Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #if GTEST_HAS_EXCEPTIONS
     50 # include <stdexcept>
     51 #endif
     52 
     53 #include <ctype.h>
     54 #include <string.h>
     55 #include <iomanip>
     56 #include <limits>
     57 #include <set>
     58 
     59 #include "gtest/gtest-message.h"
     60 #include "gtest/internal/gtest-string.h"
     61 #include "gtest/internal/gtest-filepath.h"
     62 #include "gtest/internal/gtest-type-util.h"
     63 
     64 // Due to C++ preprocessor weirdness, we need double indirection to
     65 // concatenate two tokens when one of them is __LINE__.  Writing
     66 //
     67 //   foo ## __LINE__
     68 //
     69 // will result in the token foo__LINE__, instead of foo followed by
     70 // the current line number.  For more details, see
     71 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     72 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     73 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     74 
     75 class ProtocolMessage;
     76 namespace proto2 { class Message; }
     77 
     78 namespace testing {
     79 
     80 // Forward declarations.
     81 
     82 class AssertionResult;                 // Result of an assertion.
     83 class Message;                         // Represents a failure message.
     84 class Test;                            // Represents a test.
     85 class TestInfo;                        // Information about a test.
     86 class TestPartResult;                  // Result of a test part.
     87 class UnitTest;                        // A collection of test cases.
     88 
     89 template <typename T>
     90 ::std::string PrintToString(const T& value);
     91 
     92 namespace internal {
     93 
     94 struct TraceInfo;                      // Information about a trace point.
     95 class ScopedTrace;                     // Implements scoped trace.
     96 class TestInfoImpl;                    // Opaque implementation of TestInfo
     97 class UnitTestImpl;                    // Opaque implementation of UnitTest
     98 
     99 // How many times InitGoogleTest() has been called.
    100 GTEST_API_ extern int g_init_gtest_count;
    101 
    102 // The text used in failure messages to indicate the start of the
    103 // stack trace.
    104 GTEST_API_ extern const char kStackTraceMarker[];
    105 
    106 // Two overloaded helpers for checking at compile time whether an
    107 // expression is a null pointer literal (i.e. NULL or any 0-valued
    108 // compile-time integral constant).  Their return values have
    109 // different sizes, so we can use sizeof() to test which version is
    110 // picked by the compiler.  These helpers have no implementations, as
    111 // we only need their signatures.
    112 //
    113 // Given IsNullLiteralHelper(x), the compiler will pick the first
    114 // version if x can be implicitly converted to Secret*, and pick the
    115 // second version otherwise.  Since Secret is a secret and incomplete
    116 // type, the only expression a user can write that has type Secret* is
    117 // a null pointer literal.  Therefore, we know that x is a null
    118 // pointer literal if and only if the first version is picked by the
    119 // compiler.
    120 char IsNullLiteralHelper(Secret* p);
    121 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    122 
    123 // A compile-time bool constant that is true if and only if x is a
    124 // null pointer literal (i.e. NULL or any 0-valued compile-time
    125 // integral constant).
    126 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    127 // We lose support for NULL detection where the compiler doesn't like
    128 // passing non-POD classes through ellipsis (...).
    129 # define GTEST_IS_NULL_LITERAL_(x) false
    130 #else
    131 # define GTEST_IS_NULL_LITERAL_(x) \
    132     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    133 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    134 
    135 // Appends the user-supplied message to the Google-Test-generated message.
    136 GTEST_API_ std::string AppendUserMessage(
    137     const std::string& gtest_msg, const Message& user_msg);
    138 
    139 #if GTEST_HAS_EXCEPTIONS
    140 
    141 // This exception is thrown by (and only by) a failed Google Test
    142 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
    143 // are enabled).  We derive it from std::runtime_error, which is for
    144 // errors presumably detectable only at run time.  Since
    145 // std::runtime_error inherits from std::exception, many testing
    146 // frameworks know how to extract and print the message inside it.
    147 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
    148  public:
    149   explicit GoogleTestFailureException(const TestPartResult& failure);
    150 };
    151 
    152 #endif  // GTEST_HAS_EXCEPTIONS
    153 
    154 // A helper class for creating scoped traces in user programs.
    155 class GTEST_API_ ScopedTrace {
    156  public:
    157   // The c'tor pushes the given source file location and message onto
    158   // a trace stack maintained by Google Test.
    159   ScopedTrace(const char* file, int line, const Message& message);
    160 
    161   // The d'tor pops the info pushed by the c'tor.
    162   //
    163   // Note that the d'tor is not virtual in order to be efficient.
    164   // Don't inherit from ScopedTrace!
    165   ~ScopedTrace();
    166 
    167  private:
    168   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    169 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    170                             // c'tor and d'tor.  Therefore it doesn't
    171                             // need to be used otherwise.
