Home | History | Annotate | Download | only in internal
      1 // Copyright 2005, Google Inc.
      2 // All rights reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 //     * Redistributions of source code must retain the above copyright
      9 // notice, this list of conditions and the following disclaimer.
     10 //     * Redistributions in binary form must reproduce the above
     11 // copyright notice, this list of conditions and the following disclaimer
     12 // in the documentation and/or other materials provided with the
     13 // distribution.
     14 //     * Neither the name of Google Inc. nor the names of its
     15 // contributors may be used to endorse or promote products derived from
     16 // this software without specific prior written permission.
     17 //
     18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     29 //
     30 // Authors: wan (at) google.com (Zhanyong Wan), eefacm (at) gmail.com (Sean Mcafee)
     31 //
     32 // The Google C++ Testing Framework (Google Test)
     33 //
     34 // This header file declares functions and macros used internally by
     35 // Google Test.  They are subject to change without notice.
     36 
     37 #ifndef GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     38 #define GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
     39 
     40 #include "gtest/internal/gtest-port.h"
     41 
     42 #if GTEST_OS_LINUX
     43 # include <stdlib.h>
     44 # include <sys/types.h>
     45 # include <sys/wait.h>
     46 # include <unistd.h>
     47 #endif  // GTEST_OS_LINUX
     48 
     49 #if GTEST_HAS_EXCEPTIONS
     50 # include <stdexcept>
     51 #endif
     52 
     53 #include <ctype.h>
     54 #include <float.h>
     55 #include <string.h>
     56 #include <iomanip>
     57 #include <limits>
     58 #include <set>
     59 
     60 #include "gtest/gtest-message.h"
     61 #include "gtest/internal/gtest-string.h"
     62 #include "gtest/internal/gtest-filepath.h"
     63 #include "gtest/internal/gtest-type-util.h"
     64 
     65 // Due to C++ preprocessor weirdness, we need double indirection to
     66 // concatenate two tokens when one of them is __LINE__.  Writing
     67 //
     68 //   foo ## __LINE__
     69 //
     70 // will result in the token foo__LINE__, instead of foo followed by
     71 // the current line number.  For more details, see
     72 // http://www.parashift.com/c++-faq-lite/misc-technical-issues.html#faq-39.6
     73 #define GTEST_CONCAT_TOKEN_(foo, bar) GTEST_CONCAT_TOKEN_IMPL_(foo, bar)
     74 #define GTEST_CONCAT_TOKEN_IMPL_(foo, bar) foo ## bar
     75 
     76 class ProtocolMessage;
     77 namespace proto2 { class Message; }
     78 
     79 namespace testing {
     80 
     81 // Forward declarations.
     82 
     83 class AssertionResult;                 // Result of an assertion.
     84 class Message;                         // Represents a failure message.
     85 class Test;                            // Represents a test.
     86 class TestInfo;                        // Information about a test.
     87 class TestPartResult;                  // Result of a test part.
     88 class UnitTest;                        // A collection of test cases.
     89 
     90 template <typename T>
     91 ::std::string PrintToString(const T& value);
     92 
     93 namespace internal {
     94 
     95 struct TraceInfo;                      // Information about a trace point.
     96 class ScopedTrace;                     // Implements scoped trace.
     97 class TestInfoImpl;                    // Opaque implementation of TestInfo
     98 class UnitTestImpl;                    // Opaque implementation of UnitTest
     99 
    100 // How many times InitGoogleTest() has been called.
    101 GTEST_API_ extern int g_init_gtest_count;
    102 
    103 // The text used in failure messages to indicate the start of the
    104 // stack trace.
    105 GTEST_API_ extern const char kStackTraceMarker[];
    106 
    107 // Two overloaded helpers for checking at compile time whether an
    108 // expression is a null pointer literal (i.e. NULL or any 0-valued
    109 // compile-time integral constant).  Their return values have
    110 // different sizes, so we can use sizeof() to test which version is
    111 // picked by the compiler.  These helpers have no implementations, as
    112 // we only need their signatures.
    113 //
    114 // Given IsNullLiteralHelper(x), the compiler will pick the first
    115 // version if x can be implicitly converted to Secret*, and pick the
    116 // second version otherwise.  Since Secret is a secret and incomplete
    117 // type, the only expression a user can write that has type Secret* is
    118 // a null pointer literal.  Therefore, we know that x is a null
    119 // pointer literal if and only if the first version is picked by the
    120 // compiler.
    121 char IsNullLiteralHelper(Secret* p);
    122 char (&IsNullLiteralHelper(...))[2];  // NOLINT
    123 
    124 // A compile-time bool constant that is true if and only if x is a
    125 // null pointer literal (i.e. NULL or any 0-valued compile-time
    126 // integral constant).
    127 #ifdef GTEST_ELLIPSIS_NEEDS_POD_
    128 // We lose support for NULL detection where the compiler doesn't like
    129 // passing non-POD classes through ellipsis (...).
    130 # define GTEST_IS_NULL_LITERAL_(x) false
    131 #else
    132 # define GTEST_IS_NULL_LITERAL_(x) \
    133     (sizeof(::testing::internal::IsNullLiteralHelper(x)) == 1)
    134 #endif  // GTEST_ELLIPSIS_NEEDS_POD_
    135 
    136 // Appends the user-supplied message to the Google-Test-generated message.
    137 GTEST_API_ std::string AppendUserMessage(
    138     const std::string& gtest_msg, const Message& user_msg);
    139 
    140 #if GTEST_HAS_EXCEPTIONS
    141 
    142 // This exception is thrown by (and only by) a failed Google Test
    143 // assertion when GTEST_FLAG(throw_on_failure) is true (if exceptions
    144 // are enabled).  We derive it from std::runtime_error, which is for
    145 // errors presumably detectable only at run time.  Since
    146 // std::runtime_error inherits from std::exception, many testing
    147 // frameworks know how to extract and print the message inside it.
    148 class GTEST_API_ GoogleTestFailureException : public ::std::runtime_error {
    149  public:
    150   explicit GoogleTestFailureException(const TestPartResult& failure);
    151 };
    152 
    153 #endif  // GTEST_HAS_EXCEPTIONS
    154 
    155 // A helper class for creating scoped traces in user programs.
