Home | History | Annotate | Download | only in python2.7
      1 #ifndef Py_OBJECT_H
      2 #define Py_OBJECT_H
      3 #ifdef __cplusplus
      4 extern "C" {
      5 #endif
      6 
      7 
      8 /* Object and type object interface */
      9 
     10 /*
     11 Objects are structures allocated on the heap.  Special rules apply to
     12 the use of objects to ensure they are properly garbage-collected.
     13 Objects are never allocated statically or on the stack; they must be
     14 accessed through special macros and functions only.  (Type objects are
     15 exceptions to the first rule; the standard types are represented by
     16 statically initialized type objects, although work on type/class unification
     17 for Python 2.2 made it possible to have heap-allocated type objects too).
     18 
     19 An object has a 'reference count' that is increased or decreased when a
     20 pointer to the object is copied or deleted; when the reference count
     21 reaches zero there are no references to the object left and it can be
     22 removed from the heap.
     23 
     24 An object has a 'type' that determines what it represents and what kind
     25 of data it contains.  An object's type is fixed when it is created.
     26 Types themselves are represented as objects; an object contains a
     27 pointer to the corresponding type object.  The type itself has a type
     28 pointer pointing to the object representing the type 'type', which
     29 contains a pointer to itself!).
     30 
     31 Objects do not float around in memory; once allocated an object keeps
     32 the same size and address.  Objects that must hold variable-size data
     33 can contain pointers to variable-size parts of the object.  Not all
     34 objects of the same type have the same size; but the size cannot change
     35 after allocation.  (These restrictions are made so a reference to an
     36 object can be simply a pointer -- moving an object would require
     37 updating all the pointers, and changing an object's size would require
     38 moving it if there was another object right next to it.)
     39 
     40 Objects are always accessed through pointers of the type 'PyObject *'.
     41 The type 'PyObject' is a structure that only contains the reference count
     42 and the type pointer.  The actual memory allocated for an object
     43 contains other data that can only be accessed after casting the pointer
     44 to a pointer to a longer structure type.  This longer type must start
     45 with the reference count and type fields; the macro PyObject_HEAD should be
     46 used for this (to accommodate for future changes).  The implementation
     47 of a particular object type can cast the object pointer to the proper
     48 type and back.
     49 
     50 A standard interface exists for objects that contain an array of items
     51 whose size is determined when the object is allocated.
     52 */
     53 
     54 /* Py_DEBUG implies Py_TRACE_REFS. */
     55 #if defined(Py_DEBUG) && !defined(Py_TRACE_REFS)
     56 #define Py_TRACE_REFS
     57 #endif
     58 
     59 /* Py_TRACE_REFS implies Py_REF_DEBUG. */
     60 #if defined(Py_TRACE_REFS) && !defined(Py_REF_DEBUG)
     61 #define Py_REF_DEBUG
     62 #endif
     63 
     64 #ifdef Py_TRACE_REFS
     65 /* Define pointers to support a doubly-linked list of all live heap objects. */
     66 #define _PyObject_HEAD_EXTRA            \
     67     struct _object *_ob_next;           \
     68     struct _object *_ob_prev;
     69 
     70 #define _PyObject_EXTRA_INIT 0, 0,
     71 
     72 #else
     73 #define _PyObject_HEAD_EXTRA
     74 #define _PyObject_EXTRA_INIT
     75 #endif
     76 
     77 /* PyObject_HEAD defines the initial segment of every PyObject. */
     78 #define PyObject_HEAD                   \
     79     _PyObject_HEAD_EXTRA                \
     80     Py_ssize_t ob_refcnt;               \
     81     struct _typeobject *ob_type;
     82 
     83 #define PyObject_HEAD_INIT(type)        \
     84     _PyObject_EXTRA_INIT                \
     85     1, type,
     86 
     87 #define PyVarObject_HEAD_INIT(type, size)       \
     88     PyObject_HEAD_INIT(type) size,
     89 
     90 /* PyObject_VAR_HEAD defines the initial segment of all variable-size
     91  * container objects.  These end with a declaration of an array with 1
     92  * element, but enough space is malloc'ed so that the array actually
     93  * has room for ob_size elements.  Note that ob_size is an element count,
     94  * not necessarily a byte count.
     95  */
     96 #define PyObject_VAR_HEAD               \
     97     PyObject_HEAD                       \
     98     Py_ssize_t ob_size; /* Number of items in variable part */
     99 #define Py_INVALID_SIZE (Py_ssize_t)-1
    100 
    101 /* Nothing is actually declared to be a PyObject, but every pointer to
    102  * a Python object can be cast to a PyObject*.  This is inheritance built
    103  * by hand.  Similarly every pointer to a variable-size Python object can,
    104  * in addition, be cast to PyVarObject*.
    105  */
    106 typedef struct _object {
    107     PyObject_HEAD
    108 } PyObject;
    109 
    110 typedef struct {
    111     PyObject_VAR_HEAD
    112 } PyVarObject;
    113 
    114 #define Py_REFCNT(ob)           (((PyObject*)(ob))->ob_refcnt)
    115 #define Py_TYPE(ob)             (((PyObject*)(ob))->ob_type)
    116 #define Py_SIZE(ob)             (((PyVarObject*)(ob))->ob_size)
    117 
    118 /*
    119 Type objects contain a string containing the type name (to help somewhat
    120 in debugging), the allocation parameters (see PyObject_New() and
    121 PyObject_NewVar()),
    122 and methods for accessing objects of the type.  Methods are optional, a
    123 nil pointer meaning that particular kind of access is not available for
    124 this type.  The Py_DECREF() macro uses the tp_dealloc method without
    125 checking for a nil pointer; it should always be implemented except if
    126 the implementation can guarantee that the reference count will never
    127 reach zero (e.g., for statically allocated type objects).
    128 
    129 NB: the methods for certain type groups are now contained in separate
    130 method blocks.
