Home | History | Annotate | Download | only in gold
      1 // output.h -- manage the output file for gold   -*- C++ -*-
      2 
      3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #ifndef GOLD_OUTPUT_H
     24 #define GOLD_OUTPUT_H
     25 
     26 #include <algorithm>
     27 #include <list>
     28 #include <vector>
     29 
     30 #include "elfcpp.h"
     31 #include "mapfile.h"
     32 #include "layout.h"
     33 #include "reloc-types.h"
     34 
     35 namespace gold
     36 {
     37 
     38 class General_options;
     39 class Object;
     40 class Symbol;
     41 class Output_merge_base;
     42 class Output_section;
     43 class Relocatable_relocs;
     44 class Target;
     45 template<int size, bool big_endian>
     46 class Sized_target;
     47 template<int size, bool big_endian>
     48 class Sized_relobj;
     49 template<int size, bool big_endian>
     50 class Sized_relobj_file;
     51 
     52 // This class represents the output file.
     53 
     54 class Output_file
     55 {
     56  public:
     57   Output_file(const char* name);
     58 
     59   // Indicate that this is a temporary file which should not be
     60   // output.
     61   void
     62   set_is_temporary()
     63   { this->is_temporary_ = true; }
     64 
     65   // Try to open an existing file. Returns false if the file doesn't
     66   // exist, has a size of 0 or can't be mmaped.  This method is
     67   // thread-unsafe.  If BASE_NAME is not NULL, use the contents of
     68   // that file as the base for incremental linking.
     69   bool
     70   open_base_file(const char* base_name, bool writable);
     71 
     72   // Open the output file.  FILE_SIZE is the final size of the file.
     73   // If the file already exists, it is deleted/truncated.  This method
     74   // is thread-unsafe.
     75   void
     76   open(off_t file_size);
     77 
     78   // Resize the output file.  This method is thread-unsafe.
     79   void
     80   resize(off_t file_size);
     81 
     82   // Close the output file (flushing all buffered data) and make sure
     83   // there are no errors.  This method is thread-unsafe.
     84   void
     85   close();
     86 
     87   // Return the size of this file.
     88   off_t
     89   filesize()
     90   { return this->file_size_; }
     91 
     92   // Return the name of this file.
     93   const char*
     94   filename()
     95   { return this->name_; }
     96 
     97   // We currently always use mmap which makes the view handling quite
     98   // simple.  In the future we may support other approaches.
     99 
    100   // Write data to the output file.
    101   void
    102   write(off_t offset, const void* data, size_t len)
    103   { memcpy(this->base_ + offset, data, len); }
    104 
    105   // Get a buffer to use to write to the file, given the offset into
    106   // the file and the size.
    107   unsigned char*
    108   get_output_view(off_t start, size_t size)
    109   {
    110     gold_assert(start >= 0
    111 		&& start + static_cast<off_t>(size) <= this->file_size_);
    112     return this->base_ + start;
    113   }
    114 
    115   // VIEW must have been returned by get_output_view.  Write the
    116   // buffer to the file, passing in the offset and the size.
    117   void
    118   write_output_view(off_t, size_t, unsigned char*)
    119   { }
    120 
    121   // Get a read/write buffer.  This is used when we want to write part
    122   // of the file, read it in, and write it again.
    123   unsigned char*
    124   get_input_output_view(off_t start, size_t size)
    125   { return this->get_output_view(start, size); }
    126 
    127   // Write a read/write buffer back to the file.
    128   void
    129   write_input_output_view(off_t, size_t, unsigned char*)
    130   { }
    131 
    132   // Get a read buffer.  This is used when we just want to read part
    133   // of the file back it in.
    134   const unsigned char*
    135   get_input_view(off_t start, size_t size)
    136   { return this->get_output_view(start, size); }
    137 
    138   // Release a read bfufer.
    139   void
    140   free_input_view(off_t, size_t, const unsigned char*)
    141   { }
    142 
    143  private:
    144   // Map the file into memory or, if that fails, allocate anonymous
    145   // memory.
    146   void
    147   map();
    148 
    149   // Allocate anonymous memory for the file.
    150   bool
    151   map_anonymous();
    152 
    153   // Map the file into memory.
    154   bool
    155   map_no_anonymous(bool);
    156 
    157   // Unmap the file from memory (and flush to disk buffers).
    158   void
    159   unmap();
    160 
    161   // File name.
    162   const char* name_;
    163   // File descriptor.
    164   int o_;
    165   // File size.
    166   off_t file_size_;
    167   // Base of file mapped into memory.
    168   unsigned char* base_;
    169   // True iff base_ points to a memory buffer rather than an output file.
    170   bool map_is_anonymous_;
    171   // True if base_ was allocated using new rather than mmap.
    172   bool map_is_allocated_;
    173   // True if this is a temporary file which should not be output.
    174   bool is_temporary_;
    175 };
    176 
    177 // An abtract class for data which has to go into the output file.
    178 
    179 class Output_data
    180 {
    181  public:
    182   explicit Output_data()
    183     : address_(0), data_size_(0), offset_(-1),
    184       is_address_valid_(false), is_data_size_valid_(false),
    185       is_offset_valid_(false), is_data_size_fixed_(false),
    186       has_dynamic_reloc_(false)
    187   { }
    188 
    189   virtual
    190   ~Output_data();
    191 
    192   // Return the address.  For allocated sections, this is only valid
    193   // after Layout::finalize is finished.
    194   uint64_t
    195   address() const
    196   {
    197     gold_assert(this->is_address_valid_);
    198     return this->address_;
    199   }
    200 
    201   // Return the size of the data.  For allocated sections, this must
    202   // be valid after Layout::finalize calls set_address, but need not
    203   // be valid before then.
    204   off_t
    205   data_size() const
    206   {
    207     gold_assert(this->is_data_size_valid_);
    208     return this->data_size_;
    209   }
    210 
    211   // Get the current data size.
    212   off_t
    213   current_data_size() const
    214   { return this->current_data_size_for_child(); }
    215 
    216   // Return true if data size is fixed.
    217   bool
    218   is_data_size_fixed() const
    219   { return this->is_data_size_fixed_; }
    220 
    221   // Return the file offset.  This is only valid after
    222   // Layout::finalize is finished.  For some non-allocated sections,
    223   // it may not be valid until near the end of the link.
    224   off_t
    225   offset() const
    226   {
    227     gold_assert(this->is_offset_valid_);
    228     return this->offset_;
    229   }
    230 
    231   // Reset the address, file offset and data size.  This essentially
    232   // disables the sanity testing about duplicate and unknown settings.
    233   void
    234   reset_address_and_file_offset()
    235   {
    236     this->is_address_valid_ = false;
    237     this->is_offset_valid_ = false;
    238     if (!this->is_data_size_fixed_)
    239       this->is_data_size_valid_ = false;
    240     this->do_reset_address_and_file_offset();
    241   }
    242 
    243   // As above, but just for data size.
    244   void
    245   reset_data_size()
    246   {
    247     if (!this->is_data_size_fixed_)
    248       this->is_data_size_valid_ = false;
    249   }
    250 
    251   // Return true if address and file offset already have reset values. In
    252   // other words, calling reset_address_and_file_offset will not change them.
    253   bool
    254   address_and_file_offset_have_reset_values() const
    255   { return this->do_address_and_file_offset_have_reset_values(); }
    256 
    257   // Return the required alignment.
    258   uint64_t
    259   addralign() const
    260   { return this->do_addralign(); }
    261 
    262   // Return whether this has a load address.
    263   bool
    264   has_load_address() const
    265   { return this->do_has_load_address(); }
    266 
    267   // Return the load address.
    268   uint64_t
    269   load_address() const
    270   { return this->do_load_address(); }
    271 
    272   // Return whether this is an Output_section.
    273   bool
    274   is_section() const
    275   { return this->do_is_section(); }
    276 
    277   // Return whether this is an Output_section of the specified type.
    278   bool
    279   is_section_type(elfcpp::Elf_Word stt) const
    280   { return this->do_is_section_type(stt); }
    281 
    282   // Return whether this is an Output_section with the specified flag
    283   // set.
    284   bool
    285   is_section_flag_set(elfcpp::Elf_Xword shf) const
    286   { return this->do_is_section_flag_set(shf); }
    287 
    288   // Return the output section that this goes in, if there is one.
    289   Output_section*
    290   output_section()
    291   { return this->do_output_section(); }
    292 
    293   const Output_section*
    294   output_section() const
    295   { return this->do_output_section(); }
    296 
    297   // Return the output section index, if there is an output section.
    298   unsigned int
    299   out_shndx() const
    300   { return this->do_out_shndx(); }
    301 
    302   // Set the output section index, if this is an output section.
    303   void
    304   set_out_shndx(unsigned int shndx)
    305   { this->do_set_out_shndx(shndx); }
    306 
    307   // Set the address and file offset of this data, and finalize the
    308   // size of the data.  This is called during Layout::finalize for
    309   // allocated sections.
    310   void
    311   set_address_and_file_offset(uint64_t addr, off_t off)
    312   {
    313     this->set_address(addr);
    314     this->set_file_offset(off);
    315     this->finalize_data_size();
    316   }
    317 
    318   // Set the address.
    319   void
    320   set_address(uint64_t addr)
    321   {
    322     gold_assert(!this->is_address_valid_);
    323     this->address_ = addr;
    324     this->is_address_valid_ = true;
    325   }
    326 
    327   // Set the file offset.
    328   void
    329   set_file_offset(off_t off)
    330   {
    331     gold_assert(!this->is_offset_valid_);
    332     this->offset_ = off;
    333     this->is_offset_valid_ = true;
    334   }
    335 
    336   // Update the data size without finalizing it.
    337   void
    338   pre_finalize_data_size()
    339   {
    340     if (!this->is_data_size_valid_)
    341       {
    342 	// Tell the child class to update the data size.
    343 	this->update_data_size();
    344       }
    345   }
    346 
    347   // Finalize the data size.
    348   void
    349   finalize_data_size()
    350   {
    351     if (!this->is_data_size_valid_)
    352       {
    353 	// Tell the child class to set the data size.
    354 	this->set_final_data_size();
    355 	gold_assert(this->is_data_size_valid_);
    356       }
    357   }
    358 
    359   // Set the TLS offset.  Called only for SHT_TLS sections.
    360   void
    361   set_tls_offset(uint64_t tls_base)
    362   { this->do_set_tls_offset(tls_base); }
    363 
    364   // Return the TLS offset, relative to the base of the TLS segment.
    365   // Valid only for SHT_TLS sections.
    366   uint64_t
    367   tls_offset() const
    368   { return this->do_tls_offset(); }
    369 
    370   // Write the data to the output file.  This is called after
    371   // Layout::finalize is complete.
    372   void
    373   write(Output_file* file)
    374   { this->do_write(file); }
    375 
    376   // This is called by Layout::finalize to note that the sizes of
    377   // allocated sections must now be fixed.
    378   static void
    379   layout_complete()
    380   { Output_data::allocated_sizes_are_fixed = true; }
    381 
    382   // Used to check that layout has been done.
    383   static bool
    384   is_layout_complete()
    385   { return Output_data::allocated_sizes_are_fixed; }
    386 
    387   // Note that a dynamic reloc has been applied to this data.
    388   void
    389   add_dynamic_reloc()
    390   { this->has_dynamic_reloc_ = true; }
    391 
    392   // Return whether a dynamic reloc has been applied.
    393   bool
    394   has_dynamic_reloc() const
    395   { return this->has_dynamic_reloc_; }
    396 
    397   // Whether the address is valid.
    398   bool
    399   is_address_valid() const
    400   { return this->is_address_valid_; }
    401 
    402   // Whether the file offset is valid.
    403   bool
    404   is_offset_valid() const
    405   { return this->is_offset_valid_; }
    406 
    407   // Whether the data size is valid.
    408   bool
    409   is_data_size_valid() const
    410   { return this->is_data_size_valid_; }
    411 
    412   // Print information to the map file.
    413   void
    414   print_to_mapfile(Mapfile* mapfile) const
    415   { return this->do_print_to_mapfile(mapfile); }
    416 
    417  protected:
    418   // Functions that child classes may or in some cases must implement.
    419 
    420   // Write the data to the output file.
    421   virtual void
    422   do_write(Output_file*) = 0;
    423 
    424   // Return the required alignment.
    425   virtual uint64_t
    426   do_addralign() const = 0;
    427 
    428   // Return whether this has a load address.
    429   virtual bool
    430   do_has_load_address() const
    431   { return false; }
    432 
    433   // Return the load address.
    434   virtual uint64_t
    435   do_load_address() const
    436   { gold_unreachable(); }
    437 
    438   // Return whether this is an Output_section.
    439   virtual bool
    440   do_is_section() const
    441   { return false; }
    442 
    443   // Return whether this is an Output_section of the specified type.
    444   // This only needs to be implement by Output_section.
    445   virtual bool
    446   do_is_section_type(elfcpp::Elf_Word) const
    447   { return false; }
    448 
    449   // Return whether this is an Output_section with the specific flag
    450   // set.  This only needs to be implemented by Output_section.
    451   virtual bool
    452   do_is_section_flag_set(elfcpp::Elf_Xword) const
    453   { return false; }
    454 
    455   // Return the output section, if there is one.
    456   virtual Output_section*
    457   do_output_section()
    458   { return NULL; }
    459 
    460   virtual const Output_section*
    461   do_output_section() const
    462   { return NULL; }
    463 
    464   // Return the output section index, if there is an output section.
    465   virtual unsigned int
    466   do_out_shndx() const
    467   { gold_unreachable(); }
    468 
    469   // Set the output section index, if this is an output section.
    470   virtual void
    471   do_set_out_shndx(unsigned int)
    472   { gold_unreachable(); }
    473 
    474   // This is a hook for derived classes to set the preliminary data size.
    475   // This is called by pre_finalize_data_size, normally called during
    476   // Layout::finalize, before the section address is set, and is used
    477   // during an incremental update, when we need to know the size of a
    478   // section before allocating space in the output file.  For classes
    479   // where the current data size is up to date, this default version of
    480   // the method can be inherited.
    481   virtual void
    482   update_data_size()
    483   { }
    484 
    485   // This is a hook for derived classes to set the data size.  This is
    486   // called by finalize_data_size, normally called during
    487   // Layout::finalize, when the section address is set.
    488   virtual void
    489   set_final_data_size()
    490   { gold_unreachable(); }
    491 
    492   // A hook for resetting the address and file offset.
    493   virtual void
    494   do_reset_address_and_file_offset()
    495   { }
    496 
    497   // Return true if address and file offset already have reset values. In
    498   // other words, calling reset_address_and_file_offset will not change them.
    499   // A child class overriding do_reset_address_and_file_offset may need to
    500   // also override this.
    501   virtual bool
    502   do_address_and_file_offset_have_reset_values() const
    503   { return !this->is_address_valid_ && !this->is_offset_valid_; }
    504 
    505   // Set the TLS offset.  Called only for SHT_TLS sections.
    506   virtual void
    507   do_set_tls_offset(uint64_t)
    508   { gold_unreachable(); }
    509 
    510   // Return the TLS offset, relative to the base of the TLS segment.
    511   // Valid only for SHT_TLS sections.
    512   virtual uint64_t
    513   do_tls_offset() const
    514   { gold_unreachable(); }
    515 
    516   // Print to the map file.  This only needs to be implemented by
    517   // classes which may appear in a PT_LOAD segment.
    518   virtual void
    519   do_print_to_mapfile(Mapfile*) const
    520   { gold_unreachable(); }
    521 
    522   // Functions that child classes may call.
    523 
    524   // Reset the address.  The Output_section class needs this when an
    525   // SHF_ALLOC input section is added to an output section which was
    526   // formerly not SHF_ALLOC.
    527   void
    528   mark_address_invalid()
    529   { this->is_address_valid_ = false; }
    530 
    531   // Set the size of the data.
    532   void
    533   set_data_size(off_t data_size)
    534   {
    535     gold_assert(!this->is_data_size_valid_
    536 		&& !this->is_data_size_fixed_);
    537     this->data_size_ = data_size;
    538     this->is_data_size_valid_ = true;
    539   }
    540 
    541   // Fix the data size.  Once it is fixed, it cannot be changed
    542   // and the data size remains always valid.
    543   void
    544   fix_data_size()
    545   {
    546     gold_assert(this->is_data_size_valid_);
    547     this->is_data_size_fixed_ = true;
    548   }
    549 
    550   // Get the current data size--this is for the convenience of
    551   // sections which build up their size over time.
    552   off_t
    553   current_data_size_for_child() const
    554   { return this->data_size_; }
    555 
    556   // Set the current data size--this is for the convenience of
    557   // sections which build up their size over time.
    558   void
    559   set_current_data_size_for_child(off_t data_size)
    560   {
    561     this->data_size_ = data_size;
    562   }
    563 
    564   // Return default alignment for the target size.
    565   static uint64_t
    566   default_alignment();
    567 
    568   // Return default alignment for a specified size--32 or 64.
    569   static uint64_t
    570   default_alignment_for_size(int size);
    571 
    572  private:
    573   Output_data(const Output_data&);
    574   Output_data& operator=(const Output_data&);
    575 
    576   // This is used for verification, to make sure that we don't try to
    577   // change any sizes of allocated sections after we set the section
    578   // addresses.
    579   static bool allocated_sizes_are_fixed;
    580 
    581   // Memory address in output file.
    582   uint64_t address_;
    583   // Size of data in output file.
    584   off_t data_size_;
    585   // File offset of contents in output file.
    586   off_t offset_;
    587   // Whether address_ is valid.
    588   bool is_address_valid_ : 1;
    589   // Whether data_size_ is valid.
    590   bool is_data_size_valid_ : 1;
    591   // Whether offset_ is valid.
    592   bool is_offset_valid_ : 1;
    593   // Whether data size is fixed.
    594   bool is_data_size_fixed_ : 1;
    595   // Whether any dynamic relocs have been applied to this section.
    596   bool has_dynamic_reloc_ : 1;
    597 };
    598 
    599 // Output the section headers.
    600 
    601 class Output_section_headers : public Output_data
    602 {
    603  public:
    604   Output_section_headers(const Layout*,
    605 			 const Layout::Segment_list*,
    606 			 const Layout::Section_list*,
    607 			 const Layout::Section_list*,
    608 			 const Stringpool*,
    609 			 const Output_section*);
    610 
    611  protected:
    612   // Write the data to the file.
    613   void
    614   do_write(Output_file*);
    615 
    616   // Return the required alignment.
    617   uint64_t
    618   do_addralign() const
    619   { return Output_data::default_alignment(); }
    620 
    621   // Write to a map file.
    622   void
    623   do_print_to_mapfile(Mapfile* mapfile) const
    624   { mapfile->print_output_data(this, _("** section headers")); }
    625 
    626   // Update the data size.
    627   void
    628   update_data_size()
    629   { this->set_data_size(this->do_size()); }
    630 
    631   // Set final data size.
    632   void
    633   set_final_data_size()
    634   { this->set_data_size(this->do_size()); }
    635 
    636  private:
    637   // Write the data to the file with the right size and endianness.
    638   template<int size, bool big_endian>
    639   void
    640   do_sized_write(Output_file*);
    641 
    642   // Compute data size.
    643   off_t
    644   do_size() const;
    645 
    646   const Layout* layout_;
    647   const Layout::Segment_list* segment_list_;
    648   const Layout::Section_list* section_list_;
    649   const Layout::Section_list* unattached_section_list_;
    650   const Stringpool* secnamepool_;
    651   const Output_section* shstrtab_section_;
    652 };
    653 
    654 // Output the segment headers.
    655 
    656 class Output_segment_headers : public Output_data
    657 {
    658  public:
    659   Output_segment_headers(const Layout::Segment_list& segment_list);
    660 
    661  protected:
    662   // Write the data to the file.
    663   void
    664   do_write(Output_file*);
    665 
    666   // Return the required alignment.
    667   uint64_t
    668   do_addralign() const
    669   { return Output_data::default_alignment(); }
    670 
    671   // Write to a map file.
    672   void
    673   do_print_to_mapfile(Mapfile* mapfile) const
    674   { mapfile->print_output_data(this, _("** segment headers")); }
    675 
    676   // Set final data size.
    677   void
    678   set_final_data_size()
    679   { this->set_data_size(this->do_size()); }
    680 
    681  private:
    682   // Write the data to the file with the right size and endianness.
    683   template<int size, bool big_endian>
    684   void
    685   do_sized_write(Output_file*);
    686 
    687   // Compute the current size.
    688   off_t
    689   do_size() const;
    690 
    691   const Layout::Segment_list& segment_list_;
    692 };
    693 
    694 // Output the ELF file header.
    695 
    696 class Output_file_header : public Output_data
    697 {
    698  public:
    699   Output_file_header(Target*,
    700 		     const Symbol_table*,
    701 		     const Output_segment_headers*);
    702 
    703   // Add information about the section headers.  We lay out the ELF
    704   // file header before we create the section headers.
    705   void set_section_info(const Output_section_headers*,
    706 			const Output_section* shstrtab);
    707 
    708  protected:
    709   // Write the data to the file.
    710   void
    711   do_write(Output_file*);
    712 
    713   // Return the required alignment.
    714   uint64_t
    715   do_addralign() const
    716   { return Output_data::default_alignment(); }
    717 
    718   // Write to a map file.
    719   void
    720   do_print_to_mapfile(Mapfile* mapfile) const
    721   { mapfile->print_output_data(this, _("** file header")); }
    722 
    723   // Set final data size.
    724   void
    725   set_final_data_size(void)
    726   { this->set_data_size(this->do_size()); }
    727 
    728  private:
    729   // Write the data to the file with the right size and endianness.
    730   template<int size, bool big_endian>
    731   void
    732   do_sized_write(Output_file*);
    733 
    734   // Return the value to use for the entry address.
    735   template<int size>
    736   typename elfcpp::Elf_types<size>::Elf_Addr
    737   entry();
    738 
    739   // Compute the current data size.
    740   off_t
    741   do_size() const;
    742 
    743   Target* target_;
    744   const Symbol_table* symtab_;
    745   const Output_segment_headers* segment_header_;
    746   const Output_section_headers* section_header_;
    747   const Output_section* shstrtab_;
    748 };
    749 
    750 // Output sections are mainly comprised of input sections.  However,
    751 // there are cases where we have data to write out which is not in an
    752 // input section.  Output_section_data is used in such cases.  This is
    753 // an abstract base class.
    754 
    755 class Output_section_data : public Output_data
    756 {
    757  public:
    758   Output_section_data(off_t data_size, uint64_t addralign,
    759 		      bool is_data_size_fixed)
    760     : Output_data(), output_section_(NULL), addralign_(addralign)
    761   {
    762     this->set_data_size(data_size);
    763     if (is_data_size_fixed)
    764       this->fix_data_size();
    765   }
    766 
    767   Output_section_data(uint64_t addralign)
    768     : Output_data(), output_section_(NULL), addralign_(addralign)
    769   { }
    770 
    771   // Return the output section.
    772   Output_section*
    773   output_section()
    774   { return this->output_section_; }
    775 
    776   const Output_section*
    777   output_section() const
    778   { return this->output_section_; }
    779 
    780   // Record the output section.
    781   void
    782   set_output_section(Output_section* os);
    783 
    784   // Add an input section, for SHF_MERGE sections.  This returns true
    785   // if the section was handled.
    786   bool
    787   add_input_section(Relobj* object, unsigned int shndx)
    788   { return this->do_add_input_section(object, shndx); }
    789 
    790   // Given an input OBJECT, an input section index SHNDX within that
    791   // object, and an OFFSET relative to the start of that input
    792   // section, return whether or not the corresponding offset within
    793   // the output section is known.  If this function returns true, it
    794   // sets *POUTPUT to the output offset.  The value -1 indicates that
    795   // this input offset is being discarded.