    172 
    173 // Constructs and returns the message for an equality assertion
    174 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    175 //
    176 // The first four parameters are the expressions used in the assertion
    177 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    178 // where foo is 5 and bar is 6, we have:
    179 //
    180 //   expected_expression: "foo"
    181 //   actual_expression:   "bar"
    182 //   expected_value:      "5"
    183 //   actual_value:        "6"
    184 //
    185 // The ignoring_case parameter is true iff the assertion is a
    186 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    187 // be inserted into the message.
    188 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    189                                      const char* actual_expression,
    190                                      const std::string& expected_value,
    191                                      const std::string& actual_value,
    192                                      bool ignoring_case);
    193 
    194 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    195 GTEST_API_ std::string GetBoolAssertionFailureMessage(
    196     const AssertionResult& assertion_result,
    197     const char* expression_text,
    198     const char* actual_predicate_value,
    199     const char* expected_predicate_value);
    200 
    201 // This template class represents an IEEE floating-point number
    202 // (either single-precision or double-precision, depending on the
    203 // template parameters).
    204 //
    205 // The purpose of this class is to do more sophisticated number
    206 // comparison.  (Due to round-off error, etc, it's very unlikely that
    207 // two floating-points will be equal exactly.  Hence a naive
    208 // comparison by the == operation often doesn't work.)
    209 //
    210 // Format of IEEE floating-point:
    211 //
    212 //   The most-significant bit being the leftmost, an IEEE
    213 //   floating-point looks like
    214 //
    215 //     sign_bit exponent_bits fraction_bits
    216 //
    217 //   Here, sign_bit is a single bit that designates the sign of the
    218 //   number.
    219 //
    220 //   For float, there are 8 exponent bits and 23 fraction bits.
    221 //
    222 //   For double, there are 11 exponent bits and 52 fraction bits.
    223 //
    224 //   More details can be found at
    225 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    226 //
    227 // Template parameter:
    228 //
    229 //   RawType: the raw floating-point type (either float or double)
    230 template <typename RawType>
    231 class FloatingPoint {
    232  public:
    233   // Defines the unsigned integer type that has the same size as the
    234   // floating point number.
    235   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    236 
    237   // Constants.
    238 
    239   // # of bits in a number.
    240   static const size_t kBitCount = 8*sizeof(RawType);
    241 
    242   // # of fraction bits in a number.
    243   static const size_t kFractionBitCount =
    244     std::numeric_limits<RawType>::digits - 1;
    245 
    246   // # of exponent bits in a number.
    247   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    248 
    249   // The mask for the sign bit.
    250   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    251 
    252   // The mask for the fraction bits.
    253   static const Bits kFractionBitMask =
    254     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    255 
    256   // The mask for the exponent bits.
    257   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    258 
    259   // How many ULP's (Units in the Last Place) we want to tolerate when
    260   // comparing two numbers.  The larger the value, the more error we
    261   // allow.  A 0 value means that two numbers must be exactly the same
    262   // to be considered equal.
    263   //
    264   // The maximum error of a single floating-point operation is 0.5
    265   // units in the last place.  On Intel CPU's, all floating-point
    266   // calculations are done with 80-bit precision, while double has 64
    267   // bits.  Therefore, 4 should be enough for ordinary use.
    268   //
    269   // See the following article for more details on ULP:
    270   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    271   static const size_t kMaxUlps = 4;
    272 
    273   // Constructs a FloatingPoint from a raw floating-point number.
    274   //
    275   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    276   // around may change its bits, although the new value is guaranteed
    277   // to be also a NAN.  Therefore, don't expect this constructor to
    278   // preserve the bits in x when x is a NAN.
    279   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    280 
    281   // Static methods
    282 
    283   // Reinterprets a bit pattern as a floating-point number.
    284   //
    285   // This function is needed to test the AlmostEquals() method.
    286   static RawType ReinterpretBits(const Bits bits) {
    287     FloatingPoint fp(0);
    288     fp.u_.bits_ = bits;
    289     return fp.u_.value_;
    290   }
    291 
    292   // Returns the floating-point number that represent positive infinity.
    293   static RawType Infinity() {
    294     return ReinterpretBits(kExponentBitMask);
    295   }
    296 
    297   // Non-static methods
    298 
    299   // Returns the bits that represents this number.
    300   const Bits &bits() const { return u_.bits_; }
    301 
    302   // Returns the exponent bits of this number.
    303   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    304 
    305   // Returns the fraction bits of this number.
    306   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    307 
    308   // Returns the sign bit of this number.
    309   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    310 
    311   // Returns true iff this is NAN (not a number).
    312   bool is_nan() const {
    313     // It's a NAN if the exponent bits are all ones and the fraction
    314     // bits are not entirely zeros.