    131 */
    132 
    133 typedef PyObject * (*unaryfunc)(PyObject *);
    134 typedef PyObject * (*binaryfunc)(PyObject *, PyObject *);
    135 typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *);
    136 typedef int (*inquiry)(PyObject *);
    137 typedef Py_ssize_t (*lenfunc)(PyObject *);
    138 typedef int (*coercion)(PyObject **, PyObject **);
    139 typedef PyObject *(*intargfunc)(PyObject *, int) Py_DEPRECATED(2.5);
    140 typedef PyObject *(*intintargfunc)(PyObject *, int, int) Py_DEPRECATED(2.5);
    141 typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t);
    142 typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t);
    143 typedef int(*intobjargproc)(PyObject *, int, PyObject *);
    144 typedef int(*intintobjargproc)(PyObject *, int, int, PyObject *);
    145 typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *);
    146 typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *);
    147 typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *);
    148 
    149 
    150 
    151 /* int-based buffer interface */
    152 typedef int (*getreadbufferproc)(PyObject *, int, void **);
    153 typedef int (*getwritebufferproc)(PyObject *, int, void **);
    154 typedef int (*getsegcountproc)(PyObject *, int *);
    155 typedef int (*getcharbufferproc)(PyObject *, int, char **);
    156 /* ssize_t-based buffer interface */
    157 typedef Py_ssize_t (*readbufferproc)(PyObject *, Py_ssize_t, void **);
    158 typedef Py_ssize_t (*writebufferproc)(PyObject *, Py_ssize_t, void **);
    159 typedef Py_ssize_t (*segcountproc)(PyObject *, Py_ssize_t *);
    160 typedef Py_ssize_t (*charbufferproc)(PyObject *, Py_ssize_t, char **);
    161 
    162 
    163 /* Py3k buffer interface */
    164 typedef struct bufferinfo {
    165     void *buf;
    166     PyObject *obj;        /* owned reference */
    167     Py_ssize_t len;
    168     Py_ssize_t itemsize;  /* This is Py_ssize_t so it can be
    169                              pointed to by strides in simple case.*/
    170     int readonly;
    171     int ndim;
    172     char *format;
    173     Py_ssize_t *shape;
    174     Py_ssize_t *strides;
    175     Py_ssize_t *suboffsets;
    176     Py_ssize_t smalltable[2];  /* static store for shape and strides of
    177                                   mono-dimensional buffers. */
    178     void *internal;
    179 } Py_buffer;
    180 
    181 typedef int (*getbufferproc)(PyObject *, Py_buffer *, int);
    182 typedef void (*releasebufferproc)(PyObject *, Py_buffer *);
    183 
    184     /* Flags for getting buffers */
    185 #define PyBUF_SIMPLE 0
    186 #define PyBUF_WRITABLE 0x0001
    187 /*  we used to include an E, backwards compatible alias  */
    188 #define PyBUF_WRITEABLE PyBUF_WRITABLE
    189 #define PyBUF_FORMAT 0x0004
    190 #define PyBUF_ND 0x0008
    191 #define PyBUF_STRIDES (0x0010 | PyBUF_ND)
    192 #define PyBUF_C_CONTIGUOUS (0x0020 | PyBUF_STRIDES)
    193 #define PyBUF_F_CONTIGUOUS (0x0040 | PyBUF_STRIDES)
    194 #define PyBUF_ANY_CONTIGUOUS (0x0080 | PyBUF_STRIDES)
    195 #define PyBUF_INDIRECT (0x0100 | PyBUF_STRIDES)
    196 
    197 #define PyBUF_CONTIG (PyBUF_ND | PyBUF_WRITABLE)
    198 #define PyBUF_CONTIG_RO (PyBUF_ND)
    199 
    200 #define PyBUF_STRIDED (PyBUF_STRIDES | PyBUF_WRITABLE)
    201 #define PyBUF_STRIDED_RO (PyBUF_STRIDES)
    202 
    203 #define PyBUF_RECORDS (PyBUF_STRIDES | PyBUF_WRITABLE | PyBUF_FORMAT)
    204 #define PyBUF_RECORDS_RO (PyBUF_STRIDES | PyBUF_FORMAT)
    205 
    206 #define PyBUF_FULL (PyBUF_INDIRECT | PyBUF_WRITABLE | PyBUF_FORMAT)
    207 #define PyBUF_FULL_RO (PyBUF_INDIRECT | PyBUF_FORMAT)
    208 
    209 
    210 #define PyBUF_READ  0x100
    211 #define PyBUF_WRITE 0x200
    212 #define PyBUF_SHADOW 0x400
    213 /* end Py3k buffer interface */
    214 
    215 typedef int (*objobjproc)(PyObject *, PyObject *);
    216 typedef int (*visitproc)(PyObject *, void *);
    217 typedef int (*traverseproc)(PyObject *, visitproc, void *);
    218 
    219 typedef struct {
    220     /* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
    221        arguments are guaranteed to be of the object's type (modulo
    222        coercion hacks -- i.e. if the type's coercion function
    223        returns other types, then these are allowed as well).  Numbers that
    224        have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
    225        arguments for proper type and implement the necessary conversions
    226        in the slot functions themselves. */
    227 
    228     binaryfunc nb_add;
    229     binaryfunc nb_subtract;
    230     binaryfunc nb_multiply;
    231     binaryfunc nb_divide;
    232     binaryfunc nb_remainder;
    233     binaryfunc nb_divmod;
    234     ternaryfunc nb_power;
    235     unaryfunc nb_negative;
    236     unaryfunc nb_positive;
    237     unaryfunc nb_absolute;
    238     inquiry nb_nonzero;
    239     unaryfunc nb_invert;
    240     binaryfunc nb_lshift;
    241     binaryfunc nb_rshift;
    242     binaryfunc nb_and;
    243     binaryfunc nb_xor;
    244     binaryfunc nb_or;
    245     coercion nb_coerce;
    246     unaryfunc nb_int;
    247     unaryfunc nb_long;
    248     unaryfunc nb_float;
    249     unaryfunc nb_oct;
    250     unaryfunc nb_hex;
    251     /* Added in release 2.0 */
    252     binaryfunc nb_inplace_add;
    253     binaryfunc nb_inplace_subtract;
    254     binaryfunc nb_inplace_multiply;
    255     binaryfunc nb_inplace_divide;
    256     binaryfunc nb_inplace_remainder;
    257     ternaryfunc nb_inplace_power;
    258     binaryfunc nb_inplace_lshift;
    259     binaryfunc nb_inplace_rshift;
    260     binaryfunc nb_inplace_and;
    261     binaryfunc nb_inplace_xor;
    262     binaryfunc nb_inplace_or;
    263 
    264     /* Added in release 2.2 */
    265     /* The following require the Py_TPFLAGS_HAVE_CLASS flag */
    266     binaryfunc nb_floor_divide;
    267     binaryfunc nb_true_divide;
    268     binaryfunc nb_inplace_floor_divide;
    269     binaryfunc nb_inplace_true_divide;