    796   bool
    797   output_offset(const Relobj* object, unsigned int shndx,
    798 		section_offset_type offset,
    799 		section_offset_type* poutput) const
    800   { return this->do_output_offset(object, shndx, offset, poutput); }
    801 
    802   // Write the contents to a buffer.  This is used for sections which
    803   // require postprocessing, such as compression.
    804   void
    805   write_to_buffer(unsigned char* buffer)
    806   { this->do_write_to_buffer(buffer); }
    807 
    808   // Print merge stats to stderr.  This should only be called for
    809   // SHF_MERGE sections.
    810   void
    811   print_merge_stats(const char* section_name)
    812   { this->do_print_merge_stats(section_name); }
    813 
    814  protected:
    815   // The child class must implement do_write.
    816 
    817   // The child class may implement specific adjustments to the output
    818   // section.
    819   virtual void
    820   do_adjust_output_section(Output_section*)
    821   { }
    822 
    823   // May be implemented by child class.  Return true if the section
    824   // was handled.
    825   virtual bool
    826   do_add_input_section(Relobj*, unsigned int)
    827   { gold_unreachable(); }
    828 
    829   // The child class may implement output_offset.
    830   virtual bool
    831   do_output_offset(const Relobj*, unsigned int, section_offset_type,
    832 		   section_offset_type*) const
    833   { return false; }
    834 
    835   // The child class may implement write_to_buffer.  Most child
    836   // classes can not appear in a compressed section, and they do not
    837   // implement this.
    838   virtual void
    839   do_write_to_buffer(unsigned char*)
    840   { gold_unreachable(); }
    841 
    842   // Print merge statistics.
    843   virtual void
    844   do_print_merge_stats(const char*)
    845   { gold_unreachable(); }
    846 
    847   // Return the required alignment.
    848   uint64_t
    849   do_addralign() const
    850   { return this->addralign_; }
    851 
    852   // Return the output section.
    853   Output_section*
    854   do_output_section()
    855   { return this->output_section_; }
    856 
    857   const Output_section*
    858   do_output_section() const
    859   { return this->output_section_; }
    860 
    861   // Return the section index of the output section.
    862   unsigned int
    863   do_out_shndx() const;
    864 
    865   // Set the alignment.
    866   void
    867   set_addralign(uint64_t addralign);
    868 
    869  private:
    870   // The output section for this section.
    871   Output_section* output_section_;
    872   // The required alignment.
    873   uint64_t addralign_;
    874 };
    875 
    876 // Some Output_section_data classes build up their data step by step,
    877 // rather than all at once.  This class provides an interface for
    878 // them.
    879 
    880 class Output_section_data_build : public Output_section_data
    881 {
    882  public:
    883   Output_section_data_build(uint64_t addralign)
    884     : Output_section_data(addralign)
    885   { }
    886 
    887   Output_section_data_build(off_t data_size, uint64_t addralign)
    888     : Output_section_data(data_size, addralign, false)
    889   { }
    890 
    891   // Set the current data size.
    892   void
    893   set_current_data_size(off_t data_size)
    894   { this->set_current_data_size_for_child(data_size); }
    895 
    896  protected:
    897   // Set the final data size.
    898   virtual void
    899   set_final_data_size()
    900   { this->set_data_size(this->current_data_size_for_child()); }
    901 };
    902 
    903 // A simple case of Output_data in which we have constant data to
    904 // output.
    905 
    906 class Output_data_const : public Output_section_data
    907 {
    908  public:
    909   Output_data_const(const std::string& data, uint64_t addralign)
    910     : Output_section_data(data.size(), addralign, true), data_(data)
    911   { }
    912 
    913   Output_data_const(const char* p, off_t len, uint64_t addralign)
    914     : Output_section_data(len, addralign, true), data_(p, len)
    915   { }
    916 
    917   Output_data_const(const unsigned char* p, off_t len, uint64_t addralign)
    918     : Output_section_data(len, addralign, true),
    919       data_(reinterpret_cast<const char*>(p), len)
    920   { }
    921 
    922  protected:
    923   // Write the data to the output file.
    924   void
    925   do_write(Output_file*);
    926 
    927   // Write the data to a buffer.
    928   void
    929   do_write_to_buffer(unsigned char* buffer)
    930   { memcpy(buffer, this->data_.data(), this->data_.size()); }
    931 
    932   // Write to a map file.
    933   void
    934   do_print_to_mapfile(Mapfile* mapfile) const
    935   { mapfile->print_output_data(this, _("** fill")); }
    936 
    937  private:
    938   std::string data_;
    939 };
    940 
    941 // Another version of Output_data with constant data, in which the
    942 // buffer is allocated by the caller.
    943 
    944 class Output_data_const_buffer : public Output_section_data
    945 {
    946  public:
    947   Output_data_const_buffer(const unsigned char* p, off_t len,
    948 			   uint64_t addralign, const char* map_name)
    949     : Output_section_data(len, addralign, true),
    950       p_(p), map_name_(map_name)
    951   { }
    952 
    953  protected:
    954   // Write the data the output file.
    955   void
    956   do_write(Output_file*);
    957 
    958   // Write the data to a buffer.
    959   void
    960   do_write_to_buffer(unsigned char* buffer)
    961   { memcpy(buffer, this->p_, this->data_size()); }
    962 
    963   // Write to a map file.
    964   void
    965   do_print_to_mapfile(Mapfile* mapfile) const
    966   { mapfile->print_output_data(this, _(this->map_name_)); }
    967 
    968  private:
    969   // The data to output.
    970   const unsigned char* p_;
    971   // Name to use in a map file.  Maps are a rarely used feature, but
    972   // the space usage is minor as aren't very many of these objects.
    973   const char* map_name_;
    974 };
    975 
    976 // A place holder for a fixed amount of data written out via some
    977 // other mechanism.
    978 
    979 class Output_data_fixed_space : public Output_section_data
    980 {
    981  public:
    982   Output_data_fixed_space(off_t data_size, uint64_t addralign,
    983 			  const char* map_name)
    984     : Output_section_data(data_size, addralign, true),
    985       map_name_(map_name)
    986   { }
    987 
    988  protected:
    989   // Write out the data--the actual data must be written out
    990   // elsewhere.
    991   void
    992   do_write(Output_file*)
    993   { }
    994 
    995   // Write to a map file.
    996   void
    997   do_print_to_mapfile(Mapfile* mapfile) const
    998   { mapfile->print_output_data(this, _(this->map_name_)); }
    999 
   1000  private:
   1001   // Name to use in a map file.  Maps are a rarely used feature, but
   1002   // the space usage is minor as aren't very many of these objects.
   1003   const char* map_name_;
   1004 };
   1005 
   1006 // A place holder for variable sized data written out via some other
   1007 // mechanism.
   1008 
   1009 class Output_data_space : public Output_section_data_build
   1010 {
   1011  public:
   1012   explicit Output_data_space(uint64_t addralign, const char* map_name)
   1013     : Output_section_data_build(addralign),
   1014       map_name_(map_name)
   1015   { }
   1016 
   1017   explicit Output_data_space(off_t data_size, uint64_t addralign,
   1018 			     const char* map_name)
   1019     : Output_section_data_build(data_size, addralign),
   1020       map_name_(map_name)
   1021   { }
   1022 
   1023   // Set the alignment.
   1024   void
   1025   set_space_alignment(uint64_t align)
   1026   { this->set_addralign(align); }
   1027 
   1028  protected:
   1029   // Write out the data--the actual data must be written out
   1030   // elsewhere.
   1031   void
   1032   do_write(Output_file*)
   1033   { }
   1034 
   1035   // Write to a map file.
   1036   void
   1037   do_print_to_mapfile(Mapfile* mapfile) const
   1038   { mapfile->print_output_data(this, _(this->map_name_)); }
   1039 
   1040  private:
   1041   // Name to use in a map file.  Maps are a rarely used feature, but
   1042   // the space usage is minor as aren't very many of these objects.
   1043   const char* map_name_;
   1044 };
   1045 
   1046 // Fill fixed space with zeroes.  This is just like
   1047 // Output_data_fixed_space, except that the map name is known.
   1048 
   1049 class Output_data_zero_fill : public Output_section_data
   1050 {
   1051  public:
   1052   Output_data_zero_fill(off_t data_size, uint64_t addralign)
   1053     : Output_section_data(data_size, addralign, true)
   1054   { }
   1055 
   1056  protected:
   1057   // There is no data to write out.
   1058   void
   1059   do_write(Output_file*)
   1060   { }
   1061 
   1062   // Write to a map file.
   1063   void
   1064   do_print_to_mapfile(Mapfile* mapfile) const
   1065   { mapfile->print_output_data(this, "** zero fill"); }
   1066 };
   1067 
   1068 // A string table which goes into an output section.
   1069 
   1070 class Output_data_strtab : public Output_section_data
   1071 {
   1072  public:
   1073   Output_data_strtab(Stringpool* strtab)
   1074     : Output_section_data(1), strtab_(strtab)
   1075   { }
   1076 
   1077  protected:
   1078   // This is called to update the section size prior to assigning
   1079   // the address and file offset.
   1080   void
   1081   update_data_size()
   1082   { this->set_final_data_size(); }
   1083 
   1084   // This is called to set the address and file offset.  Here we make
   1085   // sure that the Stringpool is finalized.
   1086   void
   1087   set_final_data_size();
   1088 
   1089   // Write out the data.
   1090   void
   1091   do_write(Output_file*);
   1092 
   1093   // Write the data to a buffer.
   1094   void
   1095   do_write_to_buffer(unsigned char* buffer)
   1096   { this->strtab_->write_to_buffer(buffer, this->data_size()); }
   1097 
   1098   // Write to a map file.
   1099   void
   1100   do_print_to_mapfile(Mapfile* mapfile) const
   1101   { mapfile->print_output_data(this, _("** string table")); }
   1102 
   1103  private:
   1104   Stringpool* strtab_;
   1105 };
   1106 
   1107 // This POD class is used to represent a single reloc in the output
   1108 // file.  This could be a private class within Output_data_reloc, but
   1109 // the templatization is complex enough that I broke it out into a
   1110 // separate class.  The class is templatized on either elfcpp::SHT_REL
   1111 // or elfcpp::SHT_RELA, and also on whether this is a dynamic
   1112 // relocation or an ordinary relocation.
   1113 
   1114 // A relocation can be against a global symbol, a local symbol, a
   1115 // local section symbol, an output section, or the undefined symbol at
   1116 // index 0.  We represent the latter by using a NULL global symbol.
   1117 
   1118 template<int sh_type, bool dynamic, int size, bool big_endian>
   1119 class Output_reloc;
   1120 
   1121 template<bool dynamic, int size, bool big_endian>
   1122 class Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
   1123 {
   1124  public:
   1125   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
   1126   typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
   1127 
   1128   static const Address invalid_address = static_cast<Address>(0) - 1;
   1129 
   1130   // An uninitialized entry.  We need this because we want to put
   1131   // instances of this class into an STL container.
   1132   Output_reloc()
   1133     : local_sym_index_(INVALID_CODE)
   1134   { }
   1135 
   1136   // We have a bunch of different constructors.  They come in pairs
   1137   // depending on how the address of the relocation is specified.  It
   1138   // can either be an offset in an Output_data or an offset in an
   1139   // input section.
   1140 
   1141   // A reloc against a global symbol.
   1142 
   1143   Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
   1144 	       Address address, bool is_relative, bool is_symbolless,
   1145 	       bool use_plt_offset);
   1146 
   1147   Output_reloc(Symbol* gsym, unsigned int type,
   1148 	       Sized_relobj<size, big_endian>* relobj,
   1149 	       unsigned int shndx, Address address, bool is_relative,
   1150 	       bool is_symbolless, bool use_plt_offset);
   1151 
   1152   // A reloc against a local symbol or local section symbol.
   1153 
   1154   Output_reloc(Sized_relobj<size, big_endian>* relobj,
   1155 	       unsigned int local_sym_index, unsigned int type,
   1156 	       Output_data* od, Address address, bool is_relative,
   1157 	       bool is_symbolless, bool is_section_symbol,
   1158 	       bool use_plt_offset);
   1159 
   1160   Output_reloc(Sized_relobj<size, big_endian>* relobj,
   1161 	       unsigned int local_sym_index, unsigned int type,
   1162 	       unsigned int shndx, Address address, bool is_relative,
   1163 	       bool is_symbolless, bool is_section_symbol,
   1164 	       bool use_plt_offset);
   1165 
   1166   // A reloc against the STT_SECTION symbol of an output section.
   1167 
   1168   Output_reloc(Output_section* os, unsigned int type, Output_data* od,
   1169 	       Address address, bool is_relative);
   1170 
   1171   Output_reloc(Output_section* os, unsigned int type,
   1172 	       Sized_relobj<size, big_endian>* relobj, unsigned int shndx,
   1173 	       Address address, bool is_relative);
   1174 
   1175   // An absolute or relative relocation with no symbol.
   1176 
   1177   Output_reloc(unsigned int type, Output_data* od, Address address,
   1178 	       bool is_relative);
   1179 
   1180   Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
   1181 	       unsigned int shndx, Address address, bool is_relative);
   1182 
   1183   // A target specific relocation.  The target will be called to get
   1184   // the symbol index, passing ARG.  The type and offset will be set
   1185   // as for other relocation types.
   1186 
   1187   Output_reloc(unsigned int type, void* arg, Output_data* od,
   1188 	       Address address);
   1189 
   1190   Output_reloc(unsigned int type, void* arg,
   1191 	       Sized_relobj<size, big_endian>* relobj,
   1192 	       unsigned int shndx, Address address);
   1193 
   1194   // Return the reloc type.
   1195   unsigned int
   1196   type() const
   1197   { return this->type_; }
   1198 
   1199   // Return whether this is a RELATIVE relocation.
   1200   bool
   1201   is_relative() const
   1202   { return this->is_relative_; }
   1203 
   1204   // Return whether this is a relocation which should not use
   1205   // a symbol, but which obtains its addend from a symbol.
   1206   bool
   1207   is_symbolless() const
   1208   { return this->is_symbolless_; }
   1209 
   1210   // Return whether this is against a local section symbol.
   1211   bool
   1212   is_local_section_symbol() const
   1213   {
   1214     return (this->local_sym_index_ != GSYM_CODE
   1215 	    && this->local_sym_index_ != SECTION_CODE
   1216 	    && this->local_sym_index_ != INVALID_CODE
   1217 	    && this->local_sym_index_ != TARGET_CODE
   1218 	    && this->is_section_symbol_);
   1219   }
   1220 
   1221   // Return whether this is a target specific relocation.
   1222   bool
   1223   is_target_specific() const
   1224   { return this->local_sym_index_ == TARGET_CODE; }
   1225 
   1226   // Return the argument to pass to the target for a target specific
   1227   // relocation.
   1228   void*
   1229   target_arg() const
   1230   {
   1231     gold_assert(this->local_sym_index_ == TARGET_CODE);
   1232     return this->u1_.arg;
   1233   }
   1234 
   1235   // For a local section symbol, return the offset of the input
   1236   // section within the output section.  ADDEND is the addend being
   1237   // applied to the input section.
   1238   Address
   1239   local_section_offset(Addend addend) const;
   1240 
   1241   // Get the value of the symbol referred to by a Rel relocation when
   1242   // we are adding the given ADDEND.
   1243   Address
   1244   symbol_value(Addend addend) const;
   1245 
   1246   // If this relocation is against an input section, return the
   1247   // relocatable object containing the input section.
   1248   Sized_relobj<size, big_endian>*
   1249   get_relobj() const
   1250   {
   1251     if (this->shndx_ == INVALID_CODE)
   1252       return NULL;
   1253     return this->u2_.relobj;
   1254   }
   1255 
   1256   // Write the reloc entry to an output view.
   1257   void
   1258   write(unsigned char* pov) const;
   1259 
   1260   // Write the offset and info fields to Write_rel.
   1261   template<typename Write_rel>
   1262   void write_rel(Write_rel*) const;
   1263 
   1264   // This is used when sorting dynamic relocs.  Return -1 to sort this
   1265   // reloc before R2, 0 to sort the same as R2, 1 to sort after R2.
   1266   int
   1267   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
   1268     const;
   1269 
   1270   // Return whether this reloc should be sorted before the argument
   1271   // when sorting dynamic relocs.
   1272   bool
   1273   sort_before(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>&
   1274 	      r2) const
   1275   { return this->compare(r2) < 0; }
   1276 
   1277   // Return the symbol index.
   1278   unsigned int
   1279   get_symbol_index() const;
   1280 
   1281   // Return the output address.
   1282   Address
   1283   get_address() const;
   1284 
   1285  private:
   1286   // Record that we need a dynamic symbol index.
   1287   void
   1288   set_needs_dynsym_index();
   1289 
   1290   // Codes for local_sym_index_.
   1291   enum
   1292   {
   1293     // Global symbol.
   1294     GSYM_CODE = -1U,
   1295     // Output section.
   1296     SECTION_CODE = -2U,
   1297     // Target specific.
   1298     TARGET_CODE = -3U,
   1299     // Invalid uninitialized entry.
   1300     INVALID_CODE = -4U
   1301   };
   1302 
   1303   union
   1304   {
   1305     // For a local symbol or local section symbol
   1306     // (this->local_sym_index_ >= 0), the object.  We will never
   1307     // generate a relocation against a local symbol in a dynamic
   1308     // object; that doesn't make sense.  And our callers will always
   1309     // be templatized, so we use Sized_relobj here.
   1310     Sized_relobj<size, big_endian>* relobj;
   1311     // For a global symbol (this->local_sym_index_ == GSYM_CODE, the
   1312     // symbol.  If this is NULL, it indicates a relocation against the
   1313     // undefined 0 symbol.
   1314     Symbol* gsym;
   1315     // For a relocation against an output section
   1316     // (this->local_sym_index_ == SECTION_CODE), the output section.
   1317     Output_section* os;
   1318     // For a target specific relocation, an argument to pass to the
   1319     // target.
   1320     void* arg;
   1321   } u1_;
   1322   union
   1323   {
   1324     // If this->shndx_ is not INVALID CODE, the object which holds the
   1325     // input section being used to specify the reloc address.
   1326     Sized_relobj<size, big_endian>* relobj;
   1327     // If this->shndx_ is INVALID_CODE, the output data being used to
   1328     // specify the reloc address.  This may be NULL if the reloc
   1329     // address is absolute.
   1330     Output_data* od;
   1331   } u2_;
   1332   // The address offset within the input section or the Output_data.
   1333   Address address_;
   1334   // This is GSYM_CODE for a global symbol, or SECTION_CODE for a
   1335   // relocation against an output section, or TARGET_CODE for a target
   1336   // specific relocation, or INVALID_CODE for an uninitialized value.
   1337   // Otherwise, for a local symbol (this->is_section_symbol_ is
   1338   // false), the local symbol index.  For a local section symbol
   1339   // (this->is_section_symbol_ is true), the section index in the
   1340   // input file.
   1341   unsigned int local_sym_index_;
   1342   // The reloc type--a processor specific code.
   1343   unsigned int type_ : 28;
   1344   // True if the relocation is a RELATIVE relocation.
   1345   bool is_relative_ : 1;
   1346   // True if the relocation is one which should not use
   1347   // a symbol, but which obtains its addend from a symbol.
   1348   bool is_symbolless_ : 1;
   1349   // True if the relocation is against a section symbol.
   1350   bool is_section_symbol_ : 1;
   1351   // True if the addend should be the PLT offset.
   1352   // (Used only for RELA, but stored here for space.)
   1353   bool use_plt_offset_ : 1;
   1354   // If the reloc address is an input section in an object, the
   1355   // section index.  This is INVALID_CODE if the reloc address is
   1356   // specified in some other way.
   1357   unsigned int shndx_;
   1358 };
   1359 
   1360 // The SHT_RELA version of Output_reloc<>.  This is just derived from
   1361 // the SHT_REL version of Output_reloc, but it adds an addend.
   1362 
   1363 template<bool dynamic, int size, bool big_endian>
   1364 class Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
   1365 {
   1366  public:
   1367   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
   1368   typedef typename elfcpp::Elf_types<size>::Elf_Addr Addend;
   1369 
   1370   // An uninitialized entry.
   1371   Output_reloc()
   1372     : rel_()
   1373   { }
   1374 
   1375   // A reloc against a global symbol.
   1376 
   1377   Output_reloc(Symbol* gsym, unsigned int type, Output_data* od,
   1378 	       Address address, Addend addend, bool is_relative,
   1379 	       bool is_symbolless, bool use_plt_offset)
   1380     : rel_(gsym, type, od, address, is_relative, is_symbolless,
   1381 	   use_plt_offset),
   1382       addend_(addend)
   1383   { }
   1384 
   1385   Output_reloc(Symbol* gsym, unsigned int type,
   1386 	       Sized_relobj<size, big_endian>* relobj,
   1387 	       unsigned int shndx, Address address, Addend addend,
   1388 	       bool is_relative, bool is_symbolless, bool use_plt_offset)
   1389     : rel_(gsym, type, relobj, shndx, address, is_relative,
   1390 	   is_symbolless, use_plt_offset), addend_(addend)
   1391   { }
   1392 
   1393   // A reloc against a local symbol.
   1394 
   1395   Output_reloc(Sized_relobj<size, big_endian>* relobj,
   1396 	       unsigned int local_sym_index, unsigned int type,
   1397 	       Output_data* od, Address address,
   1398 	       Addend addend, bool is_relative,
   1399 	       bool is_symbolless, bool is_section_symbol,
   1400 	       bool use_plt_offset)
   1401     : rel_(relobj, local_sym_index, type, od, address, is_relative,
   1402 	   is_symbolless, is_section_symbol, use_plt_offset),
   1403       addend_(addend)
   1404   { }
   1405 
   1406   Output_reloc(Sized_relobj<size, big_endian>* relobj,
   1407 	       unsigned int local_sym_index, unsigned int type,
   1408 	       unsigned int shndx, Address address,
   1409 	       Addend addend, bool is_relative,
   1410 	       bool is_symbolless, bool is_section_symbol,
   1411 	       bool use_plt_offset)
   1412     : rel_(relobj, local_sym_index, type, shndx, address, is_relative,
   1413 	   is_symbolless, is_section_symbol, use_plt_offset),
   1414       addend_(addend)
   1415   { }
   1416 
   1417   // A reloc against the STT_SECTION symbol of an output section.
   1418 
   1419   Output_reloc(Output_section* os, unsigned int type, Output_data* od,
   1420 	       Address address, Addend addend, bool is_relative)
   1421     : rel_(os, type, od, address, is_relative), addend_(addend)
   1422   { }
   1423 
   1424   Output_reloc(Output_section* os, unsigned int type,
   1425 	       Sized_relobj<size, big_endian>* relobj,
   1426 	       unsigned int shndx, Address address, Addend addend,
   1427 	       bool is_relative)
   1428     : rel_(os, type, relobj, shndx, address, is_relative), addend_(addend)
   1429   { }
   1430 
   1431   // An absolute or relative relocation with no symbol.
   1432 
   1433   Output_reloc(unsigned int type, Output_data* od, Address address,
   1434 	       Addend addend, bool is_relative)
   1435     : rel_(type, od, address, is_relative), addend_(addend)
   1436   { }
   1437 
   1438   Output_reloc(unsigned int type, Sized_relobj<size, big_endian>* relobj,
   1439 	       unsigned int shndx, Address address, Addend addend,
   1440 	       bool is_relative)
   1441     : rel_(type, relobj, shndx, address, is_relative), addend_(addend)
   1442   { }
   1443 
   1444   // A target specific relocation.  The target will be called to get
   1445   // the symbol index and the addend, passing ARG.  The type and
   1446   // offset will be set as for other relocation types.