    315     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    316   }
    317 
    318   // Returns true iff this number is at most kMaxUlps ULP's away from
    319   // rhs.  In particular, this function:
    320   //
    321   //   - returns false if either number is (or both are) NAN.
    322   //   - treats really large numbers as almost equal to infinity.
    323   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    324   bool AlmostEquals(const FloatingPoint& rhs) const {
    325     // The IEEE standard says that any comparison operation involving
    326     // a NAN must return false.
    327     if (is_nan() || rhs.is_nan()) return false;
    328 
    329     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    330         <= kMaxUlps;
    331   }
    332 
    333  private:
    334   // The data type used to store the actual floating-point number.
    335   union FloatingPointUnion {
    336     RawType value_;  // The raw floating-point number.
    337     Bits bits_;      // The bits that represent the number.
    338   };
    339 
    340   // Converts an integer from the sign-and-magnitude representation to
    341   // the biased representation.  More precisely, let N be 2 to the
    342   // power of (kBitCount - 1), an integer x is represented by the
    343   // unsigned number x + N.
    344   //
    345   // For instance,
    346   //
    347   //   -N + 1 (the most negative number representable using
    348   //          sign-and-magnitude) is represented by 1;
    349   //   0      is represented by N; and
    350   //   N - 1  (the biggest number representable using
    351   //          sign-and-magnitude) is represented by 2N - 1.
    352   //
    353   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    354   // for more details on signed number representations.
    355   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    356     if (kSignBitMask & sam) {
    357       // sam represents a negative number.
    358       return ~sam + 1;
    359     } else {
    360       // sam represents a positive number.
    361       return kSignBitMask | sam;
    362     }
    363   }
    364 
    365   // Given two numbers in the sign-and-magnitude representation,
    366   // returns the distance between them as an unsigned number.
    367   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    368                                                      const Bits &sam2) {
    369     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    370     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    371     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    372   }
    373 
    374   FloatingPointUnion u_;
    375 };
    376 
    377 // Typedefs the instances of the FloatingPoint template class that we
    378 // care to use.
    379 typedef FloatingPoint<float> Float;
    380 typedef FloatingPoint<double> Double;
    381 
    382 // In order to catch the mistake of putting tests that use different
    383 // test fixture classes in the same test case, we need to assign
    384 // unique IDs to fixture classes and compare them.  The TypeId type is
    385 // used to hold such IDs.  The user should treat TypeId as an opaque
    386 // type: the only operation allowed on TypeId values is to compare
    387 // them for equality using the == operator.
    388 typedef const void* TypeId;
    389 
    390 template <typename T>
    391 class TypeIdHelper {
    392  public:
    393   // dummy_ must not have a const type.  Otherwise an overly eager
    394   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    395   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    396   static bool dummy_;
    397 };
    398 
    399 template <typename T>
    400 bool TypeIdHelper<T>::dummy_ = false;
    401 
    402 // GetTypeId<T>() returns the ID of type T.  Different values will be
    403 // returned for different types.  Calling the function twice with the
    404 // same type argument is guaranteed to return the same ID.
    405 template <typename T>
    406 TypeId GetTypeId() {
    407   // The compiler is required to allocate a different
    408   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    409   // the template.  Therefore, the address of dummy_ is guaranteed to
    410   // be unique.
    411   return &(TypeIdHelper<T>::dummy_);
    412 }
    413 
    414 // Returns the type ID of ::testing::Test.  Always call this instead
    415 // of GetTypeId< ::testing::Test>() to get the type ID of
    416 // ::testing::Test, as the latter may give the wrong result due to a
    417 // suspected linker bug when compiling Google Test as a Mac OS X
    418 // framework.
    419 GTEST_API_ TypeId GetTestTypeId();
    420 
    421 // Defines the abstract factory interface that creates instances
    422 // of a Test object.
    423 class TestFactoryBase {
    424  public:
    425   virtual ~TestFactoryBase() {}
    426 
    427   // Creates a test instance to run. The instance is both created and destroyed
    428   // within TestInfoImpl::Run()
    429   virtual Test* CreateTest() = 0;
    430 
    431  protected:
    432   TestFactoryBase() {}
    433 
    434  private:
    435   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    436 };
    437 
    438 // This class provides implementation of TeastFactoryBase interface.
    439 // It is used in TEST and TEST_F macros.
    440 template <class TestClass>
    441 class TestFactoryImpl : public TestFactoryBase {
    442  public:
    443   virtual Test* CreateTest() { return new TestClass; }
    444 };
    445 
    446 #if GTEST_OS_WINDOWS
    447 
    448 // Predicate-formatters for implementing the HRESULT checking macros
    449 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    450 // We pass a long instead of HRESULT to avoid causing an
    451 // include dependency for the HRESULT type.
