Home | History | Annotate | Download | only in runtime
      1 // Inferno's libkern/vlop-arm.s
      2 // https://bitbucket.org/inferno-os/inferno-os/src/default/libkern/vlop-arm.s
      3 //
      4 //         Copyright  1994-1999 Lucent Technologies Inc. All rights reserved.
      5 //         Revisions Copyright  2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com).  All rights reserved.
      6 //         Portions Copyright 2009 The Go Authors. All rights reserved.
      7 //
      8 // Permission is hereby granted, free of charge, to any person obtaining a copy
      9 // of this software and associated documentation files (the "Software"), to deal
     10 // in the Software without restriction, including without limitation the rights
     11 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
     12 // copies of the Software, and to permit persons to whom the Software is
     13 // furnished to do so, subject to the following conditions:
     14 //
     15 // The above copyright notice and this permission notice shall be included in
     16 // all copies or substantial portions of the Software.
     17 //
     18 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     19 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     20 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
     21 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
     22 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
     23 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
     24 // THE SOFTWARE.
     25 
     26 #include "go_asm.h"
     27 #include "go_tls.h"
     28 #include "funcdata.h"
     29 #include "textflag.h"
     30 
     31 // trampoline for _sfloat2. passes LR as arg0 and
     32 // saves registers R0-R13 and CPSR on the stack. R0-R12 and CPSR flags can
     33 // be changed by _sfloat2.
     34 TEXT runtime_sfloat(SB), NOSPLIT, $68-0 // 4 arg + 14*4 saved regs + cpsr + return value
     35 	MOVW	R14, 4(R13)
     36 	MOVW	R0, 8(R13)
     37 	MOVW	$12(R13), R0
     38 	MOVM.IA.W	[R1-R12], (R0)
     39 	MOVW	$72(R13), R1 // correct for frame size
     40 	MOVW	R1, 60(R13)
     41 	WORD	$0xe10f1000 // mrs r1, cpsr
     42 	MOVW	R1, 64(R13)
     43 	// Disable preemption of this goroutine during _sfloat2 by
     44 	// m->locks++ and m->locks-- around the call.
     45 	// Rescheduling this goroutine may cause the loss of the
     46 	// contents of the software floating point registers in
     47 	// m->freghi, m->freglo, m->fflag, if the goroutine is moved
     48 	// to a different m or another goroutine runs on this m.
     49 	// Rescheduling at ordinary function calls is okay because
     50 	// all registers are caller save, but _sfloat2 and the things
     51 	// that it runs are simulating the execution of individual
     52 	// program instructions, and those instructions do not expect
     53 	// the floating point registers to be lost.
     54 	// An alternative would be to move the software floating point
     55 	// registers into G, but they do not need to be kept at the
     56 	// usual places a goroutine reschedules (at function calls),
     57 	// so it would be a waste of 132 bytes per G.
     58 	MOVW	g_m(g), R8
     59 	MOVW	m_locks(R8), R1
     60 	ADD	$1, R1
     61 	MOVW	R1, m_locks(R8)
     62 	MOVW	$1, R1
     63 	MOVW	R1, m_softfloat(R8)
     64 	BL	runtime_sfloat2(SB)
     65 	MOVW	68(R13), R0
     66 	MOVW	g_m(g), R8
     67 	MOVW	m_locks(R8), R1
     68 	SUB	$1, R1
     69 	MOVW	R1, m_locks(R8)
     70 	MOVW	$0, R1
     71 	MOVW	R1, m_softfloat(R8)
     72 	MOVW	R0, 0(R13)
     73 	MOVW	64(R13), R1
     74 	WORD	$0xe128f001	// msr cpsr_f, r1
     75 	MOVW	$12(R13), R0
     76 	// Restore R1-R12, R0.
     77 	MOVM.IA.W	(R0), [R1-R12]
     78 	MOVW	8(R13), R0
     79 	RET
     80 
     81 // trampoline for _sfloat2 panic.
     82 // _sfloat2 instructs _sfloat to return here.