   1447 
   1448   Output_reloc(unsigned int type, void* arg, Output_data* od,
   1449 	       Address address, Addend addend)
   1450     : rel_(type, arg, od, address), addend_(addend)
   1451   { }
   1452 
   1453   Output_reloc(unsigned int type, void* arg,
   1454 	       Sized_relobj<size, big_endian>* relobj,
   1455 	       unsigned int shndx, Address address, Addend addend)
   1456     : rel_(type, arg, relobj, shndx, address), addend_(addend)
   1457   { }
   1458 
   1459   // Return whether this is a RELATIVE relocation.
   1460   bool
   1461   is_relative() const
   1462   { return this->rel_.is_relative(); }
   1463 
   1464   // Return whether this is a relocation which should not use
   1465   // a symbol, but which obtains its addend from a symbol.
   1466   bool
   1467   is_symbolless() const
   1468   { return this->rel_.is_symbolless(); }
   1469 
   1470   // If this relocation is against an input section, return the
   1471   // relocatable object containing the input section.
   1472   Sized_relobj<size, big_endian>*
   1473   get_relobj() const
   1474   { return this->rel_.get_relobj(); }
   1475 
   1476   // Write the reloc entry to an output view.
   1477   void
   1478   write(unsigned char* pov) const;
   1479 
   1480   // Return whether this reloc should be sorted before the argument
   1481   // when sorting dynamic relocs.
   1482   bool
   1483   sort_before(const Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>&
   1484 	      r2) const
   1485   {
   1486     int i = this->rel_.compare(r2.rel_);
   1487     if (i < 0)
   1488       return true;
   1489     else if (i > 0)
   1490       return false;
   1491     else
   1492       return this->addend_ < r2.addend_;
   1493   }
   1494 
   1495  private:
   1496   // The basic reloc.
   1497   Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
   1498   // The addend.
   1499   Addend addend_;
   1500 };
   1501 
   1502 // The SHT_RELR version of Output_reloc<>.  This is a relative reloc,
   1503 // and holds nothing but an offset.  Rather than duplicate all the fields
   1504 // of the SHT_REL version except for the symbol and relocation type, we
   1505 // simply use an SHT_REL as a proxy.
   1506 
   1507 template<bool dynamic, int size, bool big_endian>
   1508 class Output_reloc<elfcpp::SHT_RELR, dynamic, size, big_endian>
   1509 {
   1510  public:
   1511   typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
   1512   typedef typename elfcpp::Elf_types<size>::Elf_WXword Relr_Data;
   1513 
   1514   // An uninitialized entry.
   1515   Output_reloc()
   1516     : rel_()
   1517   { }
   1518 
   1519   // A reloc against a global symbol.
   1520 
   1521   Output_reloc(Symbol* gsym, Output_data* od, Address address)
   1522     : rel_(gsym, 0, od, address, true, true, false),
   1523       bits_(0)
   1524   { }
   1525 
   1526   Output_reloc(Symbol* gsym, Sized_relobj<size, big_endian>* relobj,
   1527 	       unsigned int shndx, Address address)
   1528     : rel_(gsym, 0, relobj, shndx, address, true, true, false),
   1529       bits_(0)
   1530   { }
   1531 
   1532   // A reloc against a local symbol.
   1533 
   1534   Output_reloc(Sized_relobj<size, big_endian>* relobj,
   1535 	       unsigned int local_sym_index, Output_data* od, Address address,
   1536 	       bool is_section_symbol)
   1537     : rel_(relobj, local_sym_index, 0, od, address, true,
   1538 	   true, is_section_symbol, false),
   1539       bits_(0)
   1540   { }
   1541 
   1542   Output_reloc(Sized_relobj<size, big_endian>* relobj,
   1543 	       unsigned int local_sym_index, unsigned int shndx,
   1544 	       Address address, bool is_section_symbol)
   1545     : rel_(relobj, local_sym_index, 0, shndx, address, true,
   1546 	   true, is_section_symbol, false),
   1547       bits_(0)
   1548   { }
   1549 
   1550   // A reloc against the STT_SECTION symbol of an output section.
   1551 
   1552   Output_reloc(Output_section* os, Output_data* od, Address address)
   1553     : rel_(os, 0, od, address, true),
   1554       bits_(0)  { }
   1555 
   1556   Output_reloc(Output_section* os, Sized_relobj<size, big_endian>* relobj,
   1557 	       unsigned int shndx, Address address)
   1558     : rel_(os, 0, relobj, shndx, address, true),
   1559       bits_(0)  { }
   1560 
   1561   // A relative relocation with no symbol.
   1562 
   1563   Output_reloc(Output_data* od, Address address)
   1564     : rel_(0, od, address, true),
   1565       bits_(0)
   1566   { }
   1567 
   1568   Output_reloc(Sized_relobj<size, big_endian>* relobj,
   1569 	       unsigned int shndx, Address address)
   1570     : rel_(0, relobj, shndx, address, true),
   1571       bits_(0)
   1572   { }
   1573 
   1574   // Return whether this is a RELATIVE relocation.
   1575   bool
   1576   is_relative() const
   1577   { return true; }
   1578 
   1579   // Return whether this is a relocation which should not use
   1580   // a symbol, but which obtains its addend from a symbol.
   1581   bool
   1582   is_symbolless() const
   1583   { return true; }
   1584 
   1585   // If this relocation is against an input section, return the
   1586   // relocatable object containing the input section.
   1587   Sized_relobj<size, big_endian>*
   1588   get_relobj() const
   1589   { return this->rel_.get_relobj(); }
   1590 
   1591   // Write the reloc entry to an output view.
   1592   void
   1593   write(unsigned char* pov) const;
   1594 
   1595   // Return whether this reloc should be sorted before the argument
   1596   // when sorting dynamic relocs.
   1597   bool
   1598   sort_before(const Output_reloc<elfcpp::SHT_RELR, dynamic, size, big_endian>&
   1599 	      r2) const
   1600   { return this->rel_.compare(r2.rel_) < 0; }
   1601 
   1602  public:
   1603   // The basic reloc.
   1604   Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian> rel_;
   1605 
   1606   // Relocation bitmap for encoding offsets continuing from previous entry.
   1607   //   https://groups.google.com/d/msg/generic-abi/bX460iggiKg/Pi9aSwwABgAJ
   1608   // 31-bits/63-bits.
   1609   Relr_Data bits_;
   1610 };
   1611 
   1612 // Output_data_reloc_generic is a non-template base class for
   1613 // Output_data_reloc_base.  This gives the generic code a way to hold
   1614 // a pointer to a reloc section.
   1615 
   1616 class Output_data_reloc_generic : public Output_section_data_build
   1617 {
   1618  public:
   1619   Output_data_reloc_generic(int size, bool sort_relocs)
   1620     : Output_section_data_build(Output_data::default_alignment_for_size(size)),
   1621       relative_reloc_count_(0), sort_relocs_(sort_relocs)
   1622   { }
   1623 
   1624   // Return the number of relative relocs in this section.
   1625   size_t
   1626   relative_reloc_count() const
   1627   { return this->relative_reloc_count_; }
   1628 
   1629   // Whether we should sort the relocs.
   1630   bool
   1631   sort_relocs() const
   1632   { return this->sort_relocs_; }
   1633 
   1634   // Add a reloc of type TYPE against the global symbol GSYM.  The
   1635   // relocation applies to the data at offset ADDRESS within OD.
   1636   virtual void
   1637   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
   1638 		     uint64_t address, uint64_t addend) = 0;
   1639 
   1640   // Add a reloc of type TYPE against the global symbol GSYM.  The
   1641   // relocation applies to data at offset ADDRESS within section SHNDX
   1642   // of object file RELOBJ.  OD is the associated output section.
   1643   virtual void
   1644   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
   1645 		     Relobj* relobj, unsigned int shndx, uint64_t address,
   1646 		     uint64_t addend) = 0;
   1647 
   1648   // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
   1649   // in RELOBJ.  The relocation applies to the data at offset ADDRESS
   1650   // within OD.
   1651   virtual void
   1652   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
   1653 		    unsigned int type, Output_data* od, uint64_t address,
   1654 		    uint64_t addend) = 0;
   1655 
   1656   // Add a reloc of type TYPE against the local symbol LOCAL_SYM_INDEX
   1657   // in RELOBJ.  The relocation applies to the data at offset ADDRESS
   1658   // within section SHNDX of RELOBJ.  OD is the associated output
   1659   // section.
   1660   virtual void
   1661   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
   1662 		    unsigned int type, Output_data* od, unsigned int shndx,
   1663 		    uint64_t address, uint64_t addend) = 0;
   1664 
   1665   // Add a reloc of type TYPE against the STT_SECTION symbol of the
   1666   // output section OS.  The relocation applies to the data at offset
   1667   // ADDRESS within OD.
   1668   virtual void
   1669   add_output_section_generic(Output_section *os, unsigned int type,
   1670 			     Output_data* od, uint64_t address,
   1671 			     uint64_t addend) = 0;
   1672 
   1673   // Add a reloc of type TYPE against the STT_SECTION symbol of the
   1674   // output section OS.  The relocation applies to the data at offset
   1675   // ADDRESS within section SHNDX of RELOBJ.  OD is the associated
   1676   // output section.
   1677   virtual void
   1678   add_output_section_generic(Output_section* os, unsigned int type,
   1679 			     Output_data* od, Relobj* relobj,
   1680 			     unsigned int shndx, uint64_t address,
   1681 			     uint64_t addend) = 0;
   1682 
   1683  protected:
   1684   // Note that we've added another relative reloc.
   1685   void
   1686   bump_relative_reloc_count()
   1687   { ++this->relative_reloc_count_; }
   1688 
   1689  private:
   1690   // The number of relative relocs added to this section.  This is to
   1691   // support DT_RELCOUNT.
   1692   size_t relative_reloc_count_;
   1693   // Whether to sort the relocations when writing them out, to make
   1694   // the dynamic linker more efficient.
   1695   bool sort_relocs_;
   1696 };
   1697 
   1698 // Output_data_reloc is used to manage a section containing relocs.
   1699 // SH_TYPE is either elfcpp::SHT_REL or elfcpp::SHT_RELA.  DYNAMIC
   1700 // indicates whether this is a dynamic relocation or a normal
   1701 // relocation.  Output_data_reloc_base is a base class.
   1702 // Output_data_reloc is the real class, which we specialize based on
   1703 // the reloc type.
   1704 
   1705 template<int sh_type, bool dynamic, int size, bool big_endian>
   1706 class Output_data_reloc_base : public Output_data_reloc_generic
   1707 {
   1708  public:
   1709   typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
   1710   typedef typename Output_reloc_type::Address Address;
   1711   static const int reloc_size =
   1712     Reloc_types<sh_type, size, big_endian>::reloc_size;
   1713 
   1714   // Construct the section.
   1715   Output_data_reloc_base(bool sort_relocs)
   1716     : Output_data_reloc_generic(size, sort_relocs)
   1717   { }
   1718 
   1719  protected:
   1720   // Write out the data.
   1721   void
   1722   do_write(Output_file*);
   1723 
   1724   // Generic implementation of do_write, allowing a customized
   1725   // class for writing the output relocation (e.g., for MIPS-64).
   1726   template<class Output_reloc_writer>
   1727   void
   1728   do_write_generic(Output_file* of)
   1729   {
   1730     const off_t off = this->offset();
   1731     const off_t oview_size = this->data_size();
   1732     unsigned char* const oview = of->get_output_view(off, oview_size);
   1733 
   1734     if (this->sort_relocs())
   1735       {
   1736 	gold_assert(dynamic);
   1737 	std::sort(this->relocs_.begin(), this->relocs_.end(),
   1738 		  Sort_relocs_comparison());
   1739       }
   1740 
   1741     unsigned char* pov = oview;
   1742     for (typename Relocs::const_iterator p = this->relocs_.begin();
   1743 	 p != this->relocs_.end();
   1744 	 ++p)
   1745       {
   1746 	Output_reloc_writer::write(p, pov);
   1747 	pov += reloc_size;
   1748       }
   1749 
   1750     gold_assert(pov - oview == oview_size);
   1751 
   1752     of->write_output_view(off, oview_size, oview);
   1753 
   1754     // We no longer need the relocation entries.
   1755     this->relocs_.clear();
   1756   }
   1757 
   1758   // Set the entry size and the link.
   1759   void
   1760   do_adjust_output_section(Output_section* os);
   1761 
   1762   // Write to a map file.
   1763   void
   1764   do_print_to_mapfile(Mapfile* mapfile) const
   1765   {
   1766     mapfile->print_output_data(this,
   1767 			       (dynamic
   1768 				? _("** dynamic relocs")
   1769 				: _("** relocs")));
   1770   }
   1771 
   1772   // Add a relocation entry.
   1773   void
   1774   add(Output_data* od, const Output_reloc_type& reloc)
   1775   {
   1776     this->relocs_.push_back(reloc);
   1777     this->set_current_data_size(this->relocs_.size() * reloc_size);
   1778     if (dynamic)
   1779       od->add_dynamic_reloc();
   1780     if (reloc.is_relative())
   1781       this->bump_relative_reloc_count();
   1782     Sized_relobj<size, big_endian>* relobj = reloc.get_relobj();
   1783     if (relobj != NULL)
   1784       relobj->add_dyn_reloc(this->relocs_.size() - 1);
   1785   }
   1786 
   1787  protected:
   1788   typedef std::vector<Output_reloc_type> Relocs;
   1789 
   1790   // The class used to sort the relocations.
   1791   struct Sort_relocs_comparison
   1792   {
   1793     bool
   1794     operator()(const Output_reloc_type& r1, const Output_reloc_type& r2) const
   1795     { return r1.sort_before(r2); }
   1796   };
   1797 
   1798   // The relocations in this section.
   1799   Relocs relocs_;
   1800 };
   1801 
   1802 // The class which callers actually create.
   1803 
   1804 template<int sh_type, bool dynamic, int size, bool big_endian>
   1805 class Output_data_reloc;
   1806 
   1807 // The SHT_REL version of Output_data_reloc.
   1808 
   1809 template<bool dynamic, int size, bool big_endian>
   1810 class Output_data_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>
   1811   : public Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>
   1812 {
   1813  private:
   1814   typedef Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size,
   1815 				 big_endian> Base;
   1816 
   1817  public:
   1818   typedef typename Base::Output_reloc_type Output_reloc_type;
   1819   typedef typename Output_reloc_type::Address Address;
   1820 
   1821   Output_data_reloc(bool sr)
   1822     : Output_data_reloc_base<elfcpp::SHT_REL, dynamic, size, big_endian>(sr)
   1823   { }
   1824 
   1825   // Add a reloc against a global symbol.
   1826 
   1827   void
   1828   add_global(Symbol* gsym, unsigned int type, Output_data* od, Address address)
   1829   {
   1830     this->add(od, Output_reloc_type(gsym, type, od, address,
   1831 				    false, false, false));
   1832   }
   1833 
   1834   void
   1835   add_global(Symbol* gsym, unsigned int type, Output_data* od,
   1836 	     Sized_relobj<size, big_endian>* relobj,
   1837 	     unsigned int shndx, Address address)
   1838   {
   1839     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
   1840 				    false, false, false));
   1841   }
   1842 
   1843   void
   1844   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
   1845 		     uint64_t address, uint64_t addend)
   1846   {
   1847     gold_assert(addend == 0);
   1848     this->add(od, Output_reloc_type(gsym, type, od,
   1849 				    convert_types<Address, uint64_t>(address),
   1850 				    false, false, false));
   1851   }
   1852 
   1853   void
   1854   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
   1855 		     Relobj* relobj, unsigned int shndx, uint64_t address,
   1856 		     uint64_t addend)
   1857   {
   1858     gold_assert(addend == 0);
   1859     Sized_relobj<size, big_endian>* sized_relobj =
   1860       static_cast<Sized_relobj<size, big_endian>*>(relobj);
   1861     this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
   1862 				    convert_types<Address, uint64_t>(address),
   1863 				    false, false, false));
   1864   }
   1865 
   1866   // Add a RELATIVE reloc against a global symbol.  The final relocation
   1867   // will not reference the symbol.
   1868 
   1869   void
   1870   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
   1871 		      Address address)
   1872   {
   1873     this->add(od, Output_reloc_type(gsym, type, od, address, true, true,
   1874 				    false));
   1875   }
   1876 
   1877   void
   1878   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
   1879 		      Sized_relobj<size, big_endian>* relobj,
   1880 		      unsigned int shndx, Address address)
   1881   {
   1882     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
   1883 				    true, true, false));
   1884   }
   1885 
   1886   // Add a global relocation which does not use a symbol for the relocation,
   1887   // but which gets its addend from a symbol.
   1888 
   1889   void
   1890   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
   1891 			       Output_data* od, Address address)
   1892   {
   1893     this->add(od, Output_reloc_type(gsym, type, od, address, false, true,
   1894 				    false));
   1895   }
   1896 
   1897   void
   1898   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
   1899 			       Output_data* od,
   1900 			       Sized_relobj<size, big_endian>* relobj,
   1901 			       unsigned int shndx, Address address)
   1902   {
   1903     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
   1904 				    false, true, false));
   1905   }
   1906 
   1907   // Add a reloc against a local symbol.
   1908 
   1909   void
   1910   add_local(Sized_relobj<size, big_endian>* relobj,
   1911 	    unsigned int local_sym_index, unsigned int type,
   1912 	    Output_data* od, Address address)
   1913   {
   1914     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
   1915 				    address, false, false, false, false));
   1916   }
   1917 
   1918   void
   1919   add_local(Sized_relobj<size, big_endian>* relobj,
   1920 	    unsigned int local_sym_index, unsigned int type,
   1921 	    Output_data* od, unsigned int shndx, Address address)
   1922   {
   1923     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
   1924 				    address, false, false, false, false));
   1925   }
   1926 
   1927   void
   1928   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
   1929 		    unsigned int type, Output_data* od, uint64_t address,
   1930 		    uint64_t addend)
   1931   {
   1932     gold_assert(addend == 0);
   1933     Sized_relobj<size, big_endian>* sized_relobj =
   1934       static_cast<Sized_relobj<size, big_endian> *>(relobj);
   1935     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
   1936 				    convert_types<Address, uint64_t>(address),
   1937 				    false, false, false, false));
   1938   }
   1939 
   1940   void
   1941   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
   1942 		    unsigned int type, Output_data* od, unsigned int shndx,
   1943 		    uint64_t address, uint64_t addend)
   1944   {
   1945     gold_assert(addend == 0);
   1946     Sized_relobj<size, big_endian>* sized_relobj =
   1947       static_cast<Sized_relobj<size, big_endian>*>(relobj);
   1948     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
   1949 				    convert_types<Address, uint64_t>(address),
   1950 				    false, false, false, false));
   1951   }
   1952 
   1953   // Add a RELATIVE reloc against a local symbol.
   1954 
   1955   void
   1956   add_local_relative(Sized_relobj<size, big_endian>* relobj,
   1957 		     unsigned int local_sym_index, unsigned int type,
   1958 		     Output_data* od, Address address)
   1959   {
   1960     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
   1961 				    address, true, true, false, false));
   1962   }
   1963 
   1964   void
   1965   add_local_relative(Sized_relobj<size, big_endian>* relobj,
   1966 		     unsigned int local_sym_index, unsigned int type,
   1967 		     Output_data* od, unsigned int shndx, Address address)
   1968   {
   1969     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
   1970 				    address, true, true, false, false));
   1971   }
   1972 
   1973   void
   1974   add_local_relative(Sized_relobj<size, big_endian>* relobj,
   1975 		     unsigned int local_sym_index, unsigned int type,
   1976 		     Output_data* od, unsigned int shndx, Address address,
   1977 		     bool use_plt_offset)
   1978   {
   1979     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
   1980 				    address, true, true, false,
   1981 				    use_plt_offset));
   1982   }
   1983 
   1984   // Add a local relocation which does not use a symbol for the relocation,
   1985   // but which gets its addend from a symbol.
   1986 
   1987   void
   1988   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
   1989 			      unsigned int local_sym_index, unsigned int type,
   1990 			      Output_data* od, Address address)
   1991   {
   1992     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od,
   1993 				    address, false, true, false, false));
   1994   }
   1995 
   1996   void
   1997   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
   1998 			      unsigned int local_sym_index, unsigned int type,
   1999 			      Output_data* od, unsigned int shndx,
   2000 			      Address address)
   2001   {
   2002     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
   2003 				    address, false, true, false, false));
   2004   }
   2005 
   2006   // Add a reloc against a local section symbol.  This will be
   2007   // converted into a reloc against the STT_SECTION symbol of the
   2008   // output section.
   2009 
   2010   void
   2011   add_local_section(Sized_relobj<size, big_endian>* relobj,
   2012 		    unsigned int input_shndx, unsigned int type,
   2013 		    Output_data* od, Address address)
   2014   {
   2015     this->add(od, Output_reloc_type(relobj, input_shndx, type, od,
   2016 				    address, false, false, true, false));
   2017   }
   2018 
   2019   void
   2020   add_local_section(Sized_relobj<size, big_endian>* relobj,
   2021 		    unsigned int input_shndx, unsigned int type,
   2022 		    Output_data* od, unsigned int shndx, Address address)
   2023   {
   2024     this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
   2025 				    address, false, false, true, false));
   2026   }
   2027 
   2028   // A reloc against the STT_SECTION symbol of an output section.
   2029   // OS is the Output_section that the relocation refers to; OD is
   2030   // the Output_data object being relocated.
   2031 
   2032   void
   2033   add_output_section(Output_section* os, unsigned int type,
   2034 		     Output_data* od, Address address)
   2035   { this->add(od, Output_reloc_type(os, type, od, address, false)); }
   2036 
   2037   void
   2038   add_output_section(Output_section* os, unsigned int type, Output_data* od,
   2039 		     Sized_relobj<size, big_endian>* relobj,
   2040 		     unsigned int shndx, Address address)
   2041   { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, false)); }
   2042 
   2043   void
   2044   add_output_section_generic(Output_section* os, unsigned int type,
   2045 			     Output_data* od, uint64_t address,
   2046 			     uint64_t addend)
   2047   {
   2048     gold_assert(addend == 0);
   2049     this->add(od, Output_reloc_type(os, type, od,
   2050 				    convert_types<Address, uint64_t>(address),
   2051 				    false));
   2052   }
   2053 
   2054   void
   2055   add_output_section_generic(Output_section* os, unsigned int type,
   2056 			     Output_data* od, Relobj* relobj,
   2057 			     unsigned int shndx, uint64_t address,
   2058 			     uint64_t addend)
   2059   {
   2060     gold_assert(addend == 0);
   2061     Sized_relobj<size, big_endian>* sized_relobj =
   2062       static_cast<Sized_relobj<size, big_endian>*>(relobj);
   2063     this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
   2064 				    convert_types<Address, uint64_t>(address),
   2065 				    false));
   2066   }
   2067 
   2068   // As above, but the reloc TYPE is relative
   2069 
   2070   void
   2071   add_output_section_relative(Output_section* os, unsigned int type,
   2072 			      Output_data* od, Address address)
   2073   { this->add(od, Output_reloc_type(os, type, od, address, true)); }
   2074 
   2075   void
   2076   add_output_section_relative(Output_section* os, unsigned int type,
   2077 			      Output_data* od,
   2078 			      Sized_relobj<size, big_endian>* relobj,
   2079 			      unsigned int shndx, Address address)
   2080   { this->add(od, Output_reloc_type(os, type, relobj, shndx, address, true)); }
   2081 
   2082   // Add an absolute relocation.
   2083 
   2084   void
   2085   add_absolute(unsigned int type, Output_data* od, Address address)
   2086   { this->add(od, Output_reloc_type(type, od, address, false)); }
   2087 
   2088   void
   2089   add_absolute(unsigned int type, Output_data* od,
   2090 	       Sized_relobj<size, big_endian>* relobj,
   2091 	       unsigned int shndx, Address address)
   2092   { this->add(od, Output_reloc_type(type, relobj, shndx, address, false)); }
   2093 
   2094   // Add a relative relocation
   2095 
   2096   void
   2097   add_relative(unsigned int type, Output_data* od, Address address)
   2098   { this->add(od, Output_reloc_type(type, od, address, true)); }
   2099 
   2100   void
   2101   add_relative(unsigned int type, Output_data* od,
   2102 	       Sized_relobj<size, big_endian>* relobj,
   2103 	       unsigned int shndx, Address address)
   2104   { this->add(od, Output_reloc_type(type, relobj, shndx, address, true)); }
   2105 
   2106   // Add a target specific relocation.  A target which calls this must
   2107   // define the reloc_symbol_index and reloc_addend virtual functions.
