1 /* DWARF 2 support. 2 Copyright (C) 1994-2016 Free Software Foundation, Inc. 3 4 Adapted from gdb/dwarf2read.c by Gavin Koch of Cygnus Solutions 5 (gavin (at) cygnus.com). 6 7 From the dwarf2read.c header: 8 Adapted by Gary Funck (gary (at) intrepid.com), Intrepid Technology, 9 Inc. with support from Florida State University (under contract 10 with the Ada Joint Program Office), and Silicon Graphics, Inc. 11 Initial contribution by Brent Benson, Harris Computer Systems, Inc., 12 based on Fred Fish's (Cygnus Support) implementation of DWARF 1 13 support in dwarfread.c 14 15 This file is part of BFD. 16 17 This program is free software; you can redistribute it and/or modify 18 it under the terms of the GNU General Public License as published by 19 the Free Software Foundation; either version 3 of the License, or (at 20 your option) any later version. 21 22 This program is distributed in the hope that it will be useful, but 23 WITHOUT ANY WARRANTY; without even the implied warranty of 24 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 25 General Public License for more details. 26 27 You should have received a copy of the GNU General Public License 28 along with this program; if not, write to the Free Software 29 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 30 MA 02110-1301, USA. */ 31 32 #include "sysdep.h" 33 #include "bfd.h" 34 #include "libiberty.h" 35 #include "libbfd.h" 36 #include "elf-bfd.h" 37 #include "dwarf2.h" 38 39 /* The data in the .debug_line statement prologue looks like this. */ 40 41 struct line_head 42 { 43 bfd_vma total_length; 44 unsigned short version; 45 bfd_vma prologue_length; 46 unsigned char minimum_instruction_length; 47 unsigned char maximum_ops_per_insn; 48 unsigned char default_is_stmt; 49 int line_base; 50 unsigned char line_range; 51 unsigned char opcode_base; 52 unsigned char *standard_opcode_lengths; 53 }; 54 55 /* Attributes have a name and a value. */ 56 57 struct attribute 58 { 59 enum dwarf_attribute name; 60 enum dwarf_form form; 61 union 62 { 63 char *str; 64 struct dwarf_block *blk; 65 bfd_uint64_t val; 66 bfd_int64_t sval; 67 } 68 u; 69 }; 70 71 /* Blocks are a bunch of untyped bytes. */ 72 struct dwarf_block 73 { 74 unsigned int size; 75 bfd_byte *data; 76 }; 77 78 struct adjusted_section 79 { 80 asection *section; 81 bfd_vma adj_vma; 82 }; 83 84 struct dwarf2_debug 85 { 86 /* A list of all previously read comp_units. */ 87 struct comp_unit *all_comp_units; 88 89 /* Last comp unit in list above. */ 90 struct comp_unit *last_comp_unit; 91 92 /* Names of the debug sections. */ 93 const struct dwarf_debug_section *debug_sections; 94 95 /* The next unread compilation unit within the .debug_info section. 96 Zero indicates that the .debug_info section has not been loaded 97 into a buffer yet. */ 98 bfd_byte *info_ptr; 99 100 /* Pointer to the end of the .debug_info section memory buffer. */ 101 bfd_byte *info_ptr_end; 102 103 /* Pointer to the bfd, section and address of the beginning of the 104 section. The bfd might be different than expected because of 105 gnu_debuglink sections. */ 106 bfd *bfd_ptr; 107 asection *sec; 108 bfd_byte *sec_info_ptr; 109 110 /* Support for alternate debug info sections created by the DWZ utility: 111 This includes a pointer to an alternate bfd which contains *extra*, 112 possibly duplicate debug sections, and pointers to the loaded 113 .debug_str and .debug_info sections from this bfd. */ 114 bfd * alt_bfd_ptr; 115 bfd_byte * alt_dwarf_str_buffer; 116 bfd_size_type alt_dwarf_str_size; 117 bfd_byte * alt_dwarf_info_buffer; 118 bfd_size_type alt_dwarf_info_size; 119 120 /* A pointer to the memory block allocated for info_ptr. Neither 121 info_ptr nor sec_info_ptr are guaranteed to stay pointing to the 122 beginning of the malloc block. This is used only to free the 123 memory later. */ 124 bfd_byte *info_ptr_memory; 125 126 /* Pointer to the symbol table. */ 127 asymbol **syms; 128 129 /* Pointer to the .debug_abbrev section loaded into memory. */ 130 bfd_byte *dwarf_abbrev_buffer; 131 132 /* Length of the loaded .debug_abbrev section. */ 133 bfd_size_type dwarf_abbrev_size; 134 135 /* Buffer for decode_line_info. */ 136 bfd_byte *dwarf_line_buffer; 137 138 /* Length of the loaded .debug_line section. */ 139 bfd_size_type dwarf_line_size; 140 141 /* Pointer to the .debug_str section loaded into memory. */ 142 bfd_byte *dwarf_str_buffer; 143 144 /* Length of the loaded .debug_str section. */ 145 bfd_size_type dwarf_str_size; 146 147 /* Pointer to the .debug_ranges section loaded into memory. */ 148 bfd_byte *dwarf_ranges_buffer; 149 150 /* Length of the loaded .debug_ranges section. */ 151 bfd_size_type dwarf_ranges_size; 152 153 /* If the most recent call to bfd_find_nearest_line was given an 154 address in an inlined function, preserve a pointer into the 155 calling chain for subsequent calls to bfd_find_inliner_info to 156 use. */ 157 struct funcinfo *inliner_chain; 158 159 /* Section VMAs at the time the stash was built. */ 160 bfd_vma *sec_vma; 161 162 /* Number of sections whose VMA we must adjust. */ 163 int adjusted_section_count; 164 165 /* Array of sections with adjusted VMA. */ 166 struct adjusted_section *adjusted_sections; 167 168 /* Number of times find_line is called. This is used in 169 the heuristic for enabling the info hash tables. */ 170 int info_hash_count; 171 172 #define STASH_INFO_HASH_TRIGGER 100 173 174 /* Hash table mapping symbol names to function infos. */ 175 struct info_hash_table *funcinfo_hash_table; 176 177 /* Hash table mapping symbol names to variable infos. */ 178 struct info_hash_table *varinfo_hash_table; 179 180 /* Head of comp_unit list in the last hash table update. */ 181 struct comp_unit *hash_units_head; 182 183 /* Status of info hash. */ 184 int info_hash_status; 185 #define STASH_INFO_HASH_OFF 0 186 #define STASH_INFO_HASH_ON 1 187 #define STASH_INFO_HASH_DISABLED 2 188 189 /* True if we opened bfd_ptr. */ 190 bfd_boolean close_on_cleanup; 191 }; 192 193 struct arange 194 { 195 struct arange *next; 196 bfd_vma low; 197 bfd_vma high; 198 }; 199 200 /* A minimal decoding of DWARF2 compilation units. We only decode 201 what's needed to get to the line number information. */ 202 203 struct comp_unit 204 { 205 /* Chain the previously read compilation units. */ 206 struct comp_unit *next_unit; 207 208 /* Likewise, chain the compilation unit read after this one. 209 The comp units are stored in reversed reading order. */ 210 struct comp_unit *prev_unit; 211 212 /* Keep the bfd convenient (for memory allocation). */ 213 bfd *abfd; 214 215 /* The lowest and highest addresses contained in this compilation 216 unit as specified in the compilation unit header. */ 217 struct arange arange; 218 219 /* The DW_AT_name attribute (for error messages). */ 220 char *name; 221 222 /* The abbrev hash table. */ 223 struct abbrev_info **abbrevs; 224 225 /* DW_AT_language. */ 226 int lang; 227 228 /* Note that an error was found by comp_unit_find_nearest_line. */ 229 int error; 230 231 /* The DW_AT_comp_dir attribute. */ 232 char *comp_dir; 233 234 /* TRUE if there is a line number table associated with this comp. unit. */ 235 int stmtlist; 236 237 /* Pointer to the current comp_unit so that we can find a given entry 238 by its reference. */ 239 bfd_byte *info_ptr_unit; 240 241 /* Pointer to the start of the debug section, for DW_FORM_ref_addr. */ 242 bfd_byte *sec_info_ptr; 243 244 /* The offset into .debug_line of the line number table. */ 245 unsigned long line_offset; 246 247 /* Pointer to the first child die for the comp unit. */ 248 bfd_byte *first_child_die_ptr; 249 250 /* The end of the comp unit. */ 251 bfd_byte *end_ptr; 252 253 /* The decoded line number, NULL if not yet decoded. */ 254 struct line_info_table *line_table; 255 256 /* A list of the functions found in this comp. unit. */ 257 struct funcinfo *function_table; 258 259 /* A list of the variables found in this comp. unit. */ 260 struct varinfo *variable_table; 261 262 /* Pointer to dwarf2_debug structure. */ 263 struct dwarf2_debug *stash; 264 265 /* DWARF format version for this unit - from unit header. */ 266 int version; 267 268 /* Address size for this unit - from unit header. */ 269 unsigned char addr_size; 270 271 /* Offset size for this unit - from unit header. */ 272 unsigned char offset_size; 273 274 /* Base address for this unit - from DW_AT_low_pc attribute of 275 DW_TAG_compile_unit DIE */ 276 bfd_vma base_address; 277 278 /* TRUE if symbols are cached in hash table for faster lookup by name. */ 279 bfd_boolean cached; 280 }; 281 282 /* This data structure holds the information of an abbrev. */ 283 struct abbrev_info 284 { 285 unsigned int number; /* Number identifying abbrev. */ 286 enum dwarf_tag tag; /* DWARF tag. */ 287 int has_children; /* Boolean. */ 288 unsigned int num_attrs; /* Number of attributes. */ 289 struct attr_abbrev *attrs; /* An array of attribute descriptions. */ 290 struct abbrev_info *next; /* Next in chain. */ 291 }; 292 293 struct attr_abbrev 294 { 295 enum dwarf_attribute name; 296 enum dwarf_form form; 297 }; 298 299 /* Map of uncompressed DWARF debug section name to compressed one. It 300 is terminated by NULL uncompressed_name. */ 301 302 const struct dwarf_debug_section dwarf_debug_sections[] = 303 { 304 { ".debug_abbrev", ".zdebug_abbrev" }, 305 { ".debug_aranges", ".zdebug_aranges" }, 306 { ".debug_frame", ".zdebug_frame" }, 307 { ".debug_info", ".zdebug_info" }, 308 { ".debug_info", ".zdebug_info" }, 309 { ".debug_line", ".zdebug_line" }, 310 { ".debug_loc", ".zdebug_loc" }, 311 { ".debug_macinfo", ".zdebug_macinfo" }, 312 { ".debug_macro", ".zdebug_macro" }, 313 { ".debug_pubnames", ".zdebug_pubnames" }, 314 { ".debug_pubtypes", ".zdebug_pubtypes" }, 315 { ".debug_ranges", ".zdebug_ranges" }, 316 { ".debug_static_func", ".zdebug_static_func" }, 317 { ".debug_static_vars", ".zdebug_static_vars" }, 318 { ".debug_str", ".zdebug_str", }, 319 { ".debug_str", ".zdebug_str", }, 320 { ".debug_types", ".zdebug_types" }, 321 /* GNU DWARF 1 extensions */ 322 { ".debug_sfnames", ".zdebug_sfnames" }, 323 { ".debug_srcinfo", ".zebug_srcinfo" }, 324 /* SGI/MIPS DWARF 2 extensions */ 325 { ".debug_funcnames", ".zdebug_funcnames" }, 326 { ".debug_typenames", ".zdebug_typenames" }, 327 { ".debug_varnames", ".zdebug_varnames" }, 328 { ".debug_weaknames", ".zdebug_weaknames" }, 329 { NULL, NULL }, 330 }; 331 332 /* NB/ Numbers in this enum must match up with indicies 333 into the dwarf_debug_sections[] array above. */ 334 enum dwarf_debug_section_enum 335 { 336 debug_abbrev = 0, 337 debug_aranges, 338 debug_frame, 339 debug_info, 340 debug_info_alt, 341 debug_line, 342 debug_loc, 343 debug_macinfo, 344 debug_macro, 345 debug_pubnames, 346 debug_pubtypes, 347 debug_ranges, 348 debug_static_func, 349 debug_static_vars, 350 debug_str, 351 debug_str_alt, 352 debug_types, 353 debug_sfnames, 354 debug_srcinfo, 355 debug_funcnames, 356 debug_typenames, 357 debug_varnames, 358 debug_weaknames 359 }; 360 361 #ifndef ABBREV_HASH_SIZE 362 #define ABBREV_HASH_SIZE 121 363 #endif 364 #ifndef ATTR_ALLOC_CHUNK 365 #define ATTR_ALLOC_CHUNK 4 366 #endif 367 368 /* Variable and function hash tables. This is used to speed up look-up 369 in lookup_symbol_in_var_table() and lookup_symbol_in_function_table(). 370 In order to share code between variable and function infos, we use 371 a list of untyped pointer for all variable/function info associated with 372 a symbol. We waste a bit of memory for list with one node but that 373 simplifies the code. */ 374 375 struct info_list_node 376 { 377 struct info_list_node *next; 378 void *info; 379 }; 380 381 /* Info hash entry. */ 382 struct info_hash_entry 383 { 384 struct bfd_hash_entry root; 385 struct info_list_node *head; 386 }; 387 388 struct info_hash_table 389 { 390 struct bfd_hash_table base; 391 }; 392 393 /* Function to create a new entry in info hash table. */ 394 395 static struct bfd_hash_entry * 396 info_hash_table_newfunc (struct bfd_hash_entry *entry, 397 struct bfd_hash_table *table, 398 const char *string) 399 { 400 struct info_hash_entry *ret = (struct info_hash_entry *) entry; 401 402 /* Allocate the structure if it has not already been allocated by a 403 derived class. */ 404 if (ret == NULL) 405 { 406 ret = (struct info_hash_entry *) bfd_hash_allocate (table, 407 sizeof (* ret)); 408 if (ret == NULL) 409 return NULL; 410 } 411 412 /* Call the allocation method of the base class. */ 413 ret = ((struct info_hash_entry *) 414 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string)); 415 416 /* Initialize the local fields here. */ 417 if (ret) 418 ret->head = NULL; 419 420 return (struct bfd_hash_entry *) ret; 421 } 422 423 /* Function to create a new info hash table. It returns a pointer to the 424 newly created table or NULL if there is any error. We need abfd 425 solely for memory allocation. */ 426 427 static struct info_hash_table * 428 create_info_hash_table (bfd *abfd) 429 { 430 struct info_hash_table *hash_table; 431 432 hash_table = ((struct info_hash_table *) 433 bfd_alloc (abfd, sizeof (struct info_hash_table))); 434 if (!hash_table) 435 return hash_table; 436 437 if (!bfd_hash_table_init (&hash_table->base, info_hash_table_newfunc, 438 sizeof (struct info_hash_entry))) 439 { 440 bfd_release (abfd, hash_table); 441 return NULL; 442 } 443 444 return hash_table; 445 } 446 447 /* Insert an info entry into an info hash table. We do not check of 448 duplicate entries. Also, the caller need to guarantee that the 449 right type of info in inserted as info is passed as a void* pointer. 