Home | History | Annotate | Download | only in gold
      1 // inremental.cc -- incremental linking support for gold
      2 
      3 // Copyright (C) 2009-2016 Free Software Foundation, Inc.
      4 // Written by Mikolaj Zalewski <mikolajz (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <set>
     26 #include <cstdarg>
     27 #include "libiberty.h"
     28 
     29 #include "elfcpp.h"
     30 #include "options.h"
     31 #include "output.h"
     32 #include "symtab.h"
     33 #include "incremental.h"
     34 #include "archive.h"
     35 #include "object.h"
     36 #include "target-select.h"
     37 #include "target.h"
     38 #include "fileread.h"
     39 #include "script.h"
     40 
     41 namespace gold {
     42 
     43 // Version number for the .gnu_incremental_inputs section.
     44 // Version 1 was the initial checkin.
     45 // Version 2 adds some padding to ensure 8-byte alignment where necessary.
     46 const unsigned int INCREMENTAL_LINK_VERSION = 2;
     47 
     48 // This class manages the .gnu_incremental_inputs section, which holds
     49 // the header information, a directory of input files, and separate
     50 // entries for each input file.
     51 
     52 template<int size, bool big_endian>
     53 class Output_section_incremental_inputs : public Output_section_data
     54 {
     55  public:
     56   Output_section_incremental_inputs(const Incremental_inputs* inputs,
     57 				    const Symbol_table* symtab)
     58     : Output_section_data(size / 8), inputs_(inputs), symtab_(symtab)
     59   { }
     60 
     61  protected:
     62   // This is called to update the section size prior to assigning
     63   // the address and file offset.
     64   void
     65   update_data_size()
     66   { this->set_final_data_size(); }
     67 
     68   // Set the final data size.
     69   void
     70   set_final_data_size();
     71 
     72   // Write the data to the file.
     73   void
     74   do_write(Output_file*);
     75 
     76   // Write to a map file.
     77   void
     78   do_print_to_mapfile(Mapfile* mapfile) const
     79   { mapfile->print_output_data(this, _("** incremental_inputs")); }
     80 
     81  private:
     82   // Write the section header.
     83   unsigned char*
     84   write_header(unsigned char* pov, unsigned int input_file_count,
     85 	       section_offset_type command_line_offset);
     86 
     87   // Write the input file entries.
     88   unsigned char*
     89   write_input_files(unsigned char* oview, unsigned char* pov,
     90 		    Stringpool* strtab);
     91 
     92   // Write the supplemental information blocks.
     93   unsigned char*
     94   write_info_blocks(unsigned char* oview, unsigned char* pov,
     95 		    Stringpool* strtab, unsigned int* global_syms,
     96 		    unsigned int global_sym_count);
     97 
     98   // Write the contents of the .gnu_incremental_symtab section.
     99   void
    100   write_symtab(unsigned char* pov, unsigned int* global_syms,
    101 	       unsigned int global_sym_count);
    102 
    103   // Write the contents of the .gnu_incremental_got_plt section.
    104   void
    105   write_got_plt(unsigned char* pov, off_t view_size);
    106 
    107   // Typedefs for writing the data to the output sections.
    108   typedef elfcpp::Swap<size, big_endian> Swap;
    109   typedef elfcpp::Swap<16, big_endian> Swap16;
    110   typedef elfcpp::Swap<32, big_endian> Swap32;
    111   typedef elfcpp::Swap<64, big_endian> Swap64;
    112 
    113   // Sizes of various structures.
    114   static const int sizeof_addr = size / 8;
    115   static const int header_size =
    116       Incremental_inputs_reader<size, big_endian>::header_size;
    117   static const int input_entry_size =
    118       Incremental_inputs_reader<size, big_endian>::input_entry_size;
    119   static const unsigned int object_info_size =
    120       Incremental_inputs_reader<size, big_endian>::object_info_size;
    121   static const unsigned int input_section_entry_size =
    122       Incremental_inputs_reader<size, big_endian>::input_section_entry_size;
    123   static const unsigned int global_sym_entry_size =
    124       Incremental_inputs_reader<size, big_endian>::global_sym_entry_size;
    125   static const unsigned int incr_reloc_size =
    126       Incremental_relocs_reader<size, big_endian>::reloc_size;
    127 
    128   // The Incremental_inputs object.
    129   const Incremental_inputs* inputs_;
    130 
    131   // The symbol table.
    132   const Symbol_table* symtab_;
    133 };
    134 
    135 // Inform the user why we don't do an incremental link.  Not called in
    136 // the obvious case of missing output file.  TODO: Is this helpful?
    137 
    138 void
    139 vexplain_no_incremental(const char* format, va_list args)
    140 {
    141   char* buf = NULL;
    142   if (vasprintf(&buf, format, args) < 0)
    143     gold_nomem();
    144   gold_info(_("the link might take longer: "
    145 	      "cannot perform incremental link: %s"), buf);
    146   free(buf);
    147 }
    148 
    149 void
    150 explain_no_incremental(const char* format, ...)
    151 {
    152   va_list args;
    153   va_start(args, format);
    154   vexplain_no_incremental(format, args);
    155   va_end(args);
    156 }
    157 
    158 // Report an error.
    159 
    160 void
    161 Incremental_binary::error(const char* format, ...) const
    162 {
    163   va_list args;
    164   va_start(args, format);
    165   // Current code only checks if the file can be used for incremental linking,
    166   // so errors shouldn't fail the build, but only result in a fallback to a
    167   // full build.
    168   // TODO: when we implement incremental editing of the file, we may need a
    169   // flag that will cause errors to be treated seriously.
    170   vexplain_no_incremental(format, args);
    171   va_end(args);
    172 }
    173 
    174 // Return TRUE if a section of type SH_TYPE can be updated in place
    175 // during an incremental update.  We can update sections of type PROGBITS,
    176 // NOBITS, INIT_ARRAY, FINI_ARRAY, PREINIT_ARRAY, and NOTE.  All others
    177 // will be regenerated.
    178 
    179 bool
    180 can_incremental_update(unsigned int sh_type)
    181 {
    182   return (sh_type == elfcpp::SHT_PROGBITS
    183 	  || sh_type == elfcpp::SHT_NOBITS
    184 	  || sh_type == elfcpp::SHT_INIT_ARRAY
    185 	  || sh_type == elfcpp::SHT_FINI_ARRAY
    186 	  || sh_type == elfcpp::SHT_PREINIT_ARRAY
    187 	  || sh_type == elfcpp::SHT_NOTE);
    188 }
    189 
    190 // Find the .gnu_incremental_inputs section and related sections.
    191 
    192 template<int size, bool big_endian>
    193 bool
    194 Sized_incremental_binary<size, big_endian>::find_incremental_inputs_sections(
    195     unsigned int* p_inputs_shndx,
    196     unsigned int* p_symtab_shndx,
    197     unsigned int* p_relocs_shndx,
    198     unsigned int* p_got_plt_shndx,
    199     unsigned int* p_strtab_shndx)
    200 {
    201   unsigned int inputs_shndx =
    202       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_INPUTS);
    203   if (inputs_shndx == elfcpp::SHN_UNDEF)  // Not found.
    204     return false;
    205 
    206   unsigned int symtab_shndx =
    207       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_SYMTAB);
    208   if (symtab_shndx == elfcpp::SHN_UNDEF)  // Not found.
    209     return false;
    210   if (this->elf_file_.section_link(symtab_shndx) != inputs_shndx)
    211     return false;
    212 
    213   unsigned int relocs_shndx =
    214       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_RELOCS);
    215   if (relocs_shndx == elfcpp::SHN_UNDEF)  // Not found.
    216     return false;
    217   if (this->elf_file_.section_link(relocs_shndx) != inputs_shndx)
    218     return false;
    219 
    220   unsigned int got_plt_shndx =
    221       this->elf_file_.find_section_by_type(elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT);
    222   if (got_plt_shndx == elfcpp::SHN_UNDEF)  // Not found.
    223     return false;
    224   if (this->elf_file_.section_link(got_plt_shndx) != inputs_shndx)
    225     return false;
    226 
    227   unsigned int strtab_shndx = this->elf_file_.section_link(inputs_shndx);
    228   if (strtab_shndx == elfcpp::SHN_UNDEF
    229       || strtab_shndx > this->elf_file_.shnum()
    230       || this->elf_file_.section_type(strtab_shndx) != elfcpp::SHT_STRTAB)
    231     return false;
    232 
    233   if (p_inputs_shndx != NULL)
    234     *p_inputs_shndx = inputs_shndx;
    235   if (p_symtab_shndx != NULL)
    236     *p_symtab_shndx = symtab_shndx;
    237   if (p_relocs_shndx != NULL)
    238     *p_relocs_shndx = relocs_shndx;
    239   if (p_got_plt_shndx != NULL)
    240     *p_got_plt_shndx = got_plt_shndx;
    241   if (p_strtab_shndx != NULL)
    242     *p_strtab_shndx = strtab_shndx;
    243   return true;
    244 }
    245 
    246 // Set up the readers into the incremental info sections.
    247 
    248 template<int size, bool big_endian>
    249 void
    250 Sized_incremental_binary<size, big_endian>::setup_readers()
    251 {
    252   unsigned int inputs_shndx;
    253   unsigned int symtab_shndx;
    254   unsigned int relocs_shndx;
    255   unsigned int got_plt_shndx;
    256   unsigned int strtab_shndx;
    257 
    258   if (!this->find_incremental_inputs_sections(&inputs_shndx, &symtab_shndx,
    259 					      &relocs_shndx, &got_plt_shndx,
    260 					      &strtab_shndx))
    261     return;
    262 
    263   Location inputs_location(this->elf_file_.section_contents(inputs_shndx));
    264   Location symtab_location(this->elf_file_.section_contents(symtab_shndx));
    265   Location relocs_location(this->elf_file_.section_contents(relocs_shndx));
    266   Location got_plt_location(this->elf_file_.section_contents(got_plt_shndx));
    267   Location strtab_location(this->elf_file_.section_contents(strtab_shndx));
    268 
    269   View inputs_view = this->view(inputs_location);
    270   View symtab_view = this->view(symtab_location);
    271   View relocs_view = this->view(relocs_location);
    272   View got_plt_view = this->view(got_plt_location);
    273   View strtab_view = this->view(strtab_location);
    274 
    275   elfcpp::Elf_strtab strtab(strtab_view.data(), strtab_location.data_size);
    276 
    277   this->inputs_reader_ =
    278       Incremental_inputs_reader<size, big_endian>(inputs_view.data(), strtab);
    279   this->symtab_reader_ =
    280       Incremental_symtab_reader<big_endian>(symtab_view.data(),
    281 					    symtab_location.data_size);
    282   this->relocs_reader_ =
    283       Incremental_relocs_reader<size, big_endian>(relocs_view.data(),
    284 						  relocs_location.data_size);
    285   this->got_plt_reader_ =
    286       Incremental_got_plt_reader<big_endian>(got_plt_view.data());
    287 
    288   // Find the main symbol table.
    289   unsigned int main_symtab_shndx =
    290       this->elf_file_.find_section_by_type(elfcpp::SHT_SYMTAB);
    291   gold_assert(main_symtab_shndx != elfcpp::SHN_UNDEF);
    292   this->main_symtab_loc_ = this->elf_file_.section_contents(main_symtab_shndx);
    293 
    294   // Find the main symbol string table.
    295   unsigned int main_strtab_shndx =
    296       this->elf_file_.section_link(main_symtab_shndx);
    297   gold_assert(main_strtab_shndx != elfcpp::SHN_UNDEF
    298 	      && main_strtab_shndx < this->elf_file_.shnum());
    299   this->main_strtab_loc_ = this->elf_file_.section_contents(main_strtab_shndx);
    300 
    301   // Walk the list of input files (a) to setup an Input_reader for each
    302   // input file, and (b) to record maps of files added from archive
    303   // libraries and scripts.
    304   Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
    305   unsigned int count = inputs.input_file_count();
    306   this->input_objects_.resize(count);
    307   this->input_entry_readers_.reserve(count);
    308   this->library_map_.resize(count);
    309   this->script_map_.resize(count);
    310   for (unsigned int i = 0; i < count; i++)
    311     {
    312       Input_entry_reader input_file = inputs.input_file(i);
    313       this->input_entry_readers_.push_back(Sized_input_reader(input_file));
    314       switch (input_file.type())
    315 	{
    316 	case INCREMENTAL_INPUT_OBJECT:
    317 	case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
    318 	case INCREMENTAL_INPUT_SHARED_LIBRARY:
    319 	  // No special treatment necessary.
    320 	  break;
    321 	case INCREMENTAL_INPUT_ARCHIVE:
    322 	  {
    323 	    Incremental_library* lib =
    324 		new Incremental_library(input_file.filename(), i,
    325 					&this->input_entry_readers_[i]);
    326 	    this->library_map_[i] = lib;
    327 	    unsigned int member_count = input_file.get_member_count();
    328 	    for (unsigned int j = 0; j < member_count; j++)
    329 	      {
    330 		int member_offset = input_file.get_member_offset(j);
    331 		int member_index = inputs.input_file_index(member_offset);
    332 		this->library_map_[member_index] = lib;
    333 	      }
    334 	  }
    335 	  break;
    336 	case INCREMENTAL_INPUT_SCRIPT:
    337 	  {
    338 	    Script_info* script = new Script_info(input_file.filename(), i);
    339 	    this->script_map_[i] = script;
    340 	    unsigned int object_count = input_file.get_object_count();
    341 	    for (unsigned int j = 0; j < object_count; j++)
    342 	      {
    343 		int object_offset = input_file.get_object_offset(j);
    344 		int object_index = inputs.input_file_index(object_offset);
    345 		this->script_map_[object_index] = script;
    346 	      }
    347 	  }
    348 	  break;
    349 	default:
    350 	  gold_unreachable();
    351 	}
    352     }
    353 
    354   // Initialize the map of global symbols.
    355   unsigned int nglobals = this->symtab_reader_.symbol_count();
    356   this->symbol_map_.resize(nglobals);
    357 
    358   this->has_incremental_info_ = true;
    359 }
    360 
    361 // Walk the list of input files given on the command line, and build
    362 // a direct map of file index to the corresponding input argument.
    363 
    364 void
    365 check_input_args(std::vector<const Input_argument*>& input_args_map,
    366 		 Input_arguments::const_iterator begin,
    367 		 Input_arguments::const_iterator end)
    368 {
    369   for (Input_arguments::const_iterator p = begin;
    370        p != end;
    371        ++p)
    372     {
    373       if (p->is_group())
    374 	{
    375 	  const Input_file_group* group = p->group();
    376 	  check_input_args(input_args_map, group->begin(), group->end());
    377 	}
    378       else if (p->is_lib())
    379 	{
    380 	  const Input_file_lib* lib = p->lib();
    381 	  check_input_args(input_args_map, lib->begin(), lib->end());
    382 	}
    383       else
    384 	{
    385 	  gold_assert(p->is_file());
    386 	  unsigned int arg_serial = p->file().arg_serial();
    387 	  if (arg_serial > 0)
    388 	    {
    389 	      gold_assert(arg_serial <= input_args_map.size());
    390 	      gold_assert(input_args_map[arg_serial - 1] == 0);
    391 	      input_args_map[arg_serial - 1] = &*p;
    392 	    }
    393 	}
    394     }
    395 }
    396 
    397 // Determine whether an incremental link based on the existing output file
    398 // can be done.
    399 
    400 template<int size, bool big_endian>
    401 bool
    402 Sized_incremental_binary<size, big_endian>::do_check_inputs(
    403     const Command_line& cmdline,
    404     Incremental_inputs* incremental_inputs)
    405 {
    406   Incremental_inputs_reader<size, big_endian>& inputs = this->inputs_reader_;
    407 
    408   if (!this->has_incremental_info_)
    409     {
    410       explain_no_incremental(_("no incremental data from previous build"));
    411       return false;
    412     }
    413 
    414   if (inputs.version() != INCREMENTAL_LINK_VERSION)
    415     {
    416       explain_no_incremental(_("different version of incremental build data"));
    417       return false;
    418     }
    419 
    420   if (incremental_inputs->command_line() != inputs.command_line())
    421     {
    422       gold_debug(DEBUG_INCREMENTAL,
    423 		 "old command line: %s",
    424 		 inputs.command_line());
    425       gold_debug(DEBUG_INCREMENTAL,
    426 		 "new command line: %s",
    427 		 incremental_inputs->command_line().c_str());
    428       explain_no_incremental(_("command line changed"));
    429       return false;
    430     }
    431 
    432   // Walk the list of input files given on the command line, and build
    433   // a direct map of argument serial numbers to the corresponding input
    434   // arguments.