    156 class GTEST_API_ ScopedTrace {
    157  public:
    158   // The c'tor pushes the given source file location and message onto
    159   // a trace stack maintained by Google Test.
    160   ScopedTrace(const char* file, int line, const Message& message);
    161 
    162   // The d'tor pops the info pushed by the c'tor.
    163   //
    164   // Note that the d'tor is not virtual in order to be efficient.
    165   // Don't inherit from ScopedTrace!
    166   ~ScopedTrace();
    167 
    168  private:
    169   GTEST_DISALLOW_COPY_AND_ASSIGN_(ScopedTrace);
    170 } GTEST_ATTRIBUTE_UNUSED_;  // A ScopedTrace object does its job in its
    171                             // c'tor and d'tor.  Therefore it doesn't
    172                             // need to be used otherwise.
    173 
    174 // Constructs and returns the message for an equality assertion
    175 // (e.g. ASSERT_EQ, EXPECT_STREQ, etc) failure.
    176 //
    177 // The first four parameters are the expressions used in the assertion
    178 // and their values, as strings.  For example, for ASSERT_EQ(foo, bar)
    179 // where foo is 5 and bar is 6, we have:
    180 //
    181 //   expected_expression: "foo"
    182 //   actual_expression:   "bar"
    183 //   expected_value:      "5"
    184 //   actual_value:        "6"
    185 //
    186 // The ignoring_case parameter is true iff the assertion is a
    187 // *_STRCASEEQ*.  When it's true, the string " (ignoring case)" will
    188 // be inserted into the message.
    189 GTEST_API_ AssertionResult EqFailure(const char* expected_expression,
    190                                      const char* actual_expression,
    191                                      const std::string& expected_value,
    192                                      const std::string& actual_value,
    193                                      bool ignoring_case);
    194 
    195 // Constructs a failure message for Boolean assertions such as EXPECT_TRUE.
    196 GTEST_API_ std::string GetBoolAssertionFailureMessage(
    197     const AssertionResult& assertion_result,
    198     const char* expression_text,
    199     const char* actual_predicate_value,
    200     const char* expected_predicate_value);
    201 
    202 // This template class represents an IEEE floating-point number
    203 // (either single-precision or double-precision, depending on the
    204 // template parameters).
    205 //
    206 // The purpose of this class is to do more sophisticated number
    207 // comparison.  (Due to round-off error, etc, it's very unlikely that
    208 // two floating-points will be equal exactly.  Hence a naive
    209 // comparison by the == operation often doesn't work.)
    210 //
    211 // Format of IEEE floating-point:
    212 //
    213 //   The most-significant bit being the leftmost, an IEEE
    214 //   floating-point looks like
    215 //
    216 //     sign_bit exponent_bits fraction_bits
    217 //
    218 //   Here, sign_bit is a single bit that designates the sign of the
    219 //   number.
    220 //
    221 //   For float, there are 8 exponent bits and 23 fraction bits.
    222 //
    223 //   For double, there are 11 exponent bits and 52 fraction bits.
    224 //
    225 //   More details can be found at
    226 //   http://en.wikipedia.org/wiki/IEEE_floating-point_standard.
    227 //
    228 // Template parameter:
    229 //
    230 //   RawType: the raw floating-point type (either float or double)
    231 template <typename RawType>
    232 class FloatingPoint {
    233  public:
    234   // Defines the unsigned integer type that has the same size as the
    235   // floating point number.
    236   typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits;
    237 
    238   // Constants.
    239 
    240   // # of bits in a number.
    241   static const size_t kBitCount = 8*sizeof(RawType);
    242 
    243   // # of fraction bits in a number.
    244   static const size_t kFractionBitCount =
    245     std::numeric_limits<RawType>::digits - 1;
    246 
    247   // # of exponent bits in a number.
    248   static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount;
    249 
    250   // The mask for the sign bit.
    251   static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1);
    252 
    253   // The mask for the fraction bits.
    254   static const Bits kFractionBitMask =
    255     ~static_cast<Bits>(0) >> (kExponentBitCount + 1);
    256 
    257   // The mask for the exponent bits.
    258   static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask);
    259 
    260   // How many ULP's (Units in the Last Place) we want to tolerate when
    261   // comparing two numbers.  The larger the value, the more error we
    262   // allow.  A 0 value means that two numbers must be exactly the same
    263   // to be considered equal.
    264   //
    265   // The maximum error of a single floating-point operation is 0.5
    266   // units in the last place.  On Intel CPU's, all floating-point
    267   // calculations are done with 80-bit precision, while double has 64
    268   // bits.  Therefore, 4 should be enough for ordinary use.
    269   //
    270   // See the following article for more details on ULP:
    271   // http://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
    272   static const size_t kMaxUlps = 4;
    273 
    274   // Constructs a FloatingPoint from a raw floating-point number.
    275   //
    276   // On an Intel CPU, passing a non-normalized NAN (Not a Number)
    277   // around may change its bits, although the new value is guaranteed
    278   // to be also a NAN.  Therefore, don't expect this constructor to
    279   // preserve the bits in x when x is a NAN.
    280   explicit FloatingPoint(const RawType& x) { u_.value_ = x; }
    281 
    282   // Static methods
    283 
    284   // Reinterprets a bit pattern as a floating-point number.
    285   //
    286   // This function is needed to test the AlmostEquals() method.
    287   static RawType ReinterpretBits(const Bits bits) {
    288     FloatingPoint fp(0);
    289     fp.u_.bits_ = bits;
    290     return fp.u_.value_;
    291   }
    292 
    293   // Returns the floating-point number that represent positive infinity.
    294   static RawType Infinity() {
    295     return ReinterpretBits(kExponentBitMask);
    296   }
    297 
    298   // Returns the maximum representable finite floating-point number.
    299   static RawType Max();
    300 
    301   // Non-static methods
    302 
    303   // Returns the bits that represents this number.
    304   const Bits &bits() const { return u_.bits_; }
    305 
    306   // Returns the exponent bits of this number.
    307   Bits exponent_bits() const { return kExponentBitMask & u_.bits_; }
    308 
    309   // Returns the fraction bits of this number.
    310   Bits fraction_bits() const { return kFractionBitMask & u_.bits_; }
    311 
    312   // Returns the sign bit of this number.