450 This function returns true if there is no error. */ 451 452 static bfd_boolean 453 insert_info_hash_table (struct info_hash_table *hash_table, 454 const char *key, 455 void *info, 456 bfd_boolean copy_p) 457 { 458 struct info_hash_entry *entry; 459 struct info_list_node *node; 460 461 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, 462 key, TRUE, copy_p); 463 if (!entry) 464 return FALSE; 465 466 node = (struct info_list_node *) bfd_hash_allocate (&hash_table->base, 467 sizeof (*node)); 468 if (!node) 469 return FALSE; 470 471 node->info = info; 472 node->next = entry->head; 473 entry->head = node; 474 475 return TRUE; 476 } 477 478 /* Look up an info entry list from an info hash table. Return NULL 479 if there is none. */ 480 481 static struct info_list_node * 482 lookup_info_hash_table (struct info_hash_table *hash_table, const char *key) 483 { 484 struct info_hash_entry *entry; 485 486 entry = (struct info_hash_entry*) bfd_hash_lookup (&hash_table->base, key, 487 FALSE, FALSE); 488 return entry ? entry->head : NULL; 489 } 490 491 /* Read a section into its appropriate place in the dwarf2_debug 492 struct (indicated by SECTION_BUFFER and SECTION_SIZE). If SYMS is 493 not NULL, use bfd_simple_get_relocated_section_contents to read the 494 section contents, otherwise use bfd_get_section_contents. Fail if 495 the located section does not contain at least OFFSET bytes. */ 496 497 static bfd_boolean 498 read_section (bfd * abfd, 499 const struct dwarf_debug_section *sec, 500 asymbol ** syms, 501 bfd_uint64_t offset, 502 bfd_byte ** section_buffer, 503 bfd_size_type * section_size) 504 { 505 asection *msec; 506 const char *section_name = sec->uncompressed_name; 507 508 /* The section may have already been read. */ 509 if (*section_buffer == NULL) 510 { 511 msec = bfd_get_section_by_name (abfd, section_name); 512 if (! msec) 513 { 514 section_name = sec->compressed_name; 515 if (section_name != NULL) 516 msec = bfd_get_section_by_name (abfd, section_name); 517 } 518 if (! msec) 519 { 520 (*_bfd_error_handler) (_("Dwarf Error: Can't find %s section."), 521 sec->uncompressed_name); 522 bfd_set_error (bfd_error_bad_value); 523 return FALSE; 524 } 525 526 *section_size = msec->rawsize ? msec->rawsize : msec->size; 527 if (syms) 528 { 529 *section_buffer 530 = bfd_simple_get_relocated_section_contents (abfd, msec, NULL, syms); 531 if (! *section_buffer) 532 return FALSE; 533 } 534 else 535 { 536 *section_buffer = (bfd_byte *) bfd_malloc (*section_size); 537 if (! *section_buffer) 538 return FALSE; 539 if (! bfd_get_section_contents (abfd, msec, *section_buffer, 540 0, *section_size)) 541 return FALSE; 542 } 543 } 544 545 /* It is possible to get a bad value for the offset into the section 546 that the client wants. Validate it here to avoid trouble later. */ 547 if (offset != 0 && offset >= *section_size) 548 { 549 (*_bfd_error_handler) (_("Dwarf Error: Offset (%lu)" 550 " greater than or equal to %s size (%lu)."), 551 (long) offset, section_name, *section_size); 552 bfd_set_error (bfd_error_bad_value); 553 return FALSE; 554 } 555 556 return TRUE; 557 } 558 559 /* Read dwarf information from a buffer. */ 560 561 static unsigned int 562 read_1_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end) 563 { 564 if (buf + 1 > end) 565 return 0; 566 return bfd_get_8 (abfd, buf); 567 } 568 569 static int 570 read_1_signed_byte (bfd *abfd ATTRIBUTE_UNUSED, bfd_byte *buf, bfd_byte *end) 571 { 572 if (buf + 1 > end) 573 return 0; 574 return bfd_get_signed_8 (abfd, buf); 575 } 576 577 static unsigned int 578 read_2_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end) 579 { 580 if (buf + 2 > end) 581 return 0; 582 return bfd_get_16 (abfd, buf); 583 } 584 585 static unsigned int 586 read_4_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end) 587 { 588 if (buf + 4 > end) 589 return 0; 590 return bfd_get_32 (abfd, buf); 591 } 592 593 static bfd_uint64_t 594 read_8_bytes (bfd *abfd, bfd_byte *buf, bfd_byte *end) 595 { 596 if (buf + 8 > end) 597 return 0; 598 return bfd_get_64 (abfd, buf); 599 } 600 601 static bfd_byte * 602 read_n_bytes (bfd *abfd ATTRIBUTE_UNUSED, 603 bfd_byte *buf, 604 bfd_byte *end, 605 unsigned int size ATTRIBUTE_UNUSED) 606 { 607 if (buf + size > end) 608 return NULL; 609 return buf; 610 } 611 612 /* Scans a NUL terminated string starting at BUF, returning a pointer to it. 613 Returns the number of characters in the string, *including* the NUL byte, 614 in BYTES_READ_PTR. This value is set even if the function fails. Bytes 615 at or beyond BUF_END will not be read. Returns NULL if there was a 616 problem, or if the string is empty. */ 617 618 static char * 619 read_string (bfd * abfd ATTRIBUTE_UNUSED, 620 bfd_byte * buf, 621 bfd_byte * buf_end, 622 unsigned int * bytes_read_ptr) 623 { 624 bfd_byte *str = buf; 625 626 if (buf >= buf_end) 627 { 628 * bytes_read_ptr = 0; 629 return NULL; 630 } 631 632 if (*str == '\0') 633 { 634 * bytes_read_ptr = 1; 635 return NULL; 636 } 637 638 while (buf < buf_end) 639 if (* buf ++ == 0) 640 { 641 * bytes_read_ptr = buf - str; 642 return (char *) str; 643 } 644 645 * bytes_read_ptr = buf - str; 646 return NULL; 647 } 648 649 /* Reads an offset from BUF and then locates the string at this offset 650 inside the debug string section. Returns a pointer to the string. 651 Returns the number of bytes read from BUF, *not* the length of the string, 652 in BYTES_READ_PTR. This value is set even if the function fails. Bytes 653 at or beyond BUF_END will not be read from BUF. Returns NULL if there was 654 a problem, or if the string is empty. Does not check for NUL termination 655 of the string. */ 656 657 static char * 658 read_indirect_string (struct comp_unit * unit, 659 bfd_byte * buf, 660 bfd_byte * buf_end, 661 unsigned int * bytes_read_ptr) 662 { 663 bfd_uint64_t offset; 664 struct dwarf2_debug *stash = unit->stash; 665 char *str; 666 667 if (buf + unit->offset_size > buf_end) 668 { 669 * bytes_read_ptr = 0; 670 return NULL; 671 } 672 673 if (unit->offset_size == 4) 674 offset = read_4_bytes (unit->abfd, buf, buf_end); 675 else 676 offset = read_8_bytes (unit->abfd, buf, buf_end); 677 678 *bytes_read_ptr = unit->offset_size; 679 680 if (! read_section (unit->abfd, &stash->debug_sections[debug_str], 681 stash->syms, offset, 682 &stash->dwarf_str_buffer, &stash->dwarf_str_size)) 683 return NULL; 684 685 if (offset >= stash->dwarf_str_size) 686 return NULL; 687 str = (char *) stash->dwarf_str_buffer + offset; 688 if (*str == '\0') 689 return NULL; 690 return str; 691 } 692 693 /* Like read_indirect_string but uses a .debug_str located in 694 an alternate file pointed to by the .gnu_debugaltlink section. 695 Used to impement DW_FORM_GNU_strp_alt. */ 696 697 static char * 698 read_alt_indirect_string (struct comp_unit * unit, 699 bfd_byte * buf, 700 bfd_byte * buf_end, 701 unsigned int * bytes_read_ptr) 702 { 703 bfd_uint64_t offset; 704 struct dwarf2_debug *stash = unit->stash; 705 char *str; 706 707 if (buf + unit->offset_size > buf_end) 708 { 709 * bytes_read_ptr = 0; 710 return NULL; 711 } 712 713 if (unit->offset_size == 4) 714 offset = read_4_bytes (unit->abfd, buf, buf_end); 715 else 716 offset = read_8_bytes (unit->abfd, buf, buf_end); 717 718 *bytes_read_ptr = unit->offset_size; 719 720 if (stash->alt_bfd_ptr == NULL) 721 { 722 bfd * debug_bfd; 723 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR); 724 725 if (debug_filename == NULL) 726 return NULL; 727 728 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL 729 || ! bfd_check_format (debug_bfd, bfd_object)) 730 { 731 if (debug_bfd) 732 bfd_close (debug_bfd); 733 734 /* FIXME: Should we report our failure to follow the debuglink ? */ 735 free (debug_filename); 736 return NULL; 737 } 738 stash->alt_bfd_ptr = debug_bfd; 739 } 740 741 if (! read_section (unit->stash->alt_bfd_ptr, 742 stash->debug_sections + debug_str_alt, 743 NULL, /* FIXME: Do we need to load alternate symbols ? */ 744 offset, 745 &stash->alt_dwarf_str_buffer, 746 &stash->alt_dwarf_str_size)) 747 return NULL; 748 749 if (offset >= stash->alt_dwarf_str_size) 750 return NULL; 751 str = (char *) stash->alt_dwarf_str_buffer + offset; 752 if (*str == '\0') 753 return NULL; 754 755 return str; 756 } 757 758 /* Resolve an alternate reference from UNIT at OFFSET. 759 Returns a pointer into the loaded alternate CU upon success 760 or NULL upon failure. */ 761 762 static bfd_byte * 763 read_alt_indirect_ref (struct comp_unit * unit, 764 bfd_uint64_t offset) 765 { 766 struct dwarf2_debug *stash = unit->stash; 767 768 if (stash->alt_bfd_ptr == NULL) 769 { 770 bfd * debug_bfd; 771 char * debug_filename = bfd_follow_gnu_debugaltlink (unit->abfd, DEBUGDIR); 772 773 if (debug_filename == NULL) 774 return FALSE; 775 776 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL 777 || ! bfd_check_format (debug_bfd, bfd_object)) 778 { 779 if (debug_bfd) 780 bfd_close (debug_bfd); 781 782 /* FIXME: Should we report our failure to follow the debuglink ? */ 783 free (debug_filename); 784 return NULL; 785 } 786 stash->alt_bfd_ptr = debug_bfd; 787 } 788 789 if (! read_section (unit->stash->alt_bfd_ptr, 790 stash->debug_sections + debug_info_alt, 791 NULL, /* FIXME: Do we need to load alternate symbols ? */ 792 offset, 793 &stash->alt_dwarf_info_buffer, 794 &stash->alt_dwarf_info_size)) 795 return NULL; 796 797 if (offset >= stash->alt_dwarf_info_size) 798 return NULL; 799 return stash->alt_dwarf_info_buffer + offset; 800 } 801 802 static bfd_uint64_t 803 read_address (struct comp_unit *unit, bfd_byte *buf, bfd_byte * buf_end) 804 { 805 int signed_vma = 0; 806 807 if (bfd_get_flavour (unit->abfd) == bfd_target_elf_flavour) 808 signed_vma = get_elf_backend_data (unit->abfd)->sign_extend_vma; 809 810 if (buf + unit->addr_size > buf_end) 811 return 0; 812 813 if (signed_vma) 814 { 815 switch (unit->addr_size) 816 { 817 case 8: 818 return bfd_get_signed_64 (unit->abfd, buf); 819 case 4: 820 return bfd_get_signed_32 (unit->abfd, buf); 821 case 2: 822 return bfd_get_signed_16 (unit->abfd, buf); 823 default: 824 abort (); 825 } 826 } 827 else 828 { 829 switch (unit->addr_size) 830 { 831 case 8: 832 return bfd_get_64 (unit->abfd, buf); 833 case 4: 834 return bfd_get_32 (unit->abfd, buf); 835 case 2: 836 return bfd_get_16 (unit->abfd, buf); 837 default: 838 abort (); 839 } 840 } 841 } 842 843 /* Lookup an abbrev_info structure in the abbrev hash table. */ 844 845 static struct abbrev_info * 846 lookup_abbrev (unsigned int number, struct abbrev_info **abbrevs) 847 { 848 unsigned int hash_number; 849 struct abbrev_info *abbrev; 850 851 hash_number = number % ABBREV_HASH_SIZE; 852 abbrev = abbrevs[hash_number]; 853 854 while (abbrev) 855 { 856 if (abbrev->number == number) 857 return abbrev; 858 else 859 abbrev = abbrev->next; 860 } 861 862 return NULL; 863 } 864 865 /* In DWARF version 2, the description of the debugging information is 866 stored in a separate .debug_abbrev section. Before we read any 867 dies from a section we read in all abbreviations and install them 868 in a hash table. */ 869 870 static struct abbrev_info** 871 read_abbrevs (bfd *abfd, bfd_uint64_t offset, struct dwarf2_debug *stash) 872 { 873 struct abbrev_info **abbrevs; 874 bfd_byte *abbrev_ptr; 875 bfd_byte *abbrev_end; 876 struct abbrev_info *cur_abbrev; 877 unsigned int abbrev_number, bytes_read, abbrev_name; 878 unsigned int abbrev_form, hash_number; 879 bfd_size_type amt; 880 881 if (! read_section (abfd, &stash->debug_sections[debug_abbrev], 882 stash->syms, offset, 883 &stash->dwarf_abbrev_buffer, &stash->dwarf_abbrev_size)) 884 return NULL; 885 886 if (offset >= stash->dwarf_abbrev_size) 887 return NULL; 888 889 amt = sizeof (struct abbrev_info*) * ABBREV_HASH_SIZE; 890 abbrevs = (struct abbrev_info **) bfd_zalloc (abfd, amt); 891 if (abbrevs == NULL) 892 return NULL; 893 894 abbrev_ptr = stash->dwarf_abbrev_buffer + offset; 895 abbrev_end = stash->dwarf_abbrev_buffer + stash->dwarf_abbrev_size; 896 abbrev_number = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end); 897 abbrev_ptr += bytes_read; 898 899 /* Loop until we reach an abbrev number of 0. */ 900 while (abbrev_number) 901 { 902 amt = sizeof (struct abbrev_info); 903 cur_abbrev = (struct abbrev_info *) bfd_zalloc (abfd, amt); 904 if (cur_abbrev == NULL) 905 return NULL; 906 907 /* Read in abbrev header. */ 908 cur_abbrev->number = abbrev_number; 909 cur_abbrev->tag = (enum dwarf_tag) 910 safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end); 911 abbrev_ptr += bytes_read; 912 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr, abbrev_end); 913 abbrev_ptr += 1; 914 915 /* Now read in declarations. */ 916 abbrev_name = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end); 917 abbrev_ptr += bytes_read; 918 abbrev_form = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end); 919 abbrev_ptr += bytes_read; 920 921 while (abbrev_name) 922 { 923 if ((cur_abbrev->num_attrs % ATTR_ALLOC_CHUNK) == 0) 924 { 925 struct attr_abbrev *tmp; 926 927 amt = cur_abbrev->num_attrs + ATTR_ALLOC_CHUNK; 928 amt *= sizeof (struct attr_abbrev); 929 tmp = (struct attr_abbrev *) bfd_realloc (cur_abbrev->attrs, amt); 930 if (tmp == NULL) 931 { 932 size_t i; 933 934 for (i = 0; i < ABBREV_HASH_SIZE; i++) 935 { 936 struct abbrev_info *abbrev = abbrevs[i]; 937 938 while (abbrev) 939 { 940 free (abbrev->attrs); 941 abbrev = abbrev->next; 942 } 943 } 944 return NULL; 945 } 946 cur_abbrev->attrs = tmp; 947 } 948 949 cur_abbrev->attrs[cur_abbrev->num_attrs].name 950 = (enum dwarf_attribute) abbrev_name; 951 cur_abbrev->attrs[cur_abbrev->num_attrs++].form 952 = (enum dwarf_form) abbrev_form; 953 abbrev_name = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end); 954 abbrev_ptr += bytes_read; 955 abbrev_form = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end); 956 abbrev_ptr += bytes_read; 957 } 958 959 hash_number = abbrev_number % ABBREV_HASH_SIZE; 960 cur_abbrev->next = abbrevs[hash_number]; 961 abbrevs[hash_number] = cur_abbrev; 962 963 /* Get next abbreviation. 964 Under Irix6 the abbreviations for a compilation unit are not 965 always properly terminated with an abbrev number of 0. 966 Exit loop if we encounter an abbreviation which we have 967 already read (which means we are about to read the abbreviations 968 for the next compile unit) or if the end of the abbreviation 969 table is reached. */ 970 if ((unsigned int) (abbrev_ptr - stash->dwarf_abbrev_buffer) 971 >= stash->dwarf_abbrev_size) 972 break; 973 abbrev_number = safe_read_leb128 (abfd, abbrev_ptr, &bytes_read, FALSE, abbrev_end); 974 abbrev_ptr += bytes_read; 975 if (lookup_abbrev (abbrev_number, abbrevs) != NULL) 976 break; 977 } 978 979 return abbrevs; 980 } 981 982 /* Returns true if the form is one which has a string value. */ 983 984 static inline bfd_boolean 985 is_str_attr (enum dwarf_form form) 986 { 987 return form == DW_FORM_string || form == DW_FORM_strp || form == DW_FORM_GNU_strp_alt; 988 } 989 990 /* Read and fill in the value of attribute ATTR as described by FORM. 991 Read data starting from INFO_PTR, but never at or beyond INFO_PTR_END. 992 Returns an updated INFO_PTR taking into account the amount of data read. */ 993 994 static bfd_byte * 995 read_attribute_value (struct attribute * attr, 996 unsigned form, 997 struct comp_unit * unit, 998 bfd_byte * info_ptr, 999 bfd_byte * info_ptr_end) 1000 { 1001 bfd *abfd = unit->abfd; 1002 unsigned int bytes_read; 1003 struct dwarf_block *blk; 1004 bfd_size_type amt; 1005 1006 if (info_ptr >= info_ptr_end && form != DW_FORM_flag_present) 1007 { 1008 (*_bfd_error_handler) (_("Dwarf Error: Info pointer extends beyond end of attributes")); 1009 bfd_set_error (bfd_error_bad_value); 1010 return info_ptr; 1011 } 1012 1013 attr->form = (enum dwarf_form) form; 1014 1015 switch (form) 1016 { 1017 case DW_FORM_ref_addr: 1018 /* DW_FORM_ref_addr is an address in DWARF2, and an offset in 1019 DWARF3. */ 1020 if (unit->version == 3 || unit->version == 4) 1021 { 1022 if (unit->offset_size == 4) 1023 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end); 1024 else 1025 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end); 1026 info_ptr += unit->offset_size; 1027 break; 1028 } 1029 /* FALLTHROUGH */ 1030 case DW_FORM_addr: 1031 attr->u.val = read_address (unit, info_ptr, info_ptr_end); 1032 info_ptr += unit->addr_size; 1033 break; 1034 case DW_FORM_GNU_ref_alt: 1035 case DW_FORM_sec_offset: 1036 if (unit->offset_size == 4) 1037 attr->u.val = read_4_bytes (unit->abfd, info_ptr, info_ptr_end); 1038 else 1039 attr->u.val = read_8_bytes (unit->abfd, info_ptr, info_ptr_end); 1040 info_ptr += unit->offset_size; 1041 break; 1042 case DW_FORM_block2: 1043 amt = sizeof (struct dwarf_block); 1044 blk = (struct dwarf_block *) bfd_alloc (abfd, amt); 1045 if (blk == NULL) 1046 return NULL; 1047 blk->size = read_2_bytes (abfd, info_ptr, info_ptr_end); 1048 info_ptr += 2; 1049 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size); 1050 info_ptr += blk->size; 1051 attr->u.blk = blk; 1052 break; 1053 case DW_FORM_block4: 1054 amt = sizeof (struct dwarf_block); 1055 blk = (struct dwarf_block *) bfd_alloc (abfd, amt); 1056 if (blk == NULL) 1057 return NULL; 1058 blk->size = read_4_bytes (abfd, info_ptr, info_ptr_end); 1059 info_ptr += 4; 1060 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size); 1061 info_ptr += blk->size; 1062 attr->u.blk = blk; 1063 break; 1064 case DW_FORM_data2: 1065 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end); 1066 info_ptr += 2; 1067 break; 1068 case DW_FORM_data4: 1069 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end); 1070 info_ptr += 4; 1071 break; 1072 case DW_FORM_data8: 1073 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end); 1074 info_ptr += 8; 1075 break; 1076 case DW_FORM_string: 1077 attr->u.str = read_string (abfd, info_ptr, info_ptr_end, &bytes_read); 1078 info_ptr += bytes_read; 1079 break; 1080 case DW_FORM_strp: 1081 attr->u.str = read_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read); 1082 info_ptr += bytes_read; 1083 break; 1084 case DW_FORM_GNU_strp_alt: 1085 attr->u.str = read_alt_indirect_string (unit, info_ptr, info_ptr_end, &bytes_read); 1086 info_ptr += bytes_read; 1087 break; 1088 case DW_FORM_exprloc: 1089 case DW_FORM_block: 1090 amt = sizeof (struct dwarf_block); 1091 blk = (struct dwarf_block *) bfd_alloc (abfd, amt); 1092 