     83 // We need to push a fake saved LR onto the stack,
     84 // load the signal fault address into LR, and jump
     85 // to the real sigpanic.
     86 // This simulates what sighandler does for a memory fault.
     87 TEXT runtime_sfloatpanic(SB),NOSPLIT,$-4
     88 	MOVW	$0, R0
     89 	MOVW.W	R0, -4(R13)
     90 	MOVW	g_sigpc(g), LR
     91 	B	runtimesigpanic(SB)
     92 
     93 // func runtimeudiv(n, d uint32) (q, r uint32)
     94 // compiler knowns the register usage of this function
     95 // Reference:
     96 // Sloss, Andrew et. al; ARM System Developer's Guide: Designing and Optimizing System Software
     97 // Morgan Kaufmann; 1 edition (April 8, 2004), ISBN 978-1558608740
     98 #define Rq	R0 // input d, output q
     99 #define Rr	R1 // input n, output r
    100 #define Rs	R2 // three temporary variables
    101 #define RM	R3
    102 #define Ra	R11
    103 
    104 // Be careful: Ra == R11 will be used by the linker for synthesized instructions.
    105 TEXT runtimeudiv(SB),NOSPLIT,$-4
    106 	MOVBU	runtimehardDiv(SB), Ra
    107 	CMP	$0, Ra
    108 	BNE	udiv_hardware
    109 
    110 	CLZ 	Rq, Rs // find normalizing shift
    111 	MOVW.S	Rq<<Rs, Ra
    112 	MOVW	$fast_udiv_tab<>-64(SB), RM
    113 	ADD.NE	Ra>>25, RM, Ra // index by most significant 7 bits of divisor
    114 	MOVBU.NE	(Ra), Ra
    115 
    116 	SUB.S	$7, Rs
    117 	RSB 	$0, Rq, RM // M = -q
    118 	MOVW.PL	Ra<<Rs, Rq
    119 
    120 	// 1st Newton iteration
    121 	MUL.PL	RM, Rq, Ra // a = -q*d
    122 	BMI 	udiv_by_large_d
    123 	MULAWT	Ra, Rq, Rq, Rq // q approx q-(q*q*d>>32)
    124 	TEQ 	RM->1, RM // check for d=0 or d=1
    125 
    126 	// 2nd Newton iteration
    127 	MUL.NE	RM, Rq, Ra
    128 	MOVW.NE	$0, Rs
    129 	MULAL.NE Rq, Ra, (Rq,Rs)
    130 	BEQ 	udiv_by_0_or_1
    131 
    132 	// q now accurate enough for a remainder r, 0<=r<3*d
    133 	MULLU	Rq, Rr, (Rq,Rs) // q = (r * q) >> 32
    134 	ADD 	RM, Rr, Rr // r = n - d
    135 	MULA	RM, Rq, Rr, Rr // r = n - (q+1)*d
    136 
    137 	// since 0 <= n-q*d < 3*d; thus -d <= r < 2*d
    138 	CMN 	RM, Rr // t = r-d
    139 	SUB.CS	RM, Rr, Rr // if (t<-d || t>=0) r=r+d
    140 	ADD.CC	$1, Rq
    141 	ADD.PL	RM<<1, Rr
    142 	ADD.PL	$2, Rq
    143 	RET
    144 
    145 // use hardware divider
    146 udiv_hardware:
    147 	DIVUHW	Rq, Rr, Rs
    148 	MUL	Rs, Rq, RM
    149 	RSB	Rr, RM, Rr
    150 	MOVW	Rs, Rq
    151 	RET
    152 
    153 udiv_by_large_d:
    154 	// at this point we know d>=2^(31-6)=2^25
    155 	SUB 	$4, Ra, Ra
    156 	RSB 	$0, Rs, Rs