   2108 
   2109   void
   2110   add_target_specific(unsigned int type, void* arg, Output_data* od,
   2111 		      Address address)
   2112   { this->add(od, Output_reloc_type(type, arg, od, address)); }
   2113 
   2114   void
   2115   add_target_specific(unsigned int type, void* arg, Output_data* od,
   2116 		      Sized_relobj<size, big_endian>* relobj,
   2117 		      unsigned int shndx, Address address)
   2118   { this->add(od, Output_reloc_type(type, arg, relobj, shndx, address)); }
   2119 };
   2120 
   2121 // The SHT_RELA version of Output_data_reloc.
   2122 
   2123 template<bool dynamic, int size, bool big_endian>
   2124 class Output_data_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>
   2125   : public Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>
   2126 {
   2127  private:
   2128   typedef Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size,
   2129 				 big_endian> Base;
   2130 
   2131  public:
   2132   typedef typename Base::Output_reloc_type Output_reloc_type;
   2133   typedef typename Output_reloc_type::Address Address;
   2134   typedef typename Output_reloc_type::Addend Addend;
   2135 
   2136   Output_data_reloc(bool sr)
   2137     : Output_data_reloc_base<elfcpp::SHT_RELA, dynamic, size, big_endian>(sr)
   2138   { }
   2139 
   2140   // Add a reloc against a global symbol.
   2141 
   2142   void
   2143   add_global(Symbol* gsym, unsigned int type, Output_data* od,
   2144 	     Address address, Addend addend)
   2145   {
   2146     this->add(od, Output_reloc_type(gsym, type, od, address, addend,
   2147 				    false, false, false));
   2148   }
   2149 
   2150   void
   2151   add_global(Symbol* gsym, unsigned int type, Output_data* od,
   2152 	     Sized_relobj<size, big_endian>* relobj,
   2153 	     unsigned int shndx, Address address,
   2154 	     Addend addend)
   2155   {
   2156     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
   2157 				    addend, false, false, false));
   2158   }
   2159 
   2160   void
   2161   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
   2162 		     uint64_t address, uint64_t addend)
   2163   {
   2164     this->add(od, Output_reloc_type(gsym, type, od,
   2165 				    convert_types<Address, uint64_t>(address),
   2166 				    convert_types<Addend, uint64_t>(addend),
   2167 				    false, false, false));
   2168   }
   2169 
   2170   void
   2171   add_global_generic(Symbol* gsym, unsigned int type, Output_data* od,
   2172 		     Relobj* relobj, unsigned int shndx, uint64_t address,
   2173 		     uint64_t addend)
   2174   {
   2175     Sized_relobj<size, big_endian>* sized_relobj =
   2176       static_cast<Sized_relobj<size, big_endian>*>(relobj);
   2177     this->add(od, Output_reloc_type(gsym, type, sized_relobj, shndx,
   2178 				    convert_types<Address, uint64_t>(address),
   2179 				    convert_types<Addend, uint64_t>(addend),
   2180 				    false, false, false));
   2181   }
   2182 
   2183   // Add a RELATIVE reloc against a global symbol.  The final output
   2184   // relocation will not reference the symbol, but we must keep the symbol
   2185   // information long enough to set the addend of the relocation correctly
   2186   // when it is written.
   2187 
   2188   void
   2189   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
   2190 		      Address address, Addend addend, bool use_plt_offset)
   2191   {
   2192     this->add(od, Output_reloc_type(gsym, type, od, address, addend, true,
   2193 				    true, use_plt_offset));
   2194   }
   2195 
   2196   void
   2197   add_global_relative(Symbol* gsym, unsigned int type, Output_data* od,
   2198 		      Sized_relobj<size, big_endian>* relobj,
   2199 		      unsigned int shndx, Address address, Addend addend,
   2200 		      bool use_plt_offset)
   2201   {
   2202     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
   2203 				    addend, true, true, use_plt_offset));
   2204   }
   2205 
   2206   // Add a global relocation which does not use a symbol for the relocation,
   2207   // but which gets its addend from a symbol.
   2208 
   2209   void
   2210   add_symbolless_global_addend(Symbol* gsym, unsigned int type, Output_data* od,
   2211 			       Address address, Addend addend)
   2212   {
   2213     this->add(od, Output_reloc_type(gsym, type, od, address, addend,
   2214 				    false, true, false));
   2215   }
   2216 
   2217   void
   2218   add_symbolless_global_addend(Symbol* gsym, unsigned int type,
   2219 			       Output_data* od,
   2220 			       Sized_relobj<size, big_endian>* relobj,
   2221 			       unsigned int shndx, Address address,
   2222 			       Addend addend)
   2223   {
   2224     this->add(od, Output_reloc_type(gsym, type, relobj, shndx, address,
   2225 				    addend, false, true, false));
   2226   }
   2227 
   2228   // Add a reloc against a local symbol.
   2229 
   2230   void
   2231   add_local(Sized_relobj<size, big_endian>* relobj,
   2232 	    unsigned int local_sym_index, unsigned int type,
   2233 	    Output_data* od, Address address, Addend addend)
   2234   {
   2235     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
   2236 				    addend, false, false, false, false));
   2237   }
   2238 
   2239   void
   2240   add_local(Sized_relobj<size, big_endian>* relobj,
   2241 	    unsigned int local_sym_index, unsigned int type,
   2242 	    Output_data* od, unsigned int shndx, Address address,
   2243 	    Addend addend)
   2244   {
   2245     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
   2246 				    address, addend, false, false, false,
   2247 				    false));
   2248   }
   2249 
   2250   void
   2251   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
   2252 		    unsigned int type, Output_data* od, uint64_t address,
   2253 		    uint64_t addend)
   2254   {
   2255     Sized_relobj<size, big_endian>* sized_relobj =
   2256       static_cast<Sized_relobj<size, big_endian> *>(relobj);
   2257     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, od,
   2258 				    convert_types<Address, uint64_t>(address),
   2259 				    convert_types<Addend, uint64_t>(addend),
   2260 				    false, false, false, false));
   2261   }
   2262 
   2263   void
   2264   add_local_generic(Relobj* relobj, unsigned int local_sym_index,
   2265 		    unsigned int type, Output_data* od, unsigned int shndx,
   2266 		    uint64_t address, uint64_t addend)
   2267   {
   2268     Sized_relobj<size, big_endian>* sized_relobj =
   2269       static_cast<Sized_relobj<size, big_endian>*>(relobj);
   2270     this->add(od, Output_reloc_type(sized_relobj, local_sym_index, type, shndx,
   2271 				    convert_types<Address, uint64_t>(address),
   2272 				    convert_types<Addend, uint64_t>(addend),
   2273 				    false, false, false, false));
   2274   }
   2275 
   2276   // Add a RELATIVE reloc against a local symbol.
   2277 
   2278   void
   2279   add_local_relative(Sized_relobj<size, big_endian>* relobj,
   2280 		     unsigned int local_sym_index, unsigned int type,
   2281 		     Output_data* od, Address address, Addend addend,
   2282 		     bool use_plt_offset)
   2283   {
   2284     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
   2285 				    addend, true, true, false,
   2286 				    use_plt_offset));
   2287   }
   2288 
   2289   void
   2290   add_local_relative(Sized_relobj<size, big_endian>* relobj,
   2291 		     unsigned int local_sym_index, unsigned int type,
   2292 		     Output_data* od, unsigned int shndx, Address address,
   2293 		     Addend addend, bool use_plt_offset)
   2294   {
   2295     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
   2296 				    address, addend, true, true, false,
   2297 				    use_plt_offset));
   2298   }
   2299 
   2300   // Add a local relocation which does not use a symbol for the relocation,
   2301   // but which gets it's addend from a symbol.
   2302 
   2303   void
   2304   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
   2305 			      unsigned int local_sym_index, unsigned int type,
   2306 			      Output_data* od, Address address, Addend addend)
   2307   {
   2308     this->add(od, Output_reloc_type(relobj, local_sym_index, type, od, address,
   2309 				    addend, false, true, false, false));
   2310   }
   2311 
   2312   void
   2313   add_symbolless_local_addend(Sized_relobj<size, big_endian>* relobj,
   2314 			      unsigned int local_sym_index, unsigned int type,
   2315 			      Output_data* od, unsigned int shndx,
   2316 			      Address address, Addend addend)
   2317   {
   2318     this->add(od, Output_reloc_type(relobj, local_sym_index, type, shndx,
   2319 				    address, addend, false, true, false,
   2320 				    false));
   2321   }
   2322 
   2323   // Add a reloc against a local section symbol.  This will be
   2324   // converted into a reloc against the STT_SECTION symbol of the
   2325   // output section.
   2326 
   2327   void
   2328   add_local_section(Sized_relobj<size, big_endian>* relobj,
   2329 		    unsigned int input_shndx, unsigned int type,
   2330 		    Output_data* od, Address address, Addend addend)
   2331   {
   2332     this->add(od, Output_reloc_type(relobj, input_shndx, type, od, address,
   2333 				    addend, false, false, true, false));
   2334   }
   2335 
   2336   void
   2337   add_local_section(Sized_relobj<size, big_endian>* relobj,
   2338 		    unsigned int input_shndx, unsigned int type,
   2339 		    Output_data* od, unsigned int shndx, Address address,
   2340 		    Addend addend)
   2341   {
   2342     this->add(od, Output_reloc_type(relobj, input_shndx, type, shndx,
   2343 				    address, addend, false, false, true,
   2344 				    false));
   2345   }
   2346 
   2347   // A reloc against the STT_SECTION symbol of an output section.
   2348 
   2349   void
   2350   add_output_section(Output_section* os, unsigned int type, Output_data* od,
   2351 		     Address address, Addend addend)
   2352   { this->add(od, Output_reloc_type(os, type, od, address, addend, false)); }
   2353 
   2354   void
   2355   add_output_section(Output_section* os, unsigned int type, Output_data* od,
   2356 		     Sized_relobj<size, big_endian>* relobj,
   2357 		     unsigned int shndx, Address address, Addend addend)
   2358   {
   2359     this->add(od, Output_reloc_type(os, type, relobj, shndx, address,
   2360 				    addend, false));
   2361   }
   2362 
   2363   void
   2364   add_output_section_generic(Output_section* os, unsigned int type,
   2365 			     Output_data* od, uint64_t address,
   2366 			     uint64_t addend)
   2367   {
   2368     this->add(od, Output_reloc_type(os, type, od,
   2369 				    convert_types<Address, uint64_t>(address),
   2370 				    convert_types<Addend, uint64_t>(addend),
   2371 				    false));
   2372   }
   2373 
   2374   void
   2375   add_output_section_generic(Output_section* os, unsigned int type,
   2376 			     Output_data* od, Relobj* relobj,
   2377 			     unsigned int shndx, uint64_t address,
   2378 			     uint64_t addend)
   2379   {
   2380     Sized_relobj<size, big_endian>* sized_relobj =
   2381       static_cast<Sized_relobj<size, big_endian>*>(relobj);
   2382     this->add(od, Output_reloc_type(os, type, sized_relobj, shndx,
   2383 				    convert_types<Address, uint64_t>(address),
   2384 				    convert_types<Addend, uint64_t>(addend),
   2385 				    false));
   2386   }
   2387 
   2388   // As above, but the reloc TYPE is relative
   2389 
   2390   void
   2391   add_output_section_relative(Output_section* os, unsigned int type,
   2392 			      Output_data* od, Address address, Addend addend)
   2393   { this->add(od, Output_reloc_type(os, type, od, address, addend, true)); }
   2394 
   2395   void
   2396   add_output_section_relative(Output_section* os, unsigned int type,
   2397 			      Output_data* od,
   2398 			      Sized_relobj<size, big_endian>* relobj,
   2399 			      unsigned int shndx, Address address,
   2400 			      Addend addend)
   2401   {
   2402     this->add(od, Output_reloc_type(os, type, relobj, shndx,
   2403 				    address, addend, true));
   2404   }
   2405 
   2406   // Add an absolute relocation.
   2407 
   2408   void
   2409   add_absolute(unsigned int type, Output_data* od, Address address,
   2410 	       Addend addend)
   2411   { this->add(od, Output_reloc_type(type, od, address, addend, false)); }
   2412 
   2413   void
   2414   add_absolute(unsigned int type, Output_data* od,
   2415 	       Sized_relobj<size, big_endian>* relobj,
   2416 	       unsigned int shndx, Address address, Addend addend)
   2417   {
   2418     this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
   2419 				    false));
   2420   }
   2421 
   2422   // Add a relative relocation
   2423 
   2424   void
   2425   add_relative(unsigned int type, Output_data* od, Address address,
   2426 	       Addend addend)
   2427   { this->add(od, Output_reloc_type(type, od, address, addend, true)); }
   2428 
   2429   void
   2430   add_relative(unsigned int type, Output_data* od,
   2431 	       Sized_relobj<size, big_endian>* relobj,
   2432 	       unsigned int shndx, Address address, Addend addend)
   2433   {
   2434     this->add(od, Output_reloc_type(type, relobj, shndx, address, addend,
   2435 				    true));
   2436   }
   2437 
   2438   // Add a target specific relocation.  A target which calls this must
   2439   // define the reloc_symbol_index and reloc_addend virtual functions.
   2440 
   2441   void
   2442   add_target_specific(unsigned int type, void* arg, Output_data* od,
   2443 		      Address address, Addend addend)
   2444   { this->add(od, Output_reloc_type(type, arg, od, address, addend)); }
   2445 
   2446   void
   2447   add_target_specific(unsigned int type, void* arg, Output_data* od,
   2448 		      Sized_relobj<size, big_endian>* relobj,
   2449 		      unsigned int shndx, Address address, Addend addend)
   2450   {
   2451     this->add(od, Output_reloc_type(type, arg, relobj, shndx, address,
   2452 				    addend));
   2453   }
   2454 };
   2455 
   2456 // The SHT_RELR version of Output_data_reloc.
   2457 
   2458 template<bool dynamic, int size, bool big_endian>
   2459 class Output_data_reloc<elfcpp::SHT_RELR, dynamic, size, big_endian>
   2460   : public Output_data_reloc_base<elfcpp::SHT_RELR, dynamic, size, big_endian>
   2461 {
   2462  private:
   2463   typedef Output_data_reloc_base<elfcpp::SHT_RELR, dynamic, size,
   2464 				 big_endian> Base;
   2465   typedef typename elfcpp::Elf_types<size>::Elf_WXword Relr_Data;
   2466 
   2467  public:
   2468   typedef typename Base::Output_reloc_type Output_reloc_type;
   2469   typedef typename Output_reloc_type::Address Address;
   2470   typedef typename Base::Sort_relocs_comparison Sort_relocs_comparison;
   2471   typedef typename Base::Relocs Relocs;
   2472 
   2473   Output_data_reloc()
   2474     : Output_data_reloc_base<elfcpp::SHT_RELR, dynamic, size, big_endian>(false)
   2475   { }
   2476 
   2477   void do_write(Output_file *);
   2478 
   2479   template<class Output_reloc_writer>
   2480   void
   2481   do_write_generic(Output_file *of)
   2482   {
   2483     const off_t off = this->offset();
   2484     const off_t oview_size = this->data_size();
   2485     unsigned char* const oview = of->get_output_view(off, oview_size);
   2486 
   2487     unsigned char* pov = oview;
   2488     for (typename Relocs::const_iterator p = this->relocs_.begin();
   2489 	 p != this->relocs_.end();
   2490 	 ++p)
   2491       {
   2492 	Output_reloc_writer::write(p, pov);
   2493 	pov += Base::reloc_size;
   2494       }
   2495 
   2496     gold_assert(pov - oview == oview_size);
   2497 
   2498     of->write_output_view(off, oview_size, oview);
   2499 
   2500     // We no longer need the relocation entries.
   2501     this->relocs_.clear();
   2502   }
   2503 
   2504   void shrink_relocs()
   2505   {
   2506     Relocs shrink_relocs;
   2507     gold_assert(dynamic);
   2508     shrink_relocs.clear();
   2509 
   2510     // Always sort the relocs_ vector for RELR relocs.
   2511     std::sort(this->relocs_.begin(), this->relocs_.end(),
   2512               Sort_relocs_comparison());
   2513 
   2514     // Word size in number of bytes, used for computing the offsets bitmap.
   2515     unsigned int word_size = size / 8;
   2516 
   2517     // Number of bits to use for the relocation offsets bitmap.
   2518     // These many relative relocations can be encoded in a single entry.
   2519     unsigned int n_bits = size - 1;
   2520 
   2521     Address base = 0;
   2522     typename Relocs::iterator curr = this->relocs_.begin();
   2523     while (curr != this->relocs_.end())
   2524       {
   2525         Address current = curr->rel_.get_address();
   2526         // Odd addresses are not supported in SHT_RELR.
   2527         gold_assert(current%2 == 0);
   2528 
   2529         Relr_Data bits = 0;
   2530         typename Relocs::iterator next = curr;
   2531         if ((base > 0) && (base <= current))
   2532           {
   2533             while (next != this->relocs_.end())
   2534               {
   2535                 Address delta = next->rel_.get_address() - base;
   2536                 // If next is too far out, it cannot be folded into curr.
   2537                 if (delta >= (n_bits * word_size))
   2538                   break;
   2539                 // If next is not a multiple of word_size away, it cannot
   2540                 // be folded into curr.
   2541                 if ((delta % word_size) != 0)
   2542                   break;
   2543                 // next can be folded into curr, add it to the bitmap.
   2544                 bits |= 1ULL << (delta / word_size);
   2545                 ++next;
   2546               }
   2547           }
   2548 
   2549         curr->bits_ = bits;
   2550         shrink_relocs.push_back(*curr);
   2551         if (bits == 0)
   2552           {
   2553             // This is not a continuation entry, only one offset was
   2554             // consumed. Set base offset for subsequent bitmap entries.
   2555             base = current + word_size;
   2556             ++curr;
   2557           }
   2558         else
   2559           {
   2560             // This is a continuation entry encoding multiple offsets
   2561             // in a bitmap. Advance base offset by n_bits words.
   2562             base += n_bits * word_size;
   2563             curr = next;
   2564           }
   2565       }
   2566 
   2567     // Copy shrink_relocs vector to relocs_
   2568     this->relocs_.clear();
   2569     for (typename Relocs::const_iterator p = shrink_relocs.begin();
   2570          p != shrink_relocs.end();
   2571          ++p)
   2572       {
   2573         this->relocs_.push_back(*p);
   2574       }
   2575     this->set_current_data_size(this->relocs_.size() * Base::reloc_size);
   2576   }
   2577 
   2578   void
   2579   add_global_generic(Symbol*, unsigned int, Output_data*, uint64_t, uint64_t)
   2580   {
   2581     gold_unreachable();
   2582   }
   2583 
   2584   void
   2585   add_global_generic(Symbol*, unsigned int, Output_data*, Relobj*,
   2586 		     unsigned int, uint64_t, uint64_t)
   2587   {
   2588     gold_unreachable();
   2589   }
   2590 
   2591   // Add a RELATIVE reloc against a global symbol.  The final relocation
   2592   // will not reference the symbol.
   2593 
   2594   void
   2595   add_global_relative(Symbol* gsym, Output_data* od, Address address)
   2596   {
   2597     this->add(od, Output_reloc_type(gsym, od, address));
   2598   }
   2599 
   2600   void
   2601   add_global_relative(Symbol* gsym, Output_data* od,
   2602 		      Sized_relobj<size, big_endian>* relobj,
   2603 		      unsigned int shndx, Address address)
   2604   {
   2605     this->add(od, Output_reloc_type(gsym, relobj, shndx, address));
   2606   }
   2607 
   2608   void
   2609   add_local_generic(Relobj*, unsigned int, unsigned int, Output_data*, uint64_t,
   2610 		    uint64_t)
   2611   {
   2612     gold_unreachable();
   2613   }
   2614 
   2615   void
   2616   add_local_generic(Relobj*, unsigned int, unsigned int, Output_data*,
   2617 		    unsigned int, uint64_t, uint64_t)
   2618   {
   2619     gold_unreachable();
   2620   }
   2621 
   2622   // Add a RELATIVE reloc against a local symbol.
   2623 
   2624   void
   2625   add_local_relative(Sized_relobj<size, big_endian>* relobj,
   2626 		     unsigned int local_sym_index, Output_data* od,
   2627 		     Address address)
   2628   {
   2629     this->add(od, Output_reloc_type(relobj, local_sym_index, od, address,
   2630 				    false));
   2631   }
   2632 
   2633   void
   2634   add_local_relative(Sized_relobj<size, big_endian>* relobj,
   2635 		     unsigned int local_sym_index, Output_data* od,
   2636 		     unsigned int shndx, Address address)
   2637   {
   2638     this->add(od, Output_reloc_type(relobj, local_sym_index, shndx, address,
   2639 				    false));
   2640   }
   2641 
   2642   void
   2643   add_output_section_generic(Output_section*, unsigned int, Output_data*,
   2644 			     uint64_t, uint64_t)
   2645   {
   2646     gold_unreachable();
   2647   }
   2648 
   2649   void
   2650   add_output_section_generic(Output_section*, unsigned int, Output_data*,
   2651 			     Relobj*, unsigned int, uint64_t, uint64_t)
   2652   {
   2653     gold_unreachable();
   2654   }
   2655 
   2656   // Add a RELATIVE reloc against an output section symbol.
   2657 
   2658   void
   2659   add_output_section_relative(Output_section* os, Output_data* od,
   2660 			      Address address)
   2661   { this->add(od, Output_reloc_type(os, od, address)); }
   2662 
   2663   void
   2664   add_output_section_relative(Output_section* os, Output_data* od,
   2665 			      Sized_relobj<size, big_endian>* relobj,
   2666 			      unsigned int shndx, Address address)
   2667   { this->add(od, Output_reloc_type(os, relobj, shndx, address)); }
   2668 
   2669   // Add a relative relocation
   2670 
   2671   void
   2672   add_relative(Output_data* od, Address address)
   2673   { this->add(od, Output_reloc_type(od, address)); }
   2674 
   2675   void
   2676   add_relative(Output_data* od, Sized_relobj<size, big_endian>* relobj,
   2677 	       unsigned int shndx, Address address)
   2678   { this->add(od, Output_reloc_type(relobj, shndx, address)); }
   2679 };
   2680 
   2681 // Output_relocatable_relocs represents a relocation section in a
   2682 // relocatable link.  The actual data is written out in the target
   2683 // hook relocate_relocs.  This just saves space for it.
   2684 
   2685 template<int sh_type, int size, bool big_endian>
   2686 class Output_relocatable_relocs : public Output_section_data
   2687 {
   2688  public:
   2689   Output_relocatable_relocs(Relocatable_relocs* rr)
   2690     : Output_section_data(Output_data::default_alignment_for_size(size)),
   2691       rr_(rr)
   2692   { }
   2693 
   2694   void
   2695   set_final_data_size();
   2696 
   2697   // Write out the data.  There is nothing to do here.
   2698   void
   2699   do_write(Output_file*)
   2700   { }
   2701 
   2702   // Write to a map file.
   2703   void
   2704   do_print_to_mapfile(Mapfile* mapfile) const
   2705   { mapfile->print_output_data(this, _("** relocs")); }
   2706 
   2707  private:
   2708   // The relocs associated with this input section.
   2709   Relocatable_relocs* rr_;
   2710 };
   2711 
   2712 // Handle a GROUP section.