    452 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    453                                             long hr);  // NOLINT
    454 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    455                                             long hr);  // NOLINT
    456 
    457 #endif  // GTEST_OS_WINDOWS
    458 
    459 // Types of SetUpTestCase() and TearDownTestCase() functions.
    460 typedef void (*SetUpTestCaseFunc)();
    461 typedef void (*TearDownTestCaseFunc)();
    462 
    463 // Creates a new TestInfo object and registers it with Google Test;
    464 // returns the created object.
    465 //
    466 // Arguments:
    467 //
    468 //   test_case_name:   name of the test case
    469 //   name:             name of the test
    470 //   type_param        the name of the test's type parameter, or NULL if
    471 //                     this is not a typed or a type-parameterized test.
    472 //   value_param       text representation of the test's value parameter,
    473 //                     or NULL if this is not a type-parameterized test.
    474 //   fixture_class_id: ID of the test fixture class
    475 //   set_up_tc:        pointer to the function that sets up the test case
    476 //   tear_down_tc:     pointer to the function that tears down the test case
    477 //   factory:          pointer to the factory that creates a test object.
    478 //                     The newly created TestInfo instance will assume
    479 //                     ownership of the factory object.
    480 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    481     const char* test_case_name,
    482     const char* name,
    483     const char* type_param,
    484     const char* value_param,
    485     TypeId fixture_class_id,
    486     SetUpTestCaseFunc set_up_tc,
    487     TearDownTestCaseFunc tear_down_tc,
    488     TestFactoryBase* factory);
    489 
    490 // If *pstr starts with the given prefix, modifies *pstr to be right
    491 // past the prefix and returns true; otherwise leaves *pstr unchanged
    492 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    493 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    494 
    495 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    496 
    497 // State of the definition of a type-parameterized test case.
    498 class GTEST_API_ TypedTestCasePState {
    499  public:
    500   TypedTestCasePState() : registered_(false) {}
    501 
    502   // Adds the given test name to defined_test_names_ and return true
    503   // if the test case hasn't been registered; otherwise aborts the
    504   // program.
    505   bool AddTestName(const char* file, int line, const char* case_name,
    506                    const char* test_name) {
    507     if (registered_) {
    508       fprintf(stderr, "%s Test %s must be defined before "
    509               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    510               FormatFileLocation(file, line).c_str(), test_name, case_name);
    511       fflush(stderr);
    512       posix::Abort();
    513     }
    514     defined_test_names_.insert(test_name);
    515     return true;
    516   }
    517 
    518   // Verifies that registered_tests match the test names in
    519   // defined_test_names_; returns registered_tests if successful, or
    520   // aborts the program otherwise.
    521   const char* VerifyRegisteredTestNames(
    522       const char* file, int line, const char* registered_tests);
    523 
    524  private:
    525   bool registered_;
    526   ::std::set<const char*> defined_test_names_;
    527 };
    528 
    529 // Skips to the first non-space char after the first comma in 'str';
    530 // returns NULL if no comma is found in 'str'.
    531 inline const char* SkipComma(const char* str) {
    532   const char* comma = strchr(str, ',');
    533   if (comma == NULL) {
    534     return NULL;
    535   }
    536   while (IsSpace(*(++comma))) {}
    537   return comma;
    538 }
    539 
    540 // Returns the prefix of 'str' before the first comma in it; returns
    541 // the entire string if it contains no comma.
    542 inline std::string GetPrefixUntilComma(const char* str) {
    543   const char* comma = strchr(str, ',');
    544   return comma == NULL ? str : std::string(str, comma);
    545 }
    546 
    547 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    548 // registers a list of type-parameterized tests with Google Test.  The
    549 // return value is insignificant - we just need to return something
    550 // such that we can call this function in a namespace scope.
    551 //
    552 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    553 // template parameter.  It's defined in gtest-type-util.h.
    554 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    555 class TypeParameterizedTest {
    556  public:
    557   // 'index' is the index of the test in the type list 'Types'
    558   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    559   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    560   // length of Types.
    561   static bool Register(const char* prefix, const char* case_name,
    562                        const char* test_names, int index) {
    563     typedef typename Types::Head Type;
    564     typedef Fixture<Type> FixtureClass;
    565     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    566 
    567     // First, registers the first type-parameterized test in the type
    568     // list.
    569     MakeAndRegisterTestInfo(
    570         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
    571          + StreamableToString(index)).c_str(),
    572         GetPrefixUntilComma(test_names).c_str(),
    573         GetTypeName<Type>().c_str(),
    574         NULL,  // No value parameter.
    575         GetTypeId<FixtureClass>(),
    576         TestClass::SetUpTestCase,
    577         TestClass::TearDownTestCase,
    578         new TestFactoryImpl<TestClass>);
    579 
    580     // Next, recurses (at compile time) with the tail of the type list.