    435   this->input_args_map_.resize(cmdline.number_of_input_files());
    436   check_input_args(this->input_args_map_, cmdline.begin(), cmdline.end());
    437 
    438   // Walk the list of input files to check for conditions that prevent
    439   // an incremental update link.
    440   unsigned int count = inputs.input_file_count();
    441   for (unsigned int i = 0; i < count; i++)
    442     {
    443       Input_entry_reader input_file = inputs.input_file(i);
    444       switch (input_file.type())
    445 	{
    446 	case INCREMENTAL_INPUT_OBJECT:
    447 	case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
    448 	case INCREMENTAL_INPUT_SHARED_LIBRARY:
    449 	case INCREMENTAL_INPUT_ARCHIVE:
    450 	  // No special treatment necessary.
    451 	  break;
    452 	case INCREMENTAL_INPUT_SCRIPT:
    453 	  if (this->do_file_has_changed(i))
    454 	    {
    455 	      explain_no_incremental(_("%s: script file changed"),
    456 				     input_file.filename());
    457 	      return false;
    458 	    }
    459 	  break;
    460 	default:
    461 	  gold_unreachable();
    462 	}
    463     }
    464 
    465   return true;
    466 }
    467 
    468 // Return TRUE if input file N has changed since the last incremental link.
    469 
    470 template<int size, bool big_endian>
    471 bool
    472 Sized_incremental_binary<size, big_endian>::do_file_has_changed(
    473     unsigned int n) const
    474 {
    475   Input_entry_reader input_file = this->inputs_reader_.input_file(n);
    476   Incremental_disposition disp = INCREMENTAL_CHECK;
    477 
    478   // For files named in scripts, find the file that was actually named
    479   // on the command line, so that we can get the incremental disposition
    480   // flag.
    481   Script_info* script = this->get_script_info(n);
    482   if (script != NULL)
    483     n = script->input_file_index();
    484 
    485   const Input_argument* input_argument = this->get_input_argument(n);
    486   if (input_argument != NULL)
    487     disp = input_argument->file().options().incremental_disposition();
    488 
    489   // For files at the beginning of the command line (i.e., those added
    490   // implicitly by gcc), check whether the --incremental-startup-unchanged
    491   // option was used.
    492   if (disp == INCREMENTAL_STARTUP)
    493     disp = parameters->options().incremental_startup_disposition();
    494 
    495   if (disp != INCREMENTAL_CHECK)
    496     return disp == INCREMENTAL_CHANGED;
    497 
    498   const char* filename = input_file.filename();
    499   Timespec old_mtime = input_file.get_mtime();
    500   Timespec new_mtime;
    501   if (!get_mtime(filename, &new_mtime))
    502     {
    503       // If we can't open get the current modification time, assume it has
    504       // changed.  If the file doesn't exist, we'll issue an error when we
    505       // try to open it later.
    506       return true;
    507     }
    508 
    509   if (new_mtime.seconds > old_mtime.seconds)
    510     return true;
    511   if (new_mtime.seconds == old_mtime.seconds
    512       && new_mtime.nanoseconds > old_mtime.nanoseconds)
    513     return true;
    514   return false;
    515 }
    516 
    517 // Initialize the layout of the output file based on the existing
    518 // output file.
    519 
    520 template<int size, bool big_endian>
    521 void
    522 Sized_incremental_binary<size, big_endian>::do_init_layout(Layout* layout)
    523 {
    524   typedef elfcpp::Shdr<size, big_endian> Shdr;
    525   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
    526 
    527   // Get views of the section headers and the section string table.
    528   const off_t shoff = this->elf_file_.shoff();
    529   const unsigned int shnum = this->elf_file_.shnum();
    530   const unsigned int shstrndx = this->elf_file_.shstrndx();
    531   Location shdrs_location(shoff, shnum * shdr_size);
    532   Location shstrndx_location(this->elf_file_.section_contents(shstrndx));
    533   View shdrs_view = this->view(shdrs_location);
    534   View shstrndx_view = this->view(shstrndx_location);
    535   elfcpp::Elf_strtab shstrtab(shstrndx_view.data(),
    536 			      shstrndx_location.data_size);
    537 
    538   layout->set_incremental_base(this);
    539 
    540   // Initialize the layout.
    541   this->section_map_.resize(shnum);
    542   const unsigned char* pshdr = shdrs_view.data() + shdr_size;
    543   for (unsigned int i = 1; i < shnum; i++)
    544     {
    545       Shdr shdr(pshdr);
    546       const char* name;
    547       if (!shstrtab.get_c_string(shdr.get_sh_name(), &name))
    548 	name = NULL;
    549       gold_debug(DEBUG_INCREMENTAL,
    550 		 "Output section: %2d %08lx %08lx %08lx %3d %s",
    551 		 i,
    552 		 static_cast<long>(shdr.get_sh_addr()),
    553 		 static_cast<long>(shdr.get_sh_offset()),
    554 		 static_cast<long>(shdr.get_sh_size()),
    555 		 shdr.get_sh_type(), name ? name : "<null>");
    556       this->section_map_[i] = layout->init_fixed_output_section(name, shdr);
    557       pshdr += shdr_size;
    558     }
    559 }
    560 
    561 // Mark regions of the input file that must be kept unchanged.
    562 
    563 template<int size, bool big_endian>
    564 void
    565 Sized_incremental_binary<size, big_endian>::do_reserve_layout(
    566     unsigned int input_file_index)
    567 {
    568   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
    569 
    570   Input_entry_reader input_file =
    571       this->inputs_reader_.input_file(input_file_index);
    572 
    573   if (input_file.type() == INCREMENTAL_INPUT_SHARED_LIBRARY)
    574     {
    575       // Reserve the BSS space used for COPY relocations.
    576       unsigned int nsyms = input_file.get_global_symbol_count();
    577       Incremental_binary::View symtab_view(NULL);
    578       unsigned int symtab_count;
    579       elfcpp::Elf_strtab strtab(NULL, 0);
    580       this->get_symtab_view(&symtab_view, &symtab_count, &strtab);
    581       for (unsigned int i = 0; i < nsyms; ++i)
    582 	{
    583 	  bool is_def;
    584 	  bool is_copy;
    585 	  unsigned int output_symndx =
    586 	      input_file.get_output_symbol_index(i, &is_def, &is_copy);
    587 	  if (is_copy)
    588 	    {
    589 	      const unsigned char* sym_p = (symtab_view.data()
    590 					    + output_symndx * sym_size);
    591 	      elfcpp::Sym<size, big_endian> gsym(sym_p);
    592 	      unsigned int shndx = gsym.get_st_shndx();
    593 	      if (shndx < 1 || shndx >= this->section_map_.size())
    594 		continue;
    595 	      Output_section* os = this->section_map_[shndx];
    596 	      off_t offset = gsym.get_st_value() - os->address();
    597 	      os->reserve(offset, gsym.get_st_size());
    598 	      gold_debug(DEBUG_INCREMENTAL,
    599 			 "Reserve for COPY reloc: %s, off %d, size %d",
    600 			 os->name(),
    601 			 static_cast<int>(offset),
    602 			 static_cast<int>(gsym.get_st_size()));
    603 	    }
    604 	}
    605       return;
    606     }
    607 
    608   unsigned int shnum = input_file.get_input_section_count();
    609   for (unsigned int i = 0; i < shnum; i++)
    610     {
    611       typename Input_entry_reader::Input_section_info sect =
    612 	  input_file.get_input_section(i);
    613       if (sect.output_shndx == 0 || sect.sh_offset == -1)
    614 	continue;
    615       Output_section* os = this->section_map_[sect.output_shndx];
    616       gold_assert(os != NULL);
    617       os->reserve(sect.sh_offset, sect.sh_size);
    618     }
    619 }
    620 
    621 // Process the GOT and PLT entries from the existing output file.
    622 
    623 template<int size, bool big_endian>
    624 void
    625 Sized_incremental_binary<size, big_endian>::do_process_got_plt(
    626     Symbol_table* symtab,
    627     Layout* layout)
    628 {
    629   Incremental_got_plt_reader<big_endian> got_plt_reader(this->got_plt_reader());
    630   Sized_target<size, big_endian>* target =
    631       parameters->sized_target<size, big_endian>();
    632 
    633   // Get the number of symbols in the main symbol table and in the
    634   // incremental symbol table.  The difference between the two counts
    635   // is the index of the first forced-local or global symbol in the
    636   // main symbol table.
    637   unsigned int symtab_count =
    638       this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
    639   unsigned int isym_count = this->symtab_reader_.symbol_count();
    640   unsigned int first_global = symtab_count - isym_count;
    641 
    642   // Tell the target how big the GOT and PLT sections are.
    643   unsigned int got_count = got_plt_reader.get_got_entry_count();
    644   unsigned int plt_count = got_plt_reader.get_plt_entry_count();
    645   Output_data_got_base* got =
    646       target->init_got_plt_for_update(symtab, layout, got_count, plt_count);
    647 
    648   // Read the GOT entries from the base file and build the outgoing GOT.
    649   for (unsigned int i = 0; i < got_count; ++i)
    650     {
    651       unsigned int got_type = got_plt_reader.get_got_type(i);
    652       if ((got_type & 0x7f) == 0x7f)
    653 	{
    654 	  // This is the second entry of a pair.
    655 	  got->reserve_slot(i);
    656 	  continue;
    657 	}
    658       unsigned int symndx = got_plt_reader.get_got_symndx(i);
    659       if (got_type & 0x80)
    660 	{
    661 	  // This is an entry for a local symbol.  Ignore this entry if
    662 	  // the object file was replaced.
    663 	  unsigned int input_index = got_plt_reader.get_got_input_index(i);
    664 	  gold_debug(DEBUG_INCREMENTAL,
    665 		     "GOT entry %d, type %02x: (local symbol)",
    666 		     i, got_type & 0x7f);
    667 	  Sized_relobj_incr<size, big_endian>* obj =
    668 	      this->input_object(input_index);
    669 	  if (obj != NULL)
    670 	    target->reserve_local_got_entry(i, obj, symndx, got_type & 0x7f);
    671 	}
    672       else
    673 	{
    674 	  // This is an entry for a global symbol.  GOT_DESC is the symbol
    675 	  // table index.
    676 	  // FIXME: This should really be a fatal error (corrupt input).
    677 	  gold_assert(symndx >= first_global && symndx < symtab_count);
    678 	  Symbol* sym = this->global_symbol(symndx - first_global);
    679 	  // Add the GOT entry only if the symbol is still referenced.
    680 	  if (sym != NULL && sym->in_reg())
    681 	    {
    682 	      gold_debug(DEBUG_INCREMENTAL,
    683 			 "GOT entry %d, type %02x: %s",
    684 			 i, got_type, sym->name());
    685 	      target->reserve_global_got_entry(i, sym, got_type);
    686 	    }
    687 	}
    688     }
    689 
    690   // Read the PLT entries from the base file and pass each to the target.
    691   for (unsigned int i = 0; i < plt_count; ++i)
    692     {
    693       unsigned int plt_desc = got_plt_reader.get_plt_desc(i);
    694       // FIXME: This should really be a fatal error (corrupt input).
    695       gold_assert(plt_desc >= first_global && plt_desc < symtab_count);
    696       Symbol* sym = this->global_symbol(plt_desc - first_global);
    697       // Add the PLT entry only if the symbol is still referenced.
    698       if (sym != NULL && sym->in_reg())
    699 	{
    700 	  gold_debug(DEBUG_INCREMENTAL,
    701 		     "PLT entry %d: %s",
    702 		     i, sym->name());
    703 	  target->register_global_plt_entry(symtab, layout, i, sym);
    704 	}
    705     }
    706 }
    707 
    708 // Emit COPY relocations from the existing output file.
    709 
    710 template<int size, bool big_endian>
    711 void
    712 Sized_incremental_binary<size, big_endian>::do_emit_copy_relocs(
    713     Symbol_table* symtab)
    714 {
    715   Sized_target<size, big_endian>* target =
    716       parameters->sized_target<size, big_endian>();
    717 
    718   for (typename Copy_relocs::iterator p = this->copy_relocs_.begin();
    719        p != this->copy_relocs_.end();
    720        ++p)
    721     {
    722       if (!(*p).symbol->is_copied_from_dynobj())
    723 	target->emit_copy_reloc(symtab, (*p).symbol, (*p).output_section,
    724 				(*p).offset);
    725     }
    726 }
    727 
    728 // Apply incremental relocations for symbols whose values have changed.
    729 
    730 template<int size, bool big_endian>
    731 void
    732 Sized_incremental_binary<size, big_endian>::do_apply_incremental_relocs(
    733     const Symbol_table* symtab,
    734     Layout* layout,
    735     Output_file* of)
    736 {
    737   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
    738   typedef typename elfcpp::Elf_types<size>::Elf_Swxword Addend;
    739   Incremental_symtab_reader<big_endian> isymtab(this->symtab_reader());
    740   Incremental_relocs_reader<size, big_endian> irelocs(this->relocs_reader());
    741   unsigned int nglobals = isymtab.symbol_count();
    742   const unsigned int incr_reloc_size = irelocs.reloc_size;
    743 
    744   Relocate_info<size, big_endian> relinfo;
    745   relinfo.symtab = symtab;
    746   relinfo.layout = layout;
    747   relinfo.object = NULL;
    748   relinfo.reloc_shndx = 0;
    749   relinfo.reloc_shdr = NULL;
    750   relinfo.data_shndx = 0;
    751   relinfo.data_shdr = NULL;
    752 
    753   Sized_target<size, big_endian>* target =
    754       parameters->sized_target<size, big_endian>();
    755 
    756   for (unsigned int i = 0; i < nglobals; i++)
    757     {
    758       const Symbol* gsym = this->global_symbol(i);
    759 
    760       // If the symbol is not referenced from any unchanged input files,
    761       // we do not need to reapply any of its relocations.
    762       if (gsym == NULL)
    763 	continue;
    764 
    765       // If the symbol is defined in an unchanged file, we do not need to
    766       // reapply any of its relocations.
    767       if (gsym->source() == Symbol::FROM_OBJECT
    768 	  && gsym->object()->is_incremental())
    769 	continue;
    770 
    771       gold_debug(DEBUG_INCREMENTAL,
    772 		 "Applying incremental relocations for global symbol %s [%d]",
    773 		 gsym->name(), i);
    774 
    775       // Follow the linked list of input symbol table entries for this symbol.
    776       // We don't bother to figure out whether the symbol table entry belongs
    777       // to a changed or unchanged file because it's easier just to apply all
    778       // the relocations -- although we might scribble over an area that has
    779       // been reallocated, we do this before copying any new data into the
    780       // output file.
    781       unsigned int offset = isymtab.get_list_head(i);
    782       while (offset > 0)
    783 	{
    784 	  Incremental_global_symbol_reader<big_endian> sym_info =
    785 	      this->inputs_reader().global_symbol_reader_at_offset(offset);
    786 	  unsigned int r_base = sym_info.reloc_offset();
    787 	  unsigned int r_count = sym_info.reloc_count();
    788 
    789 	  // Apply each relocation for this symbol table entry.