    313   Bits sign_bit() const { return kSignBitMask & u_.bits_; }
    314 
    315   // Returns true iff this is NAN (not a number).
    316   bool is_nan() const {
    317     // It's a NAN if the exponent bits are all ones and the fraction
    318     // bits are not entirely zeros.
    319     return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0);
    320   }
    321 
    322   // Returns true iff this number is at most kMaxUlps ULP's away from
    323   // rhs.  In particular, this function:
    324   //
    325   //   - returns false if either number is (or both are) NAN.
    326   //   - treats really large numbers as almost equal to infinity.
    327   //   - thinks +0.0 and -0.0 are 0 DLP's apart.
    328   bool AlmostEquals(const FloatingPoint& rhs) const {
    329     // The IEEE standard says that any comparison operation involving
    330     // a NAN must return false.
    331     if (is_nan() || rhs.is_nan()) return false;
    332 
    333     return DistanceBetweenSignAndMagnitudeNumbers(u_.bits_, rhs.u_.bits_)
    334         <= kMaxUlps;
    335   }
    336 
    337  private:
    338   // The data type used to store the actual floating-point number.
    339   union FloatingPointUnion {
    340     RawType value_;  // The raw floating-point number.
    341     Bits bits_;      // The bits that represent the number.
    342   };
    343 
    344   // Converts an integer from the sign-and-magnitude representation to
    345   // the biased representation.  More precisely, let N be 2 to the
    346   // power of (kBitCount - 1), an integer x is represented by the
    347   // unsigned number x + N.
    348   //
    349   // For instance,
    350   //
    351   //   -N + 1 (the most negative number representable using
    352   //          sign-and-magnitude) is represented by 1;
    353   //   0      is represented by N; and
    354   //   N - 1  (the biggest number representable using
    355   //          sign-and-magnitude) is represented by 2N - 1.
    356   //
    357   // Read http://en.wikipedia.org/wiki/Signed_number_representations
    358   // for more details on signed number representations.
    359   static Bits SignAndMagnitudeToBiased(const Bits &sam) {
    360     if (kSignBitMask & sam) {
    361       // sam represents a negative number.
    362       return ~sam + 1;
    363     } else {
    364       // sam represents a positive number.
    365       return kSignBitMask | sam;
    366     }
    367   }
    368 
    369   // Given two numbers in the sign-and-magnitude representation,
    370   // returns the distance between them as an unsigned number.
    371   static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1,
    372                                                      const Bits &sam2) {
    373     const Bits biased1 = SignAndMagnitudeToBiased(sam1);
    374     const Bits biased2 = SignAndMagnitudeToBiased(sam2);
    375     return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1);
    376   }
    377 
    378   FloatingPointUnion u_;
    379 };
    380 
    381 // We cannot use std::numeric_limits<T>::max() as it clashes with the max()
    382 // macro defined by <windows.h>.
    383 template <>
    384 inline float FloatingPoint<float>::Max() { return FLT_MAX; }
    385 template <>
    386 inline double FloatingPoint<double>::Max() { return DBL_MAX; }
    387 
    388 // Typedefs the instances of the FloatingPoint template class that we
    389 // care to use.
    390 typedef FloatingPoint<float> Float;
    391 typedef FloatingPoint<double> Double;
    392 
    393 // In order to catch the mistake of putting tests that use different
    394 // test fixture classes in the same test case, we need to assign
    395 // unique IDs to fixture classes and compare them.  The TypeId type is
    396 // used to hold such IDs.  The user should treat TypeId as an opaque
    397 // type: the only operation allowed on TypeId values is to compare
    398 // them for equality using the == operator.
    399 typedef const void* TypeId;
    400 
    401 template <typename T>
    402 class TypeIdHelper {
    403  public:
    404   // dummy_ must not have a const type.  Otherwise an overly eager
    405   // compiler (e.g. MSVC 7.1 & 8.0) may try to merge
    406   // TypeIdHelper<T>::dummy_ for different Ts as an "optimization".
    407   static bool dummy_;
    408 };
    409 
    410 template <typename T>
    411 bool TypeIdHelper<T>::dummy_ = false;
    412 
    413 // GetTypeId<T>() returns the ID of type T.  Different values will be
    414 // returned for different types.  Calling the function twice with the
    415 // same type argument is guaranteed to return the same ID.
    416 template <typename T>
    417 TypeId GetTypeId() {
    418   // The compiler is required to allocate a different
    419   // TypeIdHelper<T>::dummy_ variable for each T used to instantiate
    420   // the template.  Therefore, the address of dummy_ is guaranteed to
    421   // be unique.
    422   return &(TypeIdHelper<T>::dummy_);
    423 }
    424 
    425 // Returns the type ID of ::testing::Test.  Always call this instead
    426 // of GetTypeId< ::testing::Test>() to get the type ID of
    427 // ::testing::Test, as the latter may give the wrong result due to a
    428 // suspected linker bug when compiling Google Test as a Mac OS X
    429 // framework.
    430 GTEST_API_ TypeId GetTestTypeId();
    431 
    432 // Defines the abstract factory interface that creates instances
    433 // of a Test object.
    434 class TestFactoryBase {
    435  public:
    436   virtual ~TestFactoryBase() {}
    437 
    438   // Creates a test instance to run. The instance is both created and destroyed
    439   // within TestInfoImpl::Run()
    440   virtual Test* CreateTest() = 0;
    441 
    442  protected:
    443   TestFactoryBase() {}
    444 
    445  private:
    446   GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);
    447 };
    448 
    449 // This class provides implementation of TeastFactoryBase interface.
    450 // It is used in TEST and TEST_F macros.
    451 template <class TestClass>
    452 class TestFactoryImpl : public TestFactoryBase {
    453  public:
    454   virtual Test* CreateTest() { return new TestClass; }
    455 };
    456 
    457 #if GTEST_OS_WINDOWS
    458 
    459 // Predicate-formatters for implementing the HRESULT checking macros
    460 // {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}
    461 // We pass a long instead of HRESULT to avoid causing an
    462 // include dependency for the HRESULT type.