   2713 
   2714 template<int size, bool big_endian>
   2715 class Output_data_group : public Output_section_data
   2716 {
   2717  public:
   2718   // The constructor clears *INPUT_SHNDXES.
   2719   Output_data_group(Sized_relobj_file<size, big_endian>* relobj,
   2720 		    section_size_type entry_count,
   2721 		    elfcpp::Elf_Word flags,
   2722 		    std::vector<unsigned int>* input_shndxes);
   2723 
   2724   void
   2725   do_write(Output_file*);
   2726 
   2727   // Write to a map file.
   2728   void
   2729   do_print_to_mapfile(Mapfile* mapfile) const
   2730   { mapfile->print_output_data(this, _("** group")); }
   2731 
   2732   // Set final data size.
   2733   void
   2734   set_final_data_size()
   2735   { this->set_data_size((this->input_shndxes_.size() + 1) * 4); }
   2736 
   2737  private:
   2738   // The input object.
   2739   Sized_relobj_file<size, big_endian>* relobj_;
   2740   // The group flag word.
   2741   elfcpp::Elf_Word flags_;
   2742   // The section indexes of the input sections in this group.
   2743   std::vector<unsigned int> input_shndxes_;
   2744 };
   2745 
   2746 // Output_data_got is used to manage a GOT.  Each entry in the GOT is
   2747 // for one symbol--either a global symbol or a local symbol in an
   2748 // object.  The target specific code adds entries to the GOT as
   2749 // needed.  The GOT_SIZE template parameter is the size in bits of a
   2750 // GOT entry, typically 32 or 64.
   2751 
   2752 class Output_data_got_base : public Output_section_data_build
   2753 {
   2754  public:
   2755   Output_data_got_base(uint64_t align)
   2756     : Output_section_data_build(align)
   2757   { }
   2758 
   2759   Output_data_got_base(off_t data_size, uint64_t align)
   2760     : Output_section_data_build(data_size, align)
   2761   { }
   2762 
   2763   // Reserve the slot at index I in the GOT.
   2764   void
   2765   reserve_slot(unsigned int i)
   2766   { this->do_reserve_slot(i); }
   2767 
   2768  protected:
   2769   // Reserve the slot at index I in the GOT.
   2770   virtual void
   2771   do_reserve_slot(unsigned int i) = 0;
   2772 };
   2773 
   2774 template<int got_size, bool big_endian>
   2775 class Output_data_got : public Output_data_got_base
   2776 {
   2777  public:
   2778   typedef typename elfcpp::Elf_types<got_size>::Elf_Addr Valtype;
   2779 
   2780   Output_data_got()
   2781     : Output_data_got_base(Output_data::default_alignment_for_size(got_size)),
   2782       entries_(), free_list_()
   2783   { }
   2784 
   2785   Output_data_got(off_t data_size)
   2786     : Output_data_got_base(data_size,
   2787 			   Output_data::default_alignment_for_size(got_size)),
   2788       entries_(), free_list_()
   2789   {
   2790     // For an incremental update, we have an existing GOT section.
   2791     // Initialize the list of entries and the free list.
   2792     this->entries_.resize(data_size / (got_size / 8));
   2793     this->free_list_.init(data_size, false);
   2794   }
   2795 
   2796   // Add an entry for a global symbol to the GOT.  Return true if this
   2797   // is a new GOT entry, false if the symbol was already in the GOT.
   2798   bool
   2799   add_global(Symbol* gsym, unsigned int got_type);
   2800 
   2801   // Like add_global, but use the PLT offset of the global symbol if
   2802   // it has one.
   2803   bool
   2804   add_global_plt(Symbol* gsym, unsigned int got_type);
   2805 
   2806   // Like add_global, but for a TLS symbol where the value will be
   2807   // offset using Target::tls_offset_for_global.
   2808   bool
   2809   add_global_tls(Symbol* gsym, unsigned int got_type)
   2810   { return add_global_plt(gsym, got_type); }
   2811 
   2812   // Add an entry for a global symbol to the GOT, and add a dynamic
   2813   // relocation of type R_TYPE for the GOT entry.
   2814   void
   2815   add_global_with_rel(Symbol* gsym, unsigned int got_type,
   2816 		      Output_data_reloc_generic* rel_dyn, unsigned int r_type);
   2817 
   2818   // Add a pair of entries for a global symbol to the GOT, and add
   2819   // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
   2820   void
   2821   add_global_pair_with_rel(Symbol* gsym, unsigned int got_type,
   2822 			   Output_data_reloc_generic* rel_dyn,
   2823 			   unsigned int r_type_1, unsigned int r_type_2);
   2824 
   2825   // Add an entry for a local symbol to the GOT.  This returns true if
   2826   // this is a new GOT entry, false if the symbol already has a GOT
   2827   // entry.
   2828   bool
   2829   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type);
   2830 
   2831   // Add an entry for a local symbol plus ADDEND to the GOT.  This returns
   2832   // true if this is a new GOT entry, false if the symbol already has a GOT
   2833   // entry.
   2834   bool
   2835   add_local(Relobj* object, unsigned int sym_index, unsigned int got_type,
   2836 	    uint64_t addend);
   2837 
   2838   // Like add_local, but use the PLT offset of the local symbol if it
   2839   // has one.
   2840   bool
   2841   add_local_plt(Relobj* object, unsigned int sym_index, unsigned int got_type);
   2842 
   2843   // Like add_local, but for a TLS symbol where the value will be
   2844   // offset using Target::tls_offset_for_local.
   2845   bool
   2846   add_local_tls(Relobj* object, unsigned int sym_index, unsigned int got_type)
   2847   { return add_local_plt(object, sym_index, got_type); }
   2848 
   2849   // Add an entry for a local symbol to the GOT, and add a dynamic
   2850   // relocation of type R_TYPE for the GOT entry.
   2851   void
   2852   add_local_with_rel(Relobj* object, unsigned int sym_index,
   2853 		     unsigned int got_type, Output_data_reloc_generic* rel_dyn,
   2854 		     unsigned int r_type);
   2855 
   2856   // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
   2857   // relocation of type R_TYPE for the GOT entry.
   2858   void
   2859   add_local_with_rel(Relobj* object, unsigned int sym_index,
   2860 		     unsigned int got_type, Output_data_reloc_generic* rel_dyn,
   2861 		     unsigned int r_type, uint64_t addend);
   2862 
   2863   // Add a pair of entries for a local symbol to the GOT, and add
   2864   // a dynamic relocation of type R_TYPE using the section symbol of
   2865   // the output section to which input section SHNDX maps, on the first.
   2866   // The first got entry will have a value of zero, the second the
   2867   // value of the local symbol.
   2868   void
   2869   add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
   2870 			  unsigned int shndx, unsigned int got_type,
   2871 			  Output_data_reloc_generic* rel_dyn,
   2872 			  unsigned int r_type);
   2873 
   2874   // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
   2875   // a dynamic relocation of type R_TYPE using the section symbol of
   2876   // the output section to which input section SHNDX maps, on the first.
   2877   // The first got entry will have a value of zero, the second the
   2878   // value of the local symbol.
   2879   void
   2880   add_local_pair_with_rel(Relobj* object, unsigned int sym_index,
   2881 			  unsigned int shndx, unsigned int got_type,
   2882 			  Output_data_reloc_generic* rel_dyn,
   2883 			  unsigned int r_type, uint64_t addend);
   2884 
   2885   // Add a pair of entries for a local symbol to the GOT, and add
   2886   // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
   2887   // The first got entry will have a value of zero, the second the
   2888   // value of the local symbol offset by Target::tls_offset_for_local.
   2889   void
   2890   add_local_tls_pair(Relobj* object, unsigned int sym_index,
   2891 		     unsigned int got_type,
   2892 		     Output_data_reloc_generic* rel_dyn,
   2893 		     unsigned int r_type);
   2894 
   2895   // Add a constant to the GOT.  This returns the offset of the new
   2896   // entry from the start of the GOT.
   2897   unsigned int
   2898   add_constant(Valtype constant)
   2899   { return this->add_got_entry(Got_entry(constant)); }
   2900 
   2901   // Add a pair of constants to the GOT.  This returns the offset of
   2902   // the new entry from the start of the GOT.
   2903   unsigned int
   2904   add_constant_pair(Valtype c1, Valtype c2)
   2905   { return this->add_got_entry_pair(Got_entry(c1), Got_entry(c2)); }
   2906 
   2907   // Replace GOT entry I with a new constant.
   2908   void
   2909   replace_constant(unsigned int i, Valtype constant)
   2910   {
   2911     this->replace_got_entry(i, Got_entry(constant));
   2912   }
   2913 
   2914   // Reserve a slot in the GOT for a local symbol.
   2915   void
   2916   reserve_local(unsigned int i, Relobj* object, unsigned int sym_index,
   2917 		unsigned int got_type);
   2918 
   2919   // Reserve a slot in the GOT for a global symbol.
   2920   void
   2921   reserve_global(unsigned int i, Symbol* gsym, unsigned int got_type);
   2922 
   2923  protected:
   2924   // Write out the GOT table.
   2925   void
   2926   do_write(Output_file*);
   2927 
   2928   // Write to a map file.
   2929   void
   2930   do_print_to_mapfile(Mapfile* mapfile) const
   2931   { mapfile->print_output_data(this, _("** GOT")); }
   2932 
   2933   // Reserve the slot at index I in the GOT.
   2934   virtual void
   2935   do_reserve_slot(unsigned int i)
   2936   { this->free_list_.remove(i * got_size / 8, (i + 1) * got_size / 8); }
   2937 
   2938   // Return the number of words in the GOT.
   2939   unsigned int
   2940   num_entries () const
   2941   { return this->entries_.size(); }
   2942 
   2943   // Return the offset into the GOT of GOT entry I.
   2944   unsigned int
   2945   got_offset(unsigned int i) const
   2946   { return i * (got_size / 8); }
   2947 
   2948  private:
   2949   // This POD class holds a single GOT entry.
   2950   class Got_entry
   2951   {
   2952    public:
   2953     // Create a zero entry.
   2954     Got_entry()
   2955       : local_sym_index_(RESERVED_CODE), use_plt_or_tls_offset_(false),
   2956 	addend_(0)
   2957     { this->u_.constant = 0; }
   2958 
   2959     // Create a global symbol entry.
   2960     Got_entry(Symbol* gsym, bool use_plt_or_tls_offset)
   2961       : local_sym_index_(GSYM_CODE),
   2962 	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
   2963     { this->u_.gsym = gsym; }
   2964 
   2965     // Create a local symbol entry.
   2966     Got_entry(Relobj* object, unsigned int local_sym_index,
   2967 	      bool use_plt_or_tls_offset)
   2968       : local_sym_index_(local_sym_index),
   2969 	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(0)
   2970     {
   2971       gold_assert(local_sym_index != GSYM_CODE
   2972 		  && local_sym_index != CONSTANT_CODE
   2973 		  && local_sym_index != RESERVED_CODE
   2974 		  && local_sym_index == this->local_sym_index_);
   2975       this->u_.object = object;
   2976     }
   2977 
   2978     // Create a local symbol entry plus addend.
   2979     Got_entry(Relobj* object, unsigned int local_sym_index,
   2980 	bool use_plt_or_tls_offset, uint64_t addend)
   2981       : local_sym_index_(local_sym_index),
   2982 	use_plt_or_tls_offset_(use_plt_or_tls_offset), addend_(addend)
   2983     {
   2984       gold_assert(local_sym_index != GSYM_CODE
   2985       && local_sym_index != CONSTANT_CODE
   2986       && local_sym_index != RESERVED_CODE
   2987       && local_sym_index == this->local_sym_index_);
   2988       this->u_.object = object;
   2989     }
   2990 
   2991     // Create a constant entry.  The constant is a host value--it will
   2992     // be swapped, if necessary, when it is written out.
   2993     explicit Got_entry(Valtype constant)
   2994       : local_sym_index_(CONSTANT_CODE), use_plt_or_tls_offset_(false)
   2995     { this->u_.constant = constant; }
   2996 
   2997     // Write the GOT entry to an output view.
   2998     void
   2999     write(unsigned int got_indx, unsigned char* pov) const;
   3000 
   3001    private:
   3002     enum
   3003     {
   3004       GSYM_CODE = 0x7fffffff,
   3005       CONSTANT_CODE = 0x7ffffffe,
   3006       RESERVED_CODE = 0x7ffffffd
   3007     };
   3008 
   3009     union
   3010     {
   3011       // For a local symbol, the object.
   3012       Relobj* object;
   3013       // For a global symbol, the symbol.
   3014       Symbol* gsym;
   3015       // For a constant, the constant.
   3016       Valtype constant;
   3017     } u_;
   3018     // For a local symbol, the local symbol index.  This is GSYM_CODE
   3019     // for a global symbol, or CONSTANT_CODE for a constant.
   3020     unsigned int local_sym_index_ : 31;
   3021     // Whether to use the PLT offset of the symbol if it has one.
   3022     // For TLS symbols, whether to offset the symbol value.
   3023     bool use_plt_or_tls_offset_ : 1;
   3024     // The addend.
   3025     uint64_t addend_;
   3026   };
   3027 
   3028   typedef std::vector<Got_entry> Got_entries;
   3029 
   3030   // Create a new GOT entry and return its offset.
   3031   unsigned int
   3032   add_got_entry(Got_entry got_entry);
   3033 
   3034   // Create a pair of new GOT entries and return the offset of the first.
   3035   unsigned int
   3036   add_got_entry_pair(Got_entry got_entry_1, Got_entry got_entry_2);
   3037 
   3038   // Replace GOT entry I with a new value.
   3039   void
   3040   replace_got_entry(unsigned int i, Got_entry got_entry);
   3041 
   3042   // Return the offset into the GOT of the last entry added.
   3043   unsigned int
   3044   last_got_offset() const
   3045   { return this->got_offset(this->num_entries() - 1); }
   3046 
   3047   // Set the size of the section.
   3048   void
   3049   set_got_size()
   3050   { this->set_current_data_size(this->got_offset(this->num_entries())); }
   3051 
   3052   // The list of GOT entries.
   3053   Got_entries entries_;
   3054 
   3055   // List of available regions within the section, for incremental
   3056   // update links.
   3057   Free_list free_list_;
   3058 };
   3059 
   3060 // Output_data_dynamic is used to hold the data in SHT_DYNAMIC
   3061 // section.
   3062 
   3063 class Output_data_dynamic : public Output_section_data
   3064 {
   3065  public:
   3066   Output_data_dynamic(Stringpool* pool)
   3067     : Output_section_data(Output_data::default_alignment()),
   3068       entries_(), pool_(pool)
   3069   { }
   3070 
   3071   // Add a new dynamic entry with a fixed numeric value.
   3072   void
   3073   add_constant(elfcpp::DT tag, unsigned int val)
   3074   { this->add_entry(Dynamic_entry(tag, val)); }
   3075 
   3076   // Add a new dynamic entry with the address of output data.
   3077   void
   3078   add_section_address(elfcpp::DT tag, const Output_data* od)
   3079   { this->add_entry(Dynamic_entry(tag, od, false)); }
   3080 
   3081   // Add a new dynamic entry with the address of output data
   3082   // plus a constant offset.
   3083   void
   3084   add_section_plus_offset(elfcpp::DT tag, const Output_data* od,
   3085 			  unsigned int offset)
   3086   { this->add_entry(Dynamic_entry(tag, od, offset)); }
   3087 
   3088   // Add a new dynamic entry with the size of output data.
   3089   void
   3090   add_section_size(elfcpp::DT tag, const Output_data* od)
   3091   { this->add_entry(Dynamic_entry(tag, od, true)); }
   3092 
   3093   // Add a new dynamic entry with the total size of two output datas.
   3094   void
   3095   add_section_size(elfcpp::DT tag, const Output_data* od,
   3096 		   const Output_data* od2)
   3097   { this->add_entry(Dynamic_entry(tag, od, od2)); }
   3098 
   3099   // Add a new dynamic entry with the address of a symbol.
   3100   void
   3101   add_symbol(elfcpp::DT tag, const Symbol* sym)
   3102   { this->add_entry(Dynamic_entry(tag, sym)); }
   3103 
   3104   // Add a new dynamic entry with a string.
   3105   void
   3106   add_string(elfcpp::DT tag, const char* str)
   3107   { this->add_entry(Dynamic_entry(tag, this->pool_->add(str, true, NULL))); }
   3108 
   3109   void
   3110   add_string(elfcpp::DT tag, const std::string& str)
   3111   { this->add_string(tag, str.c_str()); }
   3112 
   3113   // Add a new dynamic entry with custom value.
   3114   void
   3115   add_custom(elfcpp::DT tag)
   3116   { this->add_entry(Dynamic_entry(tag)); }
   3117 
   3118   // Get a dynamic entry offset.
   3119   unsigned int
   3120   get_entry_offset(elfcpp::DT tag) const;
   3121 
   3122  protected:
   3123   // Adjust the output section to set the entry size.
   3124   void
   3125   do_adjust_output_section(Output_section*);
   3126 
   3127   // Set the final data size.
   3128   void
   3129   set_final_data_size();
   3130 
   3131   // Write out the dynamic entries.
   3132   void
   3133   do_write(Output_file*);
   3134 
   3135   // Write to a map file.
   3136   void
   3137   do_print_to_mapfile(Mapfile* mapfile) const
   3138   { mapfile->print_output_data(this, _("** dynamic")); }
   3139 
   3140  private:
   3141   // This POD class holds a single dynamic entry.
   3142   class Dynamic_entry
   3143   {
   3144    public:
   3145     // Create an entry with a fixed numeric value.
   3146     Dynamic_entry(elfcpp::DT tag, unsigned int val)
   3147       : tag_(tag), offset_(DYNAMIC_NUMBER)
   3148     { this->u_.val = val; }
   3149 
   3150     // Create an entry with the size or address of a section.
   3151     Dynamic_entry(elfcpp::DT tag, const Output_data* od, bool section_size)
   3152       : tag_(tag),
   3153 	offset_(section_size
   3154 		? DYNAMIC_SECTION_SIZE
   3155 		: DYNAMIC_SECTION_ADDRESS)
   3156     {
   3157       this->u_.od = od;
   3158       this->od2 = NULL;
   3159     }
   3160 
   3161     // Create an entry with the size of two sections.
   3162     Dynamic_entry(elfcpp::DT tag, const Output_data* od, const Output_data* od2)
   3163       : tag_(tag),
   3164 	offset_(DYNAMIC_SECTION_SIZE)
   3165     {
   3166       this->u_.od = od;
   3167       this->od2 = od2;
   3168     }
   3169 
   3170     // Create an entry with the address of a section plus a constant offset.
   3171     Dynamic_entry(elfcpp::DT tag, const Output_data* od, unsigned int offset)
   3172       : tag_(tag),
   3173 	offset_(offset)
   3174     { this->u_.od = od; }
   3175 
   3176     // Create an entry with the address of a symbol.
   3177     Dynamic_entry(elfcpp::DT tag, const Symbol* sym)
   3178       : tag_(tag), offset_(DYNAMIC_SYMBOL)
   3179     { this->u_.sym = sym; }
   3180 
   3181     // Create an entry with a string.
   3182     Dynamic_entry(elfcpp::DT tag, const char* str)
   3183       : tag_(tag), offset_(DYNAMIC_STRING)
   3184     { this->u_.str = str; }
   3185 
   3186     // Create an entry with a custom value.
   3187     Dynamic_entry(elfcpp::DT tag)
   3188       : tag_(tag), offset_(DYNAMIC_CUSTOM)
   3189     { }
   3190 
   3191     // Return the tag of this entry.
   3192     elfcpp::DT
   3193     tag() const
   3194     { return this->tag_; }
   3195 
   3196     // Write the dynamic entry to an output view.
   3197     template<int size, bool big_endian>
   3198     void
   3199     write(unsigned char* pov, const Stringpool*) const;
   3200 
   3201    private:
   3202     // Classification is encoded in the OFFSET field.
   3203     enum Classification
   3204     {
   3205       // Section address.
   3206       DYNAMIC_SECTION_ADDRESS = 0,
   3207       // Number.
   3208       DYNAMIC_NUMBER = -1U,
   3209       // Section size.
   3210       DYNAMIC_SECTION_SIZE = -2U,
   3211       // Symbol adress.
   3212       DYNAMIC_SYMBOL = -3U,
   3213       // String.
   3214       DYNAMIC_STRING = -4U,
   3215       // Custom value.
   3216       DYNAMIC_CUSTOM = -5U
   3217       // Any other value indicates a section address plus OFFSET.
   3218     };
   3219 
   3220     union
   3221     {
   3222       // For DYNAMIC_NUMBER.
   3223       unsigned int val;
   3224       // For DYNAMIC_SECTION_SIZE and section address plus OFFSET.
   3225       const Output_data* od;
   3226       // For DYNAMIC_SYMBOL.
   3227       const Symbol* sym;
   3228       // For DYNAMIC_STRING.
   3229       const char* str;
   3230     } u_;
   3231     // For DYNAMIC_SYMBOL with two sections.
   3232     const Output_data* od2;
   3233     // The dynamic tag.
   3234     elfcpp::DT tag_;
   3235     // The type of entry (Classification) or offset within a section.
   3236     unsigned int offset_;
   3237   };
   3238 
   3239   // Add an entry to the list.
   3240   void
   3241   add_entry(const Dynamic_entry& entry)
   3242   { this->entries_.push_back(entry); }
   3243 
   3244   // Sized version of write function.
   3245   template<int size, bool big_endian>
   3246   void
   3247   sized_write(Output_file* of);
   3248 
   3249   // The type of the list of entries.
   3250   typedef std::vector<Dynamic_entry> Dynamic_entries;
   3251 
   3252   // The entries.
   3253   Dynamic_entries entries_;
   3254   // The pool used for strings.
   3255   Stringpool* pool_;
   3256 };
   3257 
   3258 // Output_symtab_xindex is used to handle SHT_SYMTAB_SHNDX sections,
   3259 // which may be required if the object file has more than
   3260 // SHN_LORESERVE sections.
   3261 
   3262 class Output_symtab_xindex : public Output_section_data
   3263 {
   3264  public:
   3265   Output_symtab_xindex(size_t symcount)
   3266     : Output_section_data(symcount * 4, 4, true),
   3267       entries_()
   3268   { }
   3269 
   3270   // Add an entry: symbol number SYMNDX has section SHNDX.
   3271   void
   3272   add(unsigned int symndx, unsigned int shndx)
   3273   { this->entries_.push_back(std::make_pair(symndx, shndx)); }
   3274 
   3275  protected:
   3276   void
   3277   do_write(Output_file*);
   3278 
   3279   // Write to a map file.
   3280   void
   3281   do_print_to_mapfile(Mapfile* mapfile) const
   3282   { mapfile->print_output_data(this, _("** symtab xindex")); }
   3283 
   3284  private:
   3285   template<bool big_endian>
   3286   void
   3287   endian_do_write(unsigned char*);
   3288 
   3289   // It is likely that most symbols will not require entries.  Rather
   3290   // than keep a vector for all symbols, we keep pairs of symbol index
   3291   // and section index.
   3292   typedef std::vector<std::pair<unsigned int, unsigned int> > Xindex_entries;
   3293 
   3294   // The entries we need.
   3295   Xindex_entries entries_;
   3296 };
   3297 
   3298 // A relaxed input section.
   3299 class Output_relaxed_input_section : public Output_section_data_build
   3300 {
   3301  public:
   3302   // We would like to call relobj->section_addralign(shndx) to get the
   3303   // alignment but we do not want the constructor to fail.  So callers
   3304   // are repsonsible for ensuring that.
   3305   Output_relaxed_input_section(Relobj* relobj, unsigned int shndx,
   3306 			       uint64_t addralign)
   3307     : Output_section_data_build(addralign), relobj_(relobj), shndx_(shndx)
   3308   { }
   3309 
   3310   // Return the Relobj of this relaxed input section.