    790 	  for (unsigned int j = 0; j < r_count;
    791 	       ++j, r_base += incr_reloc_size)
    792 	    {
    793 	      unsigned int r_type = irelocs.get_r_type(r_base);
    794 	      unsigned int r_shndx = irelocs.get_r_shndx(r_base);
    795 	      Address r_offset = irelocs.get_r_offset(r_base);
    796 	      Addend r_addend = irelocs.get_r_addend(r_base);
    797 	      Output_section* os = this->output_section(r_shndx);
    798 	      Address address = os->address();
    799 	      off_t section_offset = os->offset();
    800 	      size_t view_size = os->data_size();
    801 	      unsigned char* const view = of->get_output_view(section_offset,
    802 							      view_size);
    803 
    804 	      gold_debug(DEBUG_INCREMENTAL,
    805 			 "  %08lx: %s + %d: type %d addend %ld",
    806 			 (long)(section_offset + r_offset),
    807 			 os->name(),
    808 			 (int)r_offset,
    809 			 r_type,
    810 			 (long)r_addend);
    811 
    812 	      target->apply_relocation(&relinfo, r_offset, r_type, r_addend,
    813 				       gsym, view, address, view_size);
    814 
    815 	      // FIXME: Do something more efficient if write_output_view
    816 	      // ever becomes more than a no-op.
    817 	      of->write_output_view(section_offset, view_size, view);
    818 	    }
    819 	  offset = sym_info.next_offset();
    820 	}
    821     }
    822 }
    823 
    824 // Get a view of the main symbol table and the symbol string table.
    825 
    826 template<int size, bool big_endian>
    827 void
    828 Sized_incremental_binary<size, big_endian>::get_symtab_view(
    829     View* symtab_view,
    830     unsigned int* nsyms,
    831     elfcpp::Elf_strtab* strtab)
    832 {
    833   *symtab_view = this->view(this->main_symtab_loc_);
    834   *nsyms = this->main_symtab_loc_.data_size / elfcpp::Elf_sizes<size>::sym_size;
    835 
    836   View strtab_view(this->view(this->main_strtab_loc_));
    837   *strtab = elfcpp::Elf_strtab(strtab_view.data(),
    838 			       this->main_strtab_loc_.data_size);
    839 }
    840 
    841 namespace
    842 {
    843 
    844 // Create a Sized_incremental_binary object of the specified size and
    845 // endianness. Fails if the target architecture is not supported.
    846 
    847 template<int size, bool big_endian>
    848 Incremental_binary*
    849 make_sized_incremental_binary(Output_file* file,
    850 			      const elfcpp::Ehdr<size, big_endian>& ehdr)
    851 {
    852   Target* target = select_target(NULL, 0, // XXX
    853 				 ehdr.get_e_machine(), size, big_endian,
    854 				 ehdr.get_e_ident()[elfcpp::EI_OSABI],
    855 				 ehdr.get_e_ident()[elfcpp::EI_ABIVERSION]);
    856   if (target == NULL)
    857     {
    858       explain_no_incremental(_("unsupported ELF machine number %d"),
    859 	       ehdr.get_e_machine());
    860       return NULL;
    861     }
    862 
    863   if (!parameters->target_valid())
    864     set_parameters_target(target);
    865   else if (target != &parameters->target())
    866     gold_error(_("%s: incompatible target"), file->filename());
    867 
    868   return new Sized_incremental_binary<size, big_endian>(file, ehdr, target);
    869 }
    870 
    871 }  // End of anonymous namespace.
    872 
    873 // Create an Incremental_binary object for FILE.  Returns NULL is this is not
    874 // possible, e.g. FILE is not an ELF file or has an unsupported target.  FILE
    875 // should be opened.
    876 
    877 Incremental_binary*
    878 open_incremental_binary(Output_file* file)
    879 {
    880   off_t filesize = file->filesize();
    881   int want = elfcpp::Elf_recognizer::max_header_size;
    882   if (filesize < want)
    883     want = filesize;
    884 
    885   const unsigned char* p = file->get_input_view(0, want);
    886   if (!elfcpp::Elf_recognizer::is_elf_file(p, want))
    887     {
    888       explain_no_incremental(_("output is not an ELF file."));
    889       return NULL;
    890     }
    891 
    892   int size = 0;
    893   bool big_endian = false;
    894   std::string error;
    895   if (!elfcpp::Elf_recognizer::is_valid_header(p, want, &size, &big_endian,
    896 					       &error))
    897     {
    898       explain_no_incremental(error.c_str());
    899       return NULL;
    900     }
    901 
    902   Incremental_binary* result = NULL;
    903   if (size == 32)
    904     {
    905       if (big_endian)
    906 	{
    907 #ifdef HAVE_TARGET_32_BIG
    908 	  result = make_sized_incremental_binary<32, true>(
    909 	      file, elfcpp::Ehdr<32, true>(p));
    910 #else
    911 	  explain_no_incremental(_("unsupported file: 32-bit, big-endian"));
    912 #endif
    913 	}
    914       else
    915 	{
    916 #ifdef HAVE_TARGET_32_LITTLE
    917 	  result = make_sized_incremental_binary<32, false>(
    918 	      file, elfcpp::Ehdr<32, false>(p));
    919 #else
    920 	  explain_no_incremental(_("unsupported file: 32-bit, little-endian"));
    921 #endif
    922 	}
    923     }
    924   else if (size == 64)
    925     {
    926       if (big_endian)
    927 	{
    928 #ifdef HAVE_TARGET_64_BIG
    929 	  result = make_sized_incremental_binary<64, true>(
    930 	      file, elfcpp::Ehdr<64, true>(p));
    931 #else
    932 	  explain_no_incremental(_("unsupported file: 64-bit, big-endian"));
    933 #endif
    934 	}
    935       else
    936 	{
    937 #ifdef HAVE_TARGET_64_LITTLE
    938 	  result = make_sized_incremental_binary<64, false>(
    939 	      file, elfcpp::Ehdr<64, false>(p));
    940 #else
    941 	  explain_no_incremental(_("unsupported file: 64-bit, little-endian"));
    942 #endif
    943 	}
    944     }
    945   else
    946     gold_unreachable();
    947 
    948   return result;
    949 }
    950 
    951 // Class Incremental_inputs.
    952 
    953 // Add the command line to the string table, setting
    954 // command_line_key_.  In incremental builds, the command line is
    955 // stored in .gnu_incremental_inputs so that the next linker run can
    956 // check if the command line options didn't change.
    957 
    958 void
    959 Incremental_inputs::report_command_line(int argc, const char* const* argv)
    960 {
    961   // Always store 'gold' as argv[0] to avoid a full relink if the user used a
    962   // different path to the linker.
    963   std::string args("gold");
    964   // Copied from collect_argv in main.cc.
    965   for (int i = 1; i < argc; ++i)
    966     {
    967       // Adding/removing these options should not result in a full relink.
    968       if (strcmp(argv[i], "--incremental") == 0
    969 	  || strcmp(argv[i], "--incremental-full") == 0
    970 	  || strcmp(argv[i], "--incremental-update") == 0
    971 	  || strcmp(argv[i], "--incremental-changed") == 0
    972 	  || strcmp(argv[i], "--incremental-unchanged") == 0
    973 	  || strcmp(argv[i], "--incremental-unknown") == 0
    974 	  || strcmp(argv[i], "--incremental-startup-unchanged") == 0
    975 	  || is_prefix_of("--incremental-base=", argv[i])
    976 	  || is_prefix_of("--incremental-patch=", argv[i])
    977 	  || is_prefix_of("--debug=", argv[i]))
    978 	continue;
    979       if (strcmp(argv[i], "--incremental-base") == 0
    980 	  || strcmp(argv[i], "--incremental-patch") == 0
    981 	  || strcmp(argv[i], "--debug") == 0)
    982 	{
    983 	  // When these options are used without the '=', skip the
    984 	  // following parameter as well.
    985 	  ++i;
    986 	  continue;
    987 	}
    988 
    989       args.append(" '");
    990       // Now append argv[i], but with all single-quotes escaped
    991       const char* argpos = argv[i];
    992       while (1)
    993 	{
    994 	  const int len = strcspn(argpos, "'");
    995 	  args.append(argpos, len);
    996 	  if (argpos[len] == '\0')
    997 	    break;
    998 	  args.append("'\"'\"'");
    999 	  argpos += len + 1;
   1000 	}
   1001       args.append("'");
   1002     }
   1003 
   1004   this->command_line_ = args;
   1005   this->strtab_->add(this->command_line_.c_str(), false,
   1006 		     &this->command_line_key_);
   1007 }
   1008 
   1009 // Record the input archive file ARCHIVE.  This is called by the
   1010 // Add_archive_symbols task before determining which archive members
   1011 // to include.  We create the Incremental_archive_entry here and
   1012 // attach it to the Archive, but we do not add it to the list of
   1013 // input objects until report_archive_end is called.
   1014 
   1015 void
   1016 Incremental_inputs::report_archive_begin(Library_base* arch,
   1017 					 unsigned int arg_serial,
   1018 					 Script_info* script_info)
   1019 {
   1020   Stringpool::Key filename_key;
   1021   Timespec mtime = arch->get_mtime();
   1022 
   1023   // For a file loaded from a script, don't record its argument serial number.
   1024   if (script_info != NULL)
   1025     arg_serial = 0;
   1026 
   1027   this->strtab_->add(arch->filename().c_str(), false, &filename_key);
   1028   Incremental_archive_entry* entry =
   1029       new Incremental_archive_entry(filename_key, arg_serial, mtime);
   1030   arch->set_incremental_info(entry);
   1031 
   1032   if (script_info != NULL)
   1033     {
   1034       Incremental_script_entry* script_entry = script_info->incremental_info();
   1035       gold_assert(script_entry != NULL);
   1036       script_entry->add_object(entry);
   1037     }
   1038 }
   1039 
   1040 // Visitor class for processing the unused global symbols in a library.
   1041 // An instance of this class is passed to the library's
   1042 // for_all_unused_symbols() iterator, which will call the visit()
   1043 // function for each global symbol defined in each unused library
   1044 // member.  We add those symbol names to the incremental info for the
   1045 // library.
   1046 
   1047 class Unused_symbol_visitor : public Library_base::Symbol_visitor_base
   1048 {
   1049  public:
   1050   Unused_symbol_visitor(Incremental_archive_entry* entry, Stringpool* strtab)
   1051     : entry_(entry), strtab_(strtab)
   1052   { }
   1053 
   1054   void
   1055   visit(const char* sym)
   1056   {
   1057     Stringpool::Key symbol_key;
   1058     this->strtab_->add(sym, true, &symbol_key);
   1059     this->entry_->add_unused_global_symbol(symbol_key);
   1060   }
   1061 
   1062  private:
   1063   Incremental_archive_entry* entry_;
   1064   Stringpool* strtab_;
   1065 };
   1066 
   1067 // Finish recording the input archive file ARCHIVE.  This is called by the
   1068 // Add_archive_symbols task after determining which archive members
   1069 // to include.
   1070 
   1071 void
   1072 Incremental_inputs::report_archive_end(Library_base* arch)
   1073 {
   1074   Incremental_archive_entry* entry = arch->incremental_info();
   1075 
   1076   gold_assert(entry != NULL);
   1077   this->inputs_.push_back(entry);
   1078 
   1079   // Collect unused global symbols.
   1080   Unused_symbol_visitor v(entry, this->strtab_);
   1081   arch->for_all_unused_symbols(&v);
   1082 }
   1083 
   1084 // Record the input object file OBJ.  If ARCH is not NULL, attach
   1085 // the object file to the archive.  This is called by the
   1086 // Add_symbols task after finding out the type of the file.
   1087 
   1088 void
   1089 Incremental_inputs::report_object(Object* obj, unsigned int arg_serial,
   1090 				  Library_base* arch, Script_info* script_info)
   1091 {
   1092   Stringpool::Key filename_key;
   1093   Timespec mtime = obj->get_mtime();
   1094 
   1095   // For a file loaded from a script, don't record its argument serial number.
   1096   if (script_info != NULL)
   1097     arg_serial = 0;
   1098 
   1099   this->strtab_->add(obj->name().c_str(), false, &filename_key);
   1100 
   1101   Incremental_input_entry* input_entry;
   1102 
   1103   this->current_object_ = obj;
   1104 
   1105   if (!obj->is_dynamic())
   1106     {
   1107       this->current_object_entry_ =
   1108 	  new Incremental_object_entry(filename_key, obj, arg_serial, mtime);
   1109       input_entry = this->current_object_entry_;
   1110       if (arch != NULL)
   1111 	{
   1112 	  Incremental_archive_entry* arch_entry = arch->incremental_info();
   1113 	  gold_assert(arch_entry != NULL);
   1114 	  arch_entry->add_object(this->current_object_entry_);
   1115 	}
   1116     }
   1117   else
   1118     {
   1119       this->current_object_entry_ = NULL;
   1120       Stringpool::Key soname_key;
   1121       Dynobj* dynobj = obj->dynobj();
   1122       gold_assert(dynobj != NULL);
   1123       this->strtab_->add(dynobj->soname(), false, &soname_key);
   1124       input_entry = new Incremental_dynobj_entry(filename_key, soname_key, obj,
   1125 						 arg_serial, mtime);
   1126     }
   1127 
   1128   if (obj->is_in_system_directory())
   1129     input_entry->set_is_in_system_directory();
   1130 
   1131   if (obj->as_needed())
   1132     input_entry->set_as_needed();
   1133 
   1134   this->inputs_.push_back(input_entry);
   1135 
   1136   if (script_info != NULL)
   1137     {
   1138       Incremental_script_entry* script_entry = script_info->incremental_info();
   1139       gold_assert(script_entry != NULL);
   1140       script_entry->add_object(input_entry);
   1141     }
   1142 }
   1143 
   1144 // Record an input section SHNDX from object file OBJ.
   1145 
   1146 void
   1147 Incremental_inputs::report_input_section(Object* obj, unsigned int shndx,
   1148 					 const char* name, off_t sh_size)
   1149 {
   1150   Stringpool::Key key = 0;
   1151 
   1152   if (name != NULL)
   1153     this->strtab_->add(name, true, &key);
   1154 
   1155   gold_assert(obj == this->current_object_);
   1156   gold_assert(this->current_object_entry_ != NULL);
   1157   this->current_object_entry_->add_input_section(shndx, key, sh_size);
   1158 }
   1159 
   1160 // Record a kept COMDAT group belonging to object file OBJ.
   1161 
   1162 void
   1163 Incremental_inputs::report_comdat_group(Object* obj, const char* name)
   1164 {
   1165   Stringpool::Key key = 0;
   1166 
   1167   if (name != NULL)
   1168     this->strtab_->add(name, true, &key);
   1169   gold_assert(obj == this->current_object_);
   1170   gold_assert(this->current_object_entry_ != NULL);
   1171   this->current_object_entry_->add_comdat_group(key);
   1172 }
   1173 
   1174 // Record that the input argument INPUT is a script SCRIPT.  This is
   1175 // called by read_script after parsing the script and reading the list
   1176 // of inputs added by this script.
   1177 
   1178 void
   1179 Incremental_inputs::report_script(Script_info* script,
   1180 				  unsigned int arg_serial,
   1181 				  Timespec mtime)
   1182 {
   1183   Stringpool::Key filename_key;
   1184 
   1185   this->strtab_->add(script->filename().c_str(), false, &filename_key);
   1186   Incremental_script_entry* entry =
   1187       new Incremental_script_entry(filename_key, arg_serial, script, mtime);
   1188   this->inputs_.push_back(entry);
   1189   script->set_incremental_info(entry);
   1190 }
   1191 
   1192 // Finalize the incremental link information.  Called from
   1193 // Layout::finalize.
   1194 
   1195 void
   1196 Incremental_inputs::finalize()
   1197 {
   1198   // Finalize the string table.