    270 
    271     /* Added in release 2.5 */
    272     unaryfunc nb_index;
    273 } PyNumberMethods;
    274 
    275 typedef struct {
    276     lenfunc sq_length;
    277     binaryfunc sq_concat;
    278     ssizeargfunc sq_repeat;
    279     ssizeargfunc sq_item;
    280     ssizessizeargfunc sq_slice;
    281     ssizeobjargproc sq_ass_item;
    282     ssizessizeobjargproc sq_ass_slice;
    283     objobjproc sq_contains;
    284     /* Added in release 2.0 */
    285     binaryfunc sq_inplace_concat;
    286     ssizeargfunc sq_inplace_repeat;
    287 } PySequenceMethods;
    288 
    289 typedef struct {
    290     lenfunc mp_length;
    291     binaryfunc mp_subscript;
    292     objobjargproc mp_ass_subscript;
    293 } PyMappingMethods;
    294 
    295 typedef struct {
    296     readbufferproc bf_getreadbuffer;
    297     writebufferproc bf_getwritebuffer;
    298     segcountproc bf_getsegcount;
    299     charbufferproc bf_getcharbuffer;
    300     getbufferproc bf_getbuffer;
    301     releasebufferproc bf_releasebuffer;
    302 } PyBufferProcs;
    303 
    304 
    305 typedef void (*freefunc)(void *);
    306 typedef void (*destructor)(PyObject *);
    307 typedef int (*printfunc)(PyObject *, FILE *, int);
    308 typedef PyObject *(*getattrfunc)(PyObject *, char *);
    309 typedef PyObject *(*getattrofunc)(PyObject *, PyObject *);
    310 typedef int (*setattrfunc)(PyObject *, char *, PyObject *);
    311 typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *);
    312 typedef int (*cmpfunc)(PyObject *, PyObject *);
    313 typedef PyObject *(*reprfunc)(PyObject *);
    314 typedef long (*hashfunc)(PyObject *);
    315 typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int);
    316 typedef PyObject *(*getiterfunc) (PyObject *);
    317 typedef PyObject *(*iternextfunc) (PyObject *);
    318 typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *);
    319 typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *);
    320 typedef int (*initproc)(PyObject *, PyObject *, PyObject *);
    321 typedef PyObject *(*newfunc)(struct _typeobject *, PyObject *, PyObject *);
    322 typedef PyObject *(*allocfunc)(struct _typeobject *, Py_ssize_t);
    323 
    324 typedef struct _typeobject {
    325     PyObject_VAR_HEAD
    326     const char *tp_name; /* For printing, in format "<module>.<name>" */
    327     Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
    328 
    329     /* Methods to implement standard operations */
    330 
    331     destructor tp_dealloc;
    332     printfunc tp_print;
    333     getattrfunc tp_getattr;
    334     setattrfunc tp_setattr;
    335     cmpfunc tp_compare;
    336     reprfunc tp_repr;
    337 
    338     /* Method suites for standard classes */
    339 
    340     PyNumberMethods *tp_as_number;
    341     PySequenceMethods *tp_as_sequence;
    342     PyMappingMethods *tp_as_mapping;
    343 
    344     /* More standard operations (here for binary compatibility) */
    345 
    346     hashfunc tp_hash;
    347     ternaryfunc tp_call;
    348     reprfunc tp_str;
    349     getattrofunc tp_getattro;
    350     setattrofunc tp_setattro;
    351 
    352     /* Functions to access object as input/output buffer */
    353     PyBufferProcs *tp_as_buffer;
    354 
    355     /* Flags to define presence of optional/expanded features */
    356     long tp_flags;
    357 
    358     const char *tp_doc; /* Documentation string */
    359 
    360     /* Assigned meaning in release 2.0 */
    361     /* call function for all accessible objects */
    362     traverseproc tp_traverse;
    363 
    364     /* delete references to contained objects */
    365     inquiry tp_clear;
    366 
    367     /* Assigned meaning in release 2.1 */
    368     /* rich comparisons */
    369     richcmpfunc tp_richcompare;
    370 
    371     /* weak reference enabler */
    372     Py_ssize_t tp_weaklistoffset;
    373 
    374     /* Added in release 2.2 */
    375     /* Iterators */
    376     getiterfunc tp_iter;
    377     iternextfunc tp_iternext;
    378 
    379     /* Attribute descriptor and subclassing stuff */
    380     struct PyMethodDef *tp_methods;
    381     struct PyMemberDef *tp_members;
    382     struct PyGetSetDef *tp_getset;
    383     struct _typeobject *tp_base;
    384     PyObject *tp_dict;
    385     descrgetfunc tp_descr_get;
    386     descrsetfunc tp_descr_set;
    387     Py_ssize_t tp_dictoffset;
    388     initproc tp_init;
    389     allocfunc tp_alloc;
    390     newfunc tp_new;
    391     freefunc tp_free; /* Low-level free-memory routine */
    392     inquiry tp_is_gc; /* For PyObject_IS_GC */
    393     PyObject *tp_bases;
    394     PyObject *tp_mro; /* method resolution order */
    395     PyObject *tp_cache;
    396     PyObject *tp_subclasses;
    397     PyObject *tp_weaklist;
    398     destructor tp_del;
    399 
    400     /* Type attribute cache version tag. Added in version 2.6 */
    401     unsigned int tp_version_tag;
    402 
    403 #ifdef COUNT_ALLOCS
    404     /* these must be last and never explicitly initialized */
    405     Py_ssize_t tp_allocs;
    406     Py_ssize_t tp_frees;
    407     Py_ssize_t tp_maxalloc;
    408     struct _typeobject *tp_prev;
    409     struct _typeobject *tp_next;
    410 #endif
    411 } PyTypeObject;
    412 
    413 
    414 /* The *real* layout of a type object when allocated on the heap */
    415 typedef struct _heaptypeobject {
    416     /* Note: there's a dependency on the order of these members
    417        in slotptr() in typeobject.c . */
    418     PyTypeObject ht_type;
    419     PyNumberMethods as_number;
    420     PyMappingMethods as_mapping;
    421     PySequenceMethods as_sequence; /* as_sequence comes after as_mapping,
    422                                       so that the mapping wins when both
    423                                       the mapping and the sequence define
    424                                       a given operator (e.g. __getitem__).