    463 GTEST_API_ AssertionResult IsHRESULTSuccess(const char* expr,
    464                                             long hr);  // NOLINT
    465 GTEST_API_ AssertionResult IsHRESULTFailure(const char* expr,
    466                                             long hr);  // NOLINT
    467 
    468 #endif  // GTEST_OS_WINDOWS
    469 
    470 // Types of SetUpTestCase() and TearDownTestCase() functions.
    471 typedef void (*SetUpTestCaseFunc)();
    472 typedef void (*TearDownTestCaseFunc)();
    473 
    474 // Creates a new TestInfo object and registers it with Google Test;
    475 // returns the created object.
    476 //
    477 // Arguments:
    478 //
    479 //   test_case_name:   name of the test case
    480 //   name:             name of the test
    481 //   type_param        the name of the test's type parameter, or NULL if
    482 //                     this is not a typed or a type-parameterized test.
    483 //   value_param       text representation of the test's value parameter,
    484 //                     or NULL if this is not a type-parameterized test.
    485 //   fixture_class_id: ID of the test fixture class
    486 //   set_up_tc:        pointer to the function that sets up the test case
    487 //   tear_down_tc:     pointer to the function that tears down the test case
    488 //   factory:          pointer to the factory that creates a test object.
    489 //                     The newly created TestInfo instance will assume
    490 //                     ownership of the factory object.
    491 GTEST_API_ TestInfo* MakeAndRegisterTestInfo(
    492     const char* test_case_name,
    493     const char* name,
    494     const char* type_param,
    495     const char* value_param,
    496     TypeId fixture_class_id,
    497     SetUpTestCaseFunc set_up_tc,
    498     TearDownTestCaseFunc tear_down_tc,
    499     TestFactoryBase* factory);
    500 
    501 // If *pstr starts with the given prefix, modifies *pstr to be right
    502 // past the prefix and returns true; otherwise leaves *pstr unchanged
    503 // and returns false.  None of pstr, *pstr, and prefix can be NULL.
    504 GTEST_API_ bool SkipPrefix(const char* prefix, const char** pstr);
    505 
    506 #if GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    507 
    508 // State of the definition of a type-parameterized test case.
    509 class GTEST_API_ TypedTestCasePState {
    510  public:
    511   TypedTestCasePState() : registered_(false) {}
    512 
    513   // Adds the given test name to defined_test_names_ and return true
    514   // if the test case hasn't been registered; otherwise aborts the
    515   // program.
    516   bool AddTestName(const char* file, int line, const char* case_name,
    517                    const char* test_name) {
    518     if (registered_) {
    519       fprintf(stderr, "%s Test %s must be defined before "
    520               "REGISTER_TYPED_TEST_CASE_P(%s, ...).\n",
    521               FormatFileLocation(file, line).c_str(), test_name, case_name);
    522       fflush(stderr);
    523       posix::Abort();
    524     }
    525     defined_test_names_.insert(test_name);
    526     return true;
    527   }
    528 
    529   // Verifies that registered_tests match the test names in
    530   // defined_test_names_; returns registered_tests if successful, or
    531   // aborts the program otherwise.
    532   const char* VerifyRegisteredTestNames(
    533       const char* file, int line, const char* registered_tests);
    534 
    535  private:
    536   bool registered_;
    537   ::std::set<const char*> defined_test_names_;
    538 };
    539 
    540 // Skips to the first non-space char after the first comma in 'str';
    541 // returns NULL if no comma is found in 'str'.
    542 inline const char* SkipComma(const char* str) {
    543   const char* comma = strchr(str, ',');
    544   if (comma == NULL) {
    545     return NULL;
    546   }
    547   while (IsSpace(*(++comma))) {}
    548   return comma;
    549 }
    550 
    551 // Returns the prefix of 'str' before the first comma in it; returns
    552 // the entire string if it contains no comma.
    553 inline std::string GetPrefixUntilComma(const char* str) {
    554   const char* comma = strchr(str, ',');
    555   return comma == NULL ? str : std::string(str, comma);
    556 }
    557 
    558 // TypeParameterizedTest<Fixture, TestSel, Types>::Register()
    559 // registers a list of type-parameterized tests with Google Test.  The
    560 // return value is insignificant - we just need to return something
    561 // such that we can call this function in a namespace scope.
    562 //
    563 // Implementation note: The GTEST_TEMPLATE_ macro declares a template
    564 // template parameter.  It's defined in gtest-type-util.h.
    565 template <GTEST_TEMPLATE_ Fixture, class TestSel, typename Types>
    566 class TypeParameterizedTest {
    567  public:
    568   // 'index' is the index of the test in the type list 'Types'
    569   // specified in INSTANTIATE_TYPED_TEST_CASE_P(Prefix, TestCase,
    570   // Types).  Valid values for 'index' are [0, N - 1] where N is the
    571   // length of Types.
    572   static bool Register(const char* prefix, const char* case_name,
    573                        const char* test_names, int index) {
    574     typedef typename Types::Head Type;
    575     typedef Fixture<Type> FixtureClass;
    576     typedef typename GTEST_BIND_(TestSel, Type) TestClass;
    577 
    578     // First, registers the first type-parameterized test in the type
    579     // list.
    580     MakeAndRegisterTestInfo(
    581         (std::string(prefix) + (prefix[0] == '\0' ? "" : "/") + case_name + "/"
    582          + StreamableToString(index)).c_str(),
    583         GetPrefixUntilComma(test_names).c_str(),
    584         GetTypeName<Type>().c_str(),
    585         NULL,  // No value parameter.
    586         GetTypeId<FixtureClass>(),
    587         TestClass::SetUpTestCase,
    588         TestClass::TearDownTestCase,
    589         new TestFactoryImpl<TestClass>);
    590 
    591     // Next, recurses (at compile time) with the tail of the type list.
    592     return TypeParameterizedTest<Fixture, TestSel, typename Types::Tail>
    593         ::Register(prefix, case_name, test_names, index + 1);
    594   }
    595 };
    596 
    597 // The base case for the compile time recursion.
    598 template <GTEST_TEMPLATE_ Fixture, class TestSel>
    599 class TypeParameterizedTest<Fixture, TestSel, Types0> {
    600  public:
    601   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    602                        const char* /*test_names*/, int /*index*/) {
    603     return true;
    604   }
    605 };
    606 
    607 // TypeParameterizedTestCase<Fixture, Tests, Types>::Register()
    608 // registers *all combinations* of 'Tests' and 'Types' with Google
    609 // Test.  The return value is insignificant - we just need to return
    610 // something such that we can call this function in a namespace scope.