    157 	MOVW	Ra>>Rs, Rq
    158 	MULLU	Rq, Rr, (Rq,Rs)
    159 	MULA	RM, Rq, Rr, Rr
    160 
    161 	// q now accurate enough for a remainder r, 0<=r<4*d
    162 	CMN 	Rr>>1, RM // if(r/2 >= d)
    163 	ADD.CS	RM<<1, Rr
    164 	ADD.CS	$2, Rq
    165 	CMN 	Rr, RM
    166 	ADD.CS	RM, Rr
    167 	ADD.CS	$1, Rq
    168 	RET
    169 
    170 udiv_by_0_or_1:
    171 	// carry set if d==1, carry clear if d==0
    172 	BCC udiv_by_0
    173 	MOVW	Rr, Rq
    174 	MOVW	$0, Rr
    175 	RET
    176 
    177 udiv_by_0:
    178 	MOVW	$runtimepanicdivide(SB), R11
    179 	B	(R11)
    180 
    181 // var tab [64]byte
    182 // tab[0] = 255; for i := 1; i <= 63; i++ { tab[i] = (1<<14)/(64+i) }
    183 // laid out here as little-endian uint32s
    184 DATA fast_udiv_tab<>+0x00(SB)/4, $0xf4f8fcff
    185 DATA fast_udiv_tab<>+0x04(SB)/4, $0xe6eaedf0
    186 DATA fast_udiv_tab<>+0x08(SB)/4, $0xdadde0e3
    187 DATA fast_udiv_tab<>+0x0c(SB)/4, $0xcfd2d4d7
    188 DATA fast_udiv_tab<>+0x10(SB)/4, $0xc5c7cacc
    189 DATA fast_udiv_tab<>+0x14(SB)/4, $0xbcbec0c3
    190 DATA fast_udiv_tab<>+0x18(SB)/4, $0xb4b6b8ba
    191 DATA fast_udiv_tab<>+0x1c(SB)/4, $0xacaeb0b2
    192 DATA fast_udiv_tab<>+0x20(SB)/4, $0xa5a7a8aa
    193 DATA fast_udiv_tab<>+0x24(SB)/4, $0x9fa0a2a3
    194 DATA fast_udiv_tab<>+0x28(SB)/4, $0x999a9c9d
    195 DATA fast_udiv_tab<>+0x2c(SB)/4, $0x93949697
    196 DATA fast_udiv_tab<>+0x30(SB)/4, $0x8e8f9092
    197 DATA fast_udiv_tab<>+0x34(SB)/4, $0x898a8c8d
    198 DATA fast_udiv_tab<>+0x38(SB)/4, $0x85868788
    199 DATA fast_udiv_tab<>+0x3c(SB)/4, $0x81828384
    200 GLOBL fast_udiv_tab<>(SB), RODATA, $64
    201 
    202 // The linker will pass numerator in R8
    203 #define Rn R8
    204 // The linker expects the result in RTMP
    205 #define RTMP R11
    206 
    207 TEXT runtime_divu(SB), NOSPLIT, $16-0
    208 	// It's not strictly true that there are no local pointers.
    209 	// It could be that the saved registers Rq, Rr, Rs, and Rm
    210 	// contain pointers. However, the only way this can matter
    211 	// is if the stack grows (which it can't, udiv is nosplit)
    212 	// or if a fault happens and more frames are added to
    213 	// the stack due to deferred functions.
    214 	// In the latter case, the stack can grow arbitrarily,
    215 	// and garbage collection can happen, and those
    216 	// operations care about pointers, but in that case
    217 	// the calling frame is dead, and so are the saved
    218 	// registers. So we can claim there are no pointers here.