   1199   this->strtab_->set_string_offsets();
   1200 }
   1201 
   1202 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
   1203 
   1204 void
   1205 Incremental_inputs::create_data_sections(Symbol_table* symtab)
   1206 {
   1207   int reloc_align = 4;
   1208 
   1209   switch (parameters->size_and_endianness())
   1210     {
   1211 #ifdef HAVE_TARGET_32_LITTLE
   1212     case Parameters::TARGET_32_LITTLE:
   1213       this->inputs_section_ =
   1214 	  new Output_section_incremental_inputs<32, false>(this, symtab);
   1215       reloc_align = 4;
   1216       break;
   1217 #endif
   1218 #ifdef HAVE_TARGET_32_BIG
   1219     case Parameters::TARGET_32_BIG:
   1220       this->inputs_section_ =
   1221 	  new Output_section_incremental_inputs<32, true>(this, symtab);
   1222       reloc_align = 4;
   1223       break;
   1224 #endif
   1225 #ifdef HAVE_TARGET_64_LITTLE
   1226     case Parameters::TARGET_64_LITTLE:
   1227       this->inputs_section_ =
   1228 	  new Output_section_incremental_inputs<64, false>(this, symtab);
   1229       reloc_align = 8;
   1230       break;
   1231 #endif
   1232 #ifdef HAVE_TARGET_64_BIG
   1233     case Parameters::TARGET_64_BIG:
   1234       this->inputs_section_ =
   1235 	  new Output_section_incremental_inputs<64, true>(this, symtab);
   1236       reloc_align = 8;
   1237       break;
   1238 #endif
   1239     default:
   1240       gold_unreachable();
   1241     }
   1242   this->symtab_section_ = new Output_data_space(4, "** incremental_symtab");
   1243   this->relocs_section_ = new Output_data_space(reloc_align,
   1244 						"** incremental_relocs");
   1245   this->got_plt_section_ = new Output_data_space(4, "** incremental_got_plt");
   1246 }
   1247 
   1248 // Return the sh_entsize value for the .gnu_incremental_relocs section.
   1249 unsigned int
   1250 Incremental_inputs::relocs_entsize() const
   1251 {
   1252   return 8 + 2 * parameters->target().get_size() / 8;
   1253 }
   1254 
   1255 // Class Output_section_incremental_inputs.
   1256 
   1257 // Finalize the offsets for each input section and supplemental info block,
   1258 // and set the final data size of the incremental output sections.
   1259 
   1260 template<int size, bool big_endian>
   1261 void
   1262 Output_section_incremental_inputs<size, big_endian>::set_final_data_size()
   1263 {
   1264   const Incremental_inputs* inputs = this->inputs_;
   1265 
   1266   // Offset of each input entry.
   1267   unsigned int input_offset = this->header_size;
   1268 
   1269   // Offset of each supplemental info block.
   1270   unsigned int file_index = 0;
   1271   unsigned int info_offset = this->header_size;
   1272   info_offset += this->input_entry_size * inputs->input_file_count();
   1273 
   1274   // Count each input file and its supplemental information block.
   1275   for (Incremental_inputs::Input_list::const_iterator p =
   1276 	   inputs->input_files().begin();
   1277        p != inputs->input_files().end();
   1278        ++p)
   1279     {
   1280       // Set the index and offset of the input file entry.
   1281       (*p)->set_offset(file_index, input_offset);
   1282       ++file_index;
   1283       input_offset += this->input_entry_size;
   1284 
   1285       // Set the offset of the supplemental info block.
   1286       switch ((*p)->type())
   1287 	{
   1288 	case INCREMENTAL_INPUT_SCRIPT:
   1289 	  {
   1290 	    Incremental_script_entry *entry = (*p)->script_entry();
   1291 	    gold_assert(entry != NULL);
   1292 	    (*p)->set_info_offset(info_offset);
   1293 	    // Object count.
   1294 	    info_offset += 4;
   1295 	    // Each member.
   1296 	    info_offset += (entry->get_object_count() * 4);
   1297 	  }
   1298 	  break;
   1299 	case INCREMENTAL_INPUT_OBJECT:
   1300 	case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
   1301 	  {
   1302 	    Incremental_object_entry* entry = (*p)->object_entry();
   1303 	    gold_assert(entry != NULL);
   1304 	    (*p)->set_info_offset(info_offset);
   1305 	    // Input section count, global symbol count, local symbol offset,
   1306 	    // local symbol count, first dynamic reloc, dynamic reloc count,
   1307 	    // comdat group count.
   1308 	    info_offset += this->object_info_size;
   1309 	    // Each input section.
   1310 	    info_offset += (entry->get_input_section_count()
   1311 			    * this->input_section_entry_size);
   1312 	    // Each global symbol.
   1313 	    const Object::Symbols* syms = entry->object()->get_global_symbols();
   1314 	    info_offset += syms->size() * this->global_sym_entry_size;
   1315 	    // Each comdat group.
   1316 	    info_offset += entry->get_comdat_group_count() * 4;
   1317 	  }
   1318 	  break;
   1319 	case INCREMENTAL_INPUT_SHARED_LIBRARY:
   1320 	  {
   1321 	    Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
   1322 	    gold_assert(entry != NULL);
   1323 	    (*p)->set_info_offset(info_offset);
   1324 	    // Global symbol count, soname index.
   1325 	    info_offset += 8;
   1326 	    // Each global symbol.
   1327 	    const Object::Symbols* syms = entry->object()->get_global_symbols();
   1328 	    gold_assert(syms != NULL);
   1329 	    unsigned int nsyms = syms->size();
   1330 	    unsigned int nsyms_out = 0;
   1331 	    for (unsigned int i = 0; i < nsyms; ++i)
   1332 	      {
   1333 		const Symbol* sym = (*syms)[i];
   1334 		if (sym == NULL)
   1335 		  continue;
   1336 		if (sym->is_forwarder())
   1337 		  sym = this->symtab_->resolve_forwards(sym);
   1338 		if (sym->symtab_index() != -1U)
   1339 		  ++nsyms_out;
   1340 	      }
   1341 	    info_offset += nsyms_out * 4;
   1342 	  }
   1343 	  break;
   1344 	case INCREMENTAL_INPUT_ARCHIVE:
   1345 	  {
   1346 	    Incremental_archive_entry* entry = (*p)->archive_entry();
   1347 	    gold_assert(entry != NULL);
   1348 	    (*p)->set_info_offset(info_offset);
   1349 	    // Member count + unused global symbol count.
   1350 	    info_offset += 8;
   1351 	    // Each member.
   1352 	    info_offset += (entry->get_member_count() * 4);
   1353 	    // Each global symbol.
   1354 	    info_offset += (entry->get_unused_global_symbol_count() * 4);
   1355 	  }
   1356 	  break;
   1357 	default:
   1358 	  gold_unreachable();
   1359 	}
   1360 
   1361      // Pad so each supplemental info block begins at an 8-byte boundary.
   1362      if (info_offset & 4)
   1363        info_offset += 4;
   1364    }
   1365 
   1366   this->set_data_size(info_offset);
   1367 
   1368   // Set the size of the .gnu_incremental_symtab section.
   1369   inputs->symtab_section()->set_current_data_size(this->symtab_->output_count()
   1370 						  * sizeof(unsigned int));
   1371 
   1372   // Set the size of the .gnu_incremental_relocs section.
   1373   inputs->relocs_section()->set_current_data_size(inputs->get_reloc_count()
   1374 						  * this->incr_reloc_size);
   1375 
   1376   // Set the size of the .gnu_incremental_got_plt section.
   1377   Sized_target<size, big_endian>* target =
   1378     parameters->sized_target<size, big_endian>();
   1379   unsigned int got_count = target->got_entry_count();
   1380   unsigned int plt_count = target->plt_entry_count();
   1381   unsigned int got_plt_size = 8;  // GOT entry count, PLT entry count.
   1382   got_plt_size = (got_plt_size + got_count + 3) & ~3;  // GOT type array.
   1383   got_plt_size += got_count * 8 + plt_count * 4;  // GOT array, PLT array.
   1384   inputs->got_plt_section()->set_current_data_size(got_plt_size);
   1385 }
   1386 
   1387 // Write the contents of the .gnu_incremental_inputs and
   1388 // .gnu_incremental_symtab sections.
   1389 
   1390 template<int size, bool big_endian>
   1391 void
   1392 Output_section_incremental_inputs<size, big_endian>::do_write(Output_file* of)
   1393 {
   1394   const Incremental_inputs* inputs = this->inputs_;
   1395   Stringpool* strtab = inputs->get_stringpool();
   1396 
   1397   // Get a view into the .gnu_incremental_inputs section.
   1398   const off_t off = this->offset();
   1399   const off_t oview_size = this->data_size();
   1400   unsigned char* const oview = of->get_output_view(off, oview_size);
   1401   unsigned char* pov = oview;
   1402 
   1403   // Get a view into the .gnu_incremental_symtab section.
   1404   const off_t symtab_off = inputs->symtab_section()->offset();
   1405   const off_t symtab_size = inputs->symtab_section()->data_size();
   1406   unsigned char* const symtab_view = of->get_output_view(symtab_off,
   1407 							 symtab_size);
   1408 
   1409   // Allocate an array of linked list heads for the .gnu_incremental_symtab
   1410   // section.  Each element corresponds to a global symbol in the output
   1411   // symbol table, and points to the head of the linked list that threads
   1412   // through the object file input entries.  The value of each element
   1413   // is the section-relative offset to a global symbol entry in a
   1414   // supplemental information block.
   1415   unsigned int global_sym_count = this->symtab_->output_count();
   1416   unsigned int* global_syms = new unsigned int[global_sym_count];
   1417   memset(global_syms, 0, global_sym_count * sizeof(unsigned int));
   1418 
   1419   // Write the section header.
   1420   Stringpool::Key command_line_key = inputs->command_line_key();
   1421   pov = this->write_header(pov, inputs->input_file_count(),
   1422 			   strtab->get_offset_from_key(command_line_key));
   1423 
   1424   // Write the list of input files.
   1425   pov = this->write_input_files(oview, pov, strtab);
   1426 
   1427   // Write the supplemental information blocks for each input file.
   1428   pov = this->write_info_blocks(oview, pov, strtab, global_syms,
   1429 				global_sym_count);
   1430 
   1431   gold_assert(pov - oview == oview_size);
   1432 
   1433   // Write the .gnu_incremental_symtab section.
   1434   gold_assert(static_cast<off_t>(global_sym_count) * 4 == symtab_size);
   1435   this->write_symtab(symtab_view, global_syms, global_sym_count);
   1436 
   1437   delete[] global_syms;
   1438 
   1439   // Write the .gnu_incremental_got_plt section.
   1440   const off_t got_plt_off = inputs->got_plt_section()->offset();
   1441   const off_t got_plt_size = inputs->got_plt_section()->data_size();
   1442   unsigned char* const got_plt_view = of->get_output_view(got_plt_off,
   1443 							  got_plt_size);
   1444   this->write_got_plt(got_plt_view, got_plt_size);
   1445 
   1446   of->write_output_view(off, oview_size, oview);
   1447   of->write_output_view(symtab_off, symtab_size, symtab_view);
   1448   of->write_output_view(got_plt_off, got_plt_size, got_plt_view);
   1449 }
   1450 
   1451 // Write the section header: version, input file count, offset of command line
   1452 // in the string table, and 4 bytes of padding.
   1453 
   1454 template<int size, bool big_endian>
   1455 unsigned char*
   1456 Output_section_incremental_inputs<size, big_endian>::write_header(
   1457     unsigned char* pov,
   1458     unsigned int input_file_count,
   1459     section_offset_type command_line_offset)
   1460 {
   1461   Swap32::writeval(pov, INCREMENTAL_LINK_VERSION);
   1462   Swap32::writeval(pov + 4, input_file_count);
   1463   Swap32::writeval(pov + 8, command_line_offset);
   1464   Swap32::writeval(pov + 12, 0);
   1465   gold_assert(this->header_size == 16);
   1466   return pov + this->header_size;
   1467 }
   1468 
   1469 // Write the input file entries.
   1470 
   1471 template<int size, bool big_endian>
   1472 unsigned char*
   1473 Output_section_incremental_inputs<size, big_endian>::write_input_files(
   1474     unsigned char* oview,
   1475     unsigned char* pov,
   1476     Stringpool* strtab)
   1477 {
   1478   const Incremental_inputs* inputs = this->inputs_;
   1479 
   1480   for (Incremental_inputs::Input_list::const_iterator p =
   1481 	   inputs->input_files().begin();
   1482        p != inputs->input_files().end();
   1483        ++p)
   1484     {
   1485       gold_assert(static_cast<unsigned int>(pov - oview) == (*p)->get_offset());
   1486       section_offset_type filename_offset =
   1487 	  strtab->get_offset_from_key((*p)->get_filename_key());
   1488       const Timespec& mtime = (*p)->get_mtime();
   1489       unsigned int flags = (*p)->type();
   1490       if ((*p)->is_in_system_directory())
   1491 	flags |= INCREMENTAL_INPUT_IN_SYSTEM_DIR;
   1492       if ((*p)->as_needed())
   1493 	flags |= INCREMENTAL_INPUT_AS_NEEDED;
   1494       Swap32::writeval(pov, filename_offset);
   1495       Swap32::writeval(pov + 4, (*p)->get_info_offset());
   1496       Swap64::writeval(pov + 8, mtime.seconds);
   1497       Swap32::writeval(pov + 16, mtime.nanoseconds);
   1498       Swap16::writeval(pov + 20, flags);
   1499       Swap16::writeval(pov + 22, (*p)->arg_serial());
   1500       gold_assert(this->input_entry_size == 24);
   1501       pov += this->input_entry_size;
   1502     }
   1503   return pov;
   1504 }
   1505 
   1506 // Write the supplemental information blocks.
   1507 
   1508 template<int size, bool big_endian>
   1509 unsigned char*
   1510 Output_section_incremental_inputs<size, big_endian>::write_info_blocks(
   1511     unsigned char* oview,
   1512     unsigned char* pov,
   1513     Stringpool* strtab,
   1514     unsigned int* global_syms,
   1515     unsigned int global_sym_count)
   1516 {
   1517   const Incremental_inputs* inputs = this->inputs_;
   1518   unsigned int first_global_index = this->symtab_->first_global_index();
   1519 
   1520   for (Incremental_inputs::Input_list::const_iterator p =
   1521 	   inputs->input_files().begin();
   1522        p != inputs->input_files().end();
   1523        ++p)
   1524     {
   1525       switch ((*p)->type())
   1526 	{
   1527 	case INCREMENTAL_INPUT_SCRIPT:
   1528 	  {
   1529 	    gold_assert(static_cast<unsigned int>(pov - oview)
   1530 			== (*p)->get_info_offset());
   1531 	    Incremental_script_entry* entry = (*p)->script_entry();
   1532 	    gold_assert(entry != NULL);
   1533 
   1534 	    // Write the object count.
   1535 	    unsigned int nobjects = entry->get_object_count();
   1536 	    Swap32::writeval(pov, nobjects);
   1537 	    pov += 4;
   1538 
   1539 	    // For each object, write the offset to its input file entry.
   1540 	    for (unsigned int i = 0; i < nobjects; ++i)
   1541 	      {
   1542 		Incremental_input_entry* obj = entry->get_object(i);
   1543 		Swap32::writeval(pov, obj->get_offset());
   1544 		pov += 4;
   1545 	      }
   1546 	  }
   1547 	  break;
   1548 
   1549 	case INCREMENTAL_INPUT_OBJECT:
   1550 	case INCREMENTAL_INPUT_ARCHIVE_MEMBER:
   1551 	  {
   1552 	    gold_assert(static_cast<unsigned int>(pov - oview)
   1553 			== (*p)->get_info_offset());
   1554 	    Incremental_object_entry* entry = (*p)->object_entry();
   1555 	    gold_assert(entry != NULL);
   1556 	    const Object* obj = entry->object();
   1557 	    const Relobj* relobj = static_cast<const Relobj*>(obj);
   1558 	    const Object::Symbols* syms = obj->get_global_symbols();
   1559 	    // Write the input section count and global symbol count.