    425                                       see add_operators() in typeobject.c . */
    426     PyBufferProcs as_buffer;
    427     PyObject *ht_name, *ht_slots;
    428     /* here are optional user slots, followed by the members. */
    429 } PyHeapTypeObject;
    430 
    431 /* access macro to the members which are floating "behind" the object */
    432 #define PyHeapType_GET_MEMBERS(etype) \
    433     ((PyMemberDef *)(((char *)etype) + Py_TYPE(etype)->tp_basicsize))
    434 
    435 
    436 /* Generic type check */
    437 PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *);
    438 #define PyObject_TypeCheck(ob, tp) \
    439     (Py_TYPE(ob) == (tp) || PyType_IsSubtype(Py_TYPE(ob), (tp)))
    440 
    441 PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */
    442 PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */
    443 PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */
    444 
    445 #define PyType_Check(op) \
    446     PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS)
    447 #define PyType_CheckExact(op) (Py_TYPE(op) == &PyType_Type)
    448 
    449 PyAPI_FUNC(int) PyType_Ready(PyTypeObject *);
    450 PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t);
    451 PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *,
    452                                                PyObject *, PyObject *);
    453 PyAPI_FUNC(PyObject *) _PyType_Lookup(PyTypeObject *, PyObject *);
    454 PyAPI_FUNC(PyObject *) _PyObject_LookupSpecial(PyObject *, char *, PyObject **);
    455 PyAPI_FUNC(unsigned int) PyType_ClearCache(void);
    456 PyAPI_FUNC(void) PyType_Modified(PyTypeObject *);
    457 
    458 /* Generic operations on objects */
    459 PyAPI_FUNC(int) PyObject_Print(PyObject *, FILE *, int);
    460 PyAPI_FUNC(void) _PyObject_Dump(PyObject *);
    461 PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *);
    462 PyAPI_FUNC(PyObject *) _PyObject_Str(PyObject *);
    463 PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *);
    464 #define PyObject_Bytes PyObject_Str
    465 #ifdef Py_USING_UNICODE
    466 PyAPI_FUNC(PyObject *) PyObject_Unicode(PyObject *);
    467 #endif
    468 PyAPI_FUNC(int) PyObject_Compare(PyObject *, PyObject *);
    469 PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int);
    470 PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int);
    471 PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *);
    472 PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *);
    473 PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *);
    474 PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *);
    475 PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *);
    476 PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *);
    477 PyAPI_FUNC(PyObject **) _PyObject_GetDictPtr(PyObject *);
    478 PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *);
    479 PyAPI_FUNC(PyObject *) _PyObject_NextNotImplemented(PyObject *);
    480 PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *);
    481 PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *,
    482                                               PyObject *, PyObject *);
    483 PyAPI_FUNC(long) PyObject_Hash(PyObject *);
    484 PyAPI_FUNC(long) PyObject_HashNotImplemented(PyObject *);
    485 PyAPI_FUNC(int) PyObject_IsTrue(PyObject *);
    486 PyAPI_FUNC(int) PyObject_Not(PyObject *);
    487 PyAPI_FUNC(int) PyCallable_Check(PyObject *);
    488 PyAPI_FUNC(int) PyNumber_Coerce(PyObject **, PyObject **);
    489 PyAPI_FUNC(int) PyNumber_CoerceEx(PyObject **, PyObject **);
    490 
    491 PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *);
    492 
    493 /* A slot function whose address we need to compare */
    494 extern int _PyObject_SlotCompare(PyObject *, PyObject *);
    495 /* Same as PyObject_Generic{Get,Set}Attr, but passing the attributes
    496    dict as the last parameter. */
    497 PyAPI_FUNC(PyObject *)
    498 _PyObject_GenericGetAttrWithDict(PyObject *, PyObject *, PyObject *);
    499 PyAPI_FUNC(int)
    500 _PyObject_GenericSetAttrWithDict(PyObject *, PyObject *,
    501                                  PyObject *, PyObject *);
    502 
    503 
    504 /* PyObject_Dir(obj) acts like Python __builtin__.dir(obj), returning a
    505    list of strings.  PyObject_Dir(NULL) is like __builtin__.dir(),
    506    returning the names of the current locals.  In this case, if there are
    507    no current locals, NULL is returned, and PyErr_Occurred() is false.