   3311   Relobj*
   3312   relobj() const
   3313   { return this->relobj_; }
   3314 
   3315   // Return the section index of this relaxed input section.
   3316   unsigned int
   3317   shndx() const
   3318   { return this->shndx_; }
   3319 
   3320  protected:
   3321   void
   3322   set_relobj(Relobj* relobj)
   3323   { this->relobj_ = relobj; }
   3324 
   3325   void
   3326   set_shndx(unsigned int shndx)
   3327   { this->shndx_ = shndx; }
   3328 
   3329  private:
   3330   Relobj* relobj_;
   3331   unsigned int shndx_;
   3332 };
   3333 
   3334 // This class describes properties of merge data sections.  It is used
   3335 // as a key type for maps.
   3336 class Merge_section_properties
   3337 {
   3338  public:
   3339   Merge_section_properties(bool is_string, uint64_t entsize,
   3340 			     uint64_t addralign)
   3341     : is_string_(is_string), entsize_(entsize), addralign_(addralign)
   3342   { }
   3343 
   3344   // Whether this equals to another Merge_section_properties MSP.
   3345   bool
   3346   eq(const Merge_section_properties& msp) const
   3347   {
   3348     return ((this->is_string_ == msp.is_string_)
   3349 	    && (this->entsize_ == msp.entsize_)
   3350 	    && (this->addralign_ == msp.addralign_));
   3351   }
   3352 
   3353   // Compute a hash value for this using 64-bit FNV-1a hash.
   3354   size_t
   3355   hash_value() const
   3356   {
   3357     uint64_t h = 14695981039346656037ULL;	// FNV offset basis.
   3358     uint64_t prime = 1099511628211ULL;
   3359     h = (h ^ static_cast<uint64_t>(this->is_string_)) * prime;
   3360     h = (h ^ static_cast<uint64_t>(this->entsize_)) * prime;
   3361     h = (h ^ static_cast<uint64_t>(this->addralign_)) * prime;
   3362     return h;
   3363   }
   3364 
   3365   // Functors for associative containers.
   3366   struct equal_to
   3367   {
   3368     bool
   3369     operator()(const Merge_section_properties& msp1,
   3370 	       const Merge_section_properties& msp2) const
   3371     { return msp1.eq(msp2); }
   3372   };
   3373 
   3374   struct hash
   3375   {
   3376     size_t
   3377     operator()(const Merge_section_properties& msp) const
   3378     { return msp.hash_value(); }
   3379   };
   3380 
   3381  private:
   3382   // Whether this merge data section is for strings.
   3383   bool is_string_;
   3384   // Entsize of this merge data section.
   3385   uint64_t entsize_;
   3386   // Address alignment.
   3387   uint64_t addralign_;
   3388 };
   3389 
   3390 // This class is used to speed up look up of special input sections in an
   3391 // Output_section.
   3392 
   3393 class Output_section_lookup_maps
   3394 {
   3395  public:
   3396   Output_section_lookup_maps()
   3397     : is_valid_(true), merge_sections_by_properties_(),
   3398       relaxed_input_sections_by_id_()
   3399   { }
   3400 
   3401   // Whether the maps are valid.
   3402   bool
   3403   is_valid() const
   3404   { return this->is_valid_; }
   3405 
   3406   // Invalidate the maps.
   3407   void
   3408   invalidate()
   3409   { this->is_valid_ = false; }
   3410 
   3411   // Clear the maps.
   3412   void
   3413   clear()
   3414   {
   3415     this->merge_sections_by_properties_.clear();
   3416     this->relaxed_input_sections_by_id_.clear();
   3417     // A cleared map is valid.
   3418     this->is_valid_ = true;
   3419   }
   3420 
   3421   // Find a merge section by merge section properties.  Return NULL if none
   3422   // is found.
   3423   Output_merge_base*
   3424   find_merge_section(const Merge_section_properties& msp) const
   3425   {
   3426     gold_assert(this->is_valid_);
   3427     Merge_sections_by_properties::const_iterator p =
   3428       this->merge_sections_by_properties_.find(msp);
   3429     return p != this->merge_sections_by_properties_.end() ? p->second : NULL;
   3430   }
   3431 
   3432   // Add a merge section pointed by POMB with properties MSP.
   3433   void
   3434   add_merge_section(const Merge_section_properties& msp,
   3435 		    Output_merge_base* pomb)
   3436   {
   3437     std::pair<Merge_section_properties, Output_merge_base*> value(msp, pomb);
   3438     std::pair<Merge_sections_by_properties::iterator, bool> result =
   3439       this->merge_sections_by_properties_.insert(value);
   3440     gold_assert(result.second);
   3441   }
   3442 
   3443   // Find a relaxed input section of OBJECT with index SHNDX.
   3444   Output_relaxed_input_section*
   3445   find_relaxed_input_section(const Relobj* object, unsigned int shndx) const
   3446   {
   3447     gold_assert(this->is_valid_);
   3448     Relaxed_input_sections_by_id::const_iterator p =
   3449       this->relaxed_input_sections_by_id_.find(Const_section_id(object, shndx));
   3450     return p != this->relaxed_input_sections_by_id_.end() ? p->second : NULL;
   3451   }
   3452 
   3453   // Add a relaxed input section pointed by POMB and whose original input
   3454   // section is in OBJECT with index SHNDX.
   3455   void
   3456   add_relaxed_input_section(const Relobj* relobj, unsigned int shndx,
   3457 			    Output_relaxed_input_section* poris)
   3458   {
   3459     Const_section_id csid(relobj, shndx);
   3460     std::pair<Const_section_id, Output_relaxed_input_section*>
   3461       value(csid, poris);
   3462     std::pair<Relaxed_input_sections_by_id::iterator, bool> result =
   3463       this->relaxed_input_sections_by_id_.insert(value);
   3464     gold_assert(result.second);
   3465   }
   3466 
   3467  private:
   3468   typedef Unordered_map<Merge_section_properties, Output_merge_base*,
   3469 			Merge_section_properties::hash,
   3470 			Merge_section_properties::equal_to>
   3471     Merge_sections_by_properties;
   3472 
   3473   typedef Unordered_map<Const_section_id, Output_relaxed_input_section*,
   3474 			Const_section_id_hash>
   3475     Relaxed_input_sections_by_id;
   3476 
   3477   // Whether this is valid
   3478   bool is_valid_;
   3479   // Merge sections by merge section properties.
   3480   Merge_sections_by_properties merge_sections_by_properties_;
   3481   // Relaxed sections by section IDs.
   3482   Relaxed_input_sections_by_id relaxed_input_sections_by_id_;
   3483 };
   3484 
   3485 // This abstract base class defines the interface for the
   3486 // types of methods used to fill free space left in an output
   3487 // section during an incremental link.  These methods are used
   3488 // to insert dummy compilation units into debug info so that
   3489 // debug info consumers can scan the debug info serially.
   3490 
   3491 class Output_fill
   3492 {
   3493  public:
   3494   Output_fill()
   3495     : is_big_endian_(parameters->target().is_big_endian())
   3496   { }
   3497 
   3498   virtual
   3499   ~Output_fill()
   3500   { }
   3501 
   3502   // Return the smallest size chunk of free space that can be
   3503   // filled with a dummy compilation unit.
   3504   size_t
   3505   minimum_hole_size() const
   3506   { return this->do_minimum_hole_size(); }
   3507 
   3508   // Write a fill pattern of length LEN at offset OFF in the file.
   3509   void
   3510   write(Output_file* of, off_t off, size_t len) const
   3511   { this->do_write(of, off, len); }
   3512 
   3513  protected:
   3514   virtual size_t
   3515   do_minimum_hole_size() const = 0;
   3516 
   3517   virtual void
   3518   do_write(Output_file* of, off_t off, size_t len) const = 0;
   3519 
   3520   bool
   3521   is_big_endian() const
   3522   { return this->is_big_endian_; }
   3523 
   3524  private:
   3525   bool is_big_endian_;
   3526 };
   3527 
   3528 // Fill method that introduces a dummy compilation unit in
   3529 // a .debug_info or .debug_types section.
   3530 
   3531 class Output_fill_debug_info : public Output_fill
   3532 {
   3533  public:
   3534   Output_fill_debug_info(bool is_debug_types)
   3535     : is_debug_types_(is_debug_types)
   3536   { }
   3537 
   3538  protected:
   3539   virtual size_t
   3540   do_minimum_hole_size() const;
   3541 
   3542   virtual void
   3543   do_write(Output_file* of, off_t off, size_t len) const;
   3544 
   3545  private:
   3546   // Version of the header.
   3547   static const int version = 4;
   3548   // True if this is a .debug_types section.
   3549   bool is_debug_types_;
   3550 };
   3551 
   3552 // Fill method that introduces a dummy compilation unit in
   3553 // a .debug_line section.
   3554 
   3555 class Output_fill_debug_line : public Output_fill
   3556 {
   3557  public:
   3558   Output_fill_debug_line()
   3559   { }
   3560 
   3561  protected:
   3562   virtual size_t
   3563   do_minimum_hole_size() const;
   3564 
   3565   virtual void
   3566   do_write(Output_file* of, off_t off, size_t len) const;
   3567 
   3568  private:
   3569   // Version of the header.  We write a DWARF-3 header because it's smaller
   3570   // and many tools have not yet been updated to understand the DWARF-4 header.
   3571   static const int version = 3;
   3572   // Length of the portion of the header that follows the header_length
   3573   // field.  This includes the following fields:
   3574   // minimum_instruction_length, default_is_stmt, line_base, line_range,
   3575   // opcode_base, standard_opcode_lengths[], include_directories, filenames.
   3576   // The standard_opcode_lengths array is 12 bytes long, and the
   3577   // include_directories and filenames fields each contain only a single
   3578   // null byte.
   3579   static const size_t header_length = 19;
   3580 };
   3581 
   3582 // An output section.  We don't expect to have too many output
   3583 // sections, so we don't bother to do a template on the size.
   3584 
   3585 class Output_section : public Output_data
   3586 {
   3587  public:
   3588   // Create an output section, giving the name, type, and flags.
   3589   Output_section(const char* name, elfcpp::Elf_Word, elfcpp::Elf_Xword);
   3590   virtual ~Output_section();
   3591 
   3592   // Add a new input section SHNDX, named NAME, with header SHDR, from
   3593   // object OBJECT.  RELOC_SHNDX is the index of a relocation section
   3594   // which applies to this section, or 0 if none, or -1 if more than
   3595   // one.  HAVE_SECTIONS_SCRIPT is true if we have a SECTIONS clause
   3596   // in a linker script; in that case we need to keep track of input
   3597   // sections associated with an output section.  Return the offset
   3598   // within the output section.
   3599   template<int size, bool big_endian>
   3600   off_t
   3601   add_input_section(Layout* layout, Sized_relobj_file<size, big_endian>* object,
   3602 		    unsigned int shndx, const char* name,
   3603 		    const elfcpp::Shdr<size, big_endian>& shdr,
   3604 		    unsigned int reloc_shndx, bool have_sections_script);
   3605 
   3606   // Add generated data POSD to this output section.
   3607   void
   3608   add_output_section_data(Output_section_data* posd);
   3609 
   3610   // Add a relaxed input section PORIS called NAME to this output section
   3611   // with LAYOUT.
   3612   void
   3613   add_relaxed_input_section(Layout* layout,
   3614 			    Output_relaxed_input_section* poris,
   3615 			    const std::string& name);
   3616 
   3617   // Return the section name.
   3618   const char*
   3619   name() const
   3620   { return this->name_; }
   3621 
   3622   // Return the section type.
   3623   elfcpp::Elf_Word
   3624   type() const
   3625   { return this->type_; }
   3626 
   3627   // Return the section flags.
   3628   elfcpp::Elf_Xword
   3629   flags() const
   3630   { return this->flags_; }
   3631 
   3632   typedef std::map<Section_id, unsigned int> Section_layout_order;
   3633 
   3634   void
   3635   update_section_layout(const Section_layout_order* order_map);
   3636 
   3637   // Update the output section flags based on input section flags.
   3638   void
   3639   update_flags_for_input_section(elfcpp::Elf_Xword flags);
   3640 
   3641   // Set the output section flags.
   3642   void
   3643   set_flags(elfcpp::Elf_Xword flags)
   3644   { this->flags_ = flags; }
   3645 
   3646   // Return the entsize field.
   3647   uint64_t
   3648   entsize() const
   3649   { return this->entsize_; }
   3650 
   3651   // Set the entsize field.
   3652   void
   3653   set_entsize(uint64_t v);
   3654 
   3655   // Set the load address.
   3656   void
   3657   set_load_address(uint64_t load_address)
   3658   {
   3659     this->load_address_ = load_address;
   3660     this->has_load_address_ = true;
   3661   }
   3662 
   3663   // Set the link field to the output section index of a section.
   3664   void
   3665   set_link_section(const Output_data* od)
   3666   {
   3667     gold_assert(this->link_ == 0
   3668 		&& !this->should_link_to_symtab_
   3669 		&& !this->should_link_to_dynsym_);
   3670     this->link_section_ = od;
   3671   }
   3672 
   3673   // Set the link field to a constant.
   3674   void
   3675   set_link(unsigned int v)
   3676   {
   3677     gold_assert(this->link_section_ == NULL
   3678 		&& !this->should_link_to_symtab_
   3679 		&& !this->should_link_to_dynsym_);
   3680     this->link_ = v;
   3681   }
   3682 
   3683   // Record that this section should link to the normal symbol table.
   3684   void
   3685   set_should_link_to_symtab()
   3686   {
   3687     gold_assert(this->link_section_ == NULL
   3688 		&& this->link_ == 0
   3689 		&& !this->should_link_to_dynsym_);
   3690     this->should_link_to_symtab_ = true;
   3691   }
   3692 
   3693   // Record that this section should link to the dynamic symbol table.
   3694   void
   3695   set_should_link_to_dynsym()
   3696   {
   3697     gold_assert(this->link_section_ == NULL
   3698 		&& this->link_ == 0
   3699 		&& !this->should_link_to_symtab_);
   3700     this->should_link_to_dynsym_ = true;
   3701   }
   3702 
   3703   // Return the info field.
   3704   unsigned int
   3705   info() const
   3706   {
   3707     gold_assert(this->info_section_ == NULL
   3708 		&& this->info_symndx_ == NULL);
   3709     return this->info_;
   3710   }
   3711 
   3712   // Set the info field to the output section index of a section.
   3713   void
   3714   set_info_section(const Output_section* os)
   3715   {
   3716     gold_assert((this->info_section_ == NULL
   3717 		 || (this->info_section_ == os
   3718 		     && this->info_uses_section_index_))
   3719 		&& this->info_symndx_ == NULL
   3720 		&& this->info_ == 0);
   3721     this->info_section_ = os;
   3722     this->info_uses_section_index_= true;
   3723   }
   3724 
   3725   // Set the info field to the symbol table index of a symbol.
   3726   void
   3727   set_info_symndx(const Symbol* sym)
   3728   {
   3729     gold_assert(this->info_section_ == NULL
   3730 		&& (this->info_symndx_ == NULL
   3731 		    || this->info_symndx_ == sym)
   3732 		&& this->info_ == 0);
   3733     this->info_symndx_ = sym;
   3734   }
   3735 
   3736   // Set the info field to the symbol table index of a section symbol.
   3737   void
   3738   set_info_section_symndx(const Output_section* os)
   3739   {
   3740     gold_assert((this->info_section_ == NULL
   3741 		 || (this->info_section_ == os
   3742 		     && !this->info_uses_section_index_))
   3743 		&& this->info_symndx_ == NULL
   3744 		&& this->info_ == 0);
   3745     this->info_section_ = os;
   3746     this->info_uses_section_index_ = false;
   3747   }
   3748 
   3749   // Set the info field to a constant.
   3750   void
   3751   set_info(unsigned int v)
   3752   {
   3753     gold_assert(this->info_section_ == NULL
   3754 		&& this->info_symndx_ == NULL
   3755 		&& (this->info_ == 0
   3756 		    || this->info_ == v));
   3757     this->info_ = v;
   3758   }
   3759 
   3760   // Set the addralign field.
   3761   void
   3762   set_addralign(uint64_t v)
   3763   { this->addralign_ = v; }
   3764 
   3765   void
   3766   checkpoint_set_addralign(uint64_t val)
   3767   {
   3768     if (this->checkpoint_ != NULL)
   3769       this->checkpoint_->set_addralign(val);
   3770   }
   3771 
   3772   // Whether the output section index has been set.
   3773   bool
   3774   has_out_shndx() const
   3775   { return this->out_shndx_ != -1U; }
   3776 
   3777   // Indicate that we need a symtab index.
   3778   void
   3779   set_needs_symtab_index()
   3780   { this->needs_symtab_index_ = true; }
   3781 
   3782   // Return whether we need a symtab index.
   3783   bool
   3784   needs_symtab_index() const
   3785   { return this->needs_symtab_index_; }
   3786 
   3787   // Get the symtab index.
   3788   unsigned int
   3789   symtab_index() const
   3790   {
   3791     gold_assert(this->symtab_index_ != 0);
   3792     return this->symtab_index_;
   3793   }
   3794 
   3795   // Set the symtab index.
   3796   void
   3797   set_symtab_index(unsigned int index)
   3798   {
   3799     gold_assert(index != 0);
   3800     this->symtab_index_ = index;
   3801   }
   3802 
   3803   // Indicate that we need a dynsym index.
   3804   void
   3805   set_needs_dynsym_index()
   3806   { this->needs_dynsym_index_ = true; }
   3807 
   3808   // Return whether we need a dynsym index.
   3809   bool
   3810   needs_dynsym_index() const
   3811   { return this->needs_dynsym_index_; }
   3812 
   3813   // Get the dynsym index.
   3814   unsigned int
   3815   dynsym_index() const
   3816   {
   3817     gold_assert(this->dynsym_index_ != 0);
   3818     return this->dynsym_index_;
   3819   }
   3820 
   3821   // Set the dynsym index.
   3822   void
   3823   set_dynsym_index(unsigned int index)
   3824   {
   3825     gold_assert(index != 0);
   3826     this->dynsym_index_ = index;
   3827   }
   3828 
   3829   // Sort the attached input sections.
   3830   void
   3831   sort_attached_input_sections();
   3832 
   3833   // Return whether the input sections sections attachd to this output
   3834   // section may require sorting.  This is used to handle constructor
   3835   // priorities compatibly with GNU ld.
   3836   bool
   3837   may_sort_attached_input_sections() const
   3838   { return this->may_sort_attached_input_sections_; }
   3839 
   3840   // Record that the input sections attached to this output section
   3841   // may require sorting.
   3842   void
   3843   set_may_sort_attached_input_sections()
   3844   { this->may_sort_attached_input_sections_ = true; }
   3845 
   3846    // Returns true if input sections must be sorted according to the
   3847   // order in which their name appear in the --section-ordering-file.
   3848   bool
   3849   input_section_order_specified()
   3850   { return this->input_section_order_specified_; }
   3851 
   3852   // Record that input sections must be sorted as some of their names
   3853   // match the patterns specified through --section-ordering-file.
   3854   void
   3855   set_input_section_order_specified()
   3856   { this->input_section_order_specified_ = true; }
   3857 
   3858   // Return whether the input sections attached to this output section
   3859   // require sorting.  This is used to handle constructor priorities
   3860   // compatibly with GNU ld.
   3861   bool
   3862   must_sort_attached_input_sections() const
   3863   { return this->must_sort_attached_input_sections_; }
   3864 
   3865   // Record that the input sections attached to this output section
   3866   // require sorting.
   3867   void
   3868   set_must_sort_attached_input_sections()
   3869   { this->must_sort_attached_input_sections_ = true; }
   3870 
   3871   // Get the order in which this section appears in the PT_LOAD output
   3872   // segment.
   3873   Output_section_order
   3874   order() const
   3875   { return this->order_; }
   3876 
   3877   // Set the order for this section.
   3878   void
   3879   set_order(Output_section_order order)
   3880   { this->order_ = order; }
   3881 
   3882   // Return whether this section holds relro data--data which has
   3883   // dynamic relocations but which may be marked read-only after the
   3884   // dynamic relocations have been completed.
   3885   bool
   3886   is_relro() const
   3887   { return this->is_relro_; }
   3888 
   3889   // Record that this section holds relro data.
   3890   void
   3891   set_is_relro()
   3892   { this->is_relro_ = true; }
   3893 
   3894   // Record that this section does not hold relro data.
   3895   void
   3896   clear_is_relro()
   3897   { this->is_relro_ = false; }
   3898 
   3899   // True if this is a small section: a section which holds small
   3900   // variables.
   3901   bool
   3902   is_small_section() const
   3903   { return this->is_small_section_; }
   3904 
   3905   // Record that this is a small section.
   3906   void
   3907   set_is_small_section()
   3908   { this->is_small_section_ = true; }
   3909 
   3910   // True if this is a large section: a section which holds large
   3911   // variables.
   3912   bool
   3913   is_large_section() const
   3914   { return this->is_large_section_; }
   3915 
   3916   // Record that this is a large section.
   3917   void
   3918   set_is_large_section()
   3919   { this->is_large_section_ = true; }
   3920 
   3921   // True if this is a large data (not BSS) section.
   3922   bool
   3923   is_large_data_section()
   3924   { return this->is_large_section_ && this->type_ != elfcpp::SHT_NOBITS; }
   3925 
   3926   // Return whether this section should be written after all the input
   3927   // sections are complete.
   3928   bool
   3929   after_input_sections() const
   3930   { return this->after_input_sections_; }
   3931 
   3932   // Record that this section should be written after all the input
   3933   // sections are complete.
   3934   void
   3935   set_after_input_sections()
   3936   { this->after_input_sections_ = true; }
   3937 
   3938   // Return whether this section requires postprocessing after all
   3939   // relocations have been applied.
   3940   bool
   3941   requires_postprocessing() const
   3942   { return this->requires_postprocessing_; }
   3943 
   3944   bool
   3945   is_unique_segment() const
   3946   { return this->is_unique_segment_; }
   3947 
   3948   void
   3949   set_is_unique_segment()
   3950   { this->is_unique_segment_ = true; }
   3951 
   3952   uint64_t extra_segment_flags() const
   3953   { return this->extra_segment_flags_; }
   3954 
   3955   void
   3956   set_extra_segment_flags(uint64_t flags)
   3957   { this->extra_segment_flags_ = flags; }
   3958 
   3959   uint64_t segment_alignment() const
   3960   { return this->segment_alignment_; }
   3961 
   3962   void
   3963   set_segment_alignment(uint64_t align)
   3964   { this->segment_alignment_ = align; }
   3965 
   3966   // If a section requires postprocessing, return the buffer to use.
   3967   unsigned char*
   3968   postprocessing_buffer() const
   3969   {
   3970     gold_assert(this->postprocessing_buffer_ != NULL);
   3971     return this->postprocessing_buffer_;
   3972   }
   3973 
   3974   // If a section requires postprocessing, create the buffer to use.
   3975   void
   3976   create_postprocessing_buffer();
   3977 
   3978   // If a section requires postprocessing, this is the size of the
   3979   // buffer to which relocations should be applied.
   3980   off_t
   3981   postprocessing_buffer_size() const
   3982   { return this->current_data_size_for_child(); }
   3983 
   3984   // Modify the section name.  This is only permitted for an
   3985   // unallocated section, and only before the size has been finalized.
   3986   // Otherwise the name will not get into Layout::namepool_.
   3987   void
   3988   set_name(const char* newname)
   3989   {
   3990     gold_assert((this->flags_ & elfcpp::SHF_ALLOC) == 0);
   3991     gold_assert(!this->is_data_size_valid());
   3992     this->name_ = newname;
   3993   }
   3994 
   3995   // Return whether the offset OFFSET in the input section SHNDX in
   3996   // object OBJECT is being included in the link.
   3997   bool
   3998   is_input_address_mapped(const Relobj* object, unsigned int shndx,
   3999 			  off_t offset) const;
   4000 
   4001   // Return the offset within the output section of OFFSET relative to
   4002   // the start of input section SHNDX in object OBJECT.