   1560 	    unsigned int nsections = entry->get_input_section_count();
   1561 	    unsigned int nsyms = syms->size();
   1562 	    off_t locals_offset = relobj->local_symbol_offset();
   1563 	    unsigned int nlocals = relobj->output_local_symbol_count();
   1564 	    unsigned int first_dynrel = relobj->first_dyn_reloc();
   1565 	    unsigned int ndynrel = relobj->dyn_reloc_count();
   1566 	    unsigned int ncomdat = entry->get_comdat_group_count();
   1567 	    Swap32::writeval(pov, nsections);
   1568 	    Swap32::writeval(pov + 4, nsyms);
   1569 	    Swap32::writeval(pov + 8, static_cast<unsigned int>(locals_offset));
   1570 	    Swap32::writeval(pov + 12, nlocals);
   1571 	    Swap32::writeval(pov + 16, first_dynrel);
   1572 	    Swap32::writeval(pov + 20, ndynrel);
   1573 	    Swap32::writeval(pov + 24, ncomdat);
   1574 	    Swap32::writeval(pov + 28, 0);
   1575 	    gold_assert(this->object_info_size == 32);
   1576 	    pov += this->object_info_size;
   1577 
   1578 	    // Build a temporary array to map input section indexes
   1579 	    // from the original object file index to the index in the
   1580 	    // incremental info table.
   1581 	    unsigned int* index_map = new unsigned int[obj->shnum()];
   1582 	    memset(index_map, 0, obj->shnum() * sizeof(unsigned int));
   1583 
   1584 	    // For each input section, write the name, output section index,
   1585 	    // offset within output section, and input section size.
   1586 	    for (unsigned int i = 0; i < nsections; i++)
   1587 	      {
   1588 		unsigned int shndx = entry->get_input_section_index(i);
   1589 		index_map[shndx] = i + 1;
   1590 		Stringpool::Key key = entry->get_input_section_name_key(i);
   1591 		off_t name_offset = 0;
   1592 		if (key != 0)
   1593 		  name_offset = strtab->get_offset_from_key(key);
   1594 		int out_shndx = 0;
   1595 		off_t out_offset = 0;
   1596 		off_t sh_size = 0;
   1597 		Output_section* os = obj->output_section(shndx);
   1598 		if (os != NULL)
   1599 		  {
   1600 		    out_shndx = os->out_shndx();
   1601 		    out_offset = obj->output_section_offset(shndx);
   1602 		    sh_size = entry->get_input_section_size(i);
   1603 		  }
   1604 		Swap32::writeval(pov, name_offset);
   1605 		Swap32::writeval(pov + 4, out_shndx);
   1606 		Swap::writeval(pov + 8, out_offset);
   1607 		Swap::writeval(pov + 8 + sizeof_addr, sh_size);
   1608 		gold_assert(this->input_section_entry_size
   1609 			    == 8 + 2 * sizeof_addr);
   1610 		pov += this->input_section_entry_size;
   1611 	      }
   1612 
   1613 	    // For each global symbol, write its associated relocations,
   1614 	    // add it to the linked list of globals, then write the
   1615 	    // supplemental information:  global symbol table index,
   1616 	    // input section index, linked list chain pointer, relocation
   1617 	    // count, and offset to the relocations.
   1618 	    for (unsigned int i = 0; i < nsyms; i++)
   1619 	      {
   1620 		const Symbol* sym = (*syms)[i];
   1621 		if (sym->is_forwarder())
   1622 		  sym = this->symtab_->resolve_forwards(sym);
   1623 		unsigned int shndx = 0;
   1624 		if (sym->source() != Symbol::FROM_OBJECT)
   1625 		  {
   1626 		    // The symbol was defined by the linker (e.g., common).
   1627 		    // We mark these symbols with a special SHNDX of -1,
   1628 		    // but exclude linker-predefined symbols and symbols
   1629 		    // copied from shared objects.
   1630 		    if (!sym->is_predefined()
   1631 			&& !sym->is_copied_from_dynobj())
   1632 		      shndx = -1U;
   1633 		  }
   1634 		else if (sym->object() == obj && sym->is_defined())
   1635 		  {
   1636 		    bool is_ordinary;
   1637 		    unsigned int orig_shndx = sym->shndx(&is_ordinary);
   1638 		    if (is_ordinary)
   1639 		      shndx = index_map[orig_shndx];
   1640 		    else
   1641 		      shndx = 1;
   1642 		  }
   1643 		unsigned int symtab_index = sym->symtab_index();
   1644 		unsigned int chain = 0;
   1645 		unsigned int first_reloc = 0;
   1646 		unsigned int nrelocs = obj->get_incremental_reloc_count(i);
   1647 		if (nrelocs > 0)
   1648 		  {
   1649 		    gold_assert(symtab_index != -1U
   1650 				&& (symtab_index - first_global_index
   1651 				    < global_sym_count));
   1652 		    first_reloc = obj->get_incremental_reloc_base(i);
   1653 		    chain = global_syms[symtab_index - first_global_index];
   1654 		    global_syms[symtab_index - first_global_index] =
   1655 			pov - oview;
   1656 		  }
   1657 		Swap32::writeval(pov, symtab_index);
   1658 		Swap32::writeval(pov + 4, shndx);
   1659 		Swap32::writeval(pov + 8, chain);
   1660 		Swap32::writeval(pov + 12, nrelocs);
   1661 		Swap32::writeval(pov + 16,
   1662 				 first_reloc * (8 + 2 * sizeof_addr));
   1663 		gold_assert(this->global_sym_entry_size == 20);
   1664 		pov += this->global_sym_entry_size;
   1665 	      }
   1666 
   1667 	    // For each kept COMDAT group, write the group signature.
   1668 	    for (unsigned int i = 0; i < ncomdat; i++)
   1669 	      {
   1670 		Stringpool::Key key = entry->get_comdat_signature_key(i);
   1671 		off_t name_offset = 0;
   1672 		if (key != 0)
   1673 		  name_offset = strtab->get_offset_from_key(key);
   1674 		Swap32::writeval(pov, name_offset);
   1675 		pov += 4;
   1676 	      }
   1677 
   1678 	    delete[] index_map;
   1679 	  }
   1680 	  break;
   1681 
   1682 	case INCREMENTAL_INPUT_SHARED_LIBRARY:
   1683 	  {
   1684 	    gold_assert(static_cast<unsigned int>(pov - oview)
   1685 			== (*p)->get_info_offset());
   1686 	    Incremental_dynobj_entry* entry = (*p)->dynobj_entry();
   1687 	    gold_assert(entry != NULL);
   1688 	    Object* obj = entry->object();
   1689 	    Dynobj* dynobj = obj->dynobj();
   1690 	    gold_assert(dynobj != NULL);
   1691 	    const Object::Symbols* syms = obj->get_global_symbols();
   1692 
   1693 	    // Write the soname string table index.
   1694 	    section_offset_type soname_offset =
   1695 		strtab->get_offset_from_key(entry->get_soname_key());
   1696 	    Swap32::writeval(pov, soname_offset);
   1697 	    pov += 4;
   1698 
   1699 	    // Skip the global symbol count for now.
   1700 	    unsigned char* orig_pov = pov;
   1701 	    pov += 4;
   1702 
   1703 	    // For each global symbol, write the global symbol table index.
   1704 	    unsigned int nsyms = syms->size();
   1705 	    unsigned int nsyms_out = 0;
   1706 	    for (unsigned int i = 0; i < nsyms; i++)
   1707 	      {
   1708 		const Symbol* sym = (*syms)[i];
   1709 		if (sym == NULL)
   1710 		  continue;
   1711 		if (sym->is_forwarder())
   1712 		  sym = this->symtab_->resolve_forwards(sym);
   1713 		if (sym->symtab_index() == -1U)
   1714 		  continue;
   1715 		unsigned int flags = 0;
   1716 		// If the symbol has hidden or internal visibility, we
   1717 		// mark it as defined in the shared object so we don't
   1718 		// try to resolve it during an incremental update.
   1719 		if (sym->visibility() == elfcpp::STV_HIDDEN
   1720 		    || sym->visibility() == elfcpp::STV_INTERNAL)
   1721 		  flags = INCREMENTAL_SHLIB_SYM_DEF;
   1722 		else if (sym->source() == Symbol::FROM_OBJECT
   1723 			 && sym->object() == obj
   1724 			 && sym->is_defined())
   1725 		  flags = INCREMENTAL_SHLIB_SYM_DEF;
   1726 		else if (sym->is_copied_from_dynobj()
   1727 			 && this->symtab_->get_copy_source(sym) == dynobj)
   1728 		  flags = INCREMENTAL_SHLIB_SYM_COPY;
   1729 		flags <<= INCREMENTAL_SHLIB_SYM_FLAGS_SHIFT;
   1730 		Swap32::writeval(pov, sym->symtab_index() | flags);
   1731 		pov += 4;
   1732 		++nsyms_out;
   1733 	      }
   1734 
   1735 	    // Now write the global symbol count.
   1736 	    Swap32::writeval(orig_pov, nsyms_out);
   1737 	  }
   1738 	  break;
   1739 
   1740 	case INCREMENTAL_INPUT_ARCHIVE:
   1741 	  {
   1742 	    gold_assert(static_cast<unsigned int>(pov - oview)
   1743 			== (*p)->get_info_offset());
   1744 	    Incremental_archive_entry* entry = (*p)->archive_entry();
   1745 	    gold_assert(entry != NULL);
   1746 
   1747 	    // Write the member count and unused global symbol count.
   1748 	    unsigned int nmembers = entry->get_member_count();
   1749 	    unsigned int nsyms = entry->get_unused_global_symbol_count();
   1750 	    Swap32::writeval(pov, nmembers);
   1751 	    Swap32::writeval(pov + 4, nsyms);
   1752 	    pov += 8;
   1753 
   1754 	    // For each member, write the offset to its input file entry.
   1755 	    for (unsigned int i = 0; i < nmembers; ++i)
   1756 	      {
   1757 		Incremental_object_entry* member = entry->get_member(i);
   1758 		Swap32::writeval(pov, member->get_offset());
   1759 		pov += 4;
   1760 	      }
   1761 
   1762 	    // For each global symbol, write the name offset.
   1763 	    for (unsigned int i = 0; i < nsyms; ++i)
   1764 	      {
   1765 		Stringpool::Key key = entry->get_unused_global_symbol(i);
   1766 		Swap32::writeval(pov, strtab->get_offset_from_key(key));
   1767 		pov += 4;
   1768 	      }
   1769 	  }
   1770 	  break;
   1771 
   1772 	default:
   1773 	  gold_unreachable();
   1774 	}
   1775 
   1776      // Pad the info block to a multiple of 8 bytes.
   1777      if (static_cast<unsigned int>(pov - oview) & 4)
   1778       {
   1779 	Swap32::writeval(pov, 0);
   1780 	pov += 4;
   1781       }
   1782     }
   1783   return pov;
   1784 }
   1785 
   1786 // Write the contents of the .gnu_incremental_symtab section.
   1787 
   1788 template<int size, bool big_endian>
   1789 void
   1790 Output_section_incremental_inputs<size, big_endian>::write_symtab(
   1791     unsigned char* pov,
   1792     unsigned int* global_syms,
   1793     unsigned int global_sym_count)
   1794 {
   1795   for (unsigned int i = 0; i < global_sym_count; ++i)
   1796     {
   1797       Swap32::writeval(pov, global_syms[i]);
   1798       pov += 4;
   1799     }
   1800 }
   1801 
   1802 // This struct holds the view information needed to write the
   1803 // .gnu_incremental_got_plt section.
   1804 
   1805 struct Got_plt_view_info
   1806 {
   1807   // Start of the GOT type array in the output view.
   1808   unsigned char* got_type_p;
   1809   // Start of the GOT descriptor array in the output view.
   1810   unsigned char* got_desc_p;
   1811   // Start of the PLT descriptor array in the output view.
   1812   unsigned char* plt_desc_p;
   1813   // Number of GOT entries.
   1814   unsigned int got_count;
   1815   // Number of PLT entries.
   1816   unsigned int plt_count;
   1817   // Offset of the first non-reserved PLT entry (this is a target-dependent value).
   1818   unsigned int first_plt_entry_offset;
   1819   // Size of a PLT entry (this is a target-dependent value).
   1820   unsigned int plt_entry_size;
   1821   // Size of a GOT entry (this is a target-dependent value).
   1822   unsigned int got_entry_size;
   1823   // Symbol index to write in the GOT descriptor array.  For global symbols,
   1824   // this is the global symbol table index; for local symbols, it is the
   1825   // local symbol table index.
   1826   unsigned int sym_index;
   1827   // Input file index to write in the GOT descriptor array.  For global
   1828   // symbols, this is 0; for local symbols, it is the index of the input
   1829   // file entry in the .gnu_incremental_inputs section.
   1830   unsigned int input_index;
   1831 };
   1832 
   1833 // Functor class for processing a GOT offset list for local symbols.
   1834 // Writes the GOT type and symbol index into the GOT type and descriptor
   1835 // arrays in the output section.
   1836 
   1837 template<int size, bool big_endian>
   1838 class Local_got_offset_visitor : public Got_offset_list::Visitor
   1839 {
   1840  public:
   1841   Local_got_offset_visitor(struct Got_plt_view_info& info)
   1842     : info_(info)
   1843   { }
   1844 
   1845   void
   1846   visit(unsigned int got_type, unsigned int got_offset)
   1847   {
   1848     unsigned int got_index = got_offset / this->info_.got_entry_size;
   1849     gold_assert(got_index < this->info_.got_count);
   1850     // We can only handle GOT entry types in the range 0..0x7e
   1851     // because we use a byte array to store them, and we use the
   1852     // high bit to flag a local symbol.
   1853     gold_assert(got_type < 0x7f);
   1854     this->info_.got_type_p[got_index] = got_type | 0x80;
   1855     unsigned char* pov = this->info_.got_desc_p + got_index * 8;
   1856     elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
   1857     elfcpp::Swap<32, big_endian>::writeval(pov + 4, this->info_.input_index);
   1858   }
   1859 
   1860  private:
   1861   struct Got_plt_view_info& info_;
   1862 };
   1863 
   1864 // Functor class for processing a GOT offset list.  Writes the GOT type
   1865 // and symbol index into the GOT type and descriptor arrays in the output
   1866 // section.
   1867 
   1868 template<int size, bool big_endian>
   1869 class Global_got_offset_visitor : public Got_offset_list::Visitor
   1870 {
   1871  public:
   1872   Global_got_offset_visitor(struct Got_plt_view_info& info)
   1873     : info_(info)
   1874   { }
   1875 
   1876   void
   1877   visit(unsigned int got_type, unsigned int got_offset)
   1878   {
   1879     unsigned int got_index = got_offset / this->info_.got_entry_size;
   1880     gold_assert(got_index < this->info_.got_count);
   1881     // We can only handle GOT entry types in the range 0..0x7e
   1882     // because we use a byte array to store them, and we use the
   1883     // high bit to flag a local symbol.
   1884     gold_assert(got_type < 0x7f);
   1885     this->info_.got_type_p[got_index] = got_type;
   1886     unsigned char* pov = this->info_.got_desc_p + got_index * 8;
   1887     elfcpp::Swap<32, big_endian>::writeval(pov, this->info_.sym_index);
   1888     elfcpp::Swap<32, big_endian>::writeval(pov + 4, 0);
   1889   }
   1890 
   1891  private:
   1892   struct Got_plt_view_info& info_;
   1893 };
   1894 
   1895 // Functor class for processing the global symbol table.  Processes the
   1896 // GOT offset list for the symbol, and writes the symbol table index
   1897 // into the PLT descriptor array in the output section.
   1898 
   1899 template<int size, bool big_endian>
   1900 class Global_symbol_visitor_got_plt
   1901 {
   1902  public:
   1903   Global_symbol_visitor_got_plt(struct Got_plt_view_info& info)
   1904     : info_(info)
   1905   { }
   1906 
   1907   void
   1908   operator()(const Sized_symbol<size>* sym)
   1909   {
   1910     typedef Global_got_offset_visitor<size, big_endian> Got_visitor;
   1911     const Got_offset_list* got_offsets = sym->got_offset_list();
   1912     if (got_offsets != NULL)
   1913       {
   1914 	this->info_.sym_index = sym->symtab_index();
   1915 	this->info_.input_index = 0;
   1916 	Got_visitor v(this->info_);
   1917 	got_offsets->for_all_got_offsets(&v);
   1918       }
   1919     if (sym->has_plt_offset())
   1920       {
   1921 	unsigned int plt_index =
   1922 	    ((sym->plt_offset() - this->info_.first_plt_entry_offset)
   1923 	     / this->info_.plt_entry_size);
   1924 	gold_assert(plt_index < this->info_.plt_count);
   1925 	unsigned char* pov = this->info_.plt_desc_p + plt_index * 4;
   1926 	elfcpp::Swap<32, big_endian>::writeval(pov, sym->symtab_index());
   1927       }
   1928   }
   1929 
   1930  private:
   1931   struct Got_plt_view_info& info_;
   1932 };
   1933 
   1934 // Write the contents of the .gnu_incremental_got_plt section.