    508 */
    509 PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *);
    510 
    511 
    512 /* Helpers for printing recursive container types */
    513 PyAPI_FUNC(int) Py_ReprEnter(PyObject *);
    514 PyAPI_FUNC(void) Py_ReprLeave(PyObject *);
    515 
    516 /* Helpers for hash functions */
    517 PyAPI_FUNC(long) _Py_HashDouble(double);
    518 PyAPI_FUNC(long) _Py_HashPointer(void*);
    519 
    520 typedef struct {
    521     long prefix;
    522     long suffix;
    523 } _Py_HashSecret_t;
    524 PyAPI_DATA(_Py_HashSecret_t) _Py_HashSecret;
    525 
    526 #ifdef Py_DEBUG
    527 PyAPI_DATA(int) _Py_HashSecret_Initialized;
    528 #endif
    529 
    530 /* Helper for passing objects to printf and the like */
    531 #define PyObject_REPR(obj) PyString_AS_STRING(PyObject_Repr(obj))
    532 
    533 /* Flag bits for printing: */
    534 #define Py_PRINT_RAW    1       /* No string quotes etc. */
    535 
    536 /*
    537 `Type flags (tp_flags)
    538 
    539 These flags are used to extend the type structure in a backwards-compatible
    540 fashion. Extensions can use the flags to indicate (and test) when a given
    541 type structure contains a new feature. The Python core will use these when
    542 introducing new functionality between major revisions (to avoid mid-version
    543 changes in the PYTHON_API_VERSION).
    544 
    545 Arbitration of the flag bit positions will need to be coordinated among
    546 all extension writers who publically release their extensions (this will
    547 be fewer than you might expect!)..
    548 
    549 Python 1.5.2 introduced the bf_getcharbuffer slot into PyBufferProcs.
    550 
    551 Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value.
    552 
    553 Code can use PyType_HasFeature(type_ob, flag_value) to test whether the
    554 given type object has a specified feature.
    555 
    556 NOTE: when building the core, Py_TPFLAGS_DEFAULT includes
    557 Py_TPFLAGS_HAVE_VERSION_TAG; outside the core, it doesn't.  This is so
    558 that extensions that modify tp_dict of their own types directly don't
    559 break, since this was allowed in 2.5.  In 3.0 they will have to
    560 manually remove this flag though!
    561 */
    562 
    563 /* PyBufferProcs contains bf_getcharbuffer */
    564 #define Py_TPFLAGS_HAVE_GETCHARBUFFER  (1L<<0)
    565 
    566 /* PySequenceMethods contains sq_contains */
    567 #define Py_TPFLAGS_HAVE_SEQUENCE_IN (1L<<1)
    568 
    569 /* This is here for backwards compatibility.  Extensions that use the old GC
    570  * API will still compile but the objects will not be tracked by the GC. */
    571 #define Py_TPFLAGS_GC 0 /* used to be (1L<<2) */
    572 
    573 /* PySequenceMethods and PyNumberMethods contain in-place operators */
    574 #define Py_TPFLAGS_HAVE_INPLACEOPS (1L<<3)
    575 
    576 /* PyNumberMethods do their own coercion */
    577 #define Py_TPFLAGS_CHECKTYPES (1L<<4)
    578 
    579 /* tp_richcompare is defined */
    580 #define Py_TPFLAGS_HAVE_RICHCOMPARE (1L<<5)
    581 
    582 /* Objects which are weakly referencable if their tp_weaklistoffset is >0 */
    583 #define Py_TPFLAGS_HAVE_WEAKREFS (1L<<6)
    584 
    585 /* tp_iter is defined */
    586 #define Py_TPFLAGS_HAVE_ITER (1L<<7)
    587 
    588 /* New members introduced by Python 2.2 exist */
    589 #define Py_TPFLAGS_HAVE_CLASS (1L<<8)
    590 
    591 /* Set if the type object is dynamically allocated */
    592 #define Py_TPFLAGS_HEAPTYPE (1L<<9)
    593 
    594 /* Set if the type allows subclassing */
    595 #define Py_TPFLAGS_BASETYPE (1L<<10)
    596 
    597 /* Set if the type is 'ready' -- fully initialized */
    598 #define Py_TPFLAGS_READY (1L<<12)
    599 
    600 /* Set while the type is being 'readied', to prevent recursive ready calls */
    601 #define Py_TPFLAGS_READYING (1L<<13)
    602 
    603 /* Objects support garbage collection (see objimp.h) */
    604 #define Py_TPFLAGS_HAVE_GC (1L<<14)
    605 
    606 /* These two bits are preserved for Stackless Python, next after this is 17 */
    607 #ifdef STACKLESS
    608 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3L<<15)
    609 #else
    610 #define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0
    611 #endif
    612 
    613 /* Objects support nb_index in PyNumberMethods */
    614 #define Py_TPFLAGS_HAVE_INDEX (1L<<17)
    615 
    616 /* Objects support type attribute cache */
    617 #define Py_TPFLAGS_HAVE_VERSION_TAG   (1L<<18)
    618 #define Py_TPFLAGS_VALID_VERSION_TAG  (1L<<19)
    619 
    620 /* Type is abstract and cannot be instantiated */
    621 #define Py_TPFLAGS_IS_ABSTRACT (1L<<20)
    622 
    623 /* Has the new buffer protocol */
    624 #define Py_TPFLAGS_HAVE_NEWBUFFER (1L<<21)
    625 
    626 /* These flags are used to determine if a type is a subclass. */
    627 #define Py_TPFLAGS_INT_SUBCLASS         (1L<<23)
    628 #define Py_TPFLAGS_LONG_SUBCLASS        (1L<<24)
    629 #define Py_TPFLAGS_LIST_SUBCLASS        (1L<<25)
    630 #define Py_TPFLAGS_TUPLE_SUBCLASS       (1L<<26)
    631 #define Py_TPFLAGS_STRING_SUBCLASS      (1L<<27)
    632 #define Py_TPFLAGS_UNICODE_SUBCLASS     (1L<<28)
    633 #define Py_TPFLAGS_DICT_SUBCLASS        (1L<<29)
    634 #define Py_TPFLAGS_BASE_EXC_SUBCLASS    (1L<<30)
    635 #define Py_TPFLAGS_TYPE_SUBCLASS        (1L<<31)
    636 
    637 #define Py_TPFLAGS_DEFAULT_EXTERNAL ( \
    638                  Py_TPFLAGS_HAVE_GETCHARBUFFER | \
    639                  Py_TPFLAGS_HAVE_SEQUENCE_IN | \
    640                  Py_TPFLAGS_HAVE_INPLACEOPS | \
    641                  Py_TPFLAGS_HAVE_RICHCOMPARE | \
    642                  Py_TPFLAGS_HAVE_WEAKREFS | \
    643                  Py_TPFLAGS_HAVE_ITER | \
    644                  Py_TPFLAGS_HAVE_CLASS | \
    645                  Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \
    646                  Py_TPFLAGS_HAVE_INDEX | \
    647                  0)
    648 #define Py_TPFLAGS_DEFAULT_CORE (Py_TPFLAGS_DEFAULT_EXTERNAL | \
    649                  Py_TPFLAGS_HAVE_VERSION_TAG)
    650 
    651 #ifdef Py_BUILD_CORE
    652 #define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_CORE
    653 #else
    654 #define Py_TPFLAGS_DEFAULT Py_TPFLAGS_DEFAULT_EXTERNAL
    655 #endif
    656 
    657 #define PyType_HasFeature(t,f)  (((t)->tp_flags & (f)) != 0)
    658 #define PyType_FastSubclass(t,f)  PyType_HasFeature(t,f)