   4003   section_offset_type
   4004   output_offset(const Relobj* object, unsigned int shndx,
   4005 		section_offset_type offset) const;
   4006 
   4007   // Return the output virtual address of OFFSET relative to the start
   4008   // of input section SHNDX in object OBJECT.
   4009   uint64_t
   4010   output_address(const Relobj* object, unsigned int shndx,
   4011 		 off_t offset) const;
   4012 
   4013   // Look for the merged section for input section SHNDX in object
   4014   // OBJECT.  If found, return true, and set *ADDR to the address of
   4015   // the start of the merged section.  This is not necessary the
   4016   // output offset corresponding to input offset 0 in the section,
   4017   // since the section may be mapped arbitrarily.
   4018   bool
   4019   find_starting_output_address(const Relobj* object, unsigned int shndx,
   4020 			       uint64_t* addr) const;
   4021 
   4022   // Record that this output section was found in the SECTIONS clause
   4023   // of a linker script.
   4024   void
   4025   set_found_in_sections_clause()
   4026   { this->found_in_sections_clause_ = true; }
   4027 
   4028   // Return whether this output section was found in the SECTIONS
   4029   // clause of a linker script.
   4030   bool
   4031   found_in_sections_clause() const
   4032   { return this->found_in_sections_clause_; }
   4033 
   4034   // Write the section header into *OPHDR.
   4035   template<int size, bool big_endian>
   4036   void
   4037   write_header(const Layout*, const Stringpool*,
   4038 	       elfcpp::Shdr_write<size, big_endian>*) const;
   4039 
   4040   // The next few calls are for linker script support.
   4041 
   4042   // In some cases we need to keep a list of the input sections
   4043   // associated with this output section.  We only need the list if we
   4044   // might have to change the offsets of the input section within the
   4045   // output section after we add the input section.  The ordinary
   4046   // input sections will be written out when we process the object
   4047   // file, and as such we don't need to track them here.  We do need
   4048   // to track Output_section_data objects here.  We store instances of
   4049   // this structure in a std::vector, so it must be a POD.  There can
   4050   // be many instances of this structure, so we use a union to save
   4051   // some space.
   4052   class Input_section
   4053   {
   4054    public:
   4055     Input_section()
   4056       : shndx_(0), p2align_(0)
   4057     {
   4058       this->u1_.data_size = 0;
   4059       this->u2_.object = NULL;
   4060     }
   4061 
   4062     // For an ordinary input section.
   4063     Input_section(Relobj* object, unsigned int shndx, off_t data_size,
   4064 		  uint64_t addralign)
   4065       : shndx_(shndx),
   4066 	p2align_(ffsll(static_cast<long long>(addralign))),
   4067 	section_order_index_(0)
   4068     {
   4069       gold_assert(shndx != OUTPUT_SECTION_CODE
   4070 		  && shndx != MERGE_DATA_SECTION_CODE
   4071 		  && shndx != MERGE_STRING_SECTION_CODE
   4072 		  && shndx != RELAXED_INPUT_SECTION_CODE);
   4073       this->u1_.data_size = data_size;
   4074       this->u2_.object = object;
   4075     }
   4076 
   4077     // For a non-merge output section.
   4078     Input_section(Output_section_data* posd)
   4079       : shndx_(OUTPUT_SECTION_CODE), p2align_(0),
   4080 	section_order_index_(0)
   4081     {
   4082       this->u1_.data_size = 0;
   4083       this->u2_.posd = posd;
   4084     }
   4085 
   4086     // For a merge section.
   4087     Input_section(Output_section_data* posd, bool is_string, uint64_t entsize)
   4088       : shndx_(is_string
   4089 	       ? MERGE_STRING_SECTION_CODE
   4090 	       : MERGE_DATA_SECTION_CODE),
   4091 	p2align_(0),
   4092 	section_order_index_(0)
   4093     {
   4094       this->u1_.entsize = entsize;
   4095       this->u2_.posd = posd;
   4096     }
   4097 
   4098     // For a relaxed input section.
   4099     Input_section(Output_relaxed_input_section* psection)
   4100       : shndx_(RELAXED_INPUT_SECTION_CODE), p2align_(0),
   4101 	section_order_index_(0)
   4102     {
   4103       this->u1_.data_size = 0;
   4104       this->u2_.poris = psection;
   4105     }
   4106 
   4107     unsigned int
   4108     section_order_index() const
   4109     {
   4110       return this->section_order_index_;
   4111     }
   4112 
   4113     void
   4114     set_section_order_index(unsigned int number)
   4115     {
   4116       this->section_order_index_ = number;
   4117     }
   4118 
   4119     // The required alignment.
   4120     uint64_t
   4121     addralign() const
   4122     {
   4123       if (this->p2align_ != 0)
   4124 	return static_cast<uint64_t>(1) << (this->p2align_ - 1);
   4125       else if (!this->is_input_section())
   4126 	return this->u2_.posd->addralign();
   4127       else
   4128 	return 0;
   4129     }
   4130 
   4131     // Set the required alignment, which must be either 0 or a power of 2.
   4132     // For input sections that are sub-classes of Output_section_data, a
   4133     // alignment of zero means asking the underlying object for alignment.
   4134     void
   4135     set_addralign(uint64_t addralign)
   4136     {
   4137       if (addralign == 0)
   4138 	this->p2align_ = 0;
   4139       else
   4140 	{
   4141 	  gold_assert((addralign & (addralign - 1)) == 0);
   4142 	  this->p2align_ = ffsll(static_cast<long long>(addralign));
   4143 	}
   4144     }
   4145 
   4146     // Return the current required size, without finalization.
   4147     off_t
   4148     current_data_size() const;
   4149 
   4150     // Return the required size.
   4151     off_t
   4152     data_size() const;
   4153 
   4154     // Whether this is an input section.
   4155     bool
   4156     is_input_section() const
   4157     {
   4158       return (this->shndx_ != OUTPUT_SECTION_CODE
   4159 	      && this->shndx_ != MERGE_DATA_SECTION_CODE
   4160 	      && this->shndx_ != MERGE_STRING_SECTION_CODE
   4161 	      && this->shndx_ != RELAXED_INPUT_SECTION_CODE);
   4162     }
   4163 
   4164     // Return whether this is a merge section which matches the
   4165     // parameters.
   4166     bool
   4167     is_merge_section(bool is_string, uint64_t entsize,
   4168 		     uint64_t addralign) const
   4169     {
   4170       return (this->shndx_ == (is_string
   4171 			       ? MERGE_STRING_SECTION_CODE
   4172 			       : MERGE_DATA_SECTION_CODE)
   4173 	      && this->u1_.entsize == entsize
   4174 	      && this->addralign() == addralign);
   4175     }
   4176 
   4177     // Return whether this is a merge section for some input section.
   4178     bool
   4179     is_merge_section() const
   4180     {
   4181       return (this->shndx_ == MERGE_DATA_SECTION_CODE
   4182 	      || this->shndx_ == MERGE_STRING_SECTION_CODE);
   4183     }
   4184 
   4185     // Return whether this is a relaxed input section.
   4186     bool
   4187     is_relaxed_input_section() const
   4188     { return this->shndx_ == RELAXED_INPUT_SECTION_CODE; }
   4189 
   4190     // Return whether this is a generic Output_section_data.
   4191     bool
   4192     is_output_section_data() const
   4193     {
   4194       return this->shndx_ == OUTPUT_SECTION_CODE;
   4195     }
   4196 
   4197     // Return the object for an input section.
   4198     Relobj*
   4199     relobj() const;
   4200 
   4201     // Return the input section index for an input section.
   4202     unsigned int
   4203     shndx() const;
   4204 
   4205     // For non-input-sections, return the associated Output_section_data
   4206     // object.
   4207     Output_section_data*
   4208     output_section_data() const
   4209     {
   4210       gold_assert(!this->is_input_section());
   4211       return this->u2_.posd;
   4212     }
   4213 
   4214     // For a merge section, return the Output_merge_base pointer.
   4215     Output_merge_base*
   4216     output_merge_base() const
   4217     {
   4218       gold_assert(this->is_merge_section());
   4219       return this->u2_.pomb;
   4220     }
   4221 
   4222     // Return the Output_relaxed_input_section object.
   4223     Output_relaxed_input_section*
   4224     relaxed_input_section() const
   4225     {
   4226       gold_assert(this->is_relaxed_input_section());
   4227       return this->u2_.poris;
   4228     }
   4229 
   4230     // Set the output section.
   4231     void
   4232     set_output_section(Output_section* os)
   4233     {
   4234       gold_assert(!this->is_input_section());
   4235       Output_section_data* posd =
   4236 	this->is_relaxed_input_section() ? this->u2_.poris : this->u2_.posd;
   4237       posd->set_output_section(os);
   4238     }
   4239 
   4240     // Set the address and file offset.  This is called during
   4241     // Layout::finalize.  SECTION_FILE_OFFSET is the file offset of
   4242     // the enclosing section.
   4243     void
   4244     set_address_and_file_offset(uint64_t address, off_t file_offset,
   4245 				off_t section_file_offset);
   4246 
   4247     // Reset the address and file offset.
   4248     void
   4249     reset_address_and_file_offset();
   4250 
   4251     // Finalize the data size.
   4252     void
   4253     finalize_data_size();
   4254 
   4255     // Add an input section, for SHF_MERGE sections.
   4256     bool
   4257     add_input_section(Relobj* object, unsigned int shndx)
   4258     {
   4259       gold_assert(this->shndx_ == MERGE_DATA_SECTION_CODE
   4260 		  || this->shndx_ == MERGE_STRING_SECTION_CODE);
   4261       return this->u2_.posd->add_input_section(object, shndx);
   4262     }
   4263 
   4264     // Given an input OBJECT, an input section index SHNDX within that
   4265     // object, and an OFFSET relative to the start of that input
   4266     // section, return whether or not the output offset is known.  If
   4267     // this function returns true, it sets *POUTPUT to the offset in
   4268     // the output section, relative to the start of the input section
   4269     // in the output section.  *POUTPUT may be different from OFFSET
   4270     // for a merged section.
   4271     bool
   4272     output_offset(const Relobj* object, unsigned int shndx,
   4273 		  section_offset_type offset,
   4274 		  section_offset_type* poutput) const;
   4275 
   4276     // Write out the data.  This does nothing for an input section.
   4277     void
   4278     write(Output_file*);
   4279 
   4280     // Write the data to a buffer.  This does nothing for an input
   4281     // section.
   4282     void
   4283     write_to_buffer(unsigned char*);
   4284 
   4285     // Print to a map file.
   4286     void
   4287     print_to_mapfile(Mapfile*) const;
   4288 
   4289     // Print statistics about merge sections to stderr.
   4290     void
   4291     print_merge_stats(const char* section_name)
   4292     {
   4293       if (this->shndx_ == MERGE_DATA_SECTION_CODE
   4294 	  || this->shndx_ == MERGE_STRING_SECTION_CODE)
   4295 	this->u2_.posd->print_merge_stats(section_name);
   4296     }
   4297 
   4298    private:
   4299     // Code values which appear in shndx_.  If the value is not one of
   4300     // these codes, it is the input section index in the object file.
   4301     enum
   4302     {
   4303       // An Output_section_data.
   4304       OUTPUT_SECTION_CODE = -1U,
   4305       // An Output_section_data for an SHF_MERGE section with
   4306       // SHF_STRINGS not set.
   4307       MERGE_DATA_SECTION_CODE = -2U,
   4308       // An Output_section_data for an SHF_MERGE section with
   4309       // SHF_STRINGS set.
   4310       MERGE_STRING_SECTION_CODE = -3U,
   4311       // An Output_section_data for a relaxed input section.
   4312       RELAXED_INPUT_SECTION_CODE = -4U
   4313     };
   4314 
   4315     // For an ordinary input section, this is the section index in the
   4316     // input file.  For an Output_section_data, this is
   4317     // OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
   4318     // MERGE_STRING_SECTION_CODE.
   4319     unsigned int shndx_;
   4320     // The required alignment, stored as a power of 2.
   4321     unsigned int p2align_;
   4322     union
   4323     {
   4324       // For an ordinary input section, the section size.
   4325       off_t data_size;
   4326       // For OUTPUT_SECTION_CODE or RELAXED_INPUT_SECTION_CODE, this is not
   4327       // used.  For MERGE_DATA_SECTION_CODE or MERGE_STRING_SECTION_CODE, the
   4328       // entity size.
   4329       uint64_t entsize;
   4330     } u1_;
   4331     union
   4332     {
   4333       // For an ordinary input section, the object which holds the
   4334       // input section.
   4335       Relobj* object;
   4336       // For OUTPUT_SECTION_CODE or MERGE_DATA_SECTION_CODE or
   4337       // MERGE_STRING_SECTION_CODE, the data.
   4338       Output_section_data* posd;
   4339       Output_merge_base* pomb;
   4340       // For RELAXED_INPUT_SECTION_CODE, the data.
   4341       Output_relaxed_input_section* poris;
   4342     } u2_;
   4343     // The line number of the pattern it matches in the --section-ordering-file
   4344     // file.  It is 0 if does not match any pattern.
   4345     unsigned int section_order_index_;
   4346   };
   4347 
   4348   // Store the list of input sections for this Output_section into the
   4349   // list passed in.  This removes the input sections, leaving only
   4350   // any Output_section_data elements.  This returns the size of those
   4351   // Output_section_data elements.  ADDRESS is the address of this
   4352   // output section.  FILL is the fill value to use, in case there are
   4353   // any spaces between the remaining Output_section_data elements.
   4354   uint64_t
   4355   get_input_sections(uint64_t address, const std::string& fill,
   4356 		     std::list<Input_section>*);
   4357 
   4358   // Add a script input section.  A script input section can either be
   4359   // a plain input section or a sub-class of Output_section_data.
   4360   void
   4361   add_script_input_section(const Input_section& input_section);
   4362 
   4363   // Set the current size of the output section.
   4364   void
   4365   set_current_data_size(off_t size)
   4366   { this->set_current_data_size_for_child(size); }
   4367 
   4368   // End of linker script support.
   4369 
   4370   // Save states before doing section layout.
   4371   // This is used for relaxation.
   4372   void
   4373   save_states();
   4374 
   4375   // Restore states prior to section layout.
   4376   void
   4377   restore_states();
   4378 
   4379   // Discard states.
   4380   void
   4381   discard_states();
   4382 
   4383   // Convert existing input sections to relaxed input sections.
   4384   void
   4385   convert_input_sections_to_relaxed_sections(
   4386       const std::vector<Output_relaxed_input_section*>& sections);
   4387 
   4388   // Find a relaxed input section to an input section in OBJECT
   4389   // with index SHNDX.  Return NULL if none is found.
   4390   const Output_relaxed_input_section*
   4391   find_relaxed_input_section(const Relobj* object, unsigned int shndx) const;
   4392 
   4393   // Whether section offsets need adjustment due to relaxation.
   4394   bool
   4395   section_offsets_need_adjustment() const
   4396   { return this->section_offsets_need_adjustment_; }
   4397 
   4398   // Set section_offsets_need_adjustment to be true.
   4399   void
   4400   set_section_offsets_need_adjustment()
   4401   { this->section_offsets_need_adjustment_ = true; }
   4402 
   4403   // Set section_offsets_need_adjustment to be false.
   4404   void
   4405   clear_section_offsets_need_adjustment()
   4406   { this->section_offsets_need_adjustment_ = false; }
   4407 
   4408   // Adjust section offsets of input sections in this.  This is
   4409   // requires if relaxation caused some input sections to change sizes.
   4410   void
   4411   adjust_section_offsets();
   4412 
   4413   // Whether this is a NOLOAD section.
   4414   bool
   4415   is_noload() const
   4416   { return this->is_noload_; }
   4417 
   4418   // Set NOLOAD flag.
   4419   void
   4420   set_is_noload()
   4421   { this->is_noload_ = true; }
   4422 
   4423   // Print merge statistics to stderr.
   4424   void
   4425   print_merge_stats();
   4426 
   4427   // Set a fixed layout for the section.  Used for incremental update links.
   4428   void
   4429   set_fixed_layout(uint64_t sh_addr, off_t sh_offset, off_t sh_size,
   4430 		   uint64_t sh_addralign);
   4431 
   4432   // Return TRUE if the section has a fixed layout.
   4433   bool
   4434   has_fixed_layout() const
   4435   { return this->has_fixed_layout_; }
   4436 
   4437   // Set flag to allow patch space for this section.  Used for full
   4438   // incremental links.
   4439   void
   4440   set_is_patch_space_allowed()
   4441   { this->is_patch_space_allowed_ = true; }
   4442 
   4443   // Set a fill method to use for free space left in the output section
   4444   // during incremental links.
   4445   void
   4446   set_free_space_fill(Output_fill* free_space_fill)
   4447   {
   4448     this->free_space_fill_ = free_space_fill;
   4449     this->free_list_.set_min_hole_size(free_space_fill->minimum_hole_size());
   4450   }
   4451 
   4452   // Reserve space within the fixed layout for the section.  Used for
   4453   // incremental update links.
   4454   void
   4455   reserve(uint64_t sh_offset, uint64_t sh_size);
   4456 
   4457   // Allocate space from the free list for the section.  Used for
   4458   // incremental update links.
   4459   off_t
   4460   allocate(off_t len, uint64_t addralign);
   4461 
   4462   typedef std::vector<Input_section> Input_section_list;
   4463 
   4464   // Allow access to the input sections.
   4465   const Input_section_list&
   4466   input_sections() const
   4467   { return this->input_sections_; }
   4468 
   4469   Input_section_list&
   4470   input_sections()
   4471   { return this->input_sections_; }
   4472 
   4473  protected:
   4474   // Return the output section--i.e., the object itself.
   4475   Output_section*
   4476   do_output_section()
   4477   { return this; }
   4478 
   4479   const Output_section*
   4480   do_output_section() const
   4481   { return this; }
   4482 
   4483   // Return the section index in the output file.
   4484   unsigned int
   4485   do_out_shndx() const
   4486   {
   4487     gold_assert(this->out_shndx_ != -1U);
   4488     return this->out_shndx_;
   4489   }
   4490 
   4491   // Set the output section index.
   4492   void
   4493   do_set_out_shndx(unsigned int shndx)
   4494   {
   4495     gold_assert(this->out_shndx_ == -1U || this->out_shndx_ == shndx);
   4496     this->out_shndx_ = shndx;
   4497   }
   4498 
   4499   // Update the data size of the Output_section.  For a typical
   4500   // Output_section, there is nothing to do, but if there are any
   4501   // Output_section_data objects we need to do a trial layout
   4502   // here.
   4503   virtual void
   4504   update_data_size();
   4505 
   4506   // Set the final data size of the Output_section.  For a typical
   4507   // Output_section, there is nothing to do, but if there are any
   4508   // Output_section_data objects we need to set their final addresses
   4509   // here.
   4510   virtual void
   4511   set_final_data_size();
   4512 
   4513   // Reset the address and file offset.
   4514   void
   4515   do_reset_address_and_file_offset();
   4516 
   4517   // Return true if address and file offset already have reset values. In
   4518   // other words, calling reset_address_and_file_offset will not change them.
   4519   bool
   4520   do_address_and_file_offset_have_reset_values() const;
   4521 
   4522   // Write the data to the file.  For a typical Output_section, this
   4523   // does nothing: the data is written out by calling Object::Relocate
   4524   // on each input object.  But if there are any Output_section_data
   4525   // objects we do need to write them out here.
   4526   virtual void
   4527   do_write(Output_file*);
   4528 
   4529   // Return the address alignment--function required by parent class.
   4530   uint64_t
   4531   do_addralign() const
   4532   { return this->addralign_; }
   4533 
   4534   // Return whether there is a load address.
   4535   bool
   4536   do_has_load_address() const
   4537   { return this->has_load_address_; }
   4538 
   4539   // Return the load address.
   4540   uint64_t
   4541   do_load_address() const
   4542   {
   4543     gold_assert(this->has_load_address_);
   4544     return this->load_address_;
   4545   }
   4546 
   4547   // Return whether this is an Output_section.
   4548   bool
   4549   do_is_section() const
   4550   { return true; }
   4551 
   4552   // Return whether this is a section of the specified type.
   4553   bool
   4554   do_is_section_type(elfcpp::Elf_Word type) const
   4555   { return this->type_ == type; }
   4556 
   4557   // Return whether the specified section flag is set.
   4558   bool
   4559   do_is_section_flag_set(elfcpp::Elf_Xword flag) const
   4560   { return (this->flags_ & flag) != 0; }
   4561 
   4562   // Set the TLS offset.  Called only for SHT_TLS sections.
   4563   void
   4564   do_set_tls_offset(uint64_t tls_base);
   4565 
   4566   // Return the TLS offset, relative to the base of the TLS segment.
   4567   // Valid only for SHT_TLS sections.
   4568   uint64_t
   4569   do_tls_offset() const
   4570   { return this->tls_offset_; }
   4571 
   4572   // This may be implemented by a child class.
   4573   virtual void
   4574   do_finalize_name(Layout*)
   4575   { }
   4576 
   4577   // Print to the map file.
   4578   virtual void
   4579   do_print_to_mapfile(Mapfile*) const;
   4580 
   4581   // Record that this section requires postprocessing after all
   4582   // relocations have been applied.  This is called by a child class.
   4583   void
   4584   set_requires_postprocessing()
   4585   {
   4586     this->requires_postprocessing_ = true;
   4587     this->after_input_sections_ = true;
   4588   }
   4589 
   4590   // Write all the data of an Output_section into the postprocessing
   4591   // buffer.
   4592   void
   4593   write_to_postprocessing_buffer();
   4594 
   4595   // Whether this always keeps an input section list
   4596   bool
   4597   always_keeps_input_sections() const
   4598   { return this->always_keeps_input_sections_; }
   4599 
   4600   // Always keep an input section list.
   4601   void
   4602   set_always_keeps_input_sections()
   4603   {
   4604     gold_assert(this->current_data_size_for_child() == 0);
   4605     this->always_keeps_input_sections_ = true;
   4606   }
   4607 
   4608  private:
   4609   // We only save enough information to undo the effects of section layout.
   4610   class Checkpoint_output_section
   4611   {
   4612    public:
   4613     Checkpoint_output_section(uint64_t addralign, elfcpp::Elf_Xword flags,
   4614 			      const Input_section_list& input_sections,
   4615 			      off_t first_input_offset,
   4616 			      bool attached_input_sections_are_sorted)
   4617       : addralign_(addralign), flags_(flags),
   4618 	input_sections_(input_sections),
   4619 	input_sections_size_(input_sections_.size()),
   4620 	input_sections_copy_(), first_input_offset_(first_input_offset),
   4621 	attached_input_sections_are_sorted_(attached_input_sections_are_sorted)
   4622     { }
   4623 
   4624     virtual
   4625     ~Checkpoint_output_section()
   4626     { }
   4627 
   4628     // Return the address alignment.
   4629     uint64_t
   4630     addralign() const
   4631     { return this->addralign_; }
   4632 
   4633     void
   4634     set_addralign(uint64_t val)
   4635     { this->addralign_ = val; }
   4636 
   4637     // Return the section flags.
   4638     elfcpp::Elf_Xword
   4639     flags() const
   4640     { return this->flags_; }
   4641 
   4642     // Return a reference to the input section list copy.
   4643     Input_section_list*
   4644     input_sections()
   4645     { return &this->input_sections_copy_; }
   4646 
   4647     // Return the size of input_sections at the time when checkpoint is
   4648     // taken.
   4649     size_t
   4650     input_sections_size() const
   4651     { return this->input_sections_size_; }
   4652 
   4653     // Whether input sections are copied.