if (blk == NULL) 1093 return NULL; 1094 blk->size = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end); 1095 info_ptr += bytes_read; 1096 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size); 1097 info_ptr += blk->size; 1098 attr->u.blk = blk; 1099 break; 1100 case DW_FORM_block1: 1101 amt = sizeof (struct dwarf_block); 1102 blk = (struct dwarf_block *) bfd_alloc (abfd, amt); 1103 if (blk == NULL) 1104 return NULL; 1105 blk->size = read_1_byte (abfd, info_ptr, info_ptr_end); 1106 info_ptr += 1; 1107 blk->data = read_n_bytes (abfd, info_ptr, info_ptr_end, blk->size); 1108 info_ptr += blk->size; 1109 attr->u.blk = blk; 1110 break; 1111 case DW_FORM_data1: 1112 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end); 1113 info_ptr += 1; 1114 break; 1115 case DW_FORM_flag: 1116 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end); 1117 info_ptr += 1; 1118 break; 1119 case DW_FORM_flag_present: 1120 attr->u.val = 1; 1121 break; 1122 case DW_FORM_sdata: 1123 attr->u.sval = safe_read_leb128 (abfd, info_ptr, &bytes_read, TRUE, info_ptr_end); 1124 info_ptr += bytes_read; 1125 break; 1126 case DW_FORM_udata: 1127 attr->u.val = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end); 1128 info_ptr += bytes_read; 1129 break; 1130 case DW_FORM_ref1: 1131 attr->u.val = read_1_byte (abfd, info_ptr, info_ptr_end); 1132 info_ptr += 1; 1133 break; 1134 case DW_FORM_ref2: 1135 attr->u.val = read_2_bytes (abfd, info_ptr, info_ptr_end); 1136 info_ptr += 2; 1137 break; 1138 case DW_FORM_ref4: 1139 attr->u.val = read_4_bytes (abfd, info_ptr, info_ptr_end); 1140 info_ptr += 4; 1141 break; 1142 case DW_FORM_ref8: 1143 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end); 1144 info_ptr += 8; 1145 break; 1146 case DW_FORM_ref_sig8: 1147 attr->u.val = read_8_bytes (abfd, info_ptr, info_ptr_end); 1148 info_ptr += 8; 1149 break; 1150 case DW_FORM_ref_udata: 1151 attr->u.val = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end); 1152 info_ptr += bytes_read; 1153 break; 1154 case DW_FORM_indirect: 1155 form = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end); 1156 info_ptr += bytes_read; 1157 info_ptr = read_attribute_value (attr, form, unit, info_ptr, info_ptr_end); 1158 break; 1159 default: 1160 (*_bfd_error_handler) (_("Dwarf Error: Invalid or unhandled FORM value: %#x."), 1161 form); 1162 bfd_set_error (bfd_error_bad_value); 1163 return NULL; 1164 } 1165 return info_ptr; 1166 } 1167 1168 /* Read an attribute described by an abbreviated attribute. */ 1169 1170 static bfd_byte * 1171 read_attribute (struct attribute * attr, 1172 struct attr_abbrev * abbrev, 1173 struct comp_unit * unit, 1174 bfd_byte * info_ptr, 1175 bfd_byte * info_ptr_end) 1176 { 1177 attr->name = abbrev->name; 1178 info_ptr = read_attribute_value (attr, abbrev->form, unit, info_ptr, info_ptr_end); 1179 return info_ptr; 1180 } 1181 1182 /* Return whether DW_AT_name will return the same as DW_AT_linkage_name 1183 for a function. */ 1184 1185 static bfd_boolean 1186 non_mangled (int lang) 1187 { 1188 switch (lang) 1189 { 1190 default: 1191 return FALSE; 1192 1193 case DW_LANG_C89: 1194 case DW_LANG_C: 1195 case DW_LANG_Ada83: 1196 case DW_LANG_Cobol74: 1197 case DW_LANG_Cobol85: 1198 case DW_LANG_Fortran77: 1199 case DW_LANG_Pascal83: 1200 case DW_LANG_C99: 1201 case DW_LANG_Ada95: 1202 case DW_LANG_PLI: 1203 case DW_LANG_UPC: 1204 case DW_LANG_C11: 1205 return TRUE; 1206 } 1207 } 1208 1209 /* Source line information table routines. */ 1210 1211 #define FILE_ALLOC_CHUNK 5 1212 #define DIR_ALLOC_CHUNK 5 1213 1214 struct line_info 1215 { 1216 struct line_info* prev_line; 1217 bfd_vma address; 1218 char *filename; 1219 unsigned int line; 1220 unsigned int column; 1221 unsigned int discriminator; 1222 unsigned char op_index; 1223 unsigned char end_sequence; /* End of (sequential) code sequence. */ 1224 }; 1225 1226 struct fileinfo 1227 { 1228 char *name; 1229 unsigned int dir; 1230 unsigned int time; 1231 unsigned int size; 1232 }; 1233 1234 struct line_sequence 1235 { 1236 bfd_vma low_pc; 1237 struct line_sequence* prev_sequence; 1238 struct line_info* last_line; /* Largest VMA. */ 1239 }; 1240 1241 struct line_info_table 1242 { 1243 bfd* abfd; 1244 unsigned int num_files; 1245 unsigned int num_dirs; 1246 unsigned int num_sequences; 1247 char * comp_dir; 1248 char ** dirs; 1249 struct fileinfo* files; 1250 struct line_sequence* sequences; 1251 struct line_info* lcl_head; /* Local head; used in 'add_line_info'. */ 1252 }; 1253 1254 /* Remember some information about each function. If the function is 1255 inlined (DW_TAG_inlined_subroutine) it may have two additional 1256 attributes, DW_AT_call_file and DW_AT_call_line, which specify the 1257 source code location where this function was inlined. */ 1258 1259 struct funcinfo 1260 { 1261 /* Pointer to previous function in list of all functions. */ 1262 struct funcinfo *prev_func; 1263 /* Pointer to function one scope higher. */ 1264 struct funcinfo *caller_func; 1265 /* Source location file name where caller_func inlines this func. */ 1266 char *caller_file; 1267 /* Source location file name. */ 1268 char *file; 1269 /* Source location line number where caller_func inlines this func. */ 1270 int caller_line; 1271 /* Source location line number. */ 1272 int line; 1273 int tag; 1274 bfd_boolean is_linkage; 1275 const char *name; 1276 struct arange arange; 1277 /* Where the symbol is defined. */ 1278 asection *sec; 1279 }; 1280 1281 struct varinfo 1282 { 1283 /* Pointer to previous variable in list of all variables */ 1284 struct varinfo *prev_var; 1285 /* Source location file name */ 1286 char *file; 1287 /* Source location line number */ 1288 int line; 1289 int tag; 1290 char *name; 1291 bfd_vma addr; 1292 /* Where the symbol is defined */ 1293 asection *sec; 1294 /* Is this a stack variable? */ 1295 unsigned int stack: 1; 1296 }; 1297 1298 /* Return TRUE if NEW_LINE should sort after LINE. */ 1299 1300 static inline bfd_boolean 1301 new_line_sorts_after (struct line_info *new_line, struct line_info *line) 1302 { 1303 return (new_line->address > line->address 1304 || (new_line->address == line->address 1305 && (new_line->op_index > line->op_index 1306 || (new_line->op_index == line->op_index 1307 && new_line->end_sequence < line->end_sequence)))); 1308 } 1309 1310 1311 /* Adds a new entry to the line_info list in the line_info_table, ensuring 1312 that the list is sorted. Note that the line_info list is sorted from 1313 highest to lowest VMA (with possible duplicates); that is, 1314 line_info->prev_line always accesses an equal or smaller VMA. */ 1315 1316 static bfd_boolean 1317 add_line_info (struct line_info_table *table, 1318 bfd_vma address, 1319 unsigned char op_index, 1320 char *filename, 1321 unsigned int line, 1322 unsigned int column, 1323 unsigned int discriminator, 1324 int end_sequence) 1325 { 1326 bfd_size_type amt = sizeof (struct line_info); 1327 struct line_sequence* seq = table->sequences; 1328 struct line_info* info = (struct line_info *) bfd_alloc (table->abfd, amt); 1329 1330 if (info == NULL) 1331 return FALSE; 1332 1333 /* Set member data of 'info'. */ 1334 info->prev_line = NULL; 1335 info->address = address; 1336 info->op_index = op_index; 1337 info->line = line; 1338 info->column = column; 1339 info->discriminator = discriminator; 1340 info->end_sequence = end_sequence; 1341 1342 if (filename && filename[0]) 1343 { 1344 info->filename = (char *) bfd_alloc (table->abfd, strlen (filename) + 1); 1345 if (info->filename == NULL) 1346 return FALSE; 1347 strcpy (info->filename, filename); 1348 } 1349 else 1350 info->filename = NULL; 1351 1352 /* Find the correct location for 'info'. Normally we will receive 1353 new line_info data 1) in order and 2) with increasing VMAs. 1354 However some compilers break the rules (cf. decode_line_info) and 1355 so we include some heuristics for quickly finding the correct 1356 location for 'info'. In particular, these heuristics optimize for 1357 the common case in which the VMA sequence that we receive is a 1358 list of locally sorted VMAs such as 1359 p...z a...j (where a < j < p < z) 1360 1361 Note: table->lcl_head is used to head an *actual* or *possible* 1362 sub-sequence within the list (such as a...j) that is not directly 1363 headed by table->last_line 1364 1365 Note: we may receive duplicate entries from 'decode_line_info'. */ 1366 1367 if (seq 1368 && seq->last_line->address == address 1369 && seq->last_line->op_index == op_index 1370 && seq->last_line->end_sequence == end_sequence) 1371 { 1372 /* We only keep the last entry with the same address and end 1373 sequence. See PR ld/4986. */ 1374 if (table->lcl_head == seq->last_line) 1375 table->lcl_head = info; 1376 info->prev_line = seq->last_line->prev_line; 1377 seq->last_line = info; 1378 } 1379 else if (!seq || seq->last_line->end_sequence) 1380 { 1381 /* Start a new line sequence. */ 1382 amt = sizeof (struct line_sequence); 1383 seq = (struct line_sequence *) bfd_malloc (amt); 1384 if (seq == NULL) 1385 return FALSE; 1386 seq->low_pc = address; 1387 seq->prev_sequence = table->sequences; 1388 seq->last_line = info; 1389 table->lcl_head = info; 1390 table->sequences = seq; 1391 table->num_sequences++; 1392 } 1393 else if (new_line_sorts_after (info, seq->last_line)) 1394 { 1395 /* Normal case: add 'info' to the beginning of the current sequence. */ 1396 info->prev_line = seq->last_line; 1397 seq->last_line = info; 1398 1399 /* lcl_head: initialize to head a *possible* sequence at the end. */ 1400 if (!table->lcl_head) 1401 table->lcl_head = info; 1402 } 1403 else if (!new_line_sorts_after (info, table->lcl_head) 1404 && (!table->lcl_head->prev_line 1405 || new_line_sorts_after (info, table->lcl_head->prev_line))) 1406 { 1407 /* Abnormal but easy: lcl_head is the head of 'info'. */ 1408 info->prev_line = table->lcl_head->prev_line; 1409 table->lcl_head->prev_line = info; 1410 } 1411 else 1412 { 1413 /* Abnormal and hard: Neither 'last_line' nor 'lcl_head' 1414 are valid heads for 'info'. Reset 'lcl_head'. */ 1415 struct line_info* li2 = seq->last_line; /* Always non-NULL. */ 1416 struct line_info* li1 = li2->prev_line; 1417 1418 while (li1) 1419 { 1420 if (!new_line_sorts_after (info, li2) 1421 && new_line_sorts_after (info, li1)) 1422 break; 1423 1424 li2 = li1; /* always non-NULL */ 1425 li1 = li1->prev_line; 1426 } 1427 table->lcl_head = li2; 1428 info->prev_line = table->lcl_head->prev_line; 1429 table->lcl_head->prev_line = info; 1430 if (address < seq->low_pc) 1431 seq->low_pc = address; 1432 } 1433 return TRUE; 1434 } 1435 1436 /* Extract a fully qualified filename from a line info table. 1437 The returned string has been malloc'ed and it is the caller's 1438 responsibility to free it. */ 1439 1440 static char * 1441 concat_filename (struct line_info_table *table, unsigned int file) 1442 { 1443 char *filename; 1444 1445 if (file - 1 >= table->num_files) 1446 { 1447 /* FILE == 0 means unknown. */ 1448 if (file) 1449 (*_bfd_error_handler) 1450 (_("Dwarf Error: mangled line number section (bad file number).")); 1451 return strdup ("<unknown>"); 1452 } 1453 1454 filename = table->files[file - 1].name; 1455 1456 if (!IS_ABSOLUTE_PATH (filename)) 1457 { 1458 char *dir_name = NULL; 1459 char *subdir_name = NULL; 1460 char *name; 1461 size_t len; 1462 1463 if (table->files[file - 1].dir 1464 /* PR 17512: file: 0317e960. */ 1465 && table->files[file - 1].dir <= table->num_dirs 1466 /* PR 17512: file: 7f3d2e4b. */ 1467 && table->dirs != NULL) 1468 subdir_name = table->dirs[table->files[file - 1].dir - 1]; 1469 1470 if (!subdir_name || !IS_ABSOLUTE_PATH (subdir_name)) 1471 dir_name = table->comp_dir; 1472 1473 if (!dir_name) 1474 { 1475 dir_name = subdir_name; 1476 subdir_name = NULL; 1477 } 1478 1479 if (!dir_name) 1480 return strdup (filename); 1481 1482 len = strlen (dir_name) + strlen (filename) + 2; 1483 1484 if (subdir_name) 1485 { 1486 len += strlen (subdir_name) + 1; 1487 name = (char *) bfd_malloc (len); 1488 if (name) 1489 sprintf (name, "%s/%s/%s", dir_name, subdir_name, filename); 1490 } 1491 else 1492 { 1493 name = (char *) bfd_malloc (len); 1494 if (name) 1495 sprintf (name, "%s/%s", dir_name, filename); 1496 } 1497 1498 return name; 1499 } 1500 1501 return strdup (filename); 1502 } 1503 1504 static bfd_boolean 1505 arange_add (const struct comp_unit *unit, struct arange *first_arange, 1506 bfd_vma low_pc, bfd_vma high_pc) 1507 { 1508 struct arange *arange; 1509 1510 /* Ignore empty ranges. */ 1511 if (low_pc == high_pc) 1512 return TRUE; 1513 1514 /* If the first arange is empty, use it. */ 1515 if (first_arange->high == 0) 1516 { 1517 first_arange->low = low_pc; 1518 first_arange->high = high_pc; 1519 return TRUE; 1520 } 1521 1522 /* Next see if we can cheaply extend an existing range. */ 1523 arange = first_arange; 1524 do 1525 { 1526 if (low_pc == arange->high) 1527 { 1528 arange->high = high_pc; 1529 return TRUE; 1530 } 1531 if (high_pc == arange->low) 1532 { 1533 arange->low = low_pc; 1534 return TRUE; 1535 } 1536 arange = arange->next; 1537 } 1538 while (arange); 1539 1540 /* Need to allocate a new arange and insert it into the arange list. 1541 Order isn't significant, so just insert after the first arange. */ 1542 arange = (struct arange *) bfd_alloc (unit->abfd, sizeof (*arange)); 1543 if (arange == NULL) 1544 return FALSE; 1545 arange->low = low_pc; 1546 arange->high = high_pc; 1547 arange->next = first_arange->next; 1548 first_arange->next = arange; 1549 return TRUE; 1550 } 1551 1552 /* Compare function for line sequences. */ 1553 1554 static int 1555 compare_sequences (const void* a, const void* b) 1556 { 1557 const struct line_sequence* seq1 = a; 1558 const struct line_sequence* seq2 = b; 1559 1560 /* Sort by low_pc as the primary key. */ 1561 if (seq1->low_pc < seq2->low_pc) 1562 return -1; 1563 if (seq1->low_pc > seq2->low_pc) 1564 return 1; 1565 1566 /* If low_pc values are equal, sort in reverse order of 1567 high_pc, so that the largest region comes first. */ 1568 if (seq1->last_line->address < seq2->last_line->address) 1569 return 1; 1570 if (seq1->last_line->address > seq2->last_line->address) 1571 return -1; 1572 1573 if (seq1->last_line->op_index < seq2->last_line->op_index) 1574 return 1; 1575 if (seq1->last_line->op_index > seq2->last_line->op_index) 1576 return -1; 1577 1578 return 0; 1579 } 1580 1581 /* Sort the line sequences for quick lookup. */ 1582 1583 static bfd_boolean 1584 sort_line_sequences (struct line_info_table* table) 1585 { 1586 bfd_size_type amt; 1587 struct line_sequence* sequences; 1588 struct line_sequence* seq; 1589 unsigned int n = 0; 1590 unsigned int num_sequences = table->num_sequences; 1591 bfd_vma last_high_pc; 1592 1593 if (num_sequences == 0) 1594 return TRUE; 1595 1596 /* Allocate space for an array of sequences. */ 1597 amt = sizeof (struct line_sequence) * num_sequences; 1598 sequences = (struct line_sequence *) bfd_alloc (table->abfd, amt); 1599 if (sequences == NULL) 1600 return FALSE; 1601 1602 /* Copy the linked list into the array, freeing the original nodes. */ 1603 seq = table->sequences; 1604 for (n = 0; n < num_sequences; n++) 1605 { 1606 struct line_sequence* last_seq = seq; 1607 1608 BFD_ASSERT (seq); 1609 sequences[n].low_pc = seq->low_pc; 1610 sequences[n].prev_sequence = NULL; 1611 sequences[n].last_line = seq->last_line; 1612 seq = seq->prev_sequence; 1613 free (last_seq); 1614 } 1615 BFD_ASSERT (seq == NULL); 1616 1617 qsort (sequences, n, sizeof (struct line_sequence), compare_sequences); 1618 1619 /* Make the list binary-searchable by trimming overlapping entries 1620 and removing nested entries. */ 1621 num_sequences = 1; 1622 last_high_pc = sequences[0].last_line->address; 1623 for (n = 1; n < table->num_sequences; n++) 1624 { 1625 if (sequences[n].low_pc < last_high_pc) 1626 { 1627 if (sequences[n].last_line->address <= last_high_pc) 1628 /* Skip nested entries. */ 1629 continue; 1630 1631 /* Trim overlapping entries. */ 1632 sequences[n].low_pc = last_high_pc; 1633 } 1634 last_high_pc = sequences[n].last_line->address; 1635 if (n > num_sequences) 1636 { 1637 /* Close up the gap. */ 1638 sequences[num_sequences].low_pc = sequences[n].low_pc; 1639 sequences[num_sequences].last_line = sequences[n].last_line; 1640 } 1641 num_sequences++; 1642 } 1643 1644 table->sequences = sequences; 1645 table->num_sequences = num_sequences; 1646 return TRUE; 1647 } 1648 1649 /* Decode the line number information for UNIT. */ 1650 1651 static struct line_info_table* 1652 decode_line_info (struct comp_unit *unit, struct dwarf2_debug *stash) 1653 { 1654 bfd *abfd = unit->abfd; 1655 struct line_info_table* table; 1656 bfd_byte *line_ptr; 1657 bfd_byte *line_end; 1658 struct line_head lh; 1659 unsigned int i, bytes_read, offset_size; 1660 char *cur_file, *cur_dir; 1661 unsigned char op_code, extended_op, adj_opcode; 1662 unsigned int exop_len; 1663 bfd_size_type amt; 1664 1665 if (! read_section (abfd, &stash->debug_sections[debug_line], 1666 stash->syms, unit->line_offset, 1667 &stash->dwarf_line_buffer, &stash->dwarf_line_size)) 1668 return NULL; 1669 1670 amt = sizeof (struct line_info_table); 1671 table = (struct line_info_table *) bfd_alloc (abfd, amt); 1672 if (table == NULL) 1673 return NULL; 1674 table->abfd = abfd; 1675 table->comp_dir = unit->comp_dir; 1676 1677 table->num_files = 0; 1678 table->files = NULL; 1679 1680 table->num_dirs = 0; 1681 table->dirs = NULL; 1682 1683 table->num_sequences = 0; 1684 table->sequences = NULL; 1685 1686 table->lcl_head = NULL; 1687 1688 if (stash->dwarf_line_size < 16) 1689 { 1690 (*_bfd_error_handler) 1691 (_("Dwarf Error: Line info section is too small (%ld)"), 1692 (long) stash->dwarf_line_size); 1693 bfd_set_error (bfd_error_bad_value); 1694 return NULL; 1695 } 1696 line_ptr = stash->dwarf_line_buffer + unit->line_offset; 1697 line_end = stash->dwarf_line_buffer + stash->dwarf_line_size; 1698 1699 /* Read in the prologue. */ 1700 lh.total_length = read_4_bytes (abfd, line_ptr, line_end); 1701 line_ptr += 4; 1702 offset_size = 4; 1703 if (lh.total_length == 0xffffffff) 1704 { 1705 lh.total_length = read_8_bytes (abfd, line_ptr, line_end); 1706 line_ptr += 8; 1707 offset_size = 8; 1708 } 1709 else if (lh.total_length == 0 && unit->addr_size == 8) 1710 { 1711 /* Handle (non-standard) 64-bit DWARF2 formats. */ 1712 lh.total_length = read_4_bytes (abfd, line_ptr, line_end); 1713 line_ptr += 4; 1714 offset_size = 8; 1715 } 1716 1717 if (lh.total_length > stash->dwarf_line_size) 1718 { 1719 (*_bfd_error_handler) 1720 (_("Dwarf Error: Line info data is bigger (0x%lx) than the section (0x%lx)"), 1721 (long) lh.total_length, (long) stash->dwarf_line_size); 1722 bfd_set_error (bfd_error_bad_value); 1723 return NULL; 1724 } 1725 1726 line_end = line_ptr + lh.total_length; 1727 1728 lh.version = read_2_bytes (abfd, line_ptr, line_end); 1729 if (lh.version < 2 || lh.version > 4) 1730 { 1731 (*_bfd_error_handler) 1732 (_("Dwarf Error: Unhandled .debug_line version %d."), lh.version); 1733 bfd_set_error (bfd_error_bad_value); 1734 return NULL; 1735 } 1736 line_ptr += 2; 1737 1738 if (line_ptr + offset_size + (lh.version >=4 ? 6 : 5) >= line_end) 1739 { 1740 (*_bfd_error_handler) 1741 (_("Dwarf Error: Ran out of room reading prologue")); 1742 bfd_set_error (bfd_error_bad_value); 1743 return NULL; 1744 } 1745 1746 if (offset_size == 4) 1747 lh.prologue_length = read_4_bytes (abfd, line_ptr, line_end); 1748 else 1749 lh.prologue_length = read_8_bytes (abfd, line_ptr, line_end); 1750 line_ptr += offset_size; 1751 1752 lh.minimum_instruction_length = read_1_byte (abfd, line_ptr, line_end); 1753 line_ptr += 1; 1754 1755 if (lh.version >= 4) 1756 { 1757 lh.maximum_ops_per_insn = read_1_byte (abfd, line_ptr, line_end); 1758 line_ptr += 1; 1759 } 1760 else 1761 lh.maximum_ops_per_insn = 1; 1762 1763 if (lh.maximum_ops_per_insn == 0) 1764 { 1765 (*_bfd_error_handler) 1766 (_("Dwarf Error: Invalid maximum operations per instruction.")); 1767 bfd_set_error (bfd_error_bad_value); 1768 return NULL; 1769 } 1770 1771 lh.default_is_stmt = read_1_byte (abfd, line_ptr, line_end); 1772 line_ptr += 1; 1773 1774 lh.line_base = read_1_signed_byte (abfd, line_ptr, line_end); 1775 line_ptr += 1; 1776 1777 lh.line_range = read_1_byte (abfd, line_ptr, line_end); 1778 line_ptr += 1; 1779 1780 lh.opcode_base = read_1_byte (abfd, line_ptr, line_end); 1781 line_ptr += 1; 1782 1783 if (line_ptr + (lh.opcode_base - 1) >= line_end) 1784 { 1785 (*_bfd_error_handler) (_("Dwarf Error: Ran out of room reading opcodes")); 1786 bfd_set_error (bfd_error_bad_value); 1787 return NULL; 1788 } 1789 1790 amt = lh.opcode_base * sizeof (unsigned char); 1791 lh.standard_opcode_lengths = (unsigned char *) bfd_alloc (abfd, amt); 1792 1793 lh.standard_opcode_lengths[0] = 1; 1794 1795 for (i = 1; i < lh.opcode_base; ++i) 1796 { 1797 lh.standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr, line_end); 1798 line_ptr += 1; 1799 } 1800 1801 /* Read directory table. */ 1802 while ((cur_dir = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL) 1803 { 1804 line_ptr += bytes_read; 1805 1806 if ((table->num_dirs % DIR_ALLOC_CHUNK) == 0) 1807 { 1808 char **tmp; 1809 1810 amt = table->num_dirs + DIR_ALLOC_CHUNK; 1811 amt *= sizeof (char *); 1812 1813 tmp = (char **) bfd_realloc (table->dirs, amt); 1814 if (tmp == NULL) 1815 goto fail; 1816 table->dirs = tmp; 1817 } 1818 1819 table->dirs[table->num_dirs++] = cur_dir; 1820 } 1821 1822 line_ptr += bytes_read; 1823 1824 /* Read file name table. */ 1825 while ((cur_file = read_string (abfd, line_ptr, line_end, &bytes_read)) != NULL) 1826 { 1827 line_ptr += bytes_read; 1828 1829 if ((table->num_files % FILE_ALLOC_CHUNK) == 0) 1830 { 1831 struct fileinfo *tmp; 1832 1833 amt = table->num_files + FILE_ALLOC_CHUNK; 1834 amt *= sizeof (struct fileinfo); 1835 1836 tmp = (struct fileinfo *) bfd_realloc (table->files, amt); 1837 if (tmp == NULL) 1838 goto fail; 1839 table->files = tmp; 1840 } 1841 1842 table->files[table->num_files].name = cur_file; 1843 table->files[table->num_files].dir = 1844 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 1845 line_ptr += bytes_read; 1846 table->files[table->num_files].time = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 1847 line_ptr += bytes_read; 1848 table->files[table->num_files].size = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 1849 line_ptr += bytes_read; 1850 table->num_files++; 1851 } 1852 1853 line_ptr += bytes_read; 1854 1855 /* Read the statement sequences until there's nothing left. */ 1856 while (line_ptr < line_end) 1857 { 1858 /* State machine registers. */ 1859 bfd_vma address = 0; 1860 unsigned char op_index = 0; 1861 char * filename = table->num_files ? concat_filename (table, 1) : NULL; 1862 unsigned int line = 1; 1863 unsigned int column = 0; 1864 unsigned int discriminator = 0; 1865 int is_stmt = lh.default_is_stmt; 1866 int end_sequence = 0; 1867 /* eraxxon (at) alumni.rice.edu: Against the DWARF2 specs, some 1868 compilers generate address sequences that are wildly out of 1869 order using DW_LNE_set_address (e.g. Intel C++ 6.0 compiler 1870 for ia64-Linux). Thus, to determine the low and high 1871 address, we must compare on every DW_LNS_copy, etc. */ 1872 bfd_vma low_pc = (bfd_vma) -1; 1873 bfd_vma high_pc = 0; 1874 1875 /* Decode the table. */ 1876 while (! end_sequence) 1877 { 1878 op_code = read_1_byte (abfd, line_ptr, line_end); 1879 line_ptr += 1; 1880 1881 if (op_code >= lh.opcode_base) 1882 { 1883 /* Special operand. */ 1884 adj_opcode = op_code - lh.opcode_base; 1885 if (lh.line_range == 0) 1886 goto line_fail; 1887 if (lh.maximum_ops_per_insn == 1) 1888 address += (adj_opcode / lh.line_range 1889 * lh.minimum_instruction_length); 1890 else 1891 { 1892 address += ((op_index + adj_opcode / lh.line_range) 1893 / lh.maximum_ops_per_insn 1894 * lh.minimum_instruction_length); 1895 op_index = ((op_index + adj_opcode / lh.line_range) 1896 % lh.maximum_ops_per_insn); 1897 } 1898 line += lh.line_base + (adj_opcode % lh.line_range); 1899 /* Append row to matrix using current values. */ 1900 if (!add_line_info (table, address, op_index, filename, 1901 line, column, discriminator, 0)) 1902 goto line_fail; 1903 discriminator = 0; 1904 if (address < low_pc) 1905 low_pc = address; 1906 if (address > high_pc) 1907 high_pc = address; 1908 } 1909 else switch (op_code) 1910 { 1911 case DW_LNS_extended_op: 1912 exop_len = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 1913 line_ptr += bytes_read; 1914 extended_op = read_1_byte (abfd, line_ptr, line_end); 1915 line_ptr += 1; 1916 1917 switch (extended_op) 1918 { 1919 case DW_LNE_end_sequence: 1920 end_sequence = 1; 1921 if (!add_line_info (table, address, op_index, filename, line, 1922 column, discriminator, end_sequence)) 1923 goto line_fail; 1924 discriminator = 0; 1925 if (address < low_pc) 1926 low_pc = address; 1927 if (address > high_pc) 1928 high_pc = address; 1929 if (!arange_add (unit, &unit->arange, low_pc, high_pc)) 1930 goto line_fail; 1931 break; 1932 case DW_LNE_set_address: 1933 address = read_address (unit, line_ptr, line_end); 1934 op_index = 0; 1935 line_ptr += unit->addr_size; 1936 break; 1937 case DW_LNE_define_file: 1938 cur_file = read_string (abfd, line_ptr, line_end, &bytes_read); 1939 line_ptr += bytes_read; 1940 if ((table->num_files % FILE_ALLOC_CHUNK) == 0) 1941 { 1942 struct fileinfo *tmp; 1943 1944 amt = table->num_files + FILE_ALLOC_CHUNK; 1945 amt *= sizeof (struct fileinfo); 1946 tmp = (struct fileinfo *) bfd_realloc (table->files, amt); 1947 if (tmp == NULL) 1948 goto line_fail; 1949 table->files = tmp; 1950 } 1951 table->files[table->num_files].name = cur_file; 1952 table->files[table->num_files].dir = 1953 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 1954 line_ptr += bytes_read; 1955 table->files[table->num_files].time = 1956 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 1957 line_ptr += bytes_read; 1958 table->files[table->num_files].size = 1959 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 1960 line_ptr += bytes_read; 1961 table->num_files++; 1962 break; 1963 case DW_LNE_set_discriminator: 1964 discriminator = 1965 safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 1966 line_ptr += bytes_read; 1967 break; 1968 case DW_LNE_HP_source_file_correlation: 1969 line_ptr += exop_len - 1; 1970 break; 1971 default: 1972 (*_bfd_error_handler) 1973 (_("Dwarf Error: mangled line number section.")); 1974 bfd_set_error (bfd_error_bad_value); 1975 line_fail: 1976 if (filename != NULL) 1977 free (filename); 1978 goto fail; 1979 } 1980 break; 1981 case DW_LNS_copy: 1982 if (!add_line_info (table, address, op_index, 1983 filename, line, column, discriminator, 0)) 1984 goto line_fail; 1985 discriminator = 0; 1986 if (address < low_pc) 1987 low_pc = address; 1988 if (address > high_pc) 1989 high_pc = address; 1990 break; 1991 case DW_LNS_advance_pc: 1992 if (lh.maximum_ops_per_insn == 1) 1993 address += (lh.minimum_instruction_length 1994 * safe_read_leb128 (abfd, line_ptr, &bytes_read, 1995 FALSE, line_end)); 1996 else 1997 { 1998 bfd_vma adjust = safe_read_leb128 (abfd, line_ptr, &bytes_read, 1999 FALSE, line_end); 2000 address = ((op_index + adjust) / lh.maximum_ops_per_insn 2001 * lh.minimum_instruction_length); 2002 op_index = (op_index + adjust) % lh.maximum_ops_per_insn; 2003 } 2004 line_ptr += bytes_read; 2005 break; 2006 case DW_LNS_advance_line: 2007 line += safe_read_leb128 (abfd, line_ptr, &bytes_read, TRUE, line_end); 2008 line_ptr += bytes_read; 2009 break; 2010 case DW_LNS_set_file: 2011 { 2012 unsigned int file; 2013 2014 /* The file and directory tables are 0 2015 based, the references are 1 based. */ 2016 file = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 2017 line_ptr += bytes_read; 2018 if (filename) 2019 free (filename); 2020 filename = concat_filename (table, file); 2021 break; 2022 } 2023 case DW_LNS_set_column: 2024 column = safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 2025 line_ptr += bytes_read; 2026 break; 2027 case DW_LNS_negate_stmt: 2028 is_stmt = (!is_stmt); 2029 break; 2030 case DW_LNS_set_basic_block: 2031 break; 2032 case DW_LNS_const_add_pc: 2033 if (lh.maximum_ops_per_insn == 1) 2034 address += (lh.minimum_instruction_length 2035 * ((255 - lh.opcode_base) / lh.line_range)); 2036 else 2037 { 2038 bfd_vma adjust = ((255 - lh.opcode_base) / lh.line_range); 2039 address += (lh.minimum_instruction_length 2040 * ((op_index + adjust) 2041 / lh.maximum_ops_per_insn)); 2042 op_index = (op_index + adjust) % lh.maximum_ops_per_insn; 2043 } 2044 break; 2045 case DW_LNS_fixed_advance_pc: 2046 address += read_2_bytes (abfd, line_ptr, line_end); 2047 op_index = 0; 2048 line_ptr += 2; 2049 break; 2050 default: 2051 /* Unknown standard opcode, ignore it. */ 2052 for (i = 0; i < lh.standard_opcode_lengths[op_code]; i++) 2053 { 2054 (void) safe_read_leb128 (abfd, line_ptr, &bytes_read, FALSE, line_end); 2055 line_ptr += bytes_read; 2056 } 2057 break; 2058 } 2059 } 2060 2061 if (filename) 2062 free (filename); 2063 } 2064 2065 if (sort_line_sequences (table)) 2066 return table; 2067 2068 fail: 2069 if (table->sequences != NULL) 2070 free (table->sequences); 2071 if (table->files != NULL) 2072 free (table->files); 2073 if (table->dirs != NULL) 2074 free (table->dirs); 2075 return NULL; 2076 } 2077 2078 /* If ADDR is within TABLE set the output parameters and return the 2079 range of addresses covered by the entry used to fill them out. 2080 Otherwise set * FILENAME_PTR to NULL and return 0. 2081 The parameters FILENAME_PTR, LINENUMBER_PTR and DISCRIMINATOR_PTR 2082 are pointers to the objects to be filled in. */ 2083 2084 static bfd_vma 2085 lookup_address_in_line_info_table (struct line_info_table *table, 2086 bfd_vma addr, 2087 const char **filename_ptr, 2088 unsigned int *linenumber_ptr, 2089 unsigned int *discriminator_ptr) 2090 { 2091 struct line_sequence *seq = NULL; 2092 struct line_info *each_line; 2093 int low, high, mid; 2094 2095 /* Binary search the array of sequences. */ 2096 low = 0; 2097 high = table->num_sequences; 2098 while (low < high) 2099 { 2100 mid = (low + high) / 2; 2101 seq = &table->sequences[mid]; 2102 if (addr < seq->low_pc) 2103 high = mid; 2104 else if (addr >= seq->last_line->address) 2105 low = mid + 1; 2106 else 2107 break; 2108 } 2109 2110 if (seq && addr >= seq->low_pc && addr < seq->last_line->address) 2111 { 2112 /* Note: seq->last_line should be a descendingly sorted list. */ 2113 for (each_line = seq->last_line; 2114 each_line; 2115 each_line = each_line->prev_line) 2116 if (addr >= each_line->address) 2117 break; 2118 2119 if (each_line 2120 && !