    611 template <GTEST_TEMPLATE_ Fixture, typename Tests, typename Types>
    612 class TypeParameterizedTestCase {
    613  public:
    614   static bool Register(const char* prefix, const char* case_name,
    615                        const char* test_names) {
    616     typedef typename Tests::Head Head;
    617 
    618     // First, register the first test in 'Test' for each type in 'Types'.
    619     TypeParameterizedTest<Fixture, Head, Types>::Register(
    620         prefix, case_name, test_names, 0);
    621 
    622     // Next, recurses (at compile time) with the tail of the test list.
    623     return TypeParameterizedTestCase<Fixture, typename Tests::Tail, Types>
    624         ::Register(prefix, case_name, SkipComma(test_names));
    625   }
    626 };
    627 
    628 // The base case for the compile time recursion.
    629 template <GTEST_TEMPLATE_ Fixture, typename Types>
    630 class TypeParameterizedTestCase<Fixture, Templates0, Types> {
    631  public:
    632   static bool Register(const char* /*prefix*/, const char* /*case_name*/,
    633                        const char* /*test_names*/) {
    634     return true;
    635   }
    636 };
    637 
    638 #endif  // GTEST_HAS_TYPED_TEST || GTEST_HAS_TYPED_TEST_P
    639 
    640 // Returns the current OS stack trace as an std::string.
    641 //
    642 // The maximum number of stack frames to be included is specified by
    643 // the gtest_stack_trace_depth flag.  The skip_count parameter
    644 // specifies the number of top frames to be skipped, which doesn't
    645 // count against the number of frames to be included.
    646 //
    647 // For example, if Foo() calls Bar(), which in turn calls
    648 // GetCurrentOsStackTraceExceptTop(..., 1), Foo() will be included in
    649 // the trace but Bar() and GetCurrentOsStackTraceExceptTop() won't.
    650 GTEST_API_ std::string GetCurrentOsStackTraceExceptTop(
    651     UnitTest* unit_test, int skip_count);
    652 
    653 // Helpers for suppressing warnings on unreachable code or constant
    654 // condition.
    655 
    656 // Always returns true.
    657 GTEST_API_ bool AlwaysTrue();
    658 
    659 // Always returns false.
    660 inline bool AlwaysFalse() { return !AlwaysTrue(); }
    661 
    662 // Helper for suppressing false warning from Clang on a const char*
    663 // variable declared in a conditional expression always being NULL in
    664 // the else branch.
    665 struct GTEST_API_ ConstCharPtr {
    666   ConstCharPtr(const char* str) : value(str) {}
    667   operator bool() const { return true; }
    668   const char* value;
    669 };
    670 
    671 // A simple Linear Congruential Generator for generating random
    672 // numbers with a uniform distribution.  Unlike rand() and srand(), it
    673 // doesn't use global state (and therefore can't interfere with user
    674 // code).  Unlike rand_r(), it's portable.  An LCG isn't very random,
    675 // but it's good enough for our purposes.
    676 class GTEST_API_ Random {
    677  public:
    678   static const UInt32 kMaxRange = 1u << 31;
    679 
    680   explicit Random(UInt32 seed) : state_(seed) {}
    681 
    682   void Reseed(UInt32 seed) { state_ = seed; }
    683 
    684   // Generates a random number from [0, range).  Crashes if 'range' is
    685   // 0 or greater than kMaxRange.
    686   UInt32 Generate(UInt32 range);
    687 
    688  private:
    689   UInt32 state_;
    690   GTEST_DISALLOW_COPY_AND_ASSIGN_(Random);
    691 };
    692 
    693 // Defining a variable of type CompileAssertTypesEqual<T1, T2> will cause a
    694 // compiler error iff T1 and T2 are different types.
    695 template <typename T1, typename T2>
    696 struct CompileAssertTypesEqual;
    697 
    698 template <typename T>
    699 struct CompileAssertTypesEqual<T, T> {
    700 };
    701 
    702 // Removes the reference from a type if it is a reference type,
    703 // otherwise leaves it unchanged.  This is the same as
    704 // tr1::remove_reference, which is not widely available yet.
    705 template <typename T>
    706 struct RemoveReference { typedef T type; };  // NOLINT
    707 template <typename T>
    708 struct RemoveReference<T&> { typedef T type; };  // NOLINT
    709 
    710 // A handy wrapper around RemoveReference that works when the argument
    711 // T depends on template parameters.
    712 #define GTEST_REMOVE_REFERENCE_(T) \
    713     typename ::testing::internal::RemoveReference<T>::type
    714 
    715 // Removes const from a type if it is a const type, otherwise leaves
    716 // it unchanged.  This is the same as tr1::remove_const, which is not
    717 // widely available yet.
    718 template <typename T>
    719 struct RemoveConst { typedef T type; };  // NOLINT
    720 template <typename T>
    721 struct RemoveConst<const T> { typedef T type; };  // NOLINT
    722 
    723 // MSVC 8.0, Sun C++, and IBM XL C++ have a bug which causes the above
    724 // definition to fail to remove the const in 'const int[3]' and 'const
    725 // char[3][4]'.  The following specialization works around the bug.
    726 template <typename T, size_t N>
    727 struct RemoveConst<const T[N]> {
    728   typedef typename RemoveConst<T>::type type[N];
    729 };
    730 
    731 #if defined(_MSC_VER) && _MSC_VER < 1400
    732 // This is the only specialization that allows VC++ 7.1 to remove const in
    733 // 'const int[3] and 'const int[3][4]'.  However, it causes trouble with GCC
    734 // and thus needs to be conditionally compiled.
    735 template <typename T, size_t N>
    736 struct RemoveConst<T[N]> {
    737   typedef typename RemoveConst<T>::type type[N];
    738 };
    739 #endif
    740 
    741 // A handy wrapper around RemoveConst that works when the argument
    742 // T depends on template parameters.
    743 #define GTEST_REMOVE_CONST_(T) \
    744     typename ::testing::internal::RemoveConst<T>::type
    745 
    746 // Turns const U&, U&, const U, and U all into U.
