brief Get the implementation of the ObjCInterfaceDecl \p D, or NULL if
   2494   /// none exists.
   2495   ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
   2496   /// \brief Get the implementation of the ObjCCategoryDecl \p D, or NULL if
   2497   /// none exists.
   2498   ObjCCategoryImplDecl   *getObjCImplementation(ObjCCategoryDecl *D);
   2499 
   2500   /// \brief Return true if there is at least one \@implementation in the TU.
   2501   bool AnyObjCImplementation() {
   2502     return !ObjCImpls.empty();
   2503   }
   2504 
   2505   /// \brief Set the implementation of ObjCInterfaceDecl.
   2506   void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
   2507                              ObjCImplementationDecl *ImplD);
   2508   /// \brief Set the implementation of ObjCCategoryDecl.
   2509   void setObjCImplementation(ObjCCategoryDecl *CatD,
   2510                              ObjCCategoryImplDecl *ImplD);
   2511 
   2512   /// \brief Get the duplicate declaration of a ObjCMethod in the same
   2513   /// interface, or null if none exists.
   2514   const ObjCMethodDecl *
   2515   getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
   2516 
   2517   void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
   2518                                   const ObjCMethodDecl *Redecl);
   2519 
   2520   /// \brief Returns the Objective-C interface that \p ND belongs to if it is
   2521   /// an Objective-C method/property/ivar etc. that is part of an interface,
   2522   /// otherwise returns null.
   2523   const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
   2524 
   2525   /// \brief Set the copy inialization expression of a block var decl.
   2526   void setBlockVarCopyInits(VarDecl*VD, Expr* Init);
   2527   /// \brief Get the copy initialization expression of the VarDecl \p VD, or
   2528   /// NULL if none exists.
   2529   Expr *getBlockVarCopyInits(const VarDecl* VD);
   2530 
   2531   /// \brief Allocate an uninitialized TypeSourceInfo.
   2532   ///
   2533   /// The caller should initialize the memory held by TypeSourceInfo using
   2534   /// the TypeLoc wrappers.
   2535   ///
   2536   /// \param T the type that will be the basis for type source info. This type
   2537   /// should refer to how the declarator was written in source code, not to
   2538   /// what type semantic analysis resolved the declarator to.
   2539   ///
   2540   /// \param Size the size of the type info to create, or 0 if the size
   2541   /// should be calculated based on the type.
   2542   TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
   2543 
   2544   /// \brief Allocate a TypeSourceInfo where all locations have been
   2545   /// initialized to a given location, which defaults to the empty
   2546   /// location.
   2547   TypeSourceInfo *
   2548   getTrivialTypeSourceInfo(QualType T,
   2549                            SourceLocation Loc = SourceLocation()) const;
   2550 
   2551   /// \brief Add a deallocation callback that will be invoked when the
   2552   /// ASTContext is destroyed.
   2553   ///
   2554   /// \param Callback A callback function that will be invoked on destruction.
   2555   ///
   2556   /// \param Data Pointer data that will be provided to the callback function
   2557   /// when it is called.
   2558   void AddDeallocation(void (*Callback)(void*), void *Data);
   2559 
   2560   /// If T isn't trivially destructible, calls AddDeallocation to register it
   2561   /// for destruction.
   2562   template <typename T>
   2563   void addDestruction(T *Ptr) {
   2564     if (!std::is_trivially_destructible<T>::value) {
   2565       auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
   2566       AddDeallocation(DestroyPtr, Ptr);
   2567     }
   2568   }
   2569 
   2570   GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
   2571   GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
   2572 
   2573   /// \brief Determines if the decl can be CodeGen'ed or deserialized from PCH
   2574   /// lazily, only when used; this is only relevant for function or file scoped
   2575   /// var definitions.
   2576   ///
   2577   /// \returns true if the function/var must be CodeGen'ed/deserialized even if
   2578   /// it is not used.
   2579   bool DeclMustBeEmitted(const Decl *D);
   2580 
   2581   const CXXConstructorDecl *
   2582   getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
   2583 
   2584   void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
   2585                                             CXXConstructorDecl *CD);
   2586 
   2587   void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
   2588 
   2589   TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
   2590 
   2591   void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
   2592 
   2593   DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
   2594 
   2595   void setManglingNumber(const NamedDecl *ND, unsigned Number);
   2596   unsigned getManglingNumber(const NamedDecl *ND) const;
   2597 
   2598   void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
   2599   unsigned getStaticLocalNumber(const VarDecl *VD) const;
   2600 
   2601   /// \brief Retrieve the context for computing mangling numbers in the given
   2602   /// DeclContext.