(each_line->end_sequence || each_line == seq->last_line)) 2121 { 2122 *filename_ptr = each_line->filename; 2123 *linenumber_ptr = each_line->line; 2124 if (discriminator_ptr) 2125 *discriminator_ptr = each_line->discriminator; 2126 return seq->last_line->address - seq->low_pc; 2127 } 2128 } 2129 2130 *filename_ptr = NULL; 2131 return 0; 2132 } 2133 2134 /* Read in the .debug_ranges section for future reference. */ 2135 2136 static bfd_boolean 2137 read_debug_ranges (struct comp_unit *unit) 2138 { 2139 struct dwarf2_debug *stash = unit->stash; 2140 return read_section (unit->abfd, &stash->debug_sections[debug_ranges], 2141 stash->syms, 0, 2142 &stash->dwarf_ranges_buffer, &stash->dwarf_ranges_size); 2143 } 2144 2145 /* Function table functions. */ 2146 2147 /* If ADDR is within UNIT's function tables, set FUNCTION_PTR, and return 2148 TRUE. Note that we need to find the function that has the smallest range 2149 that contains ADDR, to handle inlined functions without depending upon 2150 them being ordered in TABLE by increasing range. */ 2151 2152 static bfd_boolean 2153 lookup_address_in_function_table (struct comp_unit *unit, 2154 bfd_vma addr, 2155 struct funcinfo **function_ptr) 2156 { 2157 struct funcinfo* each_func; 2158 struct funcinfo* best_fit = NULL; 2159 bfd_vma best_fit_len = 0; 2160 struct arange *arange; 2161 2162 for (each_func = unit->function_table; 2163 each_func; 2164 each_func = each_func->prev_func) 2165 { 2166 for (arange = &each_func->arange; 2167 arange; 2168 arange = arange->next) 2169 { 2170 if (addr >= arange->low && addr < arange->high) 2171 { 2172 if (!best_fit 2173 || arange->high - arange->low < best_fit_len) 2174 { 2175 best_fit = each_func; 2176 best_fit_len = arange->high - arange->low; 2177 } 2178 } 2179 } 2180 } 2181 2182 if (best_fit) 2183 { 2184 *function_ptr = best_fit; 2185 return TRUE; 2186 } 2187 return FALSE; 2188 } 2189 2190 /* If SYM at ADDR is within function table of UNIT, set FILENAME_PTR 2191 and LINENUMBER_PTR, and return TRUE. */ 2192 2193 static bfd_boolean 2194 lookup_symbol_in_function_table (struct comp_unit *unit, 2195 asymbol *sym, 2196 bfd_vma addr, 2197 const char **filename_ptr, 2198 unsigned int *linenumber_ptr) 2199 { 2200 struct funcinfo* each_func; 2201 struct funcinfo* best_fit = NULL; 2202 bfd_vma best_fit_len = 0; 2203 struct arange *arange; 2204 const char *name = bfd_asymbol_name (sym); 2205 asection *sec = bfd_get_section (sym); 2206 2207 for (each_func = unit->function_table; 2208 each_func; 2209 each_func = each_func->prev_func) 2210 { 2211 for (arange = &each_func->arange; 2212 arange; 2213 arange = arange->next) 2214 { 2215 if ((!each_func->sec || each_func->sec == sec) 2216 && addr >= arange->low 2217 && addr < arange->high 2218 && each_func->name 2219 && strcmp (name, each_func->name) == 0 2220 && (!best_fit 2221 || arange->high - arange->low < best_fit_len)) 2222 { 2223 best_fit = each_func; 2224 best_fit_len = arange->high - arange->low; 2225 } 2226 } 2227 } 2228 2229 if (best_fit) 2230 { 2231 best_fit->sec = sec; 2232 *filename_ptr = best_fit->file; 2233 *linenumber_ptr = best_fit->line; 2234 return TRUE; 2235 } 2236 else 2237 return FALSE; 2238 } 2239 2240 /* Variable table functions. */ 2241 2242 /* If SYM is within variable table of UNIT, set FILENAME_PTR and 2243 LINENUMBER_PTR, and return TRUE. */ 2244 2245 static bfd_boolean 2246 lookup_symbol_in_variable_table (struct comp_unit *unit, 2247 asymbol *sym, 2248 bfd_vma addr, 2249 const char **filename_ptr, 2250 unsigned int *linenumber_ptr) 2251 { 2252 const char *name = bfd_asymbol_name (sym); 2253 asection *sec = bfd_get_section (sym); 2254 struct varinfo* each; 2255 2256 for (each = unit->variable_table; each; each = each->prev_var) 2257 if (each->stack == 0 2258 && each->file != NULL 2259 && each->name != NULL 2260 && each->addr == addr 2261 && (!each->sec || each->sec == sec) 2262 && strcmp (name, each->name) == 0) 2263 break; 2264 2265 if (each) 2266 { 2267 each->sec = sec; 2268 *filename_ptr = each->file; 2269 *linenumber_ptr = each->line; 2270 return TRUE; 2271 } 2272 else 2273 return FALSE; 2274 } 2275 2276 static char * 2277 find_abstract_instance_name (struct comp_unit *unit, 2278 struct attribute *attr_ptr, 2279 bfd_boolean *is_linkage) 2280 { 2281 bfd *abfd = unit->abfd; 2282 bfd_byte *info_ptr; 2283 bfd_byte *info_ptr_end; 2284 unsigned int abbrev_number, bytes_read, i; 2285 struct abbrev_info *abbrev; 2286 bfd_uint64_t die_ref = attr_ptr->u.val; 2287 struct attribute attr; 2288 char *name = NULL; 2289 2290 /* DW_FORM_ref_addr can reference an entry in a different CU. It 2291 is an offset from the .debug_info section, not the current CU. */ 2292 if (attr_ptr->form == DW_FORM_ref_addr) 2293 { 2294 /* We only support DW_FORM_ref_addr within the same file, so 2295 any relocations should be resolved already. */ 2296 if (!die_ref) 2297 abort (); 2298 2299 info_ptr = unit->sec_info_ptr + die_ref; 2300 info_ptr_end = unit->end_ptr; 2301 2302 /* Now find the CU containing this pointer. */ 2303 if (info_ptr >= unit->info_ptr_unit && info_ptr < unit->end_ptr) 2304 ; 2305 else 2306 { 2307 /* Check other CUs to see if they contain the abbrev. */ 2308 struct comp_unit * u; 2309 2310 for (u = unit->prev_unit; u != NULL; u = u->prev_unit) 2311 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr) 2312 break; 2313 2314 if (u == NULL) 2315 for (u = unit->next_unit; u != NULL; u = u->next_unit) 2316 if (info_ptr >= u->info_ptr_unit && info_ptr < u->end_ptr) 2317 break; 2318 2319 if (u) 2320 unit = u; 2321 /* else FIXME: What do we do now ? */ 2322 } 2323 } 2324 else if (attr_ptr->form == DW_FORM_GNU_ref_alt) 2325 { 2326 info_ptr = read_alt_indirect_ref (unit, die_ref); 2327 if (info_ptr == NULL) 2328 { 2329 (*_bfd_error_handler) 2330 (_("Dwarf Error: Unable to read alt ref %u."), die_ref); 2331 bfd_set_error (bfd_error_bad_value); 2332 return NULL; 2333 } 2334 info_ptr_end = unit->stash->alt_dwarf_info_buffer + unit->stash->alt_dwarf_info_size; 2335 2336 /* FIXME: Do we need to locate the correct CU, in a similar 2337 fashion to the code in the DW_FORM_ref_addr case above ? */ 2338 } 2339 else 2340 { 2341 info_ptr = unit->info_ptr_unit + die_ref; 2342 info_ptr_end = unit->end_ptr; 2343 } 2344 2345 abbrev_number = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end); 2346 info_ptr += bytes_read; 2347 2348 if (abbrev_number) 2349 { 2350 abbrev = lookup_abbrev (abbrev_number, unit->abbrevs); 2351 if (! abbrev) 2352 { 2353 (*_bfd_error_handler) 2354 (_("Dwarf Error: Could not find abbrev number %u."), abbrev_number); 2355 bfd_set_error (bfd_error_bad_value); 2356 } 2357 else 2358 { 2359 for (i = 0; i < abbrev->num_attrs; ++i) 2360 { 2361 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, 2362 info_ptr, info_ptr_end); 2363 if (info_ptr == NULL) 2364 break; 2365 switch (attr.name) 2366 { 2367 case DW_AT_name: 2368 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name 2369 over DW_AT_name. */ 2370 if (name == NULL && is_str_attr (attr.form)) 2371 { 2372 name = attr.u.str; 2373 if (non_mangled (unit->lang)) 2374 *is_linkage = TRUE; 2375 } 2376 break; 2377 case DW_AT_specification: 2378 name = find_abstract_instance_name (unit, &attr, is_linkage); 2379 break; 2380 case DW_AT_linkage_name: 2381 case DW_AT_MIPS_linkage_name: 2382 /* PR 16949: Corrupt debug info can place 2383 non-string forms into these attributes. */ 2384 if (is_str_attr (attr.form)) 2385 { 2386 name = attr.u.str; 2387 *is_linkage = TRUE; 2388 } 2389 break; 2390 default: 2391 break; 2392 } 2393 } 2394 } 2395 } 2396 return name; 2397 } 2398 2399 static bfd_boolean 2400 read_rangelist (struct comp_unit *unit, struct arange *arange, 2401 bfd_uint64_t offset) 2402 { 2403 bfd_byte *ranges_ptr; 2404 bfd_byte *ranges_end; 2405 bfd_vma base_address = unit->base_address; 2406 2407 if (! unit->stash->dwarf_ranges_buffer) 2408 { 2409 if (! read_debug_ranges (unit)) 2410 return FALSE; 2411 } 2412 2413 ranges_ptr = unit->stash->dwarf_ranges_buffer + offset; 2414 if (ranges_ptr < unit->stash->dwarf_ranges_buffer) 2415 return FALSE; 2416 ranges_end = unit->stash->dwarf_ranges_buffer + unit->stash->dwarf_ranges_size; 2417 2418 for (;;) 2419 { 2420 bfd_vma low_pc; 2421 bfd_vma high_pc; 2422 2423 /* PR 17512: file: 62cada7d. */ 2424 if (ranges_ptr + 2 * unit->addr_size > ranges_end) 2425 return FALSE; 2426 2427 low_pc = read_address (unit, ranges_ptr, ranges_end); 2428 ranges_ptr += unit->addr_size; 2429 high_pc = read_address (unit, ranges_ptr, ranges_end); 2430 ranges_ptr += unit->addr_size; 2431 2432 if (low_pc == 0 && high_pc == 0) 2433 break; 2434 if (low_pc == -1UL && high_pc != -1UL) 2435 base_address = high_pc; 2436 else 2437 { 2438 if (!arange_add (unit, arange, 2439 base_address + low_pc, base_address + high_pc)) 2440 return FALSE; 2441 } 2442 } 2443 return TRUE; 2444 } 2445 2446 /* DWARF2 Compilation unit functions. */ 2447 2448 /* Scan over each die in a comp. unit looking for functions to add 2449 to the function table and variables to the variable table. */ 2450 2451 static bfd_boolean 2452 scan_unit_for_symbols (struct comp_unit *unit) 2453 { 2454 bfd *abfd = unit->abfd; 2455 bfd_byte *info_ptr = unit->first_child_die_ptr; 2456 bfd_byte *info_ptr_end = unit->stash->info_ptr_end; 2457 int nesting_level = 1; 2458 struct funcinfo **nested_funcs; 2459 int nested_funcs_size; 2460 2461 /* Maintain a stack of in-scope functions and inlined functions, which we 2462 can use to set the caller_func field. */ 2463 nested_funcs_size = 32; 2464 nested_funcs = (struct funcinfo **) 2465 bfd_malloc (nested_funcs_size * sizeof (struct funcinfo *)); 2466 if (nested_funcs == NULL) 2467 return FALSE; 2468 nested_funcs[nesting_level] = 0; 2469 2470 while (nesting_level) 2471 { 2472 unsigned int abbrev_number, bytes_read, i; 2473 struct abbrev_info *abbrev; 2474 struct attribute attr; 2475 struct funcinfo *func; 2476 struct varinfo *var; 2477 bfd_vma low_pc = 0; 2478 bfd_vma high_pc = 0; 2479 bfd_boolean high_pc_relative = FALSE; 2480 2481 /* PR 17512: file: 9f405d9d. */ 2482 if (info_ptr >= info_ptr_end) 2483 goto fail; 2484 2485 abbrev_number = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, info_ptr_end); 2486 info_ptr += bytes_read; 2487 2488 if (! abbrev_number) 2489 { 2490 nesting_level--; 2491 continue; 2492 } 2493 2494 abbrev = lookup_abbrev (abbrev_number,unit->abbrevs); 2495 if (! abbrev) 2496 { 2497 (*_bfd_error_handler) 2498 (_("Dwarf Error: Could not find abbrev number %u."), 2499 abbrev_number); 2500 bfd_set_error (bfd_error_bad_value); 2501 goto fail; 2502 } 2503 2504 var = NULL; 2505 if (abbrev->tag == DW_TAG_subprogram 2506 || abbrev->tag == DW_TAG_entry_point 2507 || abbrev->tag == DW_TAG_inlined_subroutine) 2508 { 2509 bfd_size_type amt = sizeof (struct funcinfo); 2510 func = (struct funcinfo *) bfd_zalloc (abfd, amt); 2511 if (func == NULL) 2512 goto fail; 2513 func->tag = abbrev->tag; 2514 func->prev_func = unit->function_table; 2515 unit->function_table = func; 2516 BFD_ASSERT (!unit->cached); 2517 2518 if (func->tag == DW_TAG_inlined_subroutine) 2519 for (i = nesting_level - 1; i >= 1; i--) 2520 if (nested_funcs[i]) 2521 { 2522 func->caller_func = nested_funcs[i]; 2523 break; 2524 } 2525 nested_funcs[nesting_level] = func; 2526 } 2527 else 2528 { 2529 func = NULL; 2530 if (abbrev->tag == DW_TAG_variable) 2531 { 2532 bfd_size_type amt = sizeof (struct varinfo); 2533 var = (struct varinfo *) bfd_zalloc (abfd, amt); 2534 if (var == NULL) 2535 goto fail; 2536 var->tag = abbrev->tag; 2537 var->stack = 1; 2538 var->prev_var = unit->variable_table; 2539 unit->variable_table = var; 2540 BFD_ASSERT (!unit->cached); 2541 } 2542 2543 /* No inline function in scope at this nesting level. */ 2544 nested_funcs[nesting_level] = 0; 2545 } 2546 2547 for (i = 0; i < abbrev->num_attrs; ++i) 2548 { 2549 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, info_ptr_end); 2550 if (info_ptr == NULL) 2551 goto fail; 2552 2553 if (func) 2554 { 2555 switch (attr.name) 2556 { 2557 case DW_AT_call_file: 2558 func->caller_file = concat_filename (unit->line_table, 2559 attr.u.val); 2560 break; 2561 2562 case DW_AT_call_line: 2563 func->caller_line = attr.u.val; 2564 break; 2565 2566 case DW_AT_abstract_origin: 2567 case DW_AT_specification: 2568 func->name = find_abstract_instance_name (unit, &attr, 2569 &func->is_linkage); 2570 break; 2571 2572 case DW_AT_name: 2573 /* Prefer DW_AT_MIPS_linkage_name or DW_AT_linkage_name 2574 over DW_AT_name. */ 2575 if (func->name == NULL && is_str_attr (attr.form)) 2576 { 2577 func->name = attr.u.str; 2578 if (non_mangled (unit->lang)) 2579 func->is_linkage = TRUE; 2580 } 2581 break; 2582 2583 case DW_AT_linkage_name: 2584 case DW_AT_MIPS_linkage_name: 2585 /* PR 16949: Corrupt debug info can place 2586 non-string forms into these attributes. */ 2587 if (is_str_attr (attr.form)) 2588 { 2589 func->name = attr.u.str; 2590 func->is_linkage = TRUE; 2591 } 2592 break; 2593 2594 case DW_AT_low_pc: 2595 low_pc = attr.u.val; 2596 break; 2597 2598 case DW_AT_high_pc: 2599 high_pc = attr.u.val; 2600 high_pc_relative = attr.form != DW_FORM_addr; 2601 break; 2602 2603 case DW_AT_ranges: 2604 if (!read_rangelist (unit, &func->arange, attr.u.val)) 2605 goto fail; 2606 break; 2607 2608 case DW_AT_decl_file: 2609 func->file = concat_filename (unit->line_table, 2610 attr.u.val); 2611 break; 2612 2613 case DW_AT_decl_line: 2614 func->line = attr.u.val; 2615 break; 2616 2617 default: 2618 break; 2619 } 2620 } 2621 else if (var) 2622 { 2623 switch (attr.name) 2624 { 2625 case DW_AT_name: 2626 var->name = attr.u.str; 2627 break; 2628 2629 case DW_AT_decl_file: 2630 var->file = concat_filename (unit->line_table, 2631 attr.u.val); 2632 break; 2633 2634 case DW_AT_decl_line: 2635 var->line = attr.u.val; 2636 break; 2637 2638 case DW_AT_external: 2639 if (attr.u.val != 0) 2640 var->stack = 0; 2641 break; 2642 2643 case DW_AT_location: 2644 switch (attr.form) 2645 { 2646 case DW_FORM_block: 2647 case DW_FORM_block1: 2648 case DW_FORM_block2: 2649 case DW_FORM_block4: 2650 case DW_FORM_exprloc: 2651 if (*attr.u.blk->data == DW_OP_addr) 2652 { 2653 var->stack = 0; 2654 2655 /* Verify that DW_OP_addr is the only opcode in the 2656 location, in which case the block size will be 1 2657 plus the address size. */ 2658 /* ??? For TLS variables, gcc can emit 2659 DW_OP_addr <addr> DW_OP_GNU_push_tls_address 2660 which we don't handle here yet. */ 2661 if (attr.u.blk->size == unit->addr_size + 1U) 2662 var->addr = bfd_get (unit->addr_size * 8, 2663 unit->abfd, 2664 attr.u.blk->data + 1); 2665 } 2666 break; 2667 2668 default: 2669 break; 2670 } 2671 break; 2672 2673 default: 2674 break; 2675 } 2676 } 2677 } 2678 2679 if (high_pc_relative) 2680 high_pc += low_pc; 2681 2682 if (func && high_pc != 0) 2683 { 2684 if (!arange_add (unit, &func->arange, low_pc, high_pc)) 2685 goto fail; 2686 } 2687 2688 if (abbrev->has_children) 2689 { 2690 nesting_level++; 2691 2692 if (nesting_level >= nested_funcs_size) 2693 { 2694 struct funcinfo **tmp; 2695 2696 nested_funcs_size *= 2; 2697 tmp = (struct funcinfo **) 2698 bfd_realloc (nested_funcs, 2699 nested_funcs_size * sizeof (struct funcinfo *)); 2700 if (tmp == NULL) 2701 goto fail; 2702 nested_funcs = tmp; 2703 } 2704 nested_funcs[nesting_level] = 0; 2705 } 2706 } 2707 2708 free (nested_funcs); 2709 return TRUE; 2710 2711 fail: 2712 free (nested_funcs); 2713 return FALSE; 2714 } 2715 2716 /* Parse a DWARF2 compilation unit starting at INFO_PTR. This 2717 includes the compilation unit header that proceeds the DIE's, but 2718 does not include the length field that precedes each compilation 2719 unit header. END_PTR points one past the end of this comp unit. 2720 OFFSET_SIZE is the size of DWARF2 offsets (either 4 or 8 bytes). 