    581     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    582         ::Register(prefix, case_name, test_names, index + 1);
    583   }
    584 };
    585 
    586 // The base case for the compile time recursion.
    587 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    588 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    589  public:
    590   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    591                        const char* /*test_names*/, int /*index*/) {
    592     return true;
    593   }
    594 };
    595 
    596 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    597 // registers *all combinations* of 'Tests' and 'Types' with Google
    598 // Test.  The return value is insignificant - we just need to return
    599 // something such that we can call this function in a namespace scope.
    600 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    601 class TypeParameterizedTestCase {
    602  public:
    603   static bool Register(const char* prefix, const char* case_name,
    604                        const char* test_names) {
    605     typedef typename Tests::Head Head;
    606 
    607     // First, register the first test in 'Test' for each type in 'Types'.
    608     TypeParameterizedTest<Fixture, Head, Types>::Register(
    609         prefix, case_name, test_names, 0);
    610 
    611     // Next, recurses (at compile time) with the tail of the test list.
    612     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    613         ::Register(prefix, case_name, SkipComma(test_names));
    614   }
    615 };
    616 
    617 // The base case for the compile time recursion.
    618 template <GTEST_TEMPLATE_ Fixture, typename Types>
    619 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    620  public:
    621   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    622                        const char* /*test_names*/) {
    623     return true;
    624   }
    625 };
    626 
    627 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    628 
    629 // Returns the current OS stack trace as an std::string.
    630 //
    631 // The maximum number of stack frames to be included is specified by
    632 // the gtest_stack_trace_depth flag.  The skip_count parameter
    633 // specifies the number of top frames to be skipped, which doesn't
    634 // count against the number of frames to be included.
    635 //
    636 // For example, if Foo() calls Bar(), which in turn calls
    637 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    638 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    639 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
    640     UnitTest* unit_test, int skip_count);
    641 
    642 // Helpers for suppressing warnings on unreachable code or constant
    643 // condition.
    644 
    645 // Always returns true.
    646 GTEST_API_ bool AlwaysTrue();
    647 
    648 // Always returns false.
    649 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    650 
    651 // Helper for suppressing false warning from Clang on a const char*
    652 // variable declared in a conditional expression always being NULL in
    653 // the else branch.
    654 struct GTEST_API_ ConstCharPtr {
    655   ConstCharPtr(const char* str) : value(str) {}
    656   operator bool() const { return true; }
    657   const char* value;
    658 };
    659 
    660 // A simple Linear Congruential Generator for generating random
    661 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    662 // doesn't use global state (and therefore can't interfere with user
    663 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    664 // but it's good enough for our purposes.
    665 class GTEST_API_ Random {
    666  public:
    667   static const UInt32 kMaxRange = 1u << 31;
    668 
    669   explicit Random(UInt32 seed) : state_(seed) {}
    670 
    671   void Reseed(UInt32 seed) { state_ = seed; }
    672 
    673   // Generates a random number from [0, range).  Crashes if 'range' is
    674   // 0 or greater than kMaxRange.
    675   UInt32 Generate(UInt32 range);
    676 
    677  private:
    678   UInt32 state_;
    679   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    680 };
    681 
    682 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    683 // compiler error iff T1 and T2 are different types.
    684 template <typename T1, typename T2>
    685 struct CompileAssertTypesEqual;
    686 
    687 template <typename T>
    688 struct CompileAssertTypesEqual<T, T> {
    689 };
    690 
    691 // Removes the reference from a type if it is a reference type,
    692 // otherwise leaves it unchanged.  This is the same as
    693 // tr1::remove_reference, which is not widely available yet.
    694 template <typename T>
    695 struct RemoveReference { typedef T type; };  // NOLINT
    696 template <typename T>
    697 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    698 
    699 // A handy wrapper around RemoveReference that works when the argument
    700 // T depends on template parameters.
    701 #define GTEST_REMOVE_REFERENCE_(T) \
    702     typename ::testing::internal::RemoveReference<T>::type
    703 
    704 // Removes const from a type if it is a const type, otherwise leaves
    705 // it unchanged.  This is the same as tr1::remove_const, which is not
    706 // widely available yet.
    707 template <typename T>
    708 struct RemoveConst { typedef T type; };  // NOLINT
    709 template <typename T>
    710 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    711 
    712 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    713 // definition to fail to remove the const in 'const int[3]' and 'const
    714 // char[3][4]'.  The following specialization works around the bug.
    715 template <typename T, size_t N>
    716 struct RemoveConst<const T[N]> {
    717   typedef typename RemoveConst<T>::type type[N];
    718 };
    719 
    720 #if defined(_MSC_VER) && _MSC_VER < 1400
    721 // This is the only specialization that allows VC++ 7.1 to remove const in
    722 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
    723 // and thus needs to be conditionally compiled.