    747 #define GTEST_REMOVE_REFERENCE_AND_CONST_(T) \
    748     GTEST_REMOVE_CONST_(GTEST_REMOVE_REFERENCE_(T))
    749 
    750 // Adds reference to a type if it is not a reference type,
    751 // otherwise leaves it unchanged.  This is the same as
    752 // tr1::add_reference, which is not widely available yet.
    753 template <typename T>
    754 struct AddReference { typedef T& type; };  // NOLINT
    755 template <typename T>
    756 struct AddReference<T&> { typedef T& type; };  // NOLINT
    757 
    758 // A handy wrapper around AddReference that works when the argument T
    759 // depends on template parameters.
    760 #define GTEST_ADD_REFERENCE_(T) \
    761     typename ::testing::internal::AddReference<T>::type
    762 
    763 // Adds a reference to const on top of T as necessary.  For example,
    764 // it transforms
    765 //
    766 //   char         ==> const char&
    767 //   const char   ==> const char&
    768 //   char&        ==> const char&
    769 //   const char&  ==> const char&
    770 //
    771 // The argument T must depend on some template parameters.
    772 #define GTEST_REFERENCE_TO_CONST_(T) \
    773     GTEST_ADD_REFERENCE_(const GTEST_REMOVE_REFERENCE_(T))
    774 
    775 // ImplicitlyConvertible<From, To>::value is a compile-time bool
    776 // constant that's true iff type From can be implicitly converted to
    777 // type To.
    778 template <typename From, typename To>
    779 class ImplicitlyConvertible {
    780  private:
    781   // We need the following helper functions only for their types.
    782   // They have no implementations.
    783 
    784   // MakeFrom() is an expression whose type is From.  We cannot simply
    785   // use From(), as the type From may not have a public default
    786   // constructor.
    787   static From MakeFrom();
    788 
    789   // These two functions are overloaded.  Given an expression
    790   // Helper(x), the compiler will pick the first version if x can be
    791   // implicitly converted to type To; otherwise it will pick the
    792   // second version.
    793   //
    794   // The first version returns a value of size 1, and the second
    795   // version returns a value of size 2.  Therefore, by checking the
    796   // size of Helper(x), which can be done at compile time, we can tell
    797   // which version of Helper() is used, and hence whether x can be
    798   // implicitly converted to type To.
    799   static char Helper(To);
    800   static char (&Helper(...))[2];  // NOLINT
    801 
    802   // We have to put the 'public' section after the 'private' section,
    803   // or MSVC refuses to compile the code.
    804  public:
    805   // MSVC warns about implicitly converting from double to int for
    806   // possible loss of data, so we need to temporarily disable the
    807   // warning.
    808 #ifdef _MSC_VER
    809 # pragma warning(push)          // Saves the current warning state.
    810 # pragma warning(disable:4244)  // Temporarily disables warning 4244.
    811 
    812   static const bool value =
    813       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    814 # pragma warning(pop)           // Restores the warning state.
    815 #elif defined(__BORLANDC__)
    816   // C++Builder cannot use member overload resolution during template
    817   // instantiation.  The simplest workaround is to use its C++0x type traits
    818   // functions (C++Builder 2009 and above only).
    819   static const bool value = __is_convertible(From, To);
    820 #else
    821   static const bool value =
    822       sizeof(Helper(ImplicitlyConvertible::MakeFrom())) == 1;
    823 #endif  // _MSV_VER
    824 };
    825 template <typename From, typename To>
    826 const bool ImplicitlyConvertible<From, To>::value;
    827 
    828 // IsAProtocolMessage<T>::value is a compile-time bool constant that's
    829 // true iff T is type ProtocolMessage, proto2::Message, or a subclass
    830 // of those.
    831 template <typename T>
    832 struct IsAProtocolMessage
    833     : public bool_constant<
    834   ImplicitlyConvertible<const T*, const ::ProtocolMessage*>::value ||
    835   ImplicitlyConvertible<const T*, const ::proto2::Message*>::value> {
    836 };
    837 
    838 // When the compiler sees expression IsContainerTest<C>(0), if C is an
    839 // STL-style container class, the first overload of IsContainerTest
    840 // will be viable (since both C::iterator* and C::const_iterator* are
    841 // valid types and NULL can be implicitly converted to them).  It will
    842 // be picked over the second overload as 'int' is a perfect match for
    843 // the type of argument 0.  If C::iterator or C::const_iterator is not
    844 // a valid type, the first overload is not viable, and the second
    845 // overload will be picked.  Therefore, we can determine whether C is
    846 // a container class by checking the type of IsContainerTest<C>(0).
    847 // The value of the expression is insignificant.
    848 //
    849 // Note that we look for both C::iterator and C::const_iterator.  The
    850 // reason is that C++ injects the name of a class as a member of the
    851 // class itself (e.g. you can refer to class iterator as either
    852 // 'iterator' or 'iterator::iterator').  If we look for C::iterator
    853 // only, for example, we would mistakenly think that a class named
    854 // iterator is an STL container.
    855 //
    856 // Also note that the simpler approach of overloading
    857 // IsContainerTest(typename C::const_iterator*) and
    858 // IsContainerTest(...) doesn't work with Visual Age C++ and Sun C++.
    859 typedef int IsContainer;
    860 template <class C>
    861 IsContainer IsContainerTest(int /* dummy */,
    862                             typename C::iterator* /* it */ = NULL,
    863                             typename C::const_iterator* /* const_it */ = NULL) {
    864   return 0;
    865 }
    866 
    867 typedef char IsNotContainer;
    868 template <class C>
    869 IsNotContainer IsContainerTest(long /* dummy */) { return '\0'; }
    870 
    871 // EnableIf<condition>::type is void when 'Cond' is true, and
    872 // undefined when 'Cond' is false.  To use SFINAE to make a function
    873 // overload only apply when a particular expression is true, add
    874 // "typename EnableIf<expression>::type* = 0" as the last parameter.
    875 template<bool> struct EnableIf;
    876 template<> struct EnableIf<true> { typedef void type; };  // NOLINT
    877 
    878 // Utilities for native arrays.
    879 
    880 // ArrayEq() compares two k-dimensional native arrays using the
    881 // elements' operator==, where k can be any integer >= 0.  When k is
    882 // 0, ArrayEq() degenerates into comparing a single pair of values.