   1935 
   1936 template<int size, bool big_endian>
   1937 void
   1938 Output_section_incremental_inputs<size, big_endian>::write_got_plt(
   1939     unsigned char* pov,
   1940     off_t view_size)
   1941 {
   1942   Sized_target<size, big_endian>* target =
   1943     parameters->sized_target<size, big_endian>();
   1944 
   1945   // Set up the view information for the functors.
   1946   struct Got_plt_view_info view_info;
   1947   view_info.got_count = target->got_entry_count();
   1948   view_info.plt_count = target->plt_entry_count();
   1949   view_info.first_plt_entry_offset = target->first_plt_entry_offset();
   1950   view_info.plt_entry_size = target->plt_entry_size();
   1951   view_info.got_entry_size = target->got_entry_size();
   1952   view_info.got_type_p = pov + 8;
   1953   view_info.got_desc_p = (view_info.got_type_p
   1954 			  + ((view_info.got_count + 3) & ~3));
   1955   view_info.plt_desc_p = view_info.got_desc_p + view_info.got_count * 8;
   1956 
   1957   gold_assert(pov + view_size ==
   1958 	      view_info.plt_desc_p + view_info.plt_count * 4);
   1959 
   1960   // Write the section header.
   1961   Swap32::writeval(pov, view_info.got_count);
   1962   Swap32::writeval(pov + 4, view_info.plt_count);
   1963 
   1964   // Initialize the GOT type array to 0xff (reserved).
   1965   memset(view_info.got_type_p, 0xff, view_info.got_count);
   1966 
   1967   // Write the incremental GOT descriptors for local symbols.
   1968   typedef Local_got_offset_visitor<size, big_endian> Got_visitor;
   1969   for (Incremental_inputs::Input_list::const_iterator p =
   1970 	   this->inputs_->input_files().begin();
   1971        p != this->inputs_->input_files().end();
   1972        ++p)
   1973     {
   1974       if ((*p)->type() != INCREMENTAL_INPUT_OBJECT
   1975 	  && (*p)->type() != INCREMENTAL_INPUT_ARCHIVE_MEMBER)
   1976 	continue;
   1977       Incremental_object_entry* entry = (*p)->object_entry();
   1978       gold_assert(entry != NULL);
   1979       const Object* obj = entry->object();
   1980       gold_assert(obj != NULL);
   1981       view_info.input_index = (*p)->get_file_index();
   1982       Got_visitor v(view_info);
   1983       obj->for_all_local_got_entries(&v);
   1984     }
   1985 
   1986   // Write the incremental GOT and PLT descriptors for global symbols.
   1987   typedef Global_symbol_visitor_got_plt<size, big_endian> Symbol_visitor;
   1988   symtab_->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(view_info));
   1989 }
   1990 
   1991 // Class Sized_relobj_incr.  Most of these methods are not used for
   1992 // Incremental objects, but are required to be implemented by the
   1993 // base class Object.
   1994 
   1995 template<int size, bool big_endian>
   1996 Sized_relobj_incr<size, big_endian>::Sized_relobj_incr(
   1997     const std::string& name,
   1998     Sized_incremental_binary<size, big_endian>* ibase,
   1999     unsigned int input_file_index)
   2000   : Sized_relobj<size, big_endian>(name, NULL), ibase_(ibase),
   2001     input_file_index_(input_file_index),
   2002     input_reader_(ibase->inputs_reader().input_file(input_file_index)),
   2003     local_symbol_count_(0), output_local_dynsym_count_(0),
   2004     local_symbol_index_(0), local_symbol_offset_(0), local_dynsym_offset_(0),
   2005     symbols_(), defined_count_(0), incr_reloc_offset_(-1U),
   2006     incr_reloc_count_(0), incr_reloc_output_index_(0), incr_relocs_(NULL),
   2007     local_symbols_()
   2008 {
   2009   if (this->input_reader_.is_in_system_directory())
   2010     this->set_is_in_system_directory();
   2011   const unsigned int shnum = this->input_reader_.get_input_section_count() + 1;
   2012   this->set_shnum(shnum);
   2013   ibase->set_input_object(input_file_index, this);
   2014 }
   2015 
   2016 // Read the symbols.
   2017 
   2018 template<int size, bool big_endian>
   2019 void
   2020 Sized_relobj_incr<size, big_endian>::do_read_symbols(Read_symbols_data*)
   2021 {
   2022   gold_unreachable();
   2023 }
   2024 
   2025 // Lay out the input sections.
   2026 
   2027 template<int size, bool big_endian>
   2028 void
   2029 Sized_relobj_incr<size, big_endian>::do_layout(
   2030     Symbol_table*,
   2031     Layout* layout,
   2032     Read_symbols_data*)
   2033 {
   2034   const unsigned int shnum = this->shnum();
   2035   Incremental_inputs* incremental_inputs = layout->incremental_inputs();
   2036   gold_assert(incremental_inputs != NULL);
   2037   Output_sections& out_sections(this->output_sections());
   2038   out_sections.resize(shnum);
   2039   this->section_offsets().resize(shnum);
   2040 
   2041   // Keep track of .debug_info and .debug_types sections.
   2042   std::vector<unsigned int> debug_info_sections;
   2043   std::vector<unsigned int> debug_types_sections;
   2044 
   2045   for (unsigned int i = 1; i < shnum; i++)
   2046     {
   2047       typename Input_entry_reader::Input_section_info sect =
   2048 	  this->input_reader_.get_input_section(i - 1);
   2049       // Add the section to the incremental inputs layout.
   2050       incremental_inputs->report_input_section(this, i, sect.name,
   2051 					       sect.sh_size);
   2052       if (sect.output_shndx == 0 || sect.sh_offset == -1)
   2053 	continue;
   2054       Output_section* os = this->ibase_->output_section(sect.output_shndx);
   2055       gold_assert(os != NULL);
   2056       out_sections[i] = os;
   2057       this->section_offsets()[i] = static_cast<Address>(sect.sh_offset);
   2058 
   2059       // When generating a .gdb_index section, we do additional
   2060       // processing of .debug_info and .debug_types sections after all
   2061       // the other sections.
   2062       if (parameters->options().gdb_index())
   2063 	{
   2064 	  const char* name = os->name();
   2065 	  if (strcmp(name, ".debug_info") == 0)
   2066 	    debug_info_sections.push_back(i);
   2067 	  else if (strcmp(name, ".debug_types") == 0)
   2068 	    debug_types_sections.push_back(i);
   2069 	}
   2070     }
   2071 
   2072   // Process the COMDAT groups.
   2073   unsigned int ncomdat = this->input_reader_.get_comdat_group_count();
   2074   for (unsigned int i = 0; i < ncomdat; i++)
   2075     {
   2076       const char* signature = this->input_reader_.get_comdat_group_signature(i);
   2077       if (signature == NULL || signature[0] == '\0')
   2078 	this->error(_("COMDAT group has no signature"));
   2079       bool keep = layout->find_or_add_kept_section(signature, this, i, true,
   2080 						   true, NULL);
   2081       if (keep)
   2082 	incremental_inputs->report_comdat_group(this, signature);
   2083       else
   2084 	this->error(_("COMDAT group %s included twice in incremental link"),
   2085 		    signature);
   2086     }
   2087 
   2088   // When building a .gdb_index section, scan the .debug_info and
   2089   // .debug_types sections.
   2090   for (std::vector<unsigned int>::const_iterator p
   2091 	   = debug_info_sections.begin();
   2092        p != debug_info_sections.end();
   2093        ++p)
   2094     {
   2095       unsigned int i = *p;
   2096       layout->add_to_gdb_index(false, this, NULL, 0, i, 0, 0);
   2097     }
   2098   for (std::vector<unsigned int>::const_iterator p
   2099 	   = debug_types_sections.begin();
   2100        p != debug_types_sections.end();
   2101        ++p)
   2102     {
   2103       unsigned int i = *p;
   2104       layout->add_to_gdb_index(true, this, 0, 0, i, 0, 0);
   2105     }
   2106 }
   2107 
   2108 // Layout sections whose layout was deferred while waiting for
   2109 // input files from a plugin.
   2110 template<int size, bool big_endian>
   2111 void
   2112 Sized_relobj_incr<size, big_endian>::do_layout_deferred_sections(Layout*)
   2113 {
   2114 }
   2115 
   2116 // Add the symbols to the symbol table.
   2117 
   2118 template<int size, bool big_endian>
   2119 void
   2120 Sized_relobj_incr<size, big_endian>::do_add_symbols(
   2121     Symbol_table* symtab,
   2122     Read_symbols_data*,
   2123     Layout*)
   2124 {
   2125   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   2126   unsigned char symbuf[sym_size];
   2127   elfcpp::Sym<size, big_endian> sym(symbuf);
   2128   elfcpp::Sym_write<size, big_endian> osym(symbuf);
   2129 
   2130   typedef typename elfcpp::Elf_types<size>::Elf_WXword Elf_size_type;
   2131 
   2132   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
   2133   this->symbols_.resize(nsyms);
   2134 
   2135   Incremental_binary::View symtab_view(NULL);
   2136   unsigned int symtab_count;
   2137   elfcpp::Elf_strtab strtab(NULL, 0);
   2138   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
   2139 
   2140   Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
   2141   unsigned int isym_count = isymtab.symbol_count();
   2142   unsigned int first_global = symtab_count - isym_count;
   2143 
   2144   const unsigned char* sym_p;
   2145   for (unsigned int i = 0; i < nsyms; ++i)
   2146     {
   2147       Incremental_global_symbol_reader<big_endian> info =
   2148 	  this->input_reader_.get_global_symbol_reader(i);
   2149       unsigned int output_symndx = info.output_symndx();
   2150       sym_p = symtab_view.data() + output_symndx * sym_size;
   2151       elfcpp::Sym<size, big_endian> gsym(sym_p);
   2152       const char* name;
   2153       if (!strtab.get_c_string(gsym.get_st_name(), &name))
   2154 	name = "";
   2155 
   2156       typename elfcpp::Elf_types<size>::Elf_Addr v = gsym.get_st_value();
   2157       unsigned int shndx = gsym.get_st_shndx();
   2158       elfcpp::STB st_bind = gsym.get_st_bind();
   2159       elfcpp::STT st_type = gsym.get_st_type();
   2160 
   2161       // Local hidden symbols start out as globals, but get converted to
   2162       // to local during output.
   2163       if (st_bind == elfcpp::STB_LOCAL)
   2164 	st_bind = elfcpp::STB_GLOBAL;
   2165 
   2166       unsigned int input_shndx = info.shndx();
   2167       if (input_shndx == 0 || input_shndx == -1U)
   2168 	{
   2169 	  shndx = elfcpp::SHN_UNDEF;
   2170 	  v = 0;
   2171 	}
   2172       else if (shndx != elfcpp::SHN_ABS)
   2173 	{
   2174 	  // Find the input section and calculate the section-relative value.
   2175 	  gold_assert(shndx != elfcpp::SHN_UNDEF);
   2176 	  Output_section* os = this->ibase_->output_section(shndx);
   2177 	  gold_assert(os != NULL && os->has_fixed_layout());
   2178 	  typename Input_entry_reader::Input_section_info sect =
   2179 	      this->input_reader_.get_input_section(input_shndx - 1);
   2180 	  gold_assert(sect.output_shndx == shndx);
   2181 	  if (st_type != elfcpp::STT_TLS)
   2182 	    v -= os->address();
   2183 	  v -= sect.sh_offset;
   2184 	  shndx = input_shndx;
   2185 	}
   2186 
   2187       osym.put_st_name(0);
   2188       osym.put_st_value(v);
   2189       osym.put_st_size(gsym.get_st_size());
   2190       osym.put_st_info(st_bind, st_type);
   2191       osym.put_st_other(gsym.get_st_other());
   2192       osym.put_st_shndx(shndx);
   2193 
   2194       Symbol* res = symtab->add_from_incrobj(this, name, NULL, &sym);
   2195 
   2196       if (shndx != elfcpp::SHN_UNDEF)
   2197 	++this->defined_count_;
   2198 
   2199       // If this is a linker-defined symbol that hasn't yet been defined,
   2200       // define it now.
   2201       if (input_shndx == -1U && !res->is_defined())
   2202 	{
   2203 	  shndx = gsym.get_st_shndx();
   2204 	  v = gsym.get_st_value();
   2205 	  Elf_size_type symsize = gsym.get_st_size();
   2206 	  if (shndx == elfcpp::SHN_ABS)
   2207 	    {
   2208 	      symtab->define_as_constant(name, NULL,
   2209 					 Symbol_table::INCREMENTAL_BASE,
   2210 					 v, symsize, st_type, st_bind,
   2211 					 gsym.get_st_visibility(), 0,
   2212 					 false, false);
   2213 	    }
   2214 	  else
   2215 	    {
   2216 	      Output_section* os = this->ibase_->output_section(shndx);
   2217 	      gold_assert(os != NULL && os->has_fixed_layout());
   2218 	      v -= os->address();
   2219 	      if (symsize > 0)
   2220 		os->reserve(v, symsize);
   2221 	      symtab->define_in_output_data(name, NULL,
   2222 					    Symbol_table::INCREMENTAL_BASE,
   2223 					    os, v, symsize, st_type, st_bind,
   2224 					    gsym.get_st_visibility(), 0,
   2225 					    false, false);
   2226 	    }
   2227 	}
   2228 
   2229       this->symbols_[i] = res;
   2230       this->ibase_->add_global_symbol(output_symndx - first_global, res);
   2231     }
   2232 }
   2233 
   2234 // Return TRUE if we should include this object from an archive library.
   2235 
   2236 template<int size, bool big_endian>
   2237 Archive::Should_include
   2238 Sized_relobj_incr<size, big_endian>::do_should_include_member(
   2239     Symbol_table*,
   2240     Layout*,
   2241     Read_symbols_data*,
   2242     std::string*)
   2243 {
   2244   gold_unreachable();
   2245 }
   2246 
   2247 // Iterate over global symbols, calling a visitor class V for each.
   2248 
   2249 template<int size, bool big_endian>
   2250 void
   2251 Sized_relobj_incr<size, big_endian>::do_for_all_global_symbols(
   2252     Read_symbols_data*,
   2253     Library_base::Symbol_visitor_base*)
   2254 {
   2255   // This routine is not used for incremental objects.
   2256 }
   2257 
   2258 // Get the size of a section.
   2259 
   2260 template<int size, bool big_endian>
   2261 uint64_t
   2262 Sized_relobj_incr<size, big_endian>::do_section_size(unsigned int)
   2263 {
   2264   gold_unreachable();
   2265 }
   2266 
   2267 // Get the name of a section.  This returns the name of the output
   2268 // section, because we don't usually track the names of the input
   2269 // sections.
   2270 
   2271 template<int size, bool big_endian>
   2272 std::string
   2273 Sized_relobj_incr<size, big_endian>::do_section_name(unsigned int shndx) const
   2274 {
   2275   const Output_sections& out_sections(this->output_sections());
   2276   const Output_section* os = out_sections[shndx];
   2277   if (os == NULL)
   2278     return NULL;
   2279   return os->name();
   2280 }
   2281 
   2282 // Return a view of the contents of a section.
   2283 
   2284 template<int size, bool big_endian>
   2285 const unsigned char*
   2286 Sized_relobj_incr<size, big_endian>::do_section_contents(
   2287     unsigned int shndx,
   2288     section_size_type* plen,
   2289     bool)
   2290 {
   2291   Output_sections& out_sections(this->output_sections());
   2292   Output_section* os = out_sections[shndx];
   2293   gold_assert(os != NULL);
   2294   off_t section_offset = os->offset();
   2295   typename Input_entry_reader::Input_section_info sect =
   2296       this->input_reader_.get_input_section(shndx - 1);
   2297   section_offset += sect.sh_offset;
   2298   *plen = sect.sh_size;
   2299   return this->ibase_->view(section_offset, sect.sh_size).data();
   2300 }
   2301 
   2302 // Return section flags.