    219 	NO_LOCAL_POINTERS
    220 	MOVW	Rq, 4(R13)
    221 	MOVW	Rr, 8(R13)
    222 	MOVW	Rs, 12(R13)
    223 	MOVW	RM, 16(R13)
    224 
    225 	MOVW	Rn, Rr			/* numerator */
    226 	MOVW	g_m(g), Rq
    227 	MOVW	m_divmod(Rq), Rq	/* denominator */
    228 	BL  	runtimeudiv(SB)
    229 	MOVW	Rq, RTMP
    230 	MOVW	4(R13), Rq
    231 	MOVW	8(R13), Rr
    232 	MOVW	12(R13), Rs
    233 	MOVW	16(R13), RM
    234 	RET
    235 
    236 TEXT runtime_modu(SB), NOSPLIT, $16-0
    237 	NO_LOCAL_POINTERS
    238 	MOVW	Rq, 4(R13)
    239 	MOVW	Rr, 8(R13)
    240 	MOVW	Rs, 12(R13)
    241 	MOVW	RM, 16(R13)
    242 
    243 	MOVW	Rn, Rr			/* numerator */
    244 	MOVW	g_m(g), Rq
    245 	MOVW	m_divmod(Rq), Rq	/* denominator */
    246 	BL  	runtimeudiv(SB)
    247 	MOVW	Rr, RTMP
    248 	MOVW	4(R13), Rq
    249 	MOVW	8(R13), Rr
    250 	MOVW	12(R13), Rs
    251 	MOVW	16(R13), RM
    252 	RET
    253 
    254 TEXT runtime_div(SB),NOSPLIT,$16-0
    255 	NO_LOCAL_POINTERS
    256 	MOVW	Rq, 4(R13)
    257 	MOVW	Rr, 8(R13)
    258 	MOVW	Rs, 12(R13)
    259 	MOVW	RM, 16(R13)
    260 	MOVW	Rn, Rr			/* numerator */
    261 	MOVW	g_m(g), Rq
    262 	MOVW	m_divmod(Rq), Rq	/* denominator */
    263 	CMP 	$0, Rr
    264 	BGE 	d1
    265 	RSB 	$0, Rr, Rr
    266 	CMP 	$0, Rq
    267 	BGE 	d2
    268 	RSB 	$0, Rq, Rq
    269 d0:
    270 	BL  	runtimeudiv(SB)  	/* none/both neg */
    271 	MOVW	Rq, RTMP
    272 	B	out1
    273 d1:
    274 	CMP 	$0, Rq
    275 	BGE 	d0
    276 	RSB 	$0, Rq, Rq
    277 d2:
    278 	BL  	runtimeudiv(SB)  	/* one neg */
    279 	RSB	$0, Rq, RTMP
    280 out1:
    281 	MOVW	4(R13), Rq
    282 	MOVW	8(R13), Rr
    283 	MOVW	12(R13), Rs
    284 	MOVW	16(R13), RM
    285 	RET
    286 
    287 TEXT runtime_mod(SB),NOSPLIT,$16-0
    288 	NO_LOCAL_POINTERS
    289 	MOVW	Rq, 4(R13)
    290 	MOVW	Rr, 8(R13)
    291 	MOVW	Rs, 12(R13)
    292 	MOVW	RM, 16(R13)
    293 	MOVW	Rn, Rr			/* numerator */
    294 	MOVW	g_m(g), Rq
    295 	MOVW	m_divmod(Rq), Rq	/* denominator */
    296 	CMP 	$0, Rq
    297 	RSB.LT	$0, Rq, Rq
    298 	CMP 	$0, Rr
    299 	BGE 	m1
    300 	RSB 	$0, Rr, Rr
    301 	BL  	runtimeudiv(SB)  	/* neg numerator */
    302 	RSB 	$0, Rr, RTMP
    303 	B   	out
    304 m1:
    305 	BL  	runtimeudiv(SB)  	/* pos numerator */
    306 	MOVW	Rr, RTMP
    307 out:
    308 	MOVW	4(R13), Rq
    309 	MOVW	8(R13), Rr
    310 	MOVW	12(R13), Rs
    311 	MOVW	16(R13), RM
    312 	RET
    313 
    314 // _mul64by32 and _div64by32 not implemented on arm
    315 TEXT runtime_mul64by32(SB), NOSPLIT, $0
    316 	MOVW	$0, R0
    317 	MOVW	(R0), R1 // crash
    318 
    319 TEXT runtime_div64by32(SB), NOSPLIT, $0
    320 	MOVW	$0, R0
    321 	MOVW	(R0), R1 // crash
    322