    659 
    660 
    661 /*
    662 The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement
    663 reference counts.  Py_DECREF calls the object's deallocator function when
    664 the refcount falls to 0; for
    665 objects that don't contain references to other objects or heap memory
    666 this can be the standard function free().  Both macros can be used
    667 wherever a void expression is allowed.  The argument must not be a
    668 NULL pointer.  If it may be NULL, use Py_XINCREF/Py_XDECREF instead.
    669 The macro _Py_NewReference(op) initialize reference counts to 1, and
    670 in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional
    671 bookkeeping appropriate to the special build.
    672 
    673 We assume that the reference count field can never overflow; this can
    674 be proven when the size of the field is the same as the pointer size, so
    675 we ignore the possibility.  Provided a C int is at least 32 bits (which
    676 is implicitly assumed in many parts of this code), that's enough for
    677 about 2**31 references to an object.
    678 
    679 XXX The following became out of date in Python 2.2, but I'm not sure
    680 XXX what the full truth is now.  Certainly, heap-allocated type objects
    681 XXX can and should be deallocated.
    682 Type objects should never be deallocated; the type pointer in an object
    683 is not considered to be a reference to the type object, to save
    684 complications in the deallocation function.  (This is actually a
    685 decision that's up to the implementer of each new type so if you want,
    686 you can count such references to the type object.)
    687 
    688 *** WARNING*** The Py_DECREF macro must have a side-effect-free argument
    689 since it may evaluate its argument multiple times.  (The alternative
    690 would be to mace it a proper function or assign it to a global temporary
    691 variable first, both of which are slower; and in a multi-threaded
    692 environment the global variable trick is not safe.)
    693 */
    694 
    695 /* First define a pile of simple helper macros, one set per special
    696  * build symbol.  These either expand to the obvious things, or to
    697  * nothing at all when the special mode isn't in effect.  The main
    698  * macros can later be defined just once then, yet expand to different
    699  * things depending on which special build options are and aren't in effect.
    700  * Trust me <wink>:  while painful, this is 20x easier to understand than,
    701  * e.g, defining _Py_NewReference five different times in a maze of nested
    702  * #ifdefs (we used to do that -- it was impenetrable).
    703  */
    704 #ifdef Py_REF_DEBUG
    705 PyAPI_DATA(Py_ssize_t) _Py_RefTotal;
    706 PyAPI_FUNC(void) _Py_NegativeRefcount(const char *fname,
    707                                             int lineno, PyObject *op);
    708 PyAPI_FUNC(PyObject *) _PyDict_Dummy(void);
    709 PyAPI_FUNC(PyObject *) _PySet_Dummy(void);
    710 PyAPI_FUNC(Py_ssize_t) _Py_GetRefTotal(void);
    711 #define _Py_INC_REFTOTAL        _Py_RefTotal++
    712 #define _Py_DEC_REFTOTAL        _Py_RefTotal--
    713 #define _Py_REF_DEBUG_COMMA     ,
    714 #define _Py_CHECK_REFCNT(OP)                                    \
    715 {       if (((PyObject*)OP)->ob_refcnt < 0)                             \
    716                 _Py_NegativeRefcount(__FILE__, __LINE__,        \
    717                                      (PyObject *)(OP));         \
    718 }
    719 #else
    720 #define _Py_INC_REFTOTAL
    721 #define _Py_DEC_REFTOTAL
    722 #define _Py_REF_DEBUG_COMMA
    723 #define _Py_CHECK_REFCNT(OP)    /* a semicolon */;
    724 #endif /* Py_REF_DEBUG */
    725 
    726 #ifdef COUNT_ALLOCS
    727 PyAPI_FUNC(void) inc_count(PyTypeObject *);
    728 PyAPI_FUNC(void) dec_count(PyTypeObject *);
    729 #define _Py_INC_TPALLOCS(OP)    inc_count(Py_TYPE(OP))
    730 #define _Py_INC_TPFREES(OP)     dec_count(Py_TYPE(OP))
    731 #define _Py_DEC_TPFREES(OP)     Py_TYPE(OP)->tp_frees--
    732 #define _Py_COUNT_ALLOCS_COMMA  ,
    733 #else
    734 #define _Py_INC_TPALLOCS(OP)
    735 #define _Py_INC_TPFREES(OP)
    736 #define _Py_DEC_TPFREES(OP)
    737 #define _Py_COUNT_ALLOCS_COMMA
    738 #endif /* COUNT_ALLOCS */
    739 
    740 #ifdef Py_TRACE_REFS
    741 /* Py_TRACE_REFS is such major surgery that we call external routines. */
    742 PyAPI_FUNC(void) _Py_NewReference(PyObject *);
    743 PyAPI_FUNC(void) _Py_ForgetReference(PyObject *);
    744 PyAPI_FUNC(void) _Py_Dealloc(PyObject *);
    745 PyAPI_FUNC(void) _Py_PrintReferences(FILE *);
    746 PyAPI_FUNC(void) _Py_PrintReferenceAddresses(FILE *);
    747 PyAPI_FUNC(void) _Py_AddToAllObjects(PyObject *, int force);
    748 
    749 #else
    750 /* Without Py_TRACE_REFS, there's little enough to do that we expand code
    751  * inline.