   2303 
   2304 template<int size, bool big_endian>
   2305 uint64_t
   2306 Sized_relobj_incr<size, big_endian>::do_section_flags(unsigned int)
   2307 {
   2308   gold_unreachable();
   2309 }
   2310 
   2311 // Return section entsize.
   2312 
   2313 template<int size, bool big_endian>
   2314 uint64_t
   2315 Sized_relobj_incr<size, big_endian>::do_section_entsize(unsigned int)
   2316 {
   2317   gold_unreachable();
   2318 }
   2319 
   2320 // Return section address.
   2321 
   2322 template<int size, bool big_endian>
   2323 uint64_t
   2324 Sized_relobj_incr<size, big_endian>::do_section_address(unsigned int)
   2325 {
   2326   gold_unreachable();
   2327 }
   2328 
   2329 // Return section type.
   2330 
   2331 template<int size, bool big_endian>
   2332 unsigned int
   2333 Sized_relobj_incr<size, big_endian>::do_section_type(unsigned int)
   2334 {
   2335   gold_unreachable();
   2336 }
   2337 
   2338 // Return the section link field.
   2339 
   2340 template<int size, bool big_endian>
   2341 unsigned int
   2342 Sized_relobj_incr<size, big_endian>::do_section_link(unsigned int)
   2343 {
   2344   gold_unreachable();
   2345 }
   2346 
   2347 // Return the section link field.
   2348 
   2349 template<int size, bool big_endian>
   2350 unsigned int
   2351 Sized_relobj_incr<size, big_endian>::do_section_info(unsigned int)
   2352 {
   2353   gold_unreachable();
   2354 }
   2355 
   2356 // Return the section alignment.
   2357 
   2358 template<int size, bool big_endian>
   2359 uint64_t
   2360 Sized_relobj_incr<size, big_endian>::do_section_addralign(unsigned int)
   2361 {
   2362   gold_unreachable();
   2363 }
   2364 
   2365 // Return the Xindex structure to use.
   2366 
   2367 template<int size, bool big_endian>
   2368 Xindex*
   2369 Sized_relobj_incr<size, big_endian>::do_initialize_xindex()
   2370 {
   2371   gold_unreachable();
   2372 }
   2373 
   2374 // Get symbol counts.
   2375 
   2376 template<int size, bool big_endian>
   2377 void
   2378 Sized_relobj_incr<size, big_endian>::do_get_global_symbol_counts(
   2379     const Symbol_table*,
   2380     size_t* defined,
   2381     size_t* used) const
   2382 {
   2383   *defined = this->defined_count_;
   2384   size_t count = 0;
   2385   for (typename Symbols::const_iterator p = this->symbols_.begin();
   2386        p != this->symbols_.end();
   2387        ++p)
   2388     if (*p != NULL
   2389 	&& (*p)->source() == Symbol::FROM_OBJECT
   2390 	&& (*p)->object() == this
   2391 	&& (*p)->is_defined())
   2392       ++count;
   2393   *used = count;
   2394 }
   2395 
   2396 // Read the relocs.
   2397 
   2398 template<int size, bool big_endian>
   2399 void
   2400 Sized_relobj_incr<size, big_endian>::do_read_relocs(Read_relocs_data*)
   2401 {
   2402 }
   2403 
   2404 // Process the relocs to find list of referenced sections. Used only
   2405 // during garbage collection.
   2406 
   2407 template<int size, bool big_endian>
   2408 void
   2409 Sized_relobj_incr<size, big_endian>::do_gc_process_relocs(Symbol_table*,
   2410 							  Layout*,
   2411 							  Read_relocs_data*)
   2412 {
   2413   gold_unreachable();
   2414 }
   2415 
   2416 // Scan the relocs and adjust the symbol table.
   2417 
   2418 template<int size, bool big_endian>
   2419 void
   2420 Sized_relobj_incr<size, big_endian>::do_scan_relocs(Symbol_table*,
   2421 						    Layout* layout,
   2422 						    Read_relocs_data*)
   2423 {
   2424   // Count the incremental relocations for this object.
   2425   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
   2426   this->allocate_incremental_reloc_counts();
   2427   for (unsigned int i = 0; i < nsyms; i++)
   2428     {
   2429       Incremental_global_symbol_reader<big_endian> sym =
   2430 	  this->input_reader_.get_global_symbol_reader(i);
   2431       unsigned int reloc_count = sym.reloc_count();
   2432       if (reloc_count > 0 && this->incr_reloc_offset_ == -1U)
   2433 	this->incr_reloc_offset_ = sym.reloc_offset();
   2434       this->incr_reloc_count_ += reloc_count;
   2435       for (unsigned int j = 0; j < reloc_count; j++)
   2436 	this->count_incremental_reloc(i);
   2437     }
   2438   this->incr_reloc_output_index_ =
   2439       layout->incremental_inputs()->get_reloc_count();
   2440   this->finalize_incremental_relocs(layout, false);
   2441 
   2442   // The incoming incremental relocations may not end up in the same
   2443   // location after the incremental update, because the incremental info
   2444   // is regenerated in each link.  Because the new location may overlap
   2445   // with other data in the updated output file, we need to copy the
   2446   // relocations into a buffer so that we can still read them safely
   2447   // after we start writing updates to the output file.
   2448   if (this->incr_reloc_count_ > 0)
   2449     {
   2450       const Incremental_relocs_reader<size, big_endian>& relocs_reader =
   2451 	  this->ibase_->relocs_reader();
   2452       const unsigned int incr_reloc_size = relocs_reader.reloc_size;
   2453       unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
   2454       this->incr_relocs_ = new unsigned char[len];
   2455       memcpy(this->incr_relocs_,
   2456 	     relocs_reader.data(this->incr_reloc_offset_),
   2457 	     len);
   2458     }
   2459 }
   2460 
   2461 // Count the local symbols.
   2462 
   2463 template<int size, bool big_endian>
   2464 void
   2465 Sized_relobj_incr<size, big_endian>::do_count_local_symbols(
   2466     Stringpool_template<char>* pool,
   2467     Stringpool_template<char>*)
   2468 {
   2469   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   2470 
   2471   // Set the count of local symbols based on the incremental info.
   2472   unsigned int nlocals = this->input_reader_.get_local_symbol_count();
   2473   this->local_symbol_count_ = nlocals;
   2474   this->local_symbols_.reserve(nlocals);
   2475 
   2476   // Get views of the base file's symbol table and string table.
   2477   Incremental_binary::View symtab_view(NULL);
   2478   unsigned int symtab_count;
   2479   elfcpp::Elf_strtab strtab(NULL, 0);
   2480   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
   2481 
   2482   // Read the local symbols from the base file's symbol table.
   2483   off_t off = this->input_reader_.get_local_symbol_offset();
   2484   const unsigned char* symp = symtab_view.data() + off;
   2485   for (unsigned int i = 0; i < nlocals; ++i, symp += sym_size)
   2486     {
   2487       elfcpp::Sym<size, big_endian> sym(symp);
   2488       const char* name;
   2489       if (!strtab.get_c_string(sym.get_st_name(), &name))
   2490 	name = "";
   2491       gold_debug(DEBUG_INCREMENTAL, "Local symbol %d: %s", i, name);
   2492       name = pool->add(name, true, NULL);
   2493       this->local_symbols_.push_back(Local_symbol(name,
   2494 						  sym.get_st_value(),
   2495 						  sym.get_st_size(),
   2496 						  sym.get_st_shndx(),
   2497 						  sym.get_st_type(),
   2498 						  false));
   2499     }
   2500 }
   2501 
   2502 // Finalize the local symbols.
   2503 
   2504 template<int size, bool big_endian>
   2505 unsigned int
   2506 Sized_relobj_incr<size, big_endian>::do_finalize_local_symbols(
   2507     unsigned int index,
   2508     off_t off,
   2509     Symbol_table*)
   2510 {
   2511   this->local_symbol_index_ = index;
   2512   this->local_symbol_offset_ = off;
   2513   return index + this->local_symbol_count_;
   2514 }
   2515 
   2516 // Set the offset where local dynamic symbol information will be stored.
   2517 
   2518 template<int size, bool big_endian>
   2519 unsigned int
   2520 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_indexes(
   2521     unsigned int index)
   2522 {
   2523   // FIXME: set local dynsym indexes.
   2524   return index;
   2525 }
   2526 
   2527 // Set the offset where local dynamic symbol information will be stored.
   2528 
   2529 template<int size, bool big_endian>
   2530 unsigned int
   2531 Sized_relobj_incr<size, big_endian>::do_set_local_dynsym_offset(off_t)
   2532 {
   2533   return 0;
   2534 }
   2535 
   2536 // Relocate the input sections and write out the local symbols.
   2537 // We don't actually do any relocation here.  For unchanged input files,
   2538 // we reapply relocations only for symbols that have changed; that happens
   2539 // in queue_final_tasks.  We do need to rewrite the incremental relocations
   2540 // for this object.
   2541 
   2542 template<int size, bool big_endian>
   2543 void
   2544 Sized_relobj_incr<size, big_endian>::do_relocate(const Symbol_table*,
   2545 						 const Layout* layout,
   2546 						 Output_file* of)
   2547 {
   2548   if (this->incr_reloc_count_ == 0)
   2549     return;
   2550 
   2551   const unsigned int incr_reloc_size =
   2552       Incremental_relocs_reader<size, big_endian>::reloc_size;
   2553 
   2554   // Get a view for the .gnu_incremental_relocs section.
   2555   Incremental_inputs* inputs = layout->incremental_inputs();
   2556   gold_assert(inputs != NULL);
   2557   const off_t relocs_off = inputs->relocs_section()->offset();
   2558   const off_t relocs_size = inputs->relocs_section()->data_size();
   2559   unsigned char* const view = of->get_output_view(relocs_off, relocs_size);
   2560 
   2561   // Copy the relocations from the buffer.
   2562   off_t off = this->incr_reloc_output_index_ * incr_reloc_size;
   2563   unsigned int len = this->incr_reloc_count_ * incr_reloc_size;
   2564   memcpy(view + off, this->incr_relocs_, len);
   2565 
   2566   // The output section table may have changed, so we need to map
   2567   // the old section index to the new section index for each relocation.
   2568   for (unsigned int i = 0; i < this->incr_reloc_count_; ++i)
   2569     {
   2570       unsigned char* pov = view + off + i * incr_reloc_size;
   2571       unsigned int shndx = elfcpp::Swap<32, big_endian>::readval(pov + 4);
   2572       Output_section* os = this->ibase_->output_section(shndx);
   2573       gold_assert(os != NULL);
   2574       shndx = os->out_shndx();
   2575       elfcpp::Swap<32, big_endian>::writeval(pov + 4, shndx);
   2576     }
   2577 
   2578   of->write_output_view(off, len, view);
   2579 
   2580   // Get views into the output file for the portions of the symbol table
   2581   // and the dynamic symbol table that we will be writing.
   2582   off_t symtab_off = layout->symtab_section()->offset();
   2583   off_t output_size = this->local_symbol_count_ * This::sym_size;
   2584   unsigned char* oview = NULL;
   2585   if (output_size > 0)
   2586     oview = of->get_output_view(symtab_off + this->local_symbol_offset_,
   2587 				output_size);
   2588 
   2589   off_t dyn_output_size = this->output_local_dynsym_count_ * sym_size;
   2590   unsigned char* dyn_oview = NULL;
   2591   if (dyn_output_size > 0)
   2592     dyn_oview = of->get_output_view(this->local_dynsym_offset_,
   2593 				    dyn_output_size);
   2594 
   2595   // Write the local symbols.
   2596   unsigned char* ov = oview;
   2597   unsigned char* dyn_ov = dyn_oview;
   2598   const Stringpool* sympool = layout->sympool();
   2599   const Stringpool* dynpool = layout->dynpool();
   2600   Output_symtab_xindex* symtab_xindex = layout->symtab_xindex();
   2601   Output_symtab_xindex* dynsym_xindex = layout->dynsym_xindex();
   2602   for (unsigned int i = 0; i < this->local_symbol_count_; ++i)
   2603     {
   2604       Local_symbol& lsym(this->local_symbols_[i]);
   2605 
   2606       bool is_ordinary;
   2607       unsigned int st_shndx = this->adjust_sym_shndx(i, lsym.st_shndx,
   2608 						     &is_ordinary);
   2609       if (is_ordinary)
   2610 	{
   2611 	  Output_section* os = this->ibase_->output_section(st_shndx);
   2612 	  st_shndx = os->out_shndx();
   2613 	  if (st_shndx >= elfcpp::SHN_LORESERVE)
   2614 	    {
   2615 	      symtab_xindex->add(this->local_symbol_index_ + i, st_shndx);
   2616 	      if (lsym.needs_dynsym_entry)
   2617 		dynsym_xindex->add(lsym.output_dynsym_index, st_shndx);
   2618 	      st_shndx = elfcpp::SHN_XINDEX;
   2619 	    }
   2620 	}
   2621 
   2622       // Write the symbol to the output symbol table.
   2623       {
   2624 	elfcpp::Sym_write<size, big_endian> osym(ov);
   2625 	osym.put_st_name(sympool->get_offset(lsym.name));
   2626 	osym.put_st_value(lsym.st_value);
   2627 	osym.put_st_size(lsym.st_size);
   2628 	osym.put_st_info(elfcpp::STB_LOCAL,
   2629 			 static_cast<elfcpp::STT>(lsym.st_type));
   2630 	osym.put_st_other(0);
   2631 	osym.put_st_shndx(st_shndx);
   2632 	ov += sym_size;
   2633       }
   2634 
   2635       // Write the symbol to the output dynamic symbol table.
   2636       if (lsym.needs_dynsym_entry)
   2637 	{
   2638 	  gold_assert(dyn_ov < dyn_oview + dyn_output_size);
   2639 	  elfcpp::Sym_write<size, big_endian> osym(dyn_ov);
   2640 	  osym.put_st_name(dynpool->get_offset(lsym.name));
   2641 	  osym.put_st_value(lsym.st_value);
   2642 	  osym.put_st_size(lsym.st_size);
   2643 	  osym.put_st_info(elfcpp::STB_LOCAL,
   2644 			   static_cast<elfcpp::STT>(lsym.st_type));
   2645 	  osym.put_st_other(0);
   2646 	  osym.put_st_shndx(st_shndx);
   2647 	  dyn_ov += sym_size;
   2648 	}
   2649     }
   2650 
   2651   if (output_size > 0)
   2652     {
   2653       gold_assert(ov - oview == output_size);
   2654       of->write_output_view(symtab_off + this->local_symbol_offset_,
   2655 			    output_size, oview);
   2656     }
   2657 
   2658   if (dyn_output_size > 0)
   2659     {
   2660       gold_assert(dyn_ov - dyn_oview == dyn_output_size);
   2661       of->write_output_view(this->local_dynsym_offset_, dyn_output_size,
   2662 			    dyn_oview);
   2663     }
   2664 }
   2665 
   2666 // Set the offset of a section.
   2667 
   2668 template<int size, bool big_endian>
   2669 void
   2670 Sized_relobj_incr<size, big_endian>::do_set_section_offset(unsigned int,
   2671 							   uint64_t)
   2672 {
   2673 }
   2674 
   2675 // Class Sized_incr_dynobj.  Most of these methods are not used for
   2676 // Incremental objects, but are required to be implemented by the
   2677 // base class Object.