   2603   MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
   2604 
   2605   std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
   2606 
   2607   /// \brief Used by ParmVarDecl to store on the side the
   2608   /// index of the parameter when it exceeds the size of the normal bitfield.
   2609   void setParameterIndex(const ParmVarDecl *D, unsigned index);
   2610 
   2611   /// \brief Used by ParmVarDecl to retrieve on the side the
   2612   /// index of the parameter when it exceeds the size of the normal bitfield.
   2613   unsigned getParameterIndex(const ParmVarDecl *D) const;
   2614 
   2615   /// \brief Get the storage for the constant value of a materialized temporary
   2616   /// of static storage duration.
   2617   APValue *getMaterializedTemporaryValue(const MaterializeTemporaryExpr *E,
   2618                                          bool MayCreate);
   2619 
   2620   //===--------------------------------------------------------------------===//
   2621   //                    Statistics
   2622   //===--------------------------------------------------------------------===//
   2623 
   2624   /// \brief The number of implicitly-declared default constructors.
   2625   static unsigned NumImplicitDefaultConstructors;
   2626 
   2627   /// \brief The number of implicitly-declared default constructors for
   2628   /// which declarations were built.
   2629   static unsigned NumImplicitDefaultConstructorsDeclared;
   2630 
   2631   /// \brief The number of implicitly-declared copy constructors.
   2632   static unsigned NumImplicitCopyConstructors;
   2633 
   2634   /// \brief The number of implicitly-declared copy constructors for
   2635   /// which declarations were built.
   2636   static unsigned NumImplicitCopyConstructorsDeclared;
   2637 
   2638   /// \brief The number of implicitly-declared move constructors.
   2639   static unsigned NumImplicitMoveConstructors;
   2640 
   2641   /// \brief The number of implicitly-declared move constructors for
   2642   /// which declarations were built.
   2643   static unsigned NumImplicitMoveConstructorsDeclared;
   2644 
   2645   /// \brief The number of implicitly-declared copy assignment operators.
   2646   static unsigned NumImplicitCopyAssignmentOperators;
   2647 
   2648   /// \brief The number of implicitly-declared copy assignment operators for
   2649   /// which declarations were built.
   2650   static unsigned NumImplicitCopyAssignmentOperatorsDeclared;
   2651 
   2652   /// \brief The number of implicitly-declared move assignment operators.
   2653   static unsigned NumImplicitMoveAssignmentOperators;
   2654 
   2655   /// \brief The number of implicitly-declared move assignment operators for
   2656   /// which declarations were built.
   2657   static unsigned NumImplicitMoveAssignmentOperatorsDeclared;
   2658 
   2659   /// \brief The number of implicitly-declared destructors.
   2660   static unsigned NumImplicitDestructors;
   2661 
   2662   /// \brief The number of implicitly-declared destructors for which
   2663   /// declarations were built.
   2664   static unsigned NumImplicitDestructorsDeclared;
   2665 
   2666 public:
   2667   /// \brief Initialize built-in types.
   2668   ///
   2669   /// This routine may only be invoked once for a given ASTContext object.
   2670   /// It is normally invoked after ASTContext construction.
   2671   ///
   2672   /// \param Target The target
   2673   void InitBuiltinTypes(const TargetInfo &Target,
   2674                         const TargetInfo *AuxTarget = nullptr);
   2675 
   2676 private:
   2677   void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
   2678 
   2679   // Return the Objective-C type encoding for a given type.
   2680   void getObjCEncodingForTypeImpl(QualType t, std::string &S,
   2681                                   bool ExpandPointedToStructures,
   2682                                   bool ExpandStructures,
   2683                                   const FieldDecl *Field,
   2684                                   bool OutermostType = false,
   2685                                   bool EncodingProperty = false,
   2686                                   bool StructField = false,
   2687                                   bool EncodeBlockParameters = false,
   2688                                   bool EncodeClassNames = false,
   2689                                   bool EncodePointerToObjCTypedef = false,
   2690                                   QualType *NotEncodedT=nullptr) const;
   2691 
   2692   // Adds the encoding of the structure's members.
   2693   void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
   2694                                        const FieldDecl *Field,
   2695                                        bool includeVBases = true,
   2696                                        QualType *NotEncodedT=nullptr) const;
   2697 public:
   2698   // Adds the encoding of a method parameter or return type.