    883 
    884 template <typename T, typename U>
    885 bool ArrayEq(const T* lhs, size_t size, const U* rhs);
    886 
    887 // This generic version is used when k is 0.
    888 template <typename T, typename U>
    889 inline bool ArrayEq(const T& lhs, const U& rhs) { return lhs == rhs; }
    890 
    891 // This overload is used when k >= 1.
    892 template <typename T, typename U, size_t N>
    893 inline bool ArrayEq(const T(&lhs)[N], const U(&rhs)[N]) {
    894   return internal::ArrayEq(lhs, N, rhs);
    895 }
    896 
    897 // This helper reduces code bloat.  If we instead put its logic inside
    898 // the previous ArrayEq() function, arrays with different sizes would
    899 // lead to different copies of the template code.
    900 template <typename T, typename U>
    901 bool ArrayEq(const T* lhs, size_t size, const U* rhs) {
    902   for (size_t i = 0; i != size; i++) {
    903     if (!internal::ArrayEq(lhs[i], rhs[i]))
    904       return false;
    905   }
    906   return true;
    907 }
    908 
    909 // Finds the first element in the iterator range [begin, end) that
    910 // equals elem.  Element may be a native array type itself.
    911 template <typename Iter, typename Element>
    912 Iter ArrayAwareFind(Iter begin, Iter end, const Element& elem) {
    913   for (Iter it = begin; it != end; ++it) {
    914     if (internal::ArrayEq(*it, elem))
    915       return it;
    916   }
    917   return end;
    918 }
    919 
    920 // CopyArray() copies a k-dimensional native array using the elements'
    921 // operator=, where k can be any integer >= 0.  When k is 0,
    922 // CopyArray() degenerates into copying a single value.
    923 
    924 template <typename T, typename U>
    925 void CopyArray(const T* from, size_t size, U* to);
    926 
    927 // This generic version is used when k is 0.
    928 template <typename T, typename U>
    929 inline void CopyArray(const T& from, U* to) { *to = from; }
    930 
    931 // This overload is used when k >= 1.
    932 template <typename T, typename U, size_t N>
    933 inline void CopyArray(const T(&from)[N], U(*to)[N]) {
    934   internal::CopyArray(from, N, *to);
    935 }
    936 
    937 // This helper reduces code bloat.  If we instead put its logic inside
    938 // the previous CopyArray() function, arrays with different sizes
    939 // would lead to different copies of the template code.
    940 template <typename T, typename U>
    941 void CopyArray(const T* from, size_t size, U* to) {
    942   for (size_t i = 0; i != size; i++) {
    943     internal::CopyArray(from[i], to + i);
    944   }
    945 }
    946 
    947 // The relation between an NativeArray object (see below) and the
    948 // native array it represents.
    949 enum RelationToSource {
    950   kReference,  // The NativeArray references the native array.
    951   kCopy        // The NativeArray makes a copy of the native array and
    952                // owns the copy.
    953 };
    954 
    955 // Adapts a native array to a read-only STL-style container.  Instead
    956 // of the complete STL container concept, this adaptor only implements
    957 // members useful for Google Mock's container matchers.  New members
    958 // should be added as needed.  To simplify the implementation, we only
    959 // support Element being a raw type (i.e. having no top-level const or
    960 // reference modifier).  It's the client's responsibility to satisfy
    961 // this requirement.  Element can be an array type itself (hence
    962 // multi-dimensional arrays are supported).
    963 template <typename Element>
    964 class NativeArray {
    965  public:
    966   // STL-style container typedefs.
    967   typedef Element value_type;
    968   typedef Element* iterator;
    969   typedef const Element* const_iterator;
    970 
    971   // Constructs from a native array.
    972   NativeArray(const Element* array, size_t count, RelationToSource relation) {
    973     Init(array, count, relation);
    974   }
    975 
    976   // Copy constructor.
    977   NativeArray(const NativeArray& rhs) {
    978     Init(rhs.array_, rhs.size_, rhs.relation_to_source_);
    979   }
    980 
    981   ~NativeArray() {
    982     // Ensures that the user doesn't instantiate NativeArray with a
    983     // const or reference type.
    984     static_cast<void>(StaticAssertTypeEqHelper<Element,
    985         GTEST_REMOVE_REFERENCE_AND_CONST_(Element)>());
    986     if (relation_to_source_ == kCopy)
    987       delete[] array_;
    988   }
    989 
    990   // STL-style container methods.
    991   size_t size() const { return size_; }
    992   const_iterator begin() const { return array_; }
    993   const_iterator end() const { return array_ + size_; }
    994   bool operator==(const NativeArray& rhs) const {
    995     return size() == rhs.size() &&
    996         ArrayEq(begin(), size(), rhs.begin());
    997   }
    998 
    999  private:
   1000   // Initializes this object; makes a copy of the input array if
   1001   // 'relation' is kCopy.
   1002   void Init(const Element* array, size_t a_size, RelationToSource relation) {
   1003     if (relation == kReference) {
   1004       array_ = array;
   1005     } else {
   1006       Element* const copy = new Element[a_size];
   1007       CopyArray(array, a_size, copy);
   1008       array_ = copy;
   1009     }
   1010     size_ = a_size;
   1011     relation_to_source_ = relation;
   1012   }
   1013 
   1014   const Element* array_;
   1015   size_t size_;
   1016   RelationToSource relation_to_source_;
   1017 
   1018   GTEST_DISALLOW_ASSIGN_(NativeArray);
   1019 };
   1020 
   1021 }  // namespace internal
   1022 }  // namespace testing
   1023 
   1024 #define GTEST_MESSAGE_AT_(file, line, message, result_type) \
   1025   ::testing::internal::AssertHelper(result_type, file, line, message) \
   1026     = ::testing::Message()
   1027 
   1028 #define GTEST_MESSAGE_(message, result_type) \
   1029   GTEST_MESSAGE_AT_(__FILE__, __LINE__, message, result_type)
   1030 
   1031 #define GTEST_FATAL_FAILURE_(message) \
   1032   return GTEST_MESSAGE_(message, ::testing::TestPartResult::kFatalFailure)
   1033 
   1034 #define GTEST_NONFATAL_FAILURE_(message) \
   1035   GTEST_MESSAGE_(message, ::testing::TestPartResult::kNonFatalFailure)
   1036 
   1037 #define GTEST_SUCCESS_(message) \
   1038   GTEST_MESSAGE_(message, ::testing::TestPartResult::kSuccess)
   1039 
   1040 // Suppresses MSVC warnings 4072 (unreachable code) for the code following
   1041 // statement if it returns or throws (or doesn't return or throw in some
   1042 // situations).