   2678 
   2679 template<int size, bool big_endian>
   2680 Sized_incr_dynobj<size, big_endian>::Sized_incr_dynobj(
   2681     const std::string& name,
   2682     Sized_incremental_binary<size, big_endian>* ibase,
   2683     unsigned int input_file_index)
   2684   : Dynobj(name, NULL), ibase_(ibase),
   2685     input_file_index_(input_file_index),
   2686     input_reader_(ibase->inputs_reader().input_file(input_file_index)),
   2687     symbols_(), defined_count_(0)
   2688 {
   2689   if (this->input_reader_.is_in_system_directory())
   2690     this->set_is_in_system_directory();
   2691   if (this->input_reader_.as_needed())
   2692     this->set_as_needed();
   2693   this->set_soname_string(this->input_reader_.get_soname());
   2694   this->set_shnum(0);
   2695 }
   2696 
   2697 // Read the symbols.
   2698 
   2699 template<int size, bool big_endian>
   2700 void
   2701 Sized_incr_dynobj<size, big_endian>::do_read_symbols(Read_symbols_data*)
   2702 {
   2703   gold_unreachable();
   2704 }
   2705 
   2706 // Lay out the input sections.
   2707 
   2708 template<int size, bool big_endian>
   2709 void
   2710 Sized_incr_dynobj<size, big_endian>::do_layout(
   2711     Symbol_table*,
   2712     Layout*,
   2713     Read_symbols_data*)
   2714 {
   2715 }
   2716 
   2717 // Add the symbols to the symbol table.
   2718 
   2719 template<int size, bool big_endian>
   2720 void
   2721 Sized_incr_dynobj<size, big_endian>::do_add_symbols(
   2722     Symbol_table* symtab,
   2723     Read_symbols_data*,
   2724     Layout*)
   2725 {
   2726   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   2727   unsigned char symbuf[sym_size];
   2728   elfcpp::Sym<size, big_endian> sym(symbuf);
   2729   elfcpp::Sym_write<size, big_endian> osym(symbuf);
   2730 
   2731   unsigned int nsyms = this->input_reader_.get_global_symbol_count();
   2732   this->symbols_.resize(nsyms);
   2733 
   2734   Incremental_binary::View symtab_view(NULL);
   2735   unsigned int symtab_count;
   2736   elfcpp::Elf_strtab strtab(NULL, 0);
   2737   this->ibase_->get_symtab_view(&symtab_view, &symtab_count, &strtab);
   2738 
   2739   Incremental_symtab_reader<big_endian> isymtab(this->ibase_->symtab_reader());
   2740   unsigned int isym_count = isymtab.symbol_count();
   2741   unsigned int first_global = symtab_count - isym_count;
   2742 
   2743   // We keep a set of symbols that we have generated COPY relocations
   2744   // for, indexed by the symbol value. We do not need more than one
   2745   // COPY relocation per address.
   2746   typedef typename std::set<Address> Copied_symbols;
   2747   Copied_symbols copied_symbols;
   2748 
   2749   const unsigned char* sym_p;
   2750   for (unsigned int i = 0; i < nsyms; ++i)
   2751     {
   2752       bool is_def;
   2753       bool is_copy;
   2754       unsigned int output_symndx =
   2755 	  this->input_reader_.get_output_symbol_index(i, &is_def, &is_copy);
   2756       sym_p = symtab_view.data() + output_symndx * sym_size;
   2757       elfcpp::Sym<size, big_endian> gsym(sym_p);
   2758       const char* name;
   2759       if (!strtab.get_c_string(gsym.get_st_name(), &name))
   2760 	name = "";
   2761 
   2762       Address v;
   2763       unsigned int shndx;
   2764       elfcpp::STB st_bind = gsym.get_st_bind();
   2765       elfcpp::STT st_type = gsym.get_st_type();
   2766 
   2767       // Local hidden symbols start out as globals, but get converted to
   2768       // to local during output.
   2769       if (st_bind == elfcpp::STB_LOCAL)
   2770 	st_bind = elfcpp::STB_GLOBAL;
   2771 
   2772       if (!is_def)
   2773 	{
   2774 	  shndx = elfcpp::SHN_UNDEF;
   2775 	  v = 0;
   2776 	}
   2777       else
   2778 	{
   2779 	  // For a symbol defined in a shared object, the section index
   2780 	  // is meaningless, as long as it's not SHN_UNDEF.
   2781 	  shndx = 1;
   2782 	  v = gsym.get_st_value();
   2783 	  ++this->defined_count_;
   2784 	}
   2785 
   2786       osym.put_st_name(0);
   2787       osym.put_st_value(v);
   2788       osym.put_st_size(gsym.get_st_size());
   2789       osym.put_st_info(st_bind, st_type);
   2790       osym.put_st_other(gsym.get_st_other());
   2791       osym.put_st_shndx(shndx);
   2792 
   2793       Sized_symbol<size>* res =
   2794 	  symtab->add_from_incrobj<size, big_endian>(this, name, NULL, &sym);
   2795       this->symbols_[i] = res;
   2796       this->ibase_->add_global_symbol(output_symndx - first_global,
   2797 				      this->symbols_[i]);
   2798 
   2799       if (is_copy)
   2800 	{
   2801 	  std::pair<typename Copied_symbols::iterator, bool> ins =
   2802 	      copied_symbols.insert(v);
   2803 	  if (ins.second)
   2804 	    {
   2805 	      unsigned int shndx = gsym.get_st_shndx();
   2806 	      Output_section* os = this->ibase_->output_section(shndx);
   2807 	      off_t offset = v - os->address();
   2808 	      this->ibase_->add_copy_reloc(this->symbols_[i], os, offset);
   2809 	    }
   2810 	}
   2811     }
   2812 }
   2813 
   2814 // Return TRUE if we should include this object from an archive library.
   2815 
   2816 template<int size, bool big_endian>
   2817 Archive::Should_include
   2818 Sized_incr_dynobj<size, big_endian>::do_should_include_member(
   2819     Symbol_table*,
   2820     Layout*,
   2821     Read_symbols_data*,
   2822     std::string*)
   2823 {
   2824   gold_unreachable();
   2825 }
   2826 
   2827 // Iterate over global symbols, calling a visitor class V for each.
   2828 
   2829 template<int size, bool big_endian>
   2830 void
   2831 Sized_incr_dynobj<size, big_endian>::do_for_all_global_symbols(
   2832     Read_symbols_data*,
   2833     Library_base::Symbol_visitor_base*)
   2834 {
   2835   // This routine is not used for dynamic libraries.
   2836 }
   2837 
   2838 // Iterate over local symbols, calling a visitor class V for each GOT offset
   2839 // associated with a local symbol.
   2840 
   2841 template<int size, bool big_endian>
   2842 void
   2843 Sized_incr_dynobj<size, big_endian>::do_for_all_local_got_entries(
   2844     Got_offset_list::Visitor*) const
   2845 {
   2846 }
   2847 
   2848 // Get the size of a section.
   2849 
   2850 template<int size, bool big_endian>
   2851 uint64_t
   2852 Sized_incr_dynobj<size, big_endian>::do_section_size(unsigned int)
   2853 {
   2854   gold_unreachable();
   2855 }
   2856 
   2857 // Get the name of a section.
   2858 
   2859 template<int size, bool big_endian>
   2860 std::string
   2861 Sized_incr_dynobj<size, big_endian>::do_section_name(unsigned int) const
   2862 {
   2863   gold_unreachable();
   2864 }
   2865 
   2866 // Return a view of the contents of a section.
   2867 
   2868 template<int size, bool big_endian>
   2869 const unsigned char*
   2870 Sized_incr_dynobj<size, big_endian>::do_section_contents(
   2871     unsigned int,
   2872     section_size_type*,
   2873     bool)
   2874 {
   2875   gold_unreachable();
   2876 }
   2877 
   2878 // Return section flags.
   2879 
   2880 template<int size, bool big_endian>
   2881 uint64_t
   2882 Sized_incr_dynobj<size, big_endian>::do_section_flags(unsigned int)
   2883 {
   2884   gold_unreachable();
   2885 }
   2886 
   2887 // Return section entsize.
   2888 
   2889 template<int size, bool big_endian>
   2890 uint64_t
   2891 Sized_incr_dynobj<size, big_endian>::do_section_entsize(unsigned int)
   2892 {
   2893   gold_unreachable();
   2894 }
   2895 
   2896 // Return section address.
   2897 
   2898 template<int size, bool big_endian>
   2899 uint64_t
   2900 Sized_incr_dynobj<size, big_endian>::do_section_address(unsigned int)
   2901 {
   2902   gold_unreachable();
   2903 }
   2904 
   2905 // Return section type.
   2906 
   2907 template<int size, bool big_endian>
   2908 unsigned int
   2909 Sized_incr_dynobj<size, big_endian>::do_section_type(unsigned int)
   2910 {
   2911   gold_unreachable();
   2912 }
   2913 
   2914 // Return the section link field.
   2915 
   2916 template<int size, bool big_endian>
   2917 unsigned int
   2918 Sized_incr_dynobj<size, big_endian>::do_section_link(unsigned int)
   2919 {
   2920   gold_unreachable();
   2921 }
   2922 
   2923 // Return the section link field.
   2924 
   2925 template<int size, bool big_endian>
   2926 unsigned int
   2927 Sized_incr_dynobj<size, big_endian>::do_section_info(unsigned int)
   2928 {
   2929   gold_unreachable();
   2930 }
   2931 
   2932 // Return the section alignment.
   2933 
   2934 template<int size, bool big_endian>
   2935 uint64_t
   2936 Sized_incr_dynobj<size, big_endian>::do_section_addralign(unsigned int)
   2937 {
   2938   gold_unreachable();
   2939 }
   2940 
   2941 // Return the Xindex structure to use.
   2942 
   2943 template<int size, bool big_endian>
   2944 Xindex*
   2945 Sized_incr_dynobj<size, big_endian>::do_initialize_xindex()
   2946 {
   2947   gold_unreachable();
   2948 }
   2949 
   2950 // Get symbol counts.
   2951 
   2952 template<int size, bool big_endian>
   2953 void
   2954 Sized_incr_dynobj<size, big_endian>::do_get_global_symbol_counts(
   2955     const Symbol_table*,
   2956     size_t* defined,
   2957     size_t* used) const
   2958 {
   2959   *defined = this->defined_count_;
   2960   size_t count = 0;
   2961   for (typename Symbols::const_iterator p = this->symbols_.begin();
   2962        p != this->symbols_.end();
   2963        ++p)
   2964     if (*p != NULL
   2965 	&& (*p)->source() == Symbol::FROM_OBJECT
   2966 	&& (*p)->object() == this
   2967 	&& (*p)->is_defined()
   2968 	&& (*p)->dynsym_index() != -1U)
   2969       ++count;
   2970   *used = count;
   2971 }
   2972 
   2973 // Allocate an incremental object of the appropriate size and endianness.
   2974 
   2975 Object*
   2976 make_sized_incremental_object(
   2977     Incremental_binary* ibase,
   2978     unsigned int input_file_index,
   2979     Incremental_input_type input_type,
   2980     const Incremental_binary::Input_reader* input_reader)
   2981 {
   2982   Object* obj = NULL;
   2983   std::string name(input_reader->filename());
   2984 
   2985   switch (parameters->size_and_endianness())
   2986     {
   2987 #ifdef HAVE_TARGET_32_LITTLE
   2988     case Parameters::TARGET_32_LITTLE:
   2989       {
   2990 	Sized_incremental_binary<32, false>* sized_ibase =
   2991 	    static_cast<Sized_incremental_binary<32, false>*>(ibase);
   2992 	if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
   2993 	  obj = new Sized_incr_dynobj<32, false>(name, sized_ibase,
   2994 						 input_file_index);
   2995 	else
   2996 	  obj = new Sized_relobj_incr<32, false>(name, sized_ibase,
   2997 						 input_file_index);
   2998       }
   2999       break;
   3000 #endif
   3001 #ifdef HAVE_TARGET_32_BIG
   3002     case Parameters::TARGET_32_BIG:
   3003       {
   3004 	Sized_incremental_binary<32, true>* sized_ibase =
   3005 	    static_cast<Sized_incremental_binary<32, true>*>(ibase);
   3006 	if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
   3007 	  obj = new Sized_incr_dynobj<32, true>(name, sized_ibase,
   3008 						input_file_index);
   3009 	else
   3010 	  obj = new Sized_relobj_incr<32, true>(name, sized_ibase,
   3011 						input_file_index);
   3012       }
   3013       break;
   3014 #endif
   3015 #ifdef HAVE_TARGET_64_LITTLE
   3016     case Parameters::TARGET_64_LITTLE:
   3017       {
   3018 	Sized_incremental_binary<64, false>* sized_ibase =
   3019 	    static_cast<Sized_incremental_binary<64, false>*>(ibase);
   3020 	if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
   3021 	  obj = new Sized_incr_dynobj<64, false>(name, sized_ibase,
   3022 						 input_file_index);
   3023 	else
   3024 	  obj = new Sized_relobj_incr<64, false>(name, sized_ibase,
   3025 						 input_file_index);
   3026      }
   3027       break;
   3028 #endif
   3029 #ifdef HAVE_TARGET_64_BIG
   3030     case Parameters::TARGET_64_BIG:
   3031       {
   3032 	Sized_incremental_binary<64, true>* sized_ibase =
   3033 	    static_cast<Sized_incremental_binary<64, true>*>(ibase);
   3034 	if (input_type == INCREMENTAL_INPUT_SHARED_LIBRARY)
   3035 	  obj = new Sized_incr_dynobj<64, true>(name, sized_ibase,
   3036 						input_file_index);
   3037 	else
   3038 	  obj = new Sized_relobj_incr<64, true>(name, sized_ibase,
   3039 						input_file_index);
   3040       }
   3041       break;
   3042 #endif
   3043     default:
   3044       gold_unreachable();
   3045     }
   3046 
   3047   gold_assert(obj != NULL);
   3048   return obj;
   3049 }
   3050 
   3051 // Copy the unused symbols from the incremental input info.
   3052 // We need to do this because we may be overwriting the incremental
   3053 // input info in the base file before we write the new incremental
   3054 // info.
   3055 void
   3056 Incremental_library::copy_unused_symbols()
   3057 {
   3058   unsigned int symcount = this->input_reader_->get_unused_symbol_count();
   3059   this->unused_symbols_.reserve(symcount);
   3060   for (unsigned int i = 0; i < symcount; ++i)
   3061     {
   3062       std::string name(this->input_reader_->get_unused_symbol(i));
   3063       this->unused_symbols_.push_back(name);
   3064     }
   3065 }
   3066 
   3067 // Iterator for unused global symbols in the library.
   3068 void
   3069 Incremental_library::do_for_all_unused_symbols(Symbol_visitor_base* v) const
   3070 {
   3071   for (Symbol_list::const_iterator p = this->unused_symbols_.begin();
   3072        p != this->unused_symbols_.end();
   3073        ++p)
   3074   v->visit(p->c_str());
   3075 }
   3076 
   3077 // Instantiate the templates we need.
   3078 
   3079 #ifdef HAVE_TARGET_32_LITTLE
   3080 template
   3081 class Sized_incremental_binary<32, false>;
   3082 
   3083 template
   3084 class Sized_relobj_incr<32, false>;
   3085 
   3086 template
   3087 class Sized_incr_dynobj<32, false>;
   3088 #endif
   3089 
   3090 #ifdef HAVE_TARGET_32_BIG
   3091 template
   3092 class Sized_incremental_binary<32, true>;
   3093 
   3094 template
   3095 class Sized_relobj_incr<32, true>;
   3096 
   3097 template
   3098 class Sized_incr_dynobj<32, true>;
   3099 #endif
   3100 
   3101 #ifdef HAVE_TARGET_64_LITTLE
   3102 template
   3103 class Sized_incremental_binary<64, false>;
   3104 
   3105 template
   3106 class Sized_relobj_incr<64, false>;
   3107 
   3108 template
   3109 class Sized_incr_dynobj<64, false>;
   3110 #endif
   3111 
   3112 #ifdef HAVE_TARGET_64_BIG
   3113 template
   3114 class Sized_incremental_binary<64, true>;
   3115 
   3116 template
   3117 class Sized_relobj_incr<64, true>;
   3118 
   3119 template
   3120 class Sized_incr_dynobj<64, true>;
   3121 #endif
   3122 
   3123 } // End namespace gold.
   3124