   4654     bool
   4655     input_sections_saved() const
   4656     { return this->input_sections_copy_.size() == this->input_sections_size_; }
   4657 
   4658     off_t
   4659     first_input_offset() const
   4660     { return this->first_input_offset_; }
   4661 
   4662     bool
   4663     attached_input_sections_are_sorted() const
   4664     { return this->attached_input_sections_are_sorted_; }
   4665 
   4666     // Save input sections.
   4667     void
   4668     save_input_sections()
   4669     {
   4670       this->input_sections_copy_.reserve(this->input_sections_size_);
   4671       this->input_sections_copy_.clear();
   4672       Input_section_list::const_iterator p = this->input_sections_.begin();
   4673       gold_assert(this->input_sections_size_ >= this->input_sections_.size());
   4674       for(size_t i = 0; i < this->input_sections_size_ ; i++, ++p)
   4675 	this->input_sections_copy_.push_back(*p);
   4676     }
   4677 
   4678    private:
   4679     // The section alignment.
   4680     uint64_t addralign_;
   4681     // The section flags.
   4682     elfcpp::Elf_Xword flags_;
   4683     // Reference to the input sections to be checkpointed.
   4684     const Input_section_list& input_sections_;
   4685     // Size of the checkpointed portion of input_sections_;
   4686     size_t input_sections_size_;
   4687     // Copy of input sections.
   4688     Input_section_list input_sections_copy_;
   4689     // The offset of the first entry in input_sections_.
   4690     off_t first_input_offset_;
   4691     // True if the input sections attached to this output section have
   4692     // already been sorted.
   4693     bool attached_input_sections_are_sorted_;
   4694   };
   4695 
   4696   // This class is used to sort the input sections.
   4697   class Input_section_sort_entry;
   4698 
   4699   // This is the sort comparison function for ctors and dtors.
   4700   struct Input_section_sort_compare
   4701   {
   4702     bool
   4703     operator()(const Input_section_sort_entry&,
   4704 	       const Input_section_sort_entry&) const;
   4705   };
   4706 
   4707   // This is the sort comparison function for .init_array and .fini_array.
   4708   struct Input_section_sort_init_fini_compare
   4709   {
   4710     bool
   4711     operator()(const Input_section_sort_entry&,
   4712 	       const Input_section_sort_entry&) const;
   4713   };
   4714 
   4715   // This is the sort comparison function when a section order is specified
   4716   // from an input file.
   4717   struct Input_section_sort_section_order_index_compare
   4718   {
   4719     bool
   4720     operator()(const Input_section_sort_entry&,
   4721 	       const Input_section_sort_entry&) const;
   4722   };
   4723 
   4724   // This is the sort comparison function for .text to sort sections with
   4725   // prefixes .text.{unlikely,exit,startup,hot} before other sections.
   4726   struct Input_section_sort_section_prefix_special_ordering_compare
   4727   {
   4728     bool
   4729     operator()(const Input_section_sort_entry&,
   4730 	       const Input_section_sort_entry&) const;
   4731   };
   4732 
   4733   // This is the sort comparison function for sorting sections by name.
   4734   struct Input_section_sort_section_name_compare
   4735   {
   4736     bool
   4737     operator()(const Input_section_sort_entry&,
   4738 	       const Input_section_sort_entry&) const;
   4739   };
   4740 
   4741   // Fill data.  This is used to fill in data between input sections.
   4742   // It is also used for data statements (BYTE, WORD, etc.) in linker
   4743   // scripts.  When we have to keep track of the input sections, we
   4744   // can use an Output_data_const, but we don't want to have to keep
   4745   // track of input sections just to implement fills.
   4746   class Fill
   4747   {
   4748    public:
   4749     Fill(off_t section_offset, off_t length)
   4750       : section_offset_(section_offset),
   4751 	length_(convert_to_section_size_type(length))
   4752     { }
   4753 
   4754     // Return section offset.
   4755     off_t
   4756     section_offset() const
   4757     { return this->section_offset_; }
   4758 
   4759     // Return fill length.
   4760     section_size_type
   4761     length() const
   4762     { return this->length_; }
   4763 
   4764    private:
   4765     // The offset within the output section.
   4766     off_t section_offset_;
   4767     // The length of the space to fill.
   4768     section_size_type length_;
   4769   };
   4770 
   4771   typedef std::vector<Fill> Fill_list;
   4772 
   4773   // Map used during relaxation of existing sections.  This map
   4774   // a section id an input section list index.  We assume that
   4775   // Input_section_list is a vector.
   4776   typedef Unordered_map<Section_id, size_t, Section_id_hash> Relaxation_map;
   4777 
   4778   // Add a new output section by Input_section.
   4779   void
   4780   add_output_section_data(Input_section*);
   4781 
   4782   // Add an SHF_MERGE input section.  Returns true if the section was
   4783   // handled.  If KEEPS_INPUT_SECTIONS is true, the output merge section
   4784   // stores information about the merged input sections.
   4785   bool
   4786   add_merge_input_section(Relobj* object, unsigned int shndx, uint64_t flags,
   4787 			  uint64_t entsize, uint64_t addralign,
   4788 			  bool keeps_input_sections);
   4789 
   4790   // Add an output SHF_MERGE section POSD to this output section.
   4791   // IS_STRING indicates whether it is a SHF_STRINGS section, and
   4792   // ENTSIZE is the entity size.  This returns the entry added to
   4793   // input_sections_.
   4794   void
   4795   add_output_merge_section(Output_section_data* posd, bool is_string,
   4796 			   uint64_t entsize);
   4797 
   4798   // Find the merge section into which an input section with index SHNDX in
   4799   // OBJECT has been added.  Return NULL if none found.
   4800   const Output_section_data*
   4801   find_merge_section(const Relobj* object, unsigned int shndx) const;
   4802 
   4803   // Build a relaxation map.
   4804   void
   4805   build_relaxation_map(
   4806       const Input_section_list& input_sections,
   4807       size_t limit,
   4808       Relaxation_map* map) const;
   4809 
   4810   // Convert input sections in an input section list into relaxed sections.
   4811   void
   4812   convert_input_sections_in_list_to_relaxed_sections(
   4813       const std::vector<Output_relaxed_input_section*>& relaxed_sections,
   4814       const Relaxation_map& map,
   4815       Input_section_list* input_sections);
   4816 
   4817   // Build the lookup maps for merge and relaxed input sections.
   4818   void
   4819   build_lookup_maps() const;
   4820 
   4821   // Most of these fields are only valid after layout.
   4822 
   4823   // The name of the section.  This will point into a Stringpool.
   4824   const char* name_;
   4825   // The section address is in the parent class.
   4826   // The section alignment.
   4827   uint64_t addralign_;
   4828   // The section entry size.
   4829   uint64_t entsize_;
   4830   // The load address.  This is only used when using a linker script
   4831   // with a SECTIONS clause.  The has_load_address_ field indicates
   4832   // whether this field is valid.
   4833   uint64_t load_address_;
   4834   // The file offset is in the parent class.
   4835   // Set the section link field to the index of this section.
   4836   const Output_data* link_section_;
   4837   // If link_section_ is NULL, this is the link field.
   4838   unsigned int link_;
   4839   // Set the section info field to the index of this section.
   4840   const Output_section* info_section_;
   4841   // If info_section_ is NULL, set the info field to the symbol table
   4842   // index of this symbol.
   4843   const Symbol* info_symndx_;
   4844   // If info_section_ and info_symndx_ are NULL, this is the section
   4845   // info field.
   4846   unsigned int info_;
   4847   // The section type.
   4848   const elfcpp::Elf_Word type_;
   4849   // The section flags.
   4850   elfcpp::Elf_Xword flags_;
   4851   // The order of this section in the output segment.
   4852   Output_section_order order_;
   4853   // The section index.
   4854   unsigned int out_shndx_;
   4855   // If there is a STT_SECTION for this output section in the normal
   4856   // symbol table, this is the symbol index.  This starts out as zero.
   4857   // It is initialized in Layout::finalize() to be the index, or -1U
   4858   // if there isn't one.
   4859   unsigned int symtab_index_;
   4860   // If there is a STT_SECTION for this output section in the dynamic
   4861   // symbol table, this is the symbol index.  This starts out as zero.
   4862   // It is initialized in Layout::finalize() to be the index, or -1U
   4863   // if there isn't one.
   4864   unsigned int dynsym_index_;
   4865   // The input sections.  This will be empty in cases where we don't
   4866   // need to keep track of them.
   4867   Input_section_list input_sections_;
   4868   // The offset of the first entry in input_sections_.
   4869   off_t first_input_offset_;
   4870   // The fill data.  This is separate from input_sections_ because we
   4871   // often will need fill sections without needing to keep track of
   4872   // input sections.
   4873   Fill_list fills_;
   4874   // If the section requires postprocessing, this buffer holds the
   4875   // section contents during relocation.
   4876   unsigned char* postprocessing_buffer_;
   4877   // Whether this output section needs a STT_SECTION symbol in the
   4878   // normal symbol table.  This will be true if there is a relocation
   4879   // which needs it.
   4880   bool needs_symtab_index_ : 1;
   4881   // Whether this output section needs a STT_SECTION symbol in the
   4882   // dynamic symbol table.  This will be true if there is a dynamic
   4883   // relocation which needs it.
   4884   bool needs_dynsym_index_ : 1;
   4885   // Whether the link field of this output section should point to the
   4886   // normal symbol table.
   4887   bool should_link_to_symtab_ : 1;
   4888   // Whether the link field of this output section should point to the
   4889   // dynamic symbol table.
   4890   bool should_link_to_dynsym_ : 1;
   4891   // Whether this section should be written after all the input
   4892   // sections are complete.
   4893   bool after_input_sections_ : 1;
   4894   // Whether this section requires post processing after all
   4895   // relocations have been applied.
   4896   bool requires_postprocessing_ : 1;
   4897   // Whether an input section was mapped to this output section
   4898   // because of a SECTIONS clause in a linker script.
   4899   bool found_in_sections_clause_ : 1;
   4900   // Whether this section has an explicitly specified load address.
   4901   bool has_load_address_ : 1;
   4902   // True if the info_section_ field means the section index of the
   4903   // section, false if it means the symbol index of the corresponding
   4904   // section symbol.
   4905   bool info_uses_section_index_ : 1;
   4906   // True if input sections attached to this output section have to be
   4907   // sorted according to a specified order.
   4908   bool input_section_order_specified_ : 1;
   4909   // True if the input sections attached to this output section may
   4910   // need sorting.
   4911   bool may_sort_attached_input_sections_ : 1;
   4912   // True if the input sections attached to this output section must
   4913   // be sorted.
   4914   bool must_sort_attached_input_sections_ : 1;
   4915   // True if the input sections attached to this output section have
   4916   // already been sorted.
   4917   bool attached_input_sections_are_sorted_ : 1;
   4918   // True if this section holds relro data.
   4919   bool is_relro_ : 1;
   4920   // True if this is a small section.
   4921   bool is_small_section_ : 1;
   4922   // True if this is a large section.
   4923   bool is_large_section_ : 1;
   4924   // Whether code-fills are generated at write.
   4925   bool generate_code_fills_at_write_ : 1;
   4926   // Whether the entry size field should be zero.
   4927   bool is_entsize_zero_ : 1;
   4928   // Whether section offsets need adjustment due to relaxation.
   4929   bool section_offsets_need_adjustment_ : 1;
   4930   // Whether this is a NOLOAD section.
   4931   bool is_noload_ : 1;
   4932   // Whether this always keeps input section.
   4933   bool always_keeps_input_sections_ : 1;
   4934   // Whether this section has a fixed layout, for incremental update links.
   4935   bool has_fixed_layout_ : 1;
   4936   // True if we can add patch space to this section.
   4937   bool is_patch_space_allowed_ : 1;
   4938   // True if this output section goes into a unique segment.
   4939   bool is_unique_segment_ : 1;
   4940   // For SHT_TLS sections, the offset of this section relative to the base
   4941   // of the TLS segment.
   4942   uint64_t tls_offset_;
   4943   // Additional segment flags, specified via linker plugin, when mapping some
   4944   // input sections to unique segments.
   4945   uint64_t extra_segment_flags_;
   4946   // Segment alignment specified via linker plugin, when mapping some
   4947   // input sections to unique segments.
   4948   uint64_t segment_alignment_;
   4949   // Saved checkpoint.
   4950   Checkpoint_output_section* checkpoint_;
   4951   // Fast lookup maps for merged and relaxed input sections.
   4952   Output_section_lookup_maps* lookup_maps_;
   4953   // List of available regions within the section, for incremental
   4954   // update links.
   4955   Free_list free_list_;
   4956   // Method for filling chunks of free space.
   4957   Output_fill* free_space_fill_;
   4958   // Amount added as patch space for incremental linking.
   4959   off_t patch_space_;
   4960 };
   4961 
   4962 // An output segment.  PT_LOAD segments are built from collections of
   4963 // output sections.  Other segments typically point within PT_LOAD
   4964 // segments, and are built directly as needed.
   4965 //
   4966 // NOTE: We want to use the copy constructor for this class.  During
   4967 // relaxation, we may try built the segments multiple times.  We do
   4968 // that by copying the original segment list before lay-out, doing
   4969 // a trial lay-out and roll-back to the saved copied if we need to
   4970 // to the lay-out again.
   4971 
   4972 class Output_segment
   4973 {
   4974  public:
   4975   // Create an output segment, specifying the type and flags.
   4976   Output_segment(elfcpp::Elf_Word, elfcpp::Elf_Word);
   4977 
   4978   // Return the virtual address.
   4979   uint64_t
   4980   vaddr() const
   4981   { return this->vaddr_; }
   4982 
   4983   // Return the physical address.
   4984   uint64_t
   4985   paddr() const
   4986   { return this->paddr_; }
   4987 
   4988   // Return the segment type.
   4989   elfcpp::Elf_Word
   4990   type() const
   4991   { return this->type_; }
   4992 
   4993   // Return the segment flags.
   4994   elfcpp::Elf_Word
   4995   flags() const
   4996   { return this->flags_; }
   4997 
   4998   // Return the memory size.
   4999   uint64_t
   5000   memsz() const
   5001   { return this->memsz_; }
   5002 
   5003   // Return the file size.
   5004   off_t
   5005   filesz() const
   5006   { return this->filesz_; }
   5007 
   5008   // Return the file offset.
   5009   off_t
   5010   offset() const
   5011   { return this->offset_; }
   5012 
   5013   // Whether this is a segment created to hold large data sections.
   5014   bool
   5015   is_large_data_segment() const
   5016   { return this->is_large_data_segment_; }
   5017 
   5018   // Record that this is a segment created to hold large data
   5019   // sections.
   5020   void
   5021   set_is_large_data_segment()
   5022   { this->is_large_data_segment_ = true; }
   5023 
   5024   bool
   5025   is_unique_segment() const
   5026   { return this->is_unique_segment_; }
   5027 
   5028   // Mark segment as unique, happens when linker plugins request that
   5029   // certain input sections be mapped to unique segments.
   5030   void
   5031   set_is_unique_segment()
   5032   { this->is_unique_segment_ = true; }
   5033 
   5034   // Return the maximum alignment of the Output_data.
   5035   uint64_t
   5036   maximum_alignment();
   5037 
   5038   // Add the Output_section OS to this PT_LOAD segment.  SEG_FLAGS is
   5039   // the segment flags to use.
   5040   void
   5041   add_output_section_to_load(Layout* layout, Output_section* os,
   5042 			     elfcpp::Elf_Word seg_flags);
   5043 
   5044   // Add the Output_section OS to this non-PT_LOAD segment.  SEG_FLAGS
   5045   // is the segment flags to use.
   5046   void
   5047   add_output_section_to_nonload(Output_section* os,
   5048 				elfcpp::Elf_Word seg_flags);
   5049 
   5050   // Remove an Output_section from this segment.  It is an error if it
   5051   // is not present.
   5052   void
   5053   remove_output_section(Output_section* os);
   5054 
   5055   // Add an Output_data (which need not be an Output_section) to the
   5056   // start of this segment.
   5057   void
   5058   add_initial_output_data(Output_data*);
   5059 
   5060   // Return true if this segment has any sections which hold actual
   5061   // data, rather than being a BSS section.
   5062   bool
   5063   has_any_data_sections() const;
   5064 
   5065   // Whether this segment has a dynamic relocs.
   5066   bool
   5067   has_dynamic_reloc() const;
   5068 
   5069   // Return the first section.
   5070   Output_section*
   5071   first_section() const;
   5072 
   5073   // Return the address of the first section.
   5074   uint64_t
   5075   first_section_load_address() const
   5076   {
   5077     const Output_section* os = this->first_section();
   5078     return os->has_load_address() ? os->load_address() : os->address();
   5079   }
   5080 
   5081   // Return whether the addresses have been set already.
   5082   bool
   5083   are_addresses_set() const
   5084   { return this->are_addresses_set_; }
   5085 
   5086   // Set the addresses.
   5087   void
   5088   set_addresses(uint64_t vaddr, uint64_t paddr)
   5089   {
   5090     this->vaddr_ = vaddr;
   5091     this->paddr_ = paddr;
   5092     this->are_addresses_set_ = true;
   5093   }
   5094 
   5095   // Update the flags for the flags of an output section added to this
   5096   // segment.
   5097   void
   5098   update_flags_for_output_section(elfcpp::Elf_Xword flags)
   5099   {
   5100     // The ELF ABI specifies that a PT_TLS segment should always have
   5101     // PF_R as the flags.
   5102     if (this->type() != elfcpp::PT_TLS)
   5103       this->flags_ |= flags;
   5104   }
   5105 
   5106   // Set the segment flags.  This is only used if we have a PHDRS
   5107   // clause which explicitly specifies the flags.
   5108   void
   5109   set_flags(elfcpp::Elf_Word flags)
   5110   { this->flags_ = flags; }
   5111 
   5112   // Set the address of the segment to ADDR and the offset to *POFF
   5113   // and set the addresses and offsets of all contained output
   5114   // sections accordingly.  Set the section indexes of all contained
   5115   // output sections starting with *PSHNDX.  If RESET is true, first
   5116   // reset the addresses of the contained sections.  Return the
   5117   // address of the immediately following segment.  Update *POFF and
   5118   // *PSHNDX.  This should only be called for a PT_LOAD segment.
   5119   uint64_t
   5120   set_section_addresses(const Target*, Layout*, bool reset, uint64_t addr,
   5121 			unsigned int* increase_relro, bool* has_relro,
   5122 			off_t* poff, unsigned int* pshndx);
   5123 
   5124   // Set the minimum alignment of this segment.  This may be adjusted
   5125   // upward based on the section alignments.
   5126   void
   5127   set_minimum_p_align(uint64_t align)
   5128   {
   5129     if (align > this->min_p_align_)
   5130       this->min_p_align_ = align;
   5131   }
   5132 
   5133   // Set the memory size of this segment.
   5134   void
   5135   set_size(uint64_t size)
   5136   {
   5137     this->memsz_ = size;
   5138   }
   5139 
   5140   // Set the offset of this segment based on the section.  This should
   5141   // only be called for a non-PT_LOAD segment.
   5142   void
   5143   set_offset(unsigned int increase);
   5144 
   5145   // Set the TLS offsets of the sections contained in the PT_TLS segment.
   5146   void
   5147   set_tls_offsets();
   5148 
   5149   // Return the number of output sections.
   5150   unsigned int
   5151   output_section_count() const;
   5152 
   5153   // Return the section attached to the list segment with the lowest
   5154   // load address.  This is used when handling a PHDRS clause in a
   5155   // linker script.
   5156   Output_section*
   5157   section_with_lowest_load_address() const;
   5158 
   5159   // Write the segment header into *OPHDR.
   5160   template<int size, bool big_endian>
   5161   void
   5162   write_header(elfcpp::Phdr_write<size, big_endian>*);
   5163 
   5164   // Write the section headers of associated sections into V.
   5165   template<int size, bool big_endian>
   5166   unsigned char*
   5167   write_section_headers(const Layout*, const Stringpool*, unsigned char* v,
   5168 			unsigned int* pshndx) const;
   5169 
   5170   // Print the output sections in the map file.
   5171   void
   5172   print_sections_to_mapfile(Mapfile*) const;
   5173 
   5174  private:
   5175   typedef std::vector<Output_data*> Output_data_list;
   5176 
   5177   // Find the maximum alignment in an Output_data_list.
   5178   static uint64_t
   5179   maximum_alignment_list(const Output_data_list*);
   5180 
   5181   // Return whether the first data section is a relro section.
   5182   bool
   5183   is_first_section_relro() const;
   5184 
   5185   // Set the section addresses in an Output_data_list.
   5186   uint64_t
   5187   set_section_list_addresses(Layout*, bool reset, Output_data_list*,
   5188 			     uint64_t addr, off_t* poff, unsigned int* pshndx,
   5189 			     bool* in_tls);
   5190 
   5191   // Return the number of Output_sections in an Output_data_list.
   5192   unsigned int
   5193   output_section_count_list(const Output_data_list*) const;
   5194 
   5195   // Return whether an Output_data_list has a dynamic reloc.
   5196   bool
   5197   has_dynamic_reloc_list(const Output_data_list*) const;
   5198 
   5199   // Find the section with the lowest load address in an
   5200   // Output_data_list.
   5201   void
   5202   lowest_load_address_in_list(const Output_data_list* pdl,
   5203 			      Output_section** found,
   5204 			      uint64_t* found_lma) const;
   5205 
   5206   // Find the first and last entries by address.
   5207   void
   5208   find_first_and_last_list(const Output_data_list* pdl,
   5209 			   const Output_data** pfirst,
   5210 			   const Output_data** plast) const;
   5211 
   5212   // Write the section headers in the list into V.
   5213   template<int size, bool big_endian>
   5214   unsigned char*
   5215   write_section_headers_list(const Layout*, const Stringpool*,
   5216 			     const Output_data_list*, unsigned char* v,
   5217 			     unsigned int* pshdx) const;
   5218 
   5219   // Print a section list to the mapfile.
   5220   void
   5221   print_section_list_to_mapfile(Mapfile*, const Output_data_list*) const;
   5222 
   5223   // NOTE: We want to use the copy constructor.  Currently, shallow copy
   5224   // works for us so we do not need to write our own copy constructor.
   5225 
   5226   // The list of output data attached to this segment.
   5227   Output_data_list output_lists_[ORDER_MAX];
   5228   // The segment virtual address.
   5229   uint64_t vaddr_;
   5230   // The segment physical address.
   5231   uint64_t paddr_;
   5232   // The size of the segment in memory.
   5233   uint64_t memsz_;
   5234   // The maximum section alignment.  The is_max_align_known_ field
   5235   // indicates whether this has been finalized.
   5236   uint64_t max_align_;
   5237   // The required minimum value for the p_align field.  This is used
   5238   // for PT_LOAD segments.  Note that this does not mean that
   5239   // addresses should be aligned to this value; it means the p_paddr
   5240   // and p_vaddr fields must be congruent modulo this value.  For
   5241   // non-PT_LOAD segments, the dynamic linker works more efficiently
   5242   // if the p_align field has the more conventional value, although it
   5243   // can align as needed.
   5244   uint64_t min_p_align_;
   5245   // The offset of the segment data within the file.
   5246   off_t offset_;
   5247   // The size of the segment data in the file.
   5248   off_t filesz_;
   5249   // The segment type;
   5250   elfcpp::Elf_Word type_;
   5251   // The segment flags.
   5252   elfcpp::Elf_Word flags_;
   5253   // Whether we have finalized max_align_.
   5254   bool is_max_align_known_ : 1;
   5255   // Whether vaddr and paddr were set by a linker script.
   5256   bool are_addresses_set_ : 1;
   5257   // Whether this segment holds large data sections.
   5258   bool is_large_data_segment_ : 1;
   5259   // Whether this was marked as a unique segment via a linker plugin.
   5260   bool is_unique_segment_ : 1;
   5261 };
   5262 
   5263 } // End namespace gold.
   5264 
   5265 #endif // !defined(GOLD_OUTPUT_H)
   5266