   1043 #define GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement) \
   1044   if (::testing::internal::AlwaysTrue()) { statement; }
   1045 
   1046 #define GTEST_TEST_THROW_(statement, expected_exception, fail) \
   1047   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1048   if (::testing::internal::ConstCharPtr gtest_msg = "") { \
   1049     bool gtest_caught_expected = false; \
   1050     try { \
   1051       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1052     } \
   1053     catch (expected_exception const&) { \
   1054       gtest_caught_expected = true; \
   1055     } \
   1056     catch (...) { \
   1057       gtest_msg.value = \
   1058           "Expected: " #statement " throws an exception of type " \
   1059           #expected_exception ".\n  Actual: it throws a different type."; \
   1060       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1061     } \
   1062     if (!gtest_caught_expected) { \
   1063       gtest_msg.value = \
   1064           "Expected: " #statement " throws an exception of type " \
   1065           #expected_exception ".\n  Actual: it throws nothing."; \
   1066       goto GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__); \
   1067     } \
   1068   } else \
   1069     GTEST_CONCAT_TOKEN_(gtest_label_testthrow_, __LINE__): \
   1070       fail(gtest_msg.value)
   1071 
   1072 #define GTEST_TEST_NO_THROW_(statement, fail) \
   1073   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1074   if (::testing::internal::AlwaysTrue()) { \
   1075     try { \
   1076       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1077     } \
   1078     catch (...) { \
   1079       goto GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__); \
   1080     } \
   1081   } else \
   1082     GTEST_CONCAT_TOKEN_(gtest_label_testnothrow_, __LINE__): \
   1083       fail("Expected: " #statement " doesn't throw an exception.\n" \
   1084            "  Actual: it throws.")
   1085 
   1086 #define GTEST_TEST_ANY_THROW_(statement, fail) \
   1087   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1088   if (::testing::internal::AlwaysTrue()) { \
   1089     bool gtest_caught_any = false; \
   1090     try { \
   1091       GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1092     } \
   1093     catch (...) { \
   1094       gtest_caught_any = true; \
   1095     } \
   1096     if (!gtest_caught_any) { \
   1097       goto GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__); \
   1098     } \
   1099   } else \
   1100     GTEST_CONCAT_TOKEN_(gtest_label_testanythrow_, __LINE__): \
   1101       fail("Expected: " #statement " throws an exception.\n" \
   1102            "  Actual: it doesn't.")
   1103 
   1104 
   1105 // Implements Boolean test assertions such as EXPECT_TRUE. expression can be
   1106 // either a boolean expression or an AssertionResult. text is a textual
   1107 // represenation of expression as it was passed into the EXPECT_TRUE.
   1108 #define GTEST_TEST_BOOLEAN_(expression, text, actual, expected, fail) \
   1109   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1110   if (const ::testing::AssertionResult gtest_ar_ = \
   1111       ::testing::AssertionResult(expression)) \
   1112     ; \
   1113   else \
   1114     fail(::testing::internal::GetBoolAssertionFailureMessage(\
   1115         gtest_ar_, text, #actual, #expected).c_str())
   1116 
   1117 #define GTEST_TEST_NO_FATAL_FAILURE_(statement, fail) \
   1118   GTEST_AMBIGUOUS_ELSE_BLOCKER_ \
   1119   if (::testing::internal::AlwaysTrue()) { \
   1120     ::testing::internal::HasNewFatalFailureHelper gtest_fatal_failure_checker; \
   1121     GTEST_SUPPRESS_UNREACHABLE_CODE_WARNING_BELOW_(statement); \
   1122     if (gtest_fatal_failure_checker.has_new_fatal_failure()) { \
   1123       goto GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__); \
   1124     } \
   1125   } else \
   1126     GTEST_CONCAT_TOKEN_(gtest_label_testnofatal_, __LINE__): \
   1127       fail("Expected: " #statement " doesn't generate new fatal " \
   1128            "failures in the current thread.\n" \
   1129            "  Actual: it does.")
   1130 
   1131 // Expands to the name of the class that implements the given test.
   1132 #define GTEST_TEST_CLASS_NAME_(test_case_name, test_name) \
   1133   test_case_name##_##test_name##_Test
   1134 
   1135 // Helper macro for defining tests.
   1136 #define GTEST_TEST_(test_case_name, test_name, parent_class, parent_id)\
   1137 class GTEST_TEST_CLASS_NAME_(test_case_name, test_name) : public parent_class {\
   1138  public:\
   1139   GTEST_TEST_CLASS_NAME_(test_case_name, test_name)() {}\
   1140  private:\
   1141   virtual void TestBody();\
   1142   static ::testing::TestInfo* const test_info_ GTEST_ATTRIBUTE_UNUSED_;\
   1143   GTEST_DISALLOW_COPY_AND_ASSIGN_(\
   1144       GTEST_TEST_CLASS_NAME_(test_case_name, test_name));\
   1145 };\
   1146 \
   1147 ::testing::TestInfo* const GTEST_TEST_CLASS_NAME_(test_case_name, test_name)\
   1148   ::test_info_ =\
   1149     ::testing::internal::MakeAndRegisterTestInfo(\
   1150         #test_case_name, #test_name, NULL, NULL, \
   1151         (parent_id), \
   1152         parent_class::SetUpTestCase, \
   1153         parent_class::TearDownTestCase, \
   1154         new ::testing::internal::TestFactoryImpl<\
   1155             GTEST_TEST_CLASS_NAME_(test_case_name, test_name)>);\
   1156 void GTEST_TEST_CLASS_NAME_(test_case_name, test_name)::TestBody()
   1157 
   1158 #endif  // GTEST_INCLUDE_GTEST_INTERNAL_GTEST_INTERNAL_H_
   1159