2721 2722 This routine does not read the whole compilation unit; only enough 2723 to get to the line number information for the compilation unit. */ 2724 2725 static struct comp_unit * 2726 parse_comp_unit (struct dwarf2_debug *stash, 2727 bfd_vma unit_length, 2728 bfd_byte *info_ptr_unit, 2729 unsigned int offset_size) 2730 { 2731 struct comp_unit* unit; 2732 unsigned int version; 2733 bfd_uint64_t abbrev_offset = 0; 2734 unsigned int addr_size; 2735 struct abbrev_info** abbrevs; 2736 unsigned int abbrev_number, bytes_read, i; 2737 struct abbrev_info *abbrev; 2738 struct attribute attr; 2739 bfd_byte *info_ptr = stash->info_ptr; 2740 bfd_byte *end_ptr = info_ptr + unit_length; 2741 bfd_size_type amt; 2742 bfd_vma low_pc = 0; 2743 bfd_vma high_pc = 0; 2744 bfd *abfd = stash->bfd_ptr; 2745 bfd_boolean high_pc_relative = FALSE; 2746 2747 version = read_2_bytes (abfd, info_ptr, end_ptr); 2748 info_ptr += 2; 2749 BFD_ASSERT (offset_size == 4 || offset_size == 8); 2750 if (offset_size == 4) 2751 abbrev_offset = read_4_bytes (abfd, info_ptr, end_ptr); 2752 else 2753 abbrev_offset = read_8_bytes (abfd, info_ptr, end_ptr); 2754 info_ptr += offset_size; 2755 addr_size = read_1_byte (abfd, info_ptr, end_ptr); 2756 info_ptr += 1; 2757 2758 if (version != 2 && version != 3 && version != 4) 2759 { 2760 /* PR 19872: A version number of 0 probably means that there is padding 2761 at the end of the .debug_info section. Gold puts it there when 2762 performing an incremental link, for example. So do not generate 2763 an error, just return a NULL. */ 2764 if (version) 2765 { 2766 (*_bfd_error_handler) 2767 (_("Dwarf Error: found dwarf version '%u', this reader" 2768 " only handles version 2, 3 and 4 information."), version); 2769 bfd_set_error (bfd_error_bad_value); 2770 } 2771 return NULL; 2772 } 2773 2774 if (addr_size > sizeof (bfd_vma)) 2775 { 2776 (*_bfd_error_handler) 2777 (_("Dwarf Error: found address size '%u', this reader" 2778 " can not handle sizes greater than '%u'."), 2779 addr_size, 2780 (unsigned int) sizeof (bfd_vma)); 2781 bfd_set_error (bfd_error_bad_value); 2782 return NULL; 2783 } 2784 2785 if (addr_size != 2 && addr_size != 4 && addr_size != 8) 2786 { 2787 (*_bfd_error_handler) 2788 ("Dwarf Error: found address size '%u', this reader" 2789 " can only handle address sizes '2', '4' and '8'.", addr_size); 2790 bfd_set_error (bfd_error_bad_value); 2791 return NULL; 2792 } 2793 2794 /* Read the abbrevs for this compilation unit into a table. */ 2795 abbrevs = read_abbrevs (abfd, abbrev_offset, stash); 2796 if (! abbrevs) 2797 return NULL; 2798 2799 abbrev_number = safe_read_leb128 (abfd, info_ptr, &bytes_read, FALSE, end_ptr); 2800 info_ptr += bytes_read; 2801 if (! abbrev_number) 2802 { 2803 /* PR 19872: An abbrev number of 0 probably means that there is padding 2804 at the end of the .debug_abbrev section. Gold puts it there when 2805 performing an incremental link, for example. So do not generate 2806 an error, just return a NULL. */ 2807 return NULL; 2808 } 2809 2810 abbrev = lookup_abbrev (abbrev_number, abbrevs); 2811 if (! abbrev) 2812 { 2813 (*_bfd_error_handler) (_("Dwarf Error: Could not find abbrev number %u."), 2814 abbrev_number); 2815 bfd_set_error (bfd_error_bad_value); 2816 return NULL; 2817 } 2818 2819 amt = sizeof (struct comp_unit); 2820 unit = (struct comp_unit *) bfd_zalloc (abfd, amt); 2821 if (unit == NULL) 2822 return NULL; 2823 unit->abfd = abfd; 2824 unit->version = version; 2825 unit->addr_size = addr_size; 2826 unit->offset_size = offset_size; 2827 unit->abbrevs = abbrevs; 2828 unit->end_ptr = end_ptr; 2829 unit->stash = stash; 2830 unit->info_ptr_unit = info_ptr_unit; 2831 unit->sec_info_ptr = stash->sec_info_ptr; 2832 2833 for (i = 0; i < abbrev->num_attrs; ++i) 2834 { 2835 info_ptr = read_attribute (&attr, &abbrev->attrs[i], unit, info_ptr, end_ptr); 2836 if (info_ptr == NULL) 2837 return NULL; 2838 2839 /* Store the data if it is of an attribute we want to keep in a 2840 partial symbol table. */ 2841 switch (attr.name) 2842 { 2843 case DW_AT_stmt_list: 2844 unit->stmtlist = 1; 2845 unit->line_offset = attr.u.val; 2846 break; 2847 2848 case DW_AT_name: 2849 unit->name = attr.u.str; 2850 break; 2851 2852 case DW_AT_low_pc: 2853 low_pc = attr.u.val; 2854 /* If the compilation unit DIE has a DW_AT_low_pc attribute, 2855 this is the base address to use when reading location 2856 lists or range lists. */ 2857 if (abbrev->tag == DW_TAG_compile_unit) 2858 unit->base_address = low_pc; 2859 break; 2860 2861 case DW_AT_high_pc: 2862 high_pc = attr.u.val; 2863 high_pc_relative = attr.form != DW_FORM_addr; 2864 break; 2865 2866 case DW_AT_ranges: 2867 if (!read_rangelist (unit, &unit->arange, attr.u.val)) 2868 return NULL; 2869 break; 2870 2871 case DW_AT_comp_dir: 2872 { 2873 char *comp_dir = attr.u.str; 2874 2875 /* PR 17512: file: 1fe726be. */ 2876 if (! is_str_attr (attr.form)) 2877 { 2878 (*_bfd_error_handler) 2879 (_("Dwarf Error: DW_AT_comp_dir attribute encountered with a non-string form.")); 2880 comp_dir = NULL; 2881 } 2882 2883 if (comp_dir) 2884 { 2885 /* Irix 6.2 native cc prepends <machine>.: to the compilation 2886 directory, get rid of it. */ 2887 char *cp = strchr (comp_dir, ':'); 2888 2889 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/') 2890 comp_dir = cp + 1; 2891 } 2892 unit->comp_dir = comp_dir; 2893 break; 2894 } 2895 2896 case DW_AT_language: 2897 unit->lang = attr.u.val; 2898 break; 2899 2900 default: 2901 break; 2902 } 2903 } 2904 if (high_pc_relative) 2905 high_pc += low_pc; 2906 if (high_pc != 0) 2907 { 2908 if (!arange_add (unit, &unit->arange, low_pc, high_pc)) 2909 return NULL; 2910 } 2911 2912 unit->first_child_die_ptr = info_ptr; 2913 return unit; 2914 } 2915 2916 /* Return TRUE if UNIT may contain the address given by ADDR. When 2917 there are functions written entirely with inline asm statements, the 2918 range info in the compilation unit header may not be correct. We 2919 need to consult the line info table to see if a compilation unit 2920 really contains the given address. */ 2921 2922 static bfd_boolean 2923 comp_unit_contains_address (struct comp_unit *unit, bfd_vma addr) 2924 { 2925 struct arange *arange; 2926 2927 if (unit->error) 2928 return FALSE; 2929 2930 arange = &unit->arange; 2931 do 2932 { 2933 if (addr >= arange->low && addr < arange->high) 2934 return TRUE; 2935 arange = arange->next; 2936 } 2937 while (arange); 2938 2939 return FALSE; 2940 } 2941 2942 /* If UNIT contains ADDR, set the output parameters to the values for 2943 the line containing ADDR. The output parameters, FILENAME_PTR, 2944 FUNCTION_PTR, and LINENUMBER_PTR, are pointers to the objects 2945 to be filled in. 2946 2947 Returns the range of addresses covered by the entry that was used 2948 to fill in *LINENUMBER_PTR or 0 if it was not filled in. */ 2949 2950 static bfd_vma 2951 comp_unit_find_nearest_line (struct comp_unit *unit, 2952 bfd_vma addr, 2953 const char **filename_ptr, 2954 struct funcinfo **function_ptr, 2955 unsigned int *linenumber_ptr, 2956 unsigned int *discriminator_ptr, 2957 struct dwarf2_debug *stash) 2958 { 2959 bfd_boolean func_p; 2960 2961 if (unit->error) 2962 return FALSE; 2963 2964 if (! unit->line_table) 2965 { 2966 if (! unit->stmtlist) 2967 { 2968 unit->error = 1; 2969 return FALSE; 2970 } 2971 2972 unit->line_table = decode_line_info (unit, stash); 2973 2974 if (! unit->line_table) 2975 { 2976 unit->error = 1; 2977 return FALSE; 2978 } 2979 2980 if (unit->first_child_die_ptr < unit->end_ptr 2981 && ! scan_unit_for_symbols (unit)) 2982 { 2983 unit->error = 1; 2984 return FALSE; 2985 } 2986 } 2987 2988 *function_ptr = NULL; 2989 func_p = lookup_address_in_function_table (unit, addr, function_ptr); 2990 if (func_p && (*function_ptr)->tag == DW_TAG_inlined_subroutine) 2991 stash->inliner_chain = *function_ptr; 2992 2993 return lookup_address_in_line_info_table (unit->line_table, addr, 2994 filename_ptr, 2995 linenumber_ptr, 2996 discriminator_ptr); 2997 } 2998 2999 /* Check to see if line info is already decoded in a comp_unit. 3000 If not, decode it. Returns TRUE if no errors were encountered; 3001 FALSE otherwise. */ 3002 3003 static bfd_boolean 3004 comp_unit_maybe_decode_line_info (struct comp_unit *unit, 3005 struct dwarf2_debug *stash) 3006 { 3007 if (unit->error) 3008 return FALSE; 3009 3010 if (! unit->line_table) 3011 { 3012 if (! unit->stmtlist) 3013 { 3014 unit->error = 1; 3015 return FALSE; 3016 } 3017 3018 unit->line_table = decode_line_info (unit, stash); 3019 3020 if (! unit->line_table) 3021 { 3022 unit->error = 1; 3023 return FALSE; 3024 } 3025 3026 if (unit->first_child_die_ptr < unit->end_ptr 3027 && ! scan_unit_for_symbols (unit)) 3028 { 3029 unit->error = 1; 3030 return FALSE; 3031 } 3032 } 3033 3034 return TRUE; 3035 } 3036 3037 /* If UNIT contains SYM at ADDR, set the output parameters to the 3038 values for the line containing SYM. The output parameters, 3039 FILENAME_PTR, and LINENUMBER_PTR, are pointers to the objects to be 3040 filled in. 3041 3042 Return TRUE if UNIT contains SYM, and no errors were encountered; 3043 FALSE otherwise. */ 3044 3045 static bfd_boolean 3046 comp_unit_find_line (struct comp_unit *unit, 3047 asymbol *sym, 3048 bfd_vma addr, 3049 const char **filename_ptr, 3050 unsigned int *linenumber_ptr, 3051 struct dwarf2_debug *stash) 3052 { 3053 if (!comp_unit_maybe_decode_line_info (unit, stash)) 3054 return FALSE; 3055 3056 if (sym->flags & BSF_FUNCTION) 3057 return lookup_symbol_in_function_table (unit, sym, addr, 3058 filename_ptr, 3059 linenumber_ptr); 3060 3061 return lookup_symbol_in_variable_table (unit, sym, addr, 3062 filename_ptr, 3063 linenumber_ptr); 3064 } 3065 3066 static struct funcinfo * 3067 reverse_funcinfo_list (struct funcinfo *head) 3068 { 3069 struct funcinfo *rhead; 3070 struct funcinfo *temp; 3071 3072 for (rhead = NULL; head; head = temp) 3073 { 3074 temp = head->prev_func; 3075 head->prev_func = rhead; 3076 rhead = head; 3077 } 3078 return rhead; 3079 } 3080 3081 static struct varinfo * 3082 reverse_varinfo_list (struct varinfo *head) 3083 { 3084 struct varinfo *rhead; 3085 struct varinfo *temp; 3086 3087 for (rhead = NULL; head; head = temp) 3088 { 3089 temp = head->prev_var; 3090 head->prev_var = rhead; 3091 rhead = head; 3092 } 3093 return rhead; 3094 } 3095 3096 /* Extract all interesting funcinfos and varinfos of a compilation 3097 unit into hash tables for faster lookup. Returns TRUE if no 3098 errors were enountered; FALSE otherwise. */ 3099 3100 static bfd_boolean 3101 comp_unit_hash_info (struct dwarf2_debug *stash, 3102 struct comp_unit *unit, 3103 struct info_hash_table *funcinfo_hash_table, 3104 struct info_hash_table *varinfo_hash_table) 3105 { 3106 struct funcinfo* each_func; 3107 struct varinfo* each_var; 3108 bfd_boolean okay = TRUE; 3109 3110 BFD_ASSERT (stash->info_hash_status != STASH_INFO_HASH_DISABLED); 3111 3112 if (!comp_unit_maybe_decode_line_info (unit, stash)) 3113 return FALSE; 3114 3115 BFD_ASSERT (!unit->cached); 3116 3117 /* To preserve the original search order, we went to visit the function 3118 infos in the reversed order of the list. However, making the list 3119 bi-directional use quite a bit of extra memory. So we reverse 3120 the list first, traverse the list in the now reversed order and 3121 finally reverse the list again to get back the original order. */ 3122 unit->function_table = reverse_funcinfo_list (unit->function_table); 3123 for (each_func = unit->function_table; 3124 each_func && okay; 3125 each_func = each_func->prev_func) 3126 { 3127 /* Skip nameless functions. */ 3128 if (each_func->name) 3129 /* There is no need to copy name string into hash table as 3130 name string is either in the dwarf string buffer or 3131 info in the stash. */ 3132 okay = insert_info_hash_table (funcinfo_hash_table, each_func->name, 3133 (void*) each_func, FALSE); 3134 } 3135 unit->function_table = reverse_funcinfo_list (unit->function_table); 3136 if (!okay) 3137 return FALSE; 3138 3139 /* We do the same for variable infos. */ 3140 unit->variable_table = reverse_varinfo_list (unit->variable_table); 3141 for (each_var = unit->variable_table; 3142 each_var && okay; 3143 each_var = each_var->prev_var) 3144 { 3145 /* Skip stack vars and vars with no files or names. */ 3146 if (each_var->stack == 0 3147 && each_var->file != NULL 3148 && each_var->name != NULL) 3149 /* There is no need to copy name string into hash table as 3150 name string is either in the dwarf string buffer or 3151 info in the stash. */ 3152 okay = insert_info_hash_table (varinfo_hash_table, each_var->name, 3153 (void*) each_var, FALSE); 3154 } 3155 3156 unit->variable_table = reverse_varinfo_list (unit->variable_table); 3157 unit->cached = TRUE; 3158 return okay; 3159 } 3160 3161 /* Locate a section in a BFD containing debugging info. The search starts 3162 from the section after AFTER_SEC, or from the first section in the BFD if 3163 AFTER_SEC is NULL. The search works by examining the names of the 3164 sections. There are three permissiable names. The first two are given 3165 by DEBUG_SECTIONS[debug_info] (whose standard DWARF2 names are .debug_info 3166 and .zdebug_info). The third is a prefix .gnu.linkonce.wi. 3167 This is a variation on the .debug_info section which has a checksum 3168 describing the contents appended onto the name. This allows the linker to 3169 identify and discard duplicate debugging sections for different 3170 compilation units. */ 3171 #define GNU_LINKONCE_INFO ".gnu.linkonce.wi." 3172 3173 static asection * 3174 find_debug_info (bfd *abfd, const struct dwarf_debug_section *debug_sections, 3175 asection *after_sec) 3176 { 3177 asection *msec; 3178 const char *look; 3179 3180 if (after_sec == NULL) 3181 { 3182 look = debug_sections[debug_info].uncompressed_name; 3183 msec = bfd_get_section_by_name (abfd, look); 3184 if (msec != NULL) 3185 return msec; 3186 3187 look = debug_sections[debug_info].compressed_name; 3188 if (look != NULL) 3189 { 3190 msec = bfd_get_section_by_name (abfd, look); 3191 if (msec != NULL) 3192 return msec; 3193 } 3194 3195 for (msec = abfd->sections; msec != NULL; msec = msec->next) 3196 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO)) 3197 return msec; 3198 3199 return NULL; 3200 } 3201 3202 for (msec = after_sec->next; msec != NULL; msec = msec->next) 3203 { 3204 look = debug_sections[debug_info].uncompressed_name; 3205 if (strcmp (msec->name, look) == 0) 3206 return msec; 3207 3208 look = debug_sections[debug_info].compressed_name; 3209 if (look != NULL && strcmp (msec->name, look) == 0) 3210 return msec; 3211 3212 if (CONST_STRNEQ (msec->name, GNU_LINKONCE_INFO)) 3213 return msec; 3214 } 3215 3216 return NULL; 3217 } 3218 3219 /* Transfer VMAs from object file to separate debug file. */ 3220 3221 static void 3222 set_debug_vma (bfd *orig_bfd, bfd *debug_bfd) 3223 { 3224 asection *s, *d; 3225 3226 for (s = orig_bfd->sections, d = debug_bfd->sections; 3227 s != NULL && d != NULL; 3228 s = s->next, d = d->next) 3229 { 3230 if ((d->flags & SEC_DEBUGGING) != 0) 3231 break; 3232 /* ??? Assumes 1-1 correspondence between sections in the 3233 two files. */ 3234 if (strcmp (s->name, d->name) == 0) 3235 { 3236 d->output_section = s->output_section; 3237 d->output_offset = s->output_offset; 3238 d->vma = s->vma; 3239 } 3240 } 3241 } 3242 3243 /* Unset vmas for adjusted sections in STASH. */ 3244 3245 static void 3246 unset_sections (struct dwarf2_debug *stash) 3247 { 3248 int i; 3249 struct adjusted_section *p; 3250 3251 i = stash->adjusted_section_count; 3252 p = stash->adjusted_sections; 3253 for (; i > 0; i--, p++) 3254 p->section->vma = 0; 3255 } 3256 3257 /* Set VMAs for allocated and .debug_info sections in ORIG_BFD, a 3258 relocatable object file. VMAs are normally all zero in relocatable 3259 object files, so if we want to distinguish locations in sections by 3260 address we need to set VMAs so the sections do not overlap. We 3261 also set VMA on .debug_info so that when we have multiple 3262 .debug_info sections (or the linkonce variant) they also do not 3263 overlap. The multiple .debug_info sections make up a single 3264 logical section. ??? We should probably do the same for other 3265 debug sections. */ 3266 3267 static bfd_boolean 3268 place_sections (bfd *orig_bfd, struct dwarf2_debug *stash) 3269 { 3270 bfd *abfd; 3271 struct adjusted_section *p; 3272 int i; 3273 const char *debug_info_name; 3274 3275 if (stash->adjusted_section_count != 0) 3276 { 3277 i = stash->adjusted_section_count; 3278 p = stash->adjusted_sections; 3279 for (; i > 0; i--, p++) 3280 p->section->vma = p->adj_vma; 3281 return TRUE; 3282 } 3283 3284 debug_info_name = stash->debug_sections[debug_info].uncompressed_name; 3285 i = 0; 3286 abfd = orig_bfd; 3287 while (1) 3288 { 3289 asection *sect; 3290 3291 for (sect = abfd->sections; sect != NULL; sect = sect->next) 3292 { 3293 int is_debug_info; 3294 3295 if ((sect->output_section != NULL 3296 && sect->output_section != sect 3297 && (sect->flags & SEC_DEBUGGING) == 0) 3298 || sect->vma != 0) 3299 continue; 3300 3301 is_debug_info = (strcmp (sect->name, debug_info_name) == 0 3302 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO)); 3303 3304 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd) 3305 && !is_debug_info) 3306 continue; 3307 3308 i++; 3309 } 3310 if (abfd == stash->bfd_ptr) 3311 break; 3312 abfd = stash->bfd_ptr; 3313 } 3314 3315 if (i <= 1) 3316 stash->adjusted_section_count = -1; 3317 else 3318 { 3319 bfd_vma last_vma = 0, last_dwarf = 0; 3320 bfd_size_type amt = i * sizeof (struct adjusted_section); 3321 3322 p = (struct adjusted_section *) bfd_malloc (amt); 3323 if (p == NULL) 3324 return FALSE; 3325 3326 stash->adjusted_sections = p; 3327 stash->adjusted_section_count = i; 3328 3329 abfd = orig_bfd; 3330 while (1) 3331 { 3332 asection *sect; 3333 3334 for (sect = abfd->sections; sect != NULL; sect = sect->next) 3335 { 3336 bfd_size_type sz; 3337 int is_debug_info; 3338 3339 if ((sect->output_section != NULL 3340 && sect->output_section != sect 3341 && (sect->flags & SEC_DEBUGGING) == 0) 3342 || sect->vma != 0) 3343 continue; 3344 3345 is_debug_info = (strcmp (sect->name, debug_info_name) == 0 3346 || CONST_STRNEQ (sect->name, GNU_LINKONCE_INFO)); 3347 3348 if (!