   2699   void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
   2700                                          QualType T, std::string& S,
   2701                                          bool Extended) const;
   2702 
   2703   /// \brief Returns true if this is an inline-initialized static data member
   2704   /// which is treated as a definition for MSVC compatibility.
   2705   bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
   2706 
   2707   enum class InlineVariableDefinitionKind {
   2708     None,        ///< Not an inline variable.
   2709     Weak,        ///< Weak definition of inline variable.
   2710     WeakUnknown, ///< Weak for now, might become strong later in this TU.
   2711     Strong       ///< Strong definition.
   2712   };
   2713   /// \brief Determine whether a definition of this inline variable should
   2714   /// be treated as a weak or strong definition. For compatibility with
   2715   /// C++14 and before, for a constexpr static data member, if there is an
   2716   /// out-of-line declaration of the member, we may promote it from weak to
   2717   /// strong.
   2718   InlineVariableDefinitionKind
   2719   getInlineVariableDefinitionKind(const VarDecl *VD) const;
   2720 
   2721 private:
   2722   const ASTRecordLayout &
   2723   getObjCLayout(const ObjCInterfaceDecl *D,
   2724                 const ObjCImplementationDecl *Impl) const;
   2725 
   2726   /// \brief A set of deallocations that should be performed when the
   2727   /// ASTContext is destroyed.
   2728   // FIXME: We really should have a better mechanism in the ASTContext to
   2729   // manage running destructors for types which do variable sized allocation
   2730   // within the AST. In some places we thread the AST bump pointer allocator
   2731   // into the datastructures which avoids this mess during deallocation but is
   2732   // wasteful of memory, and here we require a lot of error prone book keeping
   2733   // in order to track and run destructors while we're tearing things down.
   2734   typedef llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>
   2735       DeallocationFunctionsAndArguments;
   2736   DeallocationFunctionsAndArguments Deallocations;
   2737 
   2738   // FIXME: This currently contains the set of StoredDeclMaps used
   2739   // by DeclContext objects.  This probably should not be in ASTContext,
   2740   // but we include it here so that ASTContext can quickly deallocate them.
   2741   llvm::PointerIntPair<StoredDeclsMap*,1> LastSDM;
   2742 
   2743   friend class DeclContext;
   2744   friend class DeclarationNameTable;
   2745 
   2746   void ReleaseDeclContextMaps();
   2747   void ReleaseParentMapEntries();
   2748 
   2749   std::unique_ptr<ParentMapPointers> PointerParents;
   2750   std::unique_ptr<ParentMapOtherNodes> OtherParents;
   2751 
   2752   std::unique_ptr<VTableContextBase> VTContext;
   2753 
   2754 public:
   2755   enum PragmaSectionFlag : unsigned {
   2756     PSF_None = 0,
   2757     PSF_Read = 0x1,
   2758     PSF_Write = 0x2,
   2759     PSF_Execute = 0x4,
   2760     PSF_Implicit = 0x8,
   2761     PSF_Invalid = 0x80000000U,
   2762   };
   2763 
   2764   struct SectionInfo {
   2765     DeclaratorDecl *Decl;
   2766     SourceLocation PragmaSectionLocation;
   2767     int SectionFlags;
   2768 
   2769     SectionInfo() = default;
   2770     SectionInfo(DeclaratorDecl *Decl,
   2771                 SourceLocation PragmaSectionLocation,
   2772                 int SectionFlags)
   2773       : Decl(Decl),
   2774         PragmaSectionLocation(PragmaSectionLocation),
   2775         SectionFlags(SectionFlags) {}
   2776   };
   2777 
   2778   llvm::StringMap<SectionInfo> SectionInfos;
   2779 };
   2780 
   2781 /// \brief Utility function for constructing a nullary selector.
   2782 static inline Selector GetNullarySelector(StringRef name, ASTContext& Ctx) {
   2783   IdentifierInfo* II = &Ctx.Idents.get(name);
   2784   return Ctx.Selectors.getSelector(0, &II);
   2785 }
   2786 
   2787 /// \brief Utility function for constructing an unary selector.
   2788 static inline Selector GetUnarySelector(StringRef name, ASTContext& Ctx) {
   2789   IdentifierInfo* II = &Ctx.Idents.get(name);
   2790   return Ctx.Selectors.getSelector(1, &II);
   2791 }
   2792 
   2793 }  // end namespace clang
   2794 
   2795 // operator new and delete aren't allowed inside namespaces.