    724 template <typename T, size_t N>
    725 struct RemoveConst<T[N]> {
    726   typedef typename RemoveConst<T>::type type[N];
    727 };
    728 #endif
    729 
    730 // A handy wrapper around RemoveConst that works when the argument
    731 // T depends on template parameters.
    732 #define GTEST_REMOVE_CONST_(T) \
    733     typename ::testing::internal::RemoveConst<T>::type
    734 
    735 // Turns const U&, U&, const U, and U all into U.
    736 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    737     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    738 
    739 // Adds reference to a type if it is not a reference type,
    740 // otherwise leaves it unchanged.  This is the same as
    741 // tr1::add_reference, which is not widely available yet.
    742 template <typename T>
    743 struct AddReference { typedef T& type; };  // NOLINT
    744 template <typename T>
    745 struct AddReference<T&> { typedef T& type; };  // NOLINT
    746 
    747 // A handy wrapper around AddReference that works when the argument T
    748 // depends on template parameters.
    749 #define GTEST_ADD_REFERENCE_(T) \
    750     typename ::testing::internal::AddReference<T>::type
    751 
    752 // Adds a reference to const on top of T as necessary.  For example,
    753 // it transforms
    754 //
    755 //   char         ==> const char&
    756 //   const char   ==> const char&
    757 //   char&        ==> const char&
    758 //   const char&  ==> const char&
    759 //
    760 // The argument T must depend on some template parameters.
    761 #define GTEST_REFERENCE_TO_CONST_(T) \
    762     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    763 
    764 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    765 // constant that's true iff type From can be implicitly converted to
    766 // type To.
    767 template <typename From, typename To>
    768 class ImplicitlyConvertible {
    769  private:
    770   // We need the following helper functions only for their types.
    771   // They have no implementations.
    772 
    773   // MakeFrom() is an expression whose type is From.  We cannot simply
    774   // use From(), as the type From may not have a public default
    775   // constructor.
    776   static From MakeFrom();
    777 
    778   // These two functions are overloaded.  Given an expression
    779   // Helper(x), the compiler will pick the first version if x can be
    780   // implicitly converted to type To; otherwise it will pick the
    781   // second version.
    782   //
    783   // The first version returns a value of size 1, and the second
    784   // version returns a value of size 2.  Therefore, by checking the
    785   // size of Helper(x), which can be done at compile time, we can tell
    786   // which version of Helper() is used, and hence whether x can be
    787   // implicitly converted to type To.
    788   static char Helper(To);
    789   static char (&Helper(...))[2];  // NOLINT
    790 
    791   // We have to put the 'public' section after the 'private' section,
    792   // or MSVC refuses to compile the code.
    793  public:
    794   // MSVC warns about implicitly converting from double to int for
    795   // possible loss of data, so we need to temporarily disable the
    796   // warning.
    797 #ifdef _MSC_VER
    798 # pragma warning(push)          // Saves the current warning state.
    799 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
    800 
    801   static const bool value =
    802       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    803 # pragma warning(pop)           // Restores the warning state.
    804 #elif defined(__BORLANDC__)
    805   // C++Builder cannot use member overload resolution during template
    806   // instantiation.  The simplest workaround is to use its C++0x type traits
    807   // functions (C++Builder 2009 and above only).
    808   static const bool value = __is_convertible(From, To);
    809 #else
    810   static const bool value =
    811       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    812 #endif  // _MSV_VER
    813 };
    814 template <typename From, typename To>
    815 const bool ImplicitlyConvertible<From, To>::value;
    816 
    817 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    818 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    819 // of those.
    820 template <typename T>
    821 struct IsAProtocolMessage
    822     : public bool_constant<
    823   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    824   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    825 };
    826 
    827 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    828 // STL-style container class, the first overload of IsContainerTest
    829 // will be viable (since both C::iterator* and C::const_iterator* are
    830 // valid types and NULL can be implicitly converted to them).  It will
    831 // be picked over the second overload as 'int' is a perfect match for
    832 // the type of argument 0.  If C::iterator or C::const_iterator is not
    833 // a valid type, the first overload is not viable, and the second
    834 // overload will be picked.  Therefore, we can determine whether C is
    835 // a container class by checking the type of IsContainerTest<C>(0).
    836 // The value of the expression is insignificant.
    837 //
    838 // Note that we look for both C::iterator and C::const_iterator.  The
    839 // reason is that C++ injects the name of a class as a member of the
    840 // class itself (e.g. you can refer to class iterator as either
    841 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    842 // only, for example, we would mistakenly think that a class named
    843 // iterator is an STL container.