    752  */
    753 #define _Py_NewReference(op) (                          \
    754     _Py_INC_TPALLOCS(op) _Py_COUNT_ALLOCS_COMMA         \
    755     _Py_INC_REFTOTAL  _Py_REF_DEBUG_COMMA               \
    756     Py_REFCNT(op) = 1)
    757 
    758 #define _Py_ForgetReference(op) _Py_INC_TPFREES(op)
    759 
    760 #define _Py_Dealloc(op) (                               \
    761     _Py_INC_TPFREES(op) _Py_COUNT_ALLOCS_COMMA          \
    762     (*Py_TYPE(op)->tp_dealloc)((PyObject *)(op)))
    763 #endif /* !Py_TRACE_REFS */
    764 
    765 #define Py_INCREF(op) (                         \
    766     _Py_INC_REFTOTAL  _Py_REF_DEBUG_COMMA       \
    767     ((PyObject*)(op))->ob_refcnt++)
    768 
    769 #define Py_DECREF(op)                                   \
    770     do {                                                \
    771         if (_Py_DEC_REFTOTAL  _Py_REF_DEBUG_COMMA       \
    772         --((PyObject*)(op))->ob_refcnt != 0)            \
    773             _Py_CHECK_REFCNT(op)                        \
    774         else                                            \
    775         _Py_Dealloc((PyObject *)(op));                  \
    776     } while (0)
    777 
    778 /* Safely decref `op` and set `op` to NULL, especially useful in tp_clear
    779  * and tp_dealloc implementatons.
    780  *
    781  * Note that "the obvious" code can be deadly:
    782  *
    783  *     Py_XDECREF(op);
    784  *     op = NULL;
    785  *
    786  * Typically, `op` is something like self->containee, and `self` is done
    787  * using its `containee` member.  In the code sequence above, suppose
    788  * `containee` is non-NULL with a refcount of 1.  Its refcount falls to
    789  * 0 on the first line, which can trigger an arbitrary amount of code,
    790  * possibly including finalizers (like __del__ methods or weakref callbacks)
    791  * coded in Python, which in turn can release the GIL and allow other threads
    792  * to run, etc.  Such code may even invoke methods of `self` again, or cause
    793  * cyclic gc to trigger, but-- oops! --self->containee still points to the
    794  * object being torn down, and it may be in an insane state while being torn
    795  * down.  This has in fact been a rich historic source of miserable (rare &
    796  * hard-to-diagnose) segfaulting (and other) bugs.
    797  *
    798  * The safe way is:
    799  *
    800  *      Py_CLEAR(op);
    801  *
    802  * That arranges to set `op` to NULL _before_ decref'ing, so that any code
    803  * triggered as a side-effect of `op` getting torn down no longer believes
    804  * `op` points to a valid object.
    805  *
    806  * There are cases where it's safe to use the naive code, but they're brittle.
    807  * For example, if `op` points to a Python integer, you know that destroying
    808  * one of those can't cause problems -- but in part that relies on that
    809  * Python integers aren't currently weakly referencable.  Best practice is
    810  * to use Py_CLEAR() even if you can't think of a reason for why you need to.
    811  */
    812 #define Py_CLEAR(op)                            \
    813     do {                                        \
    814         if (op) {                               \
    815             PyObject *_py_tmp = (PyObject *)(op);               \
    816             (op) = NULL;                        \
    817             Py_DECREF(_py_tmp);                 \
    818         }                                       \
    819     } while (0)
    820 
    821 /* Macros to use in case the object pointer may be NULL: */
    822 #define Py_XINCREF(op) do { if ((op) == NULL) ; else Py_INCREF(op); } while (0)
    823 #define Py_XDECREF(op) do { if ((op) == NULL) ; else Py_DECREF(op); } while (0)
    824 
    825 /*
    826 These are provided as conveniences to Python runtime embedders, so that
    827 they can have object code that is not dependent on Python compilation flags.
    828 */
    829 PyAPI_FUNC(void) Py_IncRef(PyObject *);
    830 PyAPI_FUNC(void) Py_DecRef(PyObject *);
    831 
    832 /*
    833 _Py_NoneStruct is an object of undefined type which can be used in contexts
    834 where NULL (nil) is not suitable (since NULL often means 'error').
    835 
    836 Don't forget to apply Py_INCREF() when returning this value!!!
    837 */
    838 PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */
    839 #define Py_None (&_Py_NoneStruct)
    840 
    841 /* Macro for returning Py_None from a function */
    842 #define Py_RETURN_NONE return Py_INCREF(Py_None), Py_None
    843 
    844 /*
    845 Py_NotImplemented is a singleton used to signal that an operation is
    846 not implemented for a given type combination.
    847 */
    848 PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */
    849 #define Py_NotImplemented (&_Py_NotImplementedStruct)
    850 
    851 /* Rich comparison opcodes */
    852 #define Py_LT 0
    853 #define Py_LE 1
    854 #define Py_EQ 2
    855 #define Py_NE 3
    856 #define Py_GT 4
    857 #define Py_GE 5
    858 
    859 /* Maps Py_LT to Py_GT, ..., Py_GE to Py_LE.
    860  * Defined in object.c.
    861  */
    862 PyAPI_DATA(int) _Py_SwappedOp[];
    863 
    864 /*
    865 Define staticforward and statichere for source compatibility with old
    866 C extensions.
    867 
    868 The staticforward define was needed to support certain broken C
    869 compilers (notably SCO ODT 3.0, perhaps early AIX as well) botched the
    870 static keyword when it was used with a forward declaration of a static
    871 initialized structure.  Standard C allows the forward declaration with
    872 static, and we've decided to stop catering to broken C compilers.
    873 (In fact, we expect that the compilers are all fixed eight years later.)