   2796 
   2797 /// @brief Placement new for using the ASTContext's allocator.
   2798 ///
   2799 /// This placement form of operator new uses the ASTContext's allocator for
   2800 /// obtaining memory.
   2801 ///
   2802 /// IMPORTANT: These are also declared in clang/AST/AttrIterator.h! Any changes
   2803 /// here need to also be made there.
   2804 ///
   2805 /// We intentionally avoid using a nothrow specification here so that the calls
   2806 /// to this operator will not perform a null check on the result -- the
   2807 /// underlying allocator never returns null pointers.
   2808 ///
   2809 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
   2810 /// @code
   2811 /// // Default alignment (8)
   2812 /// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
   2813 /// // Specific alignment
   2814 /// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
   2815 /// @endcode
   2816 /// Memory allocated through this placement new operator does not need to be
   2817 /// explicitly freed, as ASTContext will free all of this memory when it gets
   2818 /// destroyed. Please note that you cannot use delete on the pointer.
   2819 ///
   2820 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
   2821 /// @param C The ASTContext that provides the allocator.
   2822 /// @param Alignment The alignment of the allocated memory (if the underlying
   2823 ///                  allocator supports it).
   2824 /// @return The allocated memory. Could be NULL.
   2825 inline void *operator new(size_t Bytes, const clang::ASTContext &C,
   2826                           size_t Alignment) {
   2827   return C.Allocate(Bytes, Alignment);
   2828 }
   2829 /// @brief Placement delete companion to the new above.
   2830 ///
   2831 /// This operator is just a companion to the new above. There is no way of
   2832 /// invoking it directly; see the new operator for more details. This operator
   2833 /// is called implicitly by the compiler if a placement new expression using
   2834 /// the ASTContext throws in the object constructor.
   2835 inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
   2836   C.Deallocate(Ptr);
   2837 }
   2838 
   2839 /// This placement form of operator new[] uses the ASTContext's allocator for
   2840 /// obtaining memory.
   2841 ///
   2842 /// We intentionally avoid using a nothrow specification here so that the calls
   2843 /// to this operator will not perform a null check on the result -- the
   2844 /// underlying allocator never returns null pointers.
   2845 ///
   2846 /// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
   2847 /// @code
   2848 /// // Default alignment (8)
   2849 /// char *data = new (Context) char[10];
   2850 /// // Specific alignment
   2851 /// char *data = new (Context, 4) char[10];
   2852 /// @endcode
   2853 /// Memory allocated through this placement new[] operator does not need to be
   2854 /// explicitly freed, as ASTContext will free all of this memory when it gets
   2855 /// destroyed. Please note that you cannot use delete on the pointer.
   2856 ///
   2857 /// @param Bytes The number of bytes to allocate. Calculated by the compiler.
   2858 /// @param C The ASTContext that provides the allocator.
   2859 /// @param Alignment The alignment of the allocated memory (if the underlying
   2860 ///                  allocator supports it).
   2861 /// @return The allocated memory. Could be NULL.
   2862 inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
   2863                             size_t Alignment = 8) {
   2864   return C.Allocate(Bytes, Alignment);
   2865 }
   2866 
   2867 /// @brief Placement delete[] companion to the new[] above.
   2868 ///
   2869 /// This operator is just a companion to the new[] above. There is no way of
   2870 /// invoking it directly; see the new[] operator for more details. This operator
   2871 /// is called implicitly by the compiler if a placement new[] expression using
   2872 /// the ASTContext throws in the object constructor.
   2873 inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
   2874   C.Deallocate(Ptr);
   2875 }
   2876 
   2877 /// \brief Create the representation of a LazyGenerationalUpdatePtr.
   2878 template <typename Owner, typename T,
   2879           void (clang::ExternalASTSource::*Update)(Owner)>
   2880 typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
   2881     clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
   2882         const clang::ASTContext &Ctx, T Value) {
   2883   // Note, this is implemented here so that ExternalASTSource.h doesn't need to
   2884   // include ASTContext.h. We explicitly instantiate it for all relevant types
   2885   // in ASTContext.cpp.
   2886   if (auto *Source = Ctx.getExternalSource())
   2887     return new (Ctx) LazyData(Source, Value);
   2888   return Value;
   2889 }
   2890 
   2891 #endif // LLVM_CLANG_AST_ASTCONTEXT_H
   2892