    844 //
    845 // Also note that the simpler approach of overloading
    846 // IsContainerTest(typename C::const_iterator*) and
    847 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    848 typedef int IsContainer;
    849 template <class C>
    850 IsContainer IsContainerTest(int /* dummy */,
    851                             typename C::iterator* /* it */ = NULL,
    852                             typename C::const_iterator* /* const_it */ = NULL) {
    853   return 0;
    854 }
    855 
    856 typedef char IsNotContainer;
    857 template <class C>
    858 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    859 
    860 // EnableIf<condition>::type is void when 'Cond' is true, and
    861 // undefined when 'Cond' is false.  To use SFINAE to make a function
    862 // overload only apply when a particular expression is true, add
    863 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    864 template<bool> struct EnableIf;
    865 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    866 
    867 // Utilities for native arrays.
    868 
    869 // ArrayEq() compares two k-dimensional native arrays using the
    870 // elements' operator==, where k can be any integer >= 0.  When k is
    871 // 0, ArrayEq() degenerates into comparing a single pair of values.
    872 
    873 template <typename T, typename U>
    874 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    875 
    876 // This generic version is used when k is 0.
    877 template <typename T, typename U>
    878 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    879 
    880 // This overload is used when k >= 1.
    881 template <typename T, typename U, size_t N>
    882 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    883   return internal::ArrayEq(lhs, N, rhs);
    884 }
    885 
    886 // This helper reduces code bloat.  If we instead put its logic inside
    887 // the previous ArrayEq() function, arrays with different sizes would
    888 // lead to different copies of the template code.
    889 template <typename T, typename U>
    890 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    891   for (size_t i = 0; i != size; i++) {
    892     if (!internal::ArrayEq(lhs[i], rhs[i]))
    893       return false;
    894   }
    895   return true;
    896 }
    897 
    898 // Finds the first element in the iterator range [begin, end) that
    899 // equals elem.  Element may be a native array type itself.
    900 template <typename Iter, typename Element>
    901 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
    902   for (Iter it = begin; it != end; ++it) {
    903     if (internal::ArrayEq(*it, elem))
    904       return it;
    905   }
    906   return end;
    907 }
    908 
    909 // CopyArray() copies a k-dimensional native array using the elements'
    910 // operator=, where k can be any integer >= 0.  When k is 0,
    911 // CopyArray() degenerates into copying a single value.
    912 
    913 template <typename T, typename U>
    914 void CopyArray(const T* from, size_t size, U* to);
    915 
    916 // This generic version is used when k is 0.
    917 template <typename T, typename U>
    918 inline void CopyArray(const T& from, U* to) { *to = from; }
    919 
    920 // This overload is used when k >= 1.
    921 template <typename T, typename U, size_t N>
    922 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
    923   internal::CopyArray(from, N, *to);
    924 }
    925 
    926 // This helper reduces code bloat.  If we instead put its logic inside
    927 // the previous CopyArray() function, arrays with different sizes
    928 // would lead to different copies of the template code.
    929 template <typename T, typename U>
    930 void CopyArray(const T* from, size_t size, U* to) {
    931   for (size_t i = 0; i != size; i++) {
    932     internal::CopyArray(from[i], to + i);
    933   }
    934 }
    935 
    936 // The relation between an NativeArray object (see below) and the
    937 // native array it represents.
    938 enum RelationToSource {
    939   kReference,  // The NativeArray references the native array.
    940   kCopy        // The NativeArray makes a copy of the native array and
    941                // owns the copy.
    942 };
    943 
    944 // Adapts a native array to a read-only STL-style container.  Instead
    945 // of the complete STL container concept, this adaptor only implements
    946 // members useful for Google Mock's container matchers.  New members
    947 // should be added as needed.  To simplify the implementation, we only
    948 // support Element being a raw type (i.e. having no top-level const or
    949 // reference modifier).  It's the client's responsibility to satisfy
    950 // this requirement.  Element can be an array type itself (hence
    951 // multi-dimensional arrays are supported).
    952 template <typename Element>
    953 class NativeArray {
    954  public:
    955   // STL-style container typedefs.
    956   typedef Element value_type;
    957   typedef Element* iterator;
    958   typedef const Element* const_iterator;
    959 
    960   // Constructs from a native array.
    961   NativeArray(const Element* array, size_t count, RelationToSource relation) {
    962     Init(array, count, relation);
    963   }
    964 
    965   // Copy constructor.
    966   NativeArray(const NativeArray& rhs) {
    967     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
    968   }
    969 
    970   ~NativeArray() {
    971     // Ensures that the user doesn't instantiate NativeArray with a
    972     // const or reference type.
    973     static_cast<void>(StaticAssertTypeEqHelper<Element,
    974         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
    975     if (relation_to_source_ == kCopy)
    976       delete[] array_;
    977   }
    978 
    979   // STL-style container methods.