    874 */
    875 
    876 #define staticforward static
    877 #define statichere static
    878 
    879 
    880 /*
    881 More conventions
    882 ================
    883 
    884 Argument Checking
    885 -----------------
    886 
    887 Functions that take objects as arguments normally don't check for nil
    888 arguments, but they do check the type of the argument, and return an
    889 error if the function doesn't apply to the type.
    890 
    891 Failure Modes
    892 -------------
    893 
    894 Functions may fail for a variety of reasons, including running out of
    895 memory.  This is communicated to the caller in two ways: an error string
    896 is set (see errors.h), and the function result differs: functions that
    897 normally return a pointer return NULL for failure, functions returning
    898 an integer return -1 (which could be a legal return value too!), and
    899 other functions return 0 for success and -1 for failure.
    900 Callers should always check for errors before using the result.  If
    901 an error was set, the caller must either explicitly clear it, or pass
    902 the error on to its caller.
    903 
    904 Reference Counts
    905 ----------------
    906 
    907 It takes a while to get used to the proper usage of reference counts.
    908 
    909 Functions that create an object set the reference count to 1; such new
    910 objects must be stored somewhere or destroyed again with Py_DECREF().
    911 Some functions that 'store' objects, such as PyTuple_SetItem() and
    912 PyList_SetItem(),
    913 don't increment the reference count of the object, since the most
    914 frequent use is to store a fresh object.  Functions that 'retrieve'
    915 objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also
    916 don't increment
    917 the reference count, since most frequently the object is only looked at
    918 quickly.  Thus, to retrieve an object and store it again, the caller
    919 must call Py_INCREF() explicitly.
    920 
    921 NOTE: functions that 'consume' a reference count, like
    922 PyList_SetItem(), consume the reference even if the object wasn't
    923 successfully stored, to simplify error handling.
    924 
    925 It seems attractive to make other functions that take an object as
    926 argument consume a reference count; however, this may quickly get
    927 confusing (even the current practice is already confusing).  Consider
    928 it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at
    929 times.
    930 */
    931 
    932 
    933 /* Trashcan mechanism, thanks to Christian Tismer.
    934 
    935 When deallocating a container object, it's possible to trigger an unbounded
    936 chain of deallocations, as each Py_DECREF in turn drops the refcount on "the
    937 next" object in the chain to 0.  This can easily lead to stack faults, and
    938 especially in threads (which typically have less stack space to work with).
    939 
    940 A container object that participates in cyclic gc can avoid this by
    941 bracketing the body of its tp_dealloc function with a pair of macros:
    942 
    943 static void
    944 mytype_dealloc(mytype *p)
    945 {
    946     ... declarations go here ...
    947 
    948     PyObject_GC_UnTrack(p);        // must untrack first
    949     Py_TRASHCAN_SAFE_BEGIN(p)
    950     ... The body of the deallocator goes here, including all calls ...
    951     ... to Py_DECREF on contained objects.                         ...
    952     Py_TRASHCAN_SAFE_END(p)
    953 }
    954 
    955 CAUTION:  Never return from the middle of the body!  If the body needs to
    956 "get out early", put a label immediately before the Py_TRASHCAN_SAFE_END
    957 call, and goto it.  Else the call-depth counter (see below) will stay
    958 above 0 forever, and the trashcan will never get emptied.
    959 
    960 How it works:  The BEGIN macro increments a call-depth counter.  So long
    961 as this counter is small, the body of the deallocator is run directly without
    962 further ado.  But if the counter gets large, it instead adds p to a list of
    963 objects to be deallocated later, skips the body of the deallocator, and
    964 resumes execution after the END macro.  The tp_dealloc routine then returns
    965 without deallocating anything (and so unbounded call-stack depth is avoided).
    966 
    967 When the call stack finishes unwinding again, code generated by the END macro
    968 notices this, and calls another routine to deallocate all the objects that
    969 may have been added to the list of deferred deallocations.  In effect, a
    970 chain of N deallocations is broken into N / PyTrash_UNWIND_LEVEL pieces,
    971 with the call stack never exceeding a depth of PyTrash_UNWIND_LEVEL.
    972 */
    973 
    974 /* This is the old private API, invoked by the macros before 2.7.4.
    975    Kept for binary compatibility of extensions. */
    976 PyAPI_FUNC(void) _PyTrash_deposit_object(PyObject*);
    977 PyAPI_FUNC(void) _PyTrash_destroy_chain(void);
    978 PyAPI_DATA(int) _PyTrash_delete_nesting;
    979 PyAPI_DATA(PyObject *) _PyTrash_delete_later;
    980 
    981 /* The new thread-safe private API, invoked by the macros below. */
    982 PyAPI_FUNC(void) _PyTrash_thread_deposit_object(PyObject*);
    983 PyAPI_FUNC(void) _PyTrash_thread_destroy_chain(void);
    984 
    985 #define PyTrash_UNWIND_LEVEL 50
    986 
    987 /* Note the workaround for when the thread state is NULL (issue #17703) */
    988 #define Py_TRASHCAN_SAFE_BEGIN(op) \
    989     do { \
    990         PyThreadState *_tstate = PyThreadState_GET(); \
    991         if (!_tstate || \
    992             _tstate->trash_delete_nesting < PyTrash_UNWIND_LEVEL) { \
    993             if (_tstate) \
    994                 ++_tstate->trash_delete_nesting;
    995             /* The body of the deallocator is here. */
    996 #define Py_TRASHCAN_SAFE_END(op) \
    997             if (_tstate) { \
    998                 --_tstate->trash_delete_nesting; \
    999                 if (_tstate->trash_delete_later \
   1000                     && _tstate->trash_delete_nesting <= 0) \
   1001                     _PyTrash_thread_destroy_chain(); \
   1002             } \
   1003         } \
   1004         else \
   1005             _PyTrash_thread_deposit_object((PyObject*)op); \
   1006     } while (0);
   1007 
   1008 #ifdef __cplusplus
   1009 }
   1010 #endif
   1011 #endif /* !Py_OBJECT_H */
   1012