((sect->flags & SEC_ALLOC) != 0 && abfd == orig_bfd) 3349 && !is_debug_info) 3350 continue; 3351 3352 sz = sect->rawsize ? sect->rawsize : sect->size; 3353 3354 if (is_debug_info) 3355 { 3356 BFD_ASSERT (sect->alignment_power == 0); 3357 sect->vma = last_dwarf; 3358 last_dwarf += sz; 3359 } 3360 else 3361 { 3362 /* Align the new address to the current section 3363 alignment. */ 3364 last_vma = ((last_vma 3365 + ~(-((bfd_vma) 1 << sect->alignment_power))) 3366 & (-((bfd_vma) 1 << sect->alignment_power))); 3367 sect->vma = last_vma; 3368 last_vma += sz; 3369 } 3370 3371 p->section = sect; 3372 p->adj_vma = sect->vma; 3373 p++; 3374 } 3375 if (abfd == stash->bfd_ptr) 3376 break; 3377 abfd = stash->bfd_ptr; 3378 } 3379 } 3380 3381 if (orig_bfd != stash->bfd_ptr) 3382 set_debug_vma (orig_bfd, stash->bfd_ptr); 3383 3384 return TRUE; 3385 } 3386 3387 /* Look up a funcinfo by name using the given info hash table. If found, 3388 also update the locations pointed to by filename_ptr and linenumber_ptr. 3389 3390 This function returns TRUE if a funcinfo that matches the given symbol 3391 and address is found with any error; otherwise it returns FALSE. */ 3392 3393 static bfd_boolean 3394 info_hash_lookup_funcinfo (struct info_hash_table *hash_table, 3395 asymbol *sym, 3396 bfd_vma addr, 3397 const char **filename_ptr, 3398 unsigned int *linenumber_ptr) 3399 { 3400 struct funcinfo* each_func; 3401 struct funcinfo* best_fit = NULL; 3402 bfd_vma best_fit_len = 0; 3403 struct info_list_node *node; 3404 struct arange *arange; 3405 const char *name = bfd_asymbol_name (sym); 3406 asection *sec = bfd_get_section (sym); 3407 3408 for (node = lookup_info_hash_table (hash_table, name); 3409 node; 3410 node = node->next) 3411 { 3412 each_func = (struct funcinfo *) node->info; 3413 for (arange = &each_func->arange; 3414 arange; 3415 arange = arange->next) 3416 { 3417 if ((!each_func->sec || each_func->sec == sec) 3418 && addr >= arange->low 3419 && addr < arange->high 3420 && (!best_fit 3421 || arange->high - arange->low < best_fit_len)) 3422 { 3423 best_fit = each_func; 3424 best_fit_len = arange->high - arange->low; 3425 } 3426 } 3427 } 3428 3429 if (best_fit) 3430 { 3431 best_fit->sec = sec; 3432 *filename_ptr = best_fit->file; 3433 *linenumber_ptr = best_fit->line; 3434 return TRUE; 3435 } 3436 3437 return FALSE; 3438 } 3439 3440 /* Look up a varinfo by name using the given info hash table. If found, 3441 also update the locations pointed to by filename_ptr and linenumber_ptr. 3442 3443 This function returns TRUE if a varinfo that matches the given symbol 3444 and address is found with any error; otherwise it returns FALSE. */ 3445 3446 static bfd_boolean 3447 info_hash_lookup_varinfo (struct info_hash_table *hash_table, 3448 asymbol *sym, 3449 bfd_vma addr, 3450 const char **filename_ptr, 3451 unsigned int *linenumber_ptr) 3452 { 3453 const char *name = bfd_asymbol_name (sym); 3454 asection *sec = bfd_get_section (sym); 3455 struct varinfo* each; 3456 struct info_list_node *node; 3457 3458 for (node = lookup_info_hash_table (hash_table, name); 3459 node; 3460 node = node->next) 3461 { 3462 each = (struct varinfo *) node->info; 3463 if (each->addr == addr 3464 && (!each->sec || each->sec == sec)) 3465 { 3466 each->sec = sec; 3467 *filename_ptr = each->file; 3468 *linenumber_ptr = each->line; 3469 return TRUE; 3470 } 3471 } 3472 3473 return FALSE; 3474 } 3475 3476 /* Update the funcinfo and varinfo info hash tables if they are 3477 not up to date. Returns TRUE if there is no error; otherwise 3478 returns FALSE and disable the info hash tables. */ 3479 3480 static bfd_boolean 3481 stash_maybe_update_info_hash_tables (struct dwarf2_debug *stash) 3482 { 3483 struct comp_unit *each; 3484 3485 /* Exit if hash tables are up-to-date. */ 3486 if (stash->all_comp_units == stash->hash_units_head) 3487 return TRUE; 3488 3489 if (stash->hash_units_head) 3490 each = stash->hash_units_head->prev_unit; 3491 else 3492 each = stash->last_comp_unit; 3493 3494 while (each) 3495 { 3496 if (!comp_unit_hash_info (stash, each, stash->funcinfo_hash_table, 3497 stash->varinfo_hash_table)) 3498 { 3499 stash->info_hash_status = STASH_INFO_HASH_DISABLED; 3500 return FALSE; 3501 } 3502 each = each->prev_unit; 3503 } 3504 3505 stash->hash_units_head = stash->all_comp_units; 3506 return TRUE; 3507 } 3508 3509 /* Check consistency of info hash tables. This is for debugging only. */ 3510 3511 static void ATTRIBUTE_UNUSED 3512 stash_verify_info_hash_table (struct dwarf2_debug *stash) 3513 { 3514 struct comp_unit *each_unit; 3515 struct funcinfo *each_func; 3516 struct varinfo *each_var; 3517 struct info_list_node *node; 3518 bfd_boolean found; 3519 3520 for (each_unit = stash->all_comp_units; 3521 each_unit; 3522 each_unit = each_unit->next_unit) 3523 { 3524 for (each_func = each_unit->function_table; 3525 each_func; 3526 each_func = each_func->prev_func) 3527 { 3528 if (!each_func->name) 3529 continue; 3530 node = lookup_info_hash_table (stash->funcinfo_hash_table, 3531 each_func->name); 3532 BFD_ASSERT (node); 3533 found = FALSE; 3534 while (node && !found) 3535 { 3536 found = node->info == each_func; 3537 node = node->next; 3538 } 3539 BFD_ASSERT (found); 3540 } 3541 3542 for (each_var = each_unit->variable_table; 3543 each_var; 3544 each_var = each_var->prev_var) 3545 { 3546 if (!each_var->name || !each_var->file || each_var->stack) 3547 continue; 3548 node = lookup_info_hash_table (stash->varinfo_hash_table, 3549 each_var->name); 3550 BFD_ASSERT (node); 3551 found = FALSE; 3552 while (node && !found) 3553 { 3554 found = node->info == each_var; 3555 node = node->next; 3556 } 3557 BFD_ASSERT (found); 3558 } 3559 } 3560 } 3561 3562 /* Check to see if we want to enable the info hash tables, which consume 3563 quite a bit of memory. Currently we only check the number times 3564 bfd_dwarf2_find_line is called. In the future, we may also want to 3565 take the number of symbols into account. */ 3566 3567 static void 3568 stash_maybe_enable_info_hash_tables (bfd *abfd, struct dwarf2_debug *stash) 3569 { 3570 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_OFF); 3571 3572 if (stash->info_hash_count++ < STASH_INFO_HASH_TRIGGER) 3573 return; 3574 3575 /* FIXME: Maybe we should check the reduce_memory_overheads 3576 and optimize fields in the bfd_link_info structure ? */ 3577 3578 /* Create hash tables. */ 3579 stash->funcinfo_hash_table = create_info_hash_table (abfd); 3580 stash->varinfo_hash_table = create_info_hash_table (abfd); 3581 if (!stash->funcinfo_hash_table || !stash->varinfo_hash_table) 3582 { 3583 /* Turn off info hashes if any allocation above fails. */ 3584 stash->info_hash_status = STASH_INFO_HASH_DISABLED; 3585 return; 3586 } 3587 /* We need a forced update so that the info hash tables will 3588 be created even though there is no compilation unit. That 3589 happens if STASH_INFO_HASH_TRIGGER is 0. */ 3590 stash_maybe_update_info_hash_tables (stash); 3591 stash->info_hash_status = STASH_INFO_HASH_ON; 3592 } 3593 3594 /* Find the file and line associated with a symbol and address using the 3595 info hash tables of a stash. If there is a match, the function returns 3596 TRUE and update the locations pointed to by filename_ptr and linenumber_ptr; 3597 otherwise it returns FALSE. */ 3598 3599 static bfd_boolean 3600 stash_find_line_fast (struct dwarf2_debug *stash, 3601 asymbol *sym, 3602 bfd_vma addr, 3603 const char **filename_ptr, 3604 unsigned int *linenumber_ptr) 3605 { 3606 BFD_ASSERT (stash->info_hash_status == STASH_INFO_HASH_ON); 3607 3608 if (sym->flags & BSF_FUNCTION) 3609 return info_hash_lookup_funcinfo (stash->funcinfo_hash_table, sym, addr, 3610 filename_ptr, linenumber_ptr); 3611 return info_hash_lookup_varinfo (stash->varinfo_hash_table, sym, addr, 3612 filename_ptr, linenumber_ptr); 3613 } 3614 3615 /* Save current section VMAs. */ 3616 3617 static bfd_boolean 3618 save_section_vma (const bfd *abfd, struct dwarf2_debug *stash) 3619 { 3620 asection *s; 3621 unsigned int i; 3622 3623 if (abfd->section_count == 0) 3624 return TRUE; 3625 stash->sec_vma = bfd_malloc (sizeof (*stash->sec_vma) * abfd->section_count); 3626 if (stash->sec_vma == NULL) 3627 return FALSE; 3628 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next) 3629 { 3630 if (s->output_section != NULL) 3631 stash->sec_vma[i] = s->output_section->vma + s->output_offset; 3632 else 3633 stash->sec_vma[i] = s->vma; 3634 } 3635 return TRUE; 3636 } 3637 3638 /* Compare current section VMAs against those at the time the stash 3639 was created. If find_nearest_line is used in linker warnings or 3640 errors early in the link process, the debug info stash will be 3641 invalid for later calls. This is because we relocate debug info 3642 sections, so the stashed section contents depend on symbol values, 3643 which in turn depend on section VMAs. */ 3644 3645 static bfd_boolean 3646 section_vma_same (const bfd *abfd, const struct dwarf2_debug *stash) 3647 { 3648 asection *s; 3649 unsigned int i; 3650 3651 for (i = 0, s = abfd->sections; i < abfd->section_count; i++, s = s->next) 3652 { 3653 bfd_vma vma; 3654 3655 if (s->output_section != NULL) 3656 vma = s->output_section->vma + s->output_offset; 3657 else 3658 vma = s->vma; 3659 if (vma != stash->sec_vma[i]) 3660 return FALSE; 3661 } 3662 return TRUE; 3663 } 3664 3665 /* Read debug information from DEBUG_BFD when DEBUG_BFD is specified. 3666 If DEBUG_BFD is not specified, we read debug information from ABFD 3667 or its gnu_debuglink. The results will be stored in PINFO. 3668 The function returns TRUE iff debug information is ready. */ 3669 3670 bfd_boolean 3671 _bfd_dwarf2_slurp_debug_info (bfd *abfd, bfd *debug_bfd, 3672 const struct dwarf_debug_section *debug_sections, 3673 asymbol **symbols, 3674 void **pinfo, 3675 bfd_boolean do_place) 3676 { 3677 bfd_size_type amt = sizeof (struct dwarf2_debug); 3678 bfd_size_type total_size; 3679 asection *msec; 3680 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo; 3681 3682 if (stash != NULL) 3683 { 3684 if (section_vma_same (abfd, stash)) 3685 return TRUE; 3686 _bfd_dwarf2_cleanup_debug_info (abfd, pinfo); 3687 memset (stash, 0, amt); 3688 } 3689 else 3690 { 3691 stash = (struct dwarf2_debug *) bfd_zalloc (abfd, amt); 3692 if (! stash) 3693 return FALSE; 3694 } 3695 stash->debug_sections = debug_sections; 3696 stash->syms = symbols; 3697 if (!save_section_vma (abfd, stash)) 3698 return FALSE; 3699 3700 *pinfo = stash; 3701 3702 if (debug_bfd == NULL) 3703 debug_bfd = abfd; 3704 3705 msec = find_debug_info (debug_bfd, debug_sections, NULL); 3706 if (msec == NULL && abfd == debug_bfd) 3707 { 3708 char * debug_filename = bfd_follow_gnu_debuglink (abfd, DEBUGDIR); 3709 3710 if (debug_filename == NULL) 3711 /* No dwarf2 info, and no gnu_debuglink to follow. 3712 Note that at this point the stash has been allocated, but 3713 contains zeros. This lets future calls to this function 3714 fail more quickly. */ 3715 return FALSE; 3716 3717 /* Set BFD_DECOMPRESS to decompress debug sections. */ 3718 if ((debug_bfd = bfd_openr (debug_filename, NULL)) == NULL 3719 || !(debug_bfd->flags |= BFD_DECOMPRESS, 3720 bfd_check_format (debug_bfd, bfd_object)) 3721 || (msec = find_debug_info (debug_bfd, 3722 debug_sections, NULL)) == NULL 3723 || !bfd_generic_link_read_symbols (debug_bfd)) 3724 { 3725 if (debug_bfd) 3726 bfd_close (debug_bfd); 3727 /* FIXME: Should we report our failure to follow the debuglink ? */ 3728 free (debug_filename); 3729 return FALSE; 3730 } 3731 3732 symbols = bfd_get_outsymbols (debug_bfd); 3733 stash->syms = symbols; 3734 stash->close_on_cleanup = TRUE; 3735 } 3736 stash->bfd_ptr = debug_bfd; 3737 3738 if (do_place 3739 && !place_sections (abfd, stash)) 3740 return FALSE; 3741 3742 /* There can be more than one DWARF2 info section in a BFD these 3743 days. First handle the easy case when there's only one. If 3744 there's more than one, try case two: none of the sections is 3745 compressed. In that case, read them all in and produce one 3746 large stash. We do this in two passes - in the first pass we 3747 just accumulate the section sizes, and in the second pass we 3748 read in the section's contents. (The allows us to avoid 3749 reallocing the data as we add sections to the stash.) If 3750 some or all sections are compressed, then do things the slow 3751 way, with a bunch of reallocs. */ 3752 3753 if (! find_debug_info (debug_bfd, debug_sections, msec)) 3754 { 3755 /* Case 1: only one info section. */ 3756 total_size = msec->size; 3757 if (! read_section (debug_bfd, &stash->debug_sections[debug_info], 3758 symbols, 0, 3759 &stash->info_ptr_memory, &total_size)) 3760 return FALSE; 3761 } 3762 else 3763 { 3764 /* Case 2: multiple sections. */ 3765 for (total_size = 0; 3766 msec; 3767 msec = find_debug_info (debug_bfd, debug_sections, msec)) 3768 total_size += msec->size; 3769 3770 stash->info_ptr_memory = (bfd_byte *) bfd_malloc (total_size); 3771 if (stash->info_ptr_memory == NULL) 3772 return FALSE; 3773 3774 total_size = 0; 3775 for (msec = find_debug_info (debug_bfd, debug_sections, NULL); 3776 msec; 3777 msec = find_debug_info (debug_bfd, debug_sections, msec)) 3778 { 3779 bfd_size_type size; 3780 3781 size = msec->size; 3782 if (size == 0) 3783 continue; 3784 3785 if (!(bfd_simple_get_relocated_section_contents 3786 (debug_bfd, msec, stash->info_ptr_memory + total_size, 3787 symbols))) 3788 return FALSE; 3789 3790 total_size += size; 3791 } 3792 } 3793 3794 stash->info_ptr = stash->info_ptr_memory; 3795 stash->info_ptr_end = stash->info_ptr + total_size; 3796 stash->sec = find_debug_info (debug_bfd, debug_sections, NULL); 3797 stash->sec_info_ptr = stash->info_ptr; 3798 return TRUE; 3799 } 3800 3801 /* Scan the debug information in PINFO looking for a DW_TAG_subprogram 3802 abbrev with a DW_AT_low_pc attached to it. Then lookup that same 3803 symbol in SYMBOLS and return the difference between the low_pc and 3804 the symbol's address. Returns 0 if no suitable symbol could be found. */ 3805 3806 bfd_signed_vma 3807 _bfd_dwarf2_find_symbol_bias (asymbol ** symbols, void ** pinfo) 3808 { 3809 struct dwarf2_debug *stash; 3810 struct comp_unit * unit; 3811 3812 stash = (struct dwarf2_debug *) *pinfo; 3813 3814 if (stash == NULL) 3815 return 0; 3816 3817 for (unit = stash->all_comp_units; unit; unit = unit->next_unit) 3818 { 3819 struct funcinfo * func; 3820 3821 if (unit->function_table == NULL) 3822 { 3823 if (unit->line_table == NULL) 3824 unit->line_table = decode_line_info (unit, stash); 3825 if (unit->line_table != NULL) 3826 scan_unit_for_symbols (unit); 3827 } 3828 3829 for (func = unit->function_table; func != NULL; func = func->prev_func) 3830 if (func->name && func->arange.low) 3831 { 3832 asymbol ** psym; 3833 3834 /* FIXME: Do we need to scan the aranges looking for the lowest pc value ? */ 3835 3836 for (psym = symbols; * psym != NULL; psym++) 3837 { 3838 asymbol * sym = * psym; 3839 3840 if (sym->flags & BSF_FUNCTION 3841 && sym->section != NULL 3842 && strcmp (sym->name, func->name) == 0) 3843 return ((bfd_signed_vma) func->arange.low) - 3844 ((bfd_signed_vma) (sym->value + sym->section->vma)); 3845 } 3846 } 3847 } 3848 3849 return 0; 3850 } 3851 3852 /* Find the source code location of SYMBOL. If SYMBOL is NULL 3853 then find the nearest source code location corresponding to 3854 the address SECTION + OFFSET. 