    980   size_t size() const { return size_; }
    981   const_iterator begin() const { return array_; }
    982   const_iterator end() const { return array_ + size_; }
    983   bool operator==(const NativeArray& rhs) const {
    984     return size() == rhs.size() &&
    985         ArrayEq(begin(), size(), rhs.begin());
    986   }
    987 
    988  private:
    989   // Initializes this object; makes a copy of the input array if
    990   // 'relation' is kCopy.
    991   void Init(const Element* array, size_t a_size, RelationToSource relation) {
    992     if (relation == kReference) {
    993       array_ = array;
    994     } else {
    995       Element* const copy = new Element[a_size];
    996       CopyArray(array, a_size, copy);
    997       array_ = copy;
    998     }
    999     size_ = a_size;
   1000     relation_to_source_ = relation;
   1001   }
   1002 
   1003   const Element* array_;
   1004   size_t size_;
   1005   RelationToSource relation_to_source_;
   1006 
   1007   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1008 };
   1009 
   1010 }  // namespace internal
   1011 }  // namespace testing
   1012 
   1013 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1014   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1015     = ::testing::Message()
   1016 
   1017 #define GTEST_MESSAGE_(message, result_type) \
   1018   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1019 
   1020 #define GTEST_FATAL_FAILURE_(message) \
   1021   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1022 
   1023 #define GTEST_NONFATAL_FAILURE_(message) \
   1024   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1025 
   1026 #define GTEST_SUCCESS_(message) \
   1027   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1028 
   1029 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1030 // statement if it returns or throws (or doesn't return or throw in some
   1031 // situations).
   1032 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1033   if (::testing::internal::AlwaysTrue()) { statement; }
   1034 
   1035 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1036   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1037   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1038     bool gtest_caught_expected = false; \
   1039     try { \
   1040       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1041     } \
   1042     catch (expected_exception const&) { \
   1043       gtest_caught_expected = true; \
   1044     } \
   1045     catch (...) { \
   1046       gtest_msg.value = \
   1047           "Expected: " #statement " throws an exception of type " \
   1048           #expected_exception ".\n  Actual: it throws a different type."; \
   1049       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1050     } \
   1051     if (!gtest_caught_expected) { \
   1052       gtest_msg.value = \
   1053           "Expected: " #statement " throws an exception of type " \
   1054           #expected_exception ".\n  Actual: it throws nothing."; \
   1055       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1056     } \
   1057   } else \
   1058     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1059       fail(gtest_msg.value)
   1060 
   1061 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1062   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1063   if (::testing::internal::AlwaysTrue()) { \
   1064     try { \
   1065       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1066     } \
   1067     catch (...) { \
   1068       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1069     } \
   1070   } else \
   1071     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1072       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1073            "  Actual: it throws.")
   1074 
   1075 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1076   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1077   if (::testing::internal::AlwaysTrue()) { \
   1078     bool gtest_caught_any = false; \
   1079     try { \
   1080       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1081     } \
   1082     catch (...) { \
   1083       gtest_caught_any = true; \
   1084     } \
   1085     if (!gtest_caught_any) { \
   1086       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1087     } \
   1088   } else \
   1089     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1090       fail("Expected: " #statement " throws an exception.\n" \
   1091            "  Actual: it doesn't.")
   1092 
   1093 
   1094 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1095 // either a boolean expression or an AssertionResult. text is a textual
   1096 // represenation of expression as it was passed into the EXPECT_TRUE.
   1097 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1098   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1099   if (const ::testing::AssertionResult gtest_ar_ = \
   1100       ::testing::AssertionResult(expression)) \
   1101     ; \
   1102   else \
   1103     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1104         gtest_ar_, text, #actual, #expected).c_str())
   1105 
   1106 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1107   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1108   if (::testing::internal::AlwaysTrue()) { \
   1109     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1110     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1111     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1112       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1113     } \
   1114   } else \
   1115     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1116       fail("Expected: " #statement " doesn't generate new fatal " \
   1117            "failures in the current thread.\n" \
   1118            "  Actual: it does.")
   1119 
   1120 // Expands to the name of the class that implements the given test.
   1121 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1122   test_case_name##_##test_name##_Test
   1123 
   1124 // Helper macro for defining tests.
   1125 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1126 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1127  public:\
   1128   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1129  private:\
   1130   virtual void TestBody();\
   1131   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1132   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1133       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1134 };\
   1135 \
   1136 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1137   ::test_info_ =\
   1138     ::testing::internal::MakeAndRegisterTestInfo(\
   1139         #test_case_name, #test_name, NULL, NULL, \
   1140         (parent_id), \
   1141         parent_class::SetUpTestCase, \
   1142         parent_class::TearDownTestCase, \
   1143         new ::testing::internal::TestFactoryImpl<\
   1144             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1145 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1146 
   1147 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1148