3855 Returns TRUE if the line is found without error and fills in 3856 FILENAME_PTR and LINENUMBER_PTR. In the case where SYMBOL was 3857 NULL the FUNCTIONNAME_PTR is also filled in. 3858 SYMBOLS contains the symbol table for ABFD. 3859 DEBUG_SECTIONS contains the name of the dwarf debug sections. 3860 ADDR_SIZE is the number of bytes in the initial .debug_info length 3861 field and in the abbreviation offset, or zero to indicate that the 3862 default value should be used. */ 3863 3864 bfd_boolean 3865 _bfd_dwarf2_find_nearest_line (bfd *abfd, 3866 asymbol **symbols, 3867 asymbol *symbol, 3868 asection *section, 3869 bfd_vma offset, 3870 const char **filename_ptr, 3871 const char **functionname_ptr, 3872 unsigned int *linenumber_ptr, 3873 unsigned int *discriminator_ptr, 3874 const struct dwarf_debug_section *debug_sections, 3875 unsigned int addr_size, 3876 void **pinfo) 3877 { 3878 /* Read each compilation unit from the section .debug_info, and check 3879 to see if it contains the address we are searching for. If yes, 3880 lookup the address, and return the line number info. If no, go 3881 on to the next compilation unit. 3882 3883 We keep a list of all the previously read compilation units, and 3884 a pointer to the next un-read compilation unit. Check the 3885 previously read units before reading more. */ 3886 struct dwarf2_debug *stash; 3887 /* What address are we looking for? */ 3888 bfd_vma addr; 3889 struct comp_unit* each; 3890 struct funcinfo *function = NULL; 3891 bfd_boolean found = FALSE; 3892 bfd_boolean do_line; 3893 3894 *filename_ptr = NULL; 3895 if (functionname_ptr != NULL) 3896 *functionname_ptr = NULL; 3897 *linenumber_ptr = 0; 3898 if (discriminator_ptr) 3899 *discriminator_ptr = 0; 3900 3901 if (! _bfd_dwarf2_slurp_debug_info (abfd, NULL, debug_sections, 3902 symbols, pinfo, 3903 (abfd->flags & (EXEC_P | DYNAMIC)) == 0)) 3904 return FALSE; 3905 3906 stash = (struct dwarf2_debug *) *pinfo; 3907 3908 do_line = symbol != NULL; 3909 if (do_line) 3910 { 3911 BFD_ASSERT (section == NULL && offset == 0 && functionname_ptr == NULL); 3912 section = bfd_get_section (symbol); 3913 addr = symbol->value; 3914 } 3915 else 3916 { 3917 BFD_ASSERT (section != NULL && functionname_ptr != NULL); 3918 addr = offset; 3919 } 3920 3921 if (section->output_section) 3922 addr += section->output_section->vma + section->output_offset; 3923 else 3924 addr += section->vma; 3925 3926 /* A null info_ptr indicates that there is no dwarf2 info 3927 (or that an error occured while setting up the stash). */ 3928 if (! stash->info_ptr) 3929 return FALSE; 3930 3931 stash->inliner_chain = NULL; 3932 3933 /* Check the previously read comp. units first. */ 3934 if (do_line) 3935 { 3936 /* The info hash tables use quite a bit of memory. We may not want to 3937 always use them. We use some heuristics to decide if and when to 3938 turn it on. */ 3939 if (stash->info_hash_status == STASH_INFO_HASH_OFF) 3940 stash_maybe_enable_info_hash_tables (abfd, stash); 3941 3942 /* Keep info hash table up to date if they are available. Note that we 3943 may disable the hash tables if there is any error duing update. */ 3944 if (stash->info_hash_status == STASH_INFO_HASH_ON) 3945 stash_maybe_update_info_hash_tables (stash); 3946 3947 if (stash->info_hash_status == STASH_INFO_HASH_ON) 3948 { 3949 found = stash_find_line_fast (stash, symbol, addr, filename_ptr, 3950 linenumber_ptr); 3951 if (found) 3952 goto done; 3953 } 3954 else 3955 { 3956 /* Check the previously read comp. units first. */ 3957 for (each = stash->all_comp_units; each; each = each->next_unit) 3958 if ((symbol->flags & BSF_FUNCTION) == 0 3959 || each->arange.high == 0 3960 || comp_unit_contains_address (each, addr)) 3961 { 3962 found = comp_unit_find_line (each, symbol, addr, filename_ptr, 3963 linenumber_ptr, stash); 3964 if (found) 3965 goto done; 3966 } 3967 } 3968 } 3969 else 3970 { 3971 bfd_vma min_range = (bfd_vma) -1; 3972 const char * local_filename = NULL; 3973 struct funcinfo *local_function = NULL; 3974 unsigned int local_linenumber = 0; 3975 unsigned int local_discriminator = 0; 3976 3977 for (each = stash->all_comp_units; each; each = each->next_unit) 3978 { 3979 bfd_vma range = (bfd_vma) -1; 3980 3981 found = ((each->arange.high == 0 3982 || comp_unit_contains_address (each, addr)) 3983 && (range = comp_unit_find_nearest_line (each, addr, 3984 & local_filename, 3985 & local_function, 3986 & local_linenumber, 3987 & local_discriminator, 3988 stash)) != 0); 3989 if (found) 3990 { 3991 /* PRs 15935 15994: Bogus debug information may have provided us 3992 with an erroneous match. We attempt to counter this by 3993 selecting the match that has the smallest address range 3994 associated with it. (We are assuming that corrupt debug info 3995 will tend to result in extra large address ranges rather than 3996 extra small ranges). 3997 3998 This does mean that we scan through all of the CUs associated 3999 with the bfd each time this function is called. But this does 4000 have the benefit of producing consistent results every time the 4001 function is called. */ 4002 if (range <= min_range) 4003 { 4004 if (filename_ptr && local_filename) 4005 * filename_ptr = local_filename; 4006 if (local_function) 4007 function = local_function; 4008 if (discriminator_ptr && local_discriminator) 4009 * discriminator_ptr = local_discriminator; 4010 if (local_linenumber) 4011 * linenumber_ptr = local_linenumber; 4012 min_range = range; 4013 } 4014 } 4015 } 4016 4017 if (* linenumber_ptr) 4018 { 4019 found = TRUE; 4020 goto done; 4021 } 4022 } 4023 4024 /* The DWARF2 spec says that the initial length field, and the 4025 offset of the abbreviation table, should both be 4-byte values. 4026 However, some compilers do things differently. */ 4027 if (addr_size == 0) 4028 addr_size = 4; 4029 BFD_ASSERT (addr_size == 4 || addr_size == 8); 4030 4031 /* Read each remaining comp. units checking each as they are read. */ 4032 while (stash->info_ptr < stash->info_ptr_end) 4033 { 4034 bfd_vma length; 4035 unsigned int offset_size = addr_size; 4036 bfd_byte *info_ptr_unit = stash->info_ptr; 4037 4038 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr, stash->info_ptr_end); 4039 /* A 0xffffff length is the DWARF3 way of indicating 4040 we use 64-bit offsets, instead of 32-bit offsets. */ 4041 if (length == 0xffffffff) 4042 { 4043 offset_size = 8; 4044 length = read_8_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end); 4045 stash->info_ptr += 12; 4046 } 4047 /* A zero length is the IRIX way of indicating 64-bit offsets, 4048 mostly because the 64-bit length will generally fit in 32 4049 bits, and the endianness helps. */ 4050 else if (length == 0) 4051 { 4052 offset_size = 8; 4053 length = read_4_bytes (stash->bfd_ptr, stash->info_ptr + 4, stash->info_ptr_end); 4054 stash->info_ptr += 8; 4055 } 4056 /* In the absence of the hints above, we assume 32-bit DWARF2 4057 offsets even for targets with 64-bit addresses, because: 4058 a) most of the time these targets will not have generated 4059 more than 2Gb of debug info and so will not need 64-bit 4060 offsets, 4061 and 4062 b) if they do use 64-bit offsets but they are not using 4063 the size hints that are tested for above then they are 4064 not conforming to the DWARF3 standard anyway. */ 4065 else if (addr_size == 8) 4066 { 4067 offset_size = 4; 4068 stash->info_ptr += 4; 4069 } 4070 else 4071 stash->info_ptr += 4; 4072 4073 if (length > 0) 4074 { 4075 bfd_byte * new_ptr; 4076 4077 each = parse_comp_unit (stash, length, info_ptr_unit, 4078 offset_size); 4079 if (!each) 4080 /* The dwarf information is damaged, don't trust it any 4081 more. */ 4082 break; 4083 4084 new_ptr = stash->info_ptr + length; 4085 /* PR 17512: file: 1500698c. */ 4086 if (new_ptr < stash->info_ptr) 4087 { 4088 /* A corrupt length value - do not trust the info any more. */ 4089 found = FALSE; 4090 break; 4091 } 4092 else 4093 stash->info_ptr = new_ptr; 4094 4095 if (stash->all_comp_units) 4096 stash->all_comp_units->prev_unit = each; 4097 else 4098 stash->last_comp_unit = each; 4099 4100 each->next_unit = stash->all_comp_units; 4101 stash->all_comp_units = each; 4102 4103 /* DW_AT_low_pc and DW_AT_high_pc are optional for 4104 compilation units. If we don't have them (i.e., 4105 unit->high == 0), we need to consult the line info table 4106 to see if a compilation unit contains the given 4107 address. */ 4108 if (do_line) 4109 found = (((symbol->flags & BSF_FUNCTION) == 0 4110 || each->arange.high == 0 4111 || comp_unit_contains_address (each, addr)) 4112 && comp_unit_find_line (each, symbol, addr, 4113 filename_ptr, 4114 linenumber_ptr, 4115 stash)); 4116 else 4117 found = ((each->arange.high == 0 4118 || comp_unit_contains_address (each, addr)) 4119 && comp_unit_find_nearest_line (each, addr, 4120 filename_ptr, 4121 &function, 4122 linenumber_ptr, 4123 discriminator_ptr, 4124 stash) != 0); 4125 4126 if ((bfd_vma) (stash->info_ptr - stash->sec_info_ptr) 4127 == stash->sec->size) 4128 { 4129 stash->sec = find_debug_info (stash->bfd_ptr, debug_sections, 4130 stash->sec); 4131 stash->sec_info_ptr = stash->info_ptr; 4132 } 4133 4134 if (found) 4135 goto done; 4136 } 4137 } 4138 4139 done: 4140 if (function) 4141 { 4142 if (!function->is_linkage) 4143 { 4144 asymbol *fun; 4145 bfd_vma sec_vma; 4146 4147 fun = _bfd_elf_find_function (abfd, symbols, section, offset, 4148 *filename_ptr ? NULL : filename_ptr, 4149 functionname_ptr); 4150 sec_vma = section->vma; 4151 if (section->output_section != NULL) 4152 sec_vma = section->output_section->vma + section->output_offset; 4153 if (fun != NULL 4154 && fun->value + sec_vma == function->arange.low) 4155 function->name = *functionname_ptr; 4156 /* Even if we didn't find a linkage name, say that we have 4157 to stop a repeated search of symbols. */ 4158 function->is_linkage = TRUE; 4159 } 4160 *functionname_ptr = function->name; 4161 } 4162 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) 4163 unset_sections (stash); 4164 4165 return found; 4166 } 4167 4168 bfd_boolean 4169 _bfd_dwarf2_find_inliner_info (bfd *abfd ATTRIBUTE_UNUSED, 4170 const char **filename_ptr, 4171 const char **functionname_ptr, 4172 unsigned int *linenumber_ptr, 4173 void **pinfo) 4174 { 4175 struct dwarf2_debug *stash; 4176 4177 stash = (struct dwarf2_debug *) *pinfo; 4178 if (stash) 4179 { 4180 struct funcinfo *func = stash->inliner_chain; 4181 4182 if (func && func->caller_func) 4183 { 4184 *filename_ptr = func->caller_file; 4185 *functionname_ptr = func->caller_func->name; 4186 *linenumber_ptr = func->caller_line; 4187 stash->inliner_chain = func->caller_func; 4188 return TRUE; 4189 } 4190 } 4191 4192 return FALSE; 4193 } 4194 4195 void 4196 _bfd_dwarf2_cleanup_debug_info (bfd *abfd, void **pinfo) 4197 { 4198 struct dwarf2_debug *stash = (struct dwarf2_debug *) *pinfo; 4199 struct comp_unit *each; 4200 4201 if (abfd == NULL || stash == NULL) 4202 return; 4203 4204 for (each = stash->all_comp_units; each; each = each->next_unit) 4205 { 4206 struct abbrev_info **abbrevs = each->abbrevs; 4207 struct funcinfo *function_table = each->function_table; 4208 struct varinfo *variable_table = each->variable_table; 4209 size_t i; 4210 4211 for (i = 0; i < ABBREV_HASH_SIZE; i++) 4212 { 4213 struct abbrev_info *abbrev = abbrevs[i]; 4214 4215 while (abbrev) 4216 { 4217 free (abbrev->attrs); 4218 abbrev = abbrev->next; 4219 } 4220 } 4221 4222 if (each->line_table) 4223 { 4224 free (each->line_table->dirs); 4225 free (each->line_table->files); 4226 } 4227 4228 while (function_table) 4229 { 4230 if (function_table->file) 4231 { 4232 free (function_table->file); 4233 function_table->file = NULL; 4234 } 4235 4236 if (function_table->caller_file) 4237 { 4238 free (function_table->caller_file); 4239 function_table->caller_file = NULL; 4240 } 4241 function_table = function_table->prev_func; 4242 } 4243 4244 while (variable_table) 4245 { 4246 if (variable_table->file) 4247 { 4248 free (variable_table->file); 4249 variable_table->file = NULL; 4250 } 4251 4252 variable_table = variable_table->prev_var; 4253 } 4254 } 4255 4256 if (stash->dwarf_abbrev_buffer) 4257 free (stash->dwarf_abbrev_buffer); 4258 if (stash->dwarf_line_buffer) 4259 free (stash->dwarf_line_buffer); 4260 if (stash->dwarf_str_buffer) 4261 free (stash->dwarf_str_buffer); 4262 if (stash->dwarf_ranges_buffer) 4263 free (stash->dwarf_ranges_buffer); 4264 if (stash->info_ptr_memory) 4265 free (stash->info_ptr_memory); 4266 if (stash->close_on_cleanup) 4267 bfd_close (stash->bfd_ptr); 4268 if (stash->alt_dwarf_str_buffer) 4269 free (stash->alt_dwarf_str_buffer); 4270 if (stash->alt_dwarf_info_buffer) 4271 free (stash->alt_dwarf_info_buffer); 4272 if (stash->sec_vma) 4273 free (stash->sec_vma); 4274 if (stash->adjusted_sections) 4275 free (stash->adjusted_sections); 4276 if (stash->alt_bfd_ptr) 4277 bfd_close (stash->alt_bfd_ptr); 4278 } 4279 4280 /* Find the function to a particular section and offset, 4281 for error reporting. */ 4282 4283 asymbol * 4284 _bfd_elf_find_function (bfd *abfd, 4285 asymbol **symbols, 4286 asection *section, 4287 bfd_vma offset, 4288 const char **filename_ptr, 4289 const char **functionname_ptr) 4290 { 4291 struct elf_find_function_cache 4292 { 4293 asection *last_section; 4294 asymbol *func; 4295 const char *filename; 4296 bfd_size_type func_size; 4297 } *cache; 4298 4299 if (symbols == NULL) 4300 return NULL; 4301 4302 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 4303 return NULL; 4304 4305 cache = elf_tdata (abfd)->elf_find_function_cache; 4306 if (cache == NULL) 4307 { 4308 cache = bfd_zalloc (abfd, sizeof (*cache)); 4309 elf_tdata (abfd)->elf_find_function_cache = cache; 4310 if (cache == NULL) 4311 return NULL; 4312 } 4313 if (cache->last_section != section 4314 || cache->func == NULL 4315 || offset < cache->func->value 4316 || offset >= cache->func->value + cache->func_size) 4317 { 4318 asymbol *file; 4319 bfd_vma low_func; 4320 asymbol **p; 4321 /* ??? Given multiple file symbols, it is impossible to reliably 4322 choose the right file name for global symbols. File symbols are 4323 local symbols, and thus all file symbols must sort before any 4324 global symbols. The ELF spec may be interpreted to say that a 4325 file symbol must sort before other local symbols, but currently 4326 ld -r doesn't do this. So, for ld -r output, it is possible to 4327 make a better choice of file name for local symbols by ignoring 4328 file symbols appearing after a given local symbol. */ 4329 enum { nothing_seen, symbol_seen, file_after_symbol_seen } state; 4330 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4331 4332 file = NULL; 4333 low_func = 0; 4334 state = nothing_seen; 4335 cache->filename = NULL; 4336 cache->func = NULL; 4337 cache->func_size = 0; 4338 cache->last_section = section; 4339 4340 for (p = symbols; *p != NULL; p++) 4341 { 4342 asymbol *sym = *p; 4343 bfd_vma code_off; 4344 bfd_size_type size; 4345 4346 if ((sym->flags & BSF_FILE) != 0) 4347 { 4348 file = sym; 4349 if (state == symbol_seen) 4350 state = file_after_symbol_seen; 4351 continue; 4352 } 4353 4354 size = bed->maybe_function_sym (sym, section, &code_off); 4355 if (size != 0 4356 && code_off <= offset 4357 && (code_off > low_func 4358 || (code_off == low_func 4359 && size > cache->func_size))) 4360 { 4361 cache->func = sym; 4362 cache->func_size = size; 4363 cache->filename = NULL; 4364 low_func = code_off; 4365 if (file != NULL 4366 && ((sym->flags & BSF_LOCAL) != 0 4367 || state != file_after_symbol_seen)) 4368 cache->filename = bfd_asymbol_name (file); 4369 } 4370 if (state == nothing_seen) 4371 state = symbol_seen; 4372 } 4373 } 4374 4375 if (cache->func == NULL) 4376 return NULL; 4377 4378 if (filename_ptr) 4379 *filename_ptr = cache->filename; 4380 if (functionname_ptr) 4381 *functionname_ptr = bfd_asymbol_name (cache->func); 4382 4383 return cache->func; 4384 } 4385