Home | History | Annotate | Download | only in gold
      1 // symtab.cc -- the gold symbol table
      2 
      3 // Copyright (C) 2006-2016 Free Software Foundation, Inc.
      4 // Written by Ian Lance Taylor <iant (at) google.com>.
      5 
      6 // This file is part of gold.
      7 
      8 // This program is free software; you can redistribute it and/or modify
      9 // it under the terms of the GNU General Public License as published by
     10 // the Free Software Foundation; either version 3 of the License, or
     11 // (at your option) any later version.
     12 
     13 // This program is distributed in the hope that it will be useful,
     14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
     15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     16 // GNU General Public License for more details.
     17 
     18 // You should have received a copy of the GNU General Public License
     19 // along with this program; if not, write to the Free Software
     20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
     21 // MA 02110-1301, USA.
     22 
     23 #include "gold.h"
     24 
     25 #include <cstring>
     26 #include <stdint.h>
     27 #include <algorithm>
     28 #include <set>
     29 #include <string>
     30 #include <utility>
     31 #include "demangle.h"
     32 
     33 #include "gc.h"
     34 #include "object.h"
     35 #include "dwarf_reader.h"
     36 #include "dynobj.h"
     37 #include "output.h"
     38 #include "target.h"
     39 #include "workqueue.h"
     40 #include "symtab.h"
     41 #include "script.h"
     42 #include "plugin.h"
     43 #include "incremental.h"
     44 
     45 namespace gold
     46 {
     47 
     48 // Class Symbol.
     49 
     50 // Initialize fields in Symbol.  This initializes everything except u_
     51 // and source_.
     52 
     53 void
     54 Symbol::init_fields(const char* name, const char* version,
     55 		    elfcpp::STT type, elfcpp::STB binding,
     56 		    elfcpp::STV visibility, unsigned char nonvis)
     57 {
     58   this->name_ = name;
     59   this->version_ = version;
     60   this->symtab_index_ = 0;
     61   this->dynsym_index_ = 0;
     62   this->got_offsets_.init();
     63   this->plt_offset_ = -1U;
     64   this->type_ = type;
     65   this->binding_ = binding;
     66   this->visibility_ = visibility;
     67   this->nonvis_ = nonvis;
     68   this->is_def_ = false;
     69   this->is_forwarder_ = false;
     70   this->has_alias_ = false;
     71   this->needs_dynsym_entry_ = false;
     72   this->in_reg_ = false;
     73   this->in_dyn_ = false;
     74   this->has_warning_ = false;
     75   this->is_copied_from_dynobj_ = false;
     76   this->is_forced_local_ = false;
     77   this->is_ordinary_shndx_ = false;
     78   this->in_real_elf_ = false;
     79   this->is_defined_in_discarded_section_ = false;
     80   this->undef_binding_set_ = false;
     81   this->undef_binding_weak_ = false;
     82   this->is_predefined_ = false;
     83   this->is_protected_ = false;
     84 }
     85 
     86 // Return the demangled version of the symbol's name, but only
     87 // if the --demangle flag was set.
     88 
     89 static std::string
     90 demangle(const char* name)
     91 {
     92   if (!parameters->options().do_demangle())
     93     return name;
     94 
     95   // cplus_demangle allocates memory for the result it returns,
     96   // and returns NULL if the name is already demangled.
     97   char* demangled_name = cplus_demangle(name, DMGL_ANSI | DMGL_PARAMS);
     98   if (demangled_name == NULL)
     99     return name;
    100 
    101   std::string retval(demangled_name);
    102   free(demangled_name);
    103   return retval;
    104 }
    105 
    106 std::string
    107 Symbol::demangled_name() const
    108 {
    109   return demangle(this->name());
    110 }
    111 
    112 // Initialize the fields in the base class Symbol for SYM in OBJECT.
    113 
    114 template<int size, bool big_endian>
    115 void
    116 Symbol::init_base_object(const char* name, const char* version, Object* object,
    117 			 const elfcpp::Sym<size, big_endian>& sym,
    118 			 unsigned int st_shndx, bool is_ordinary)
    119 {
    120   this->init_fields(name, version, sym.get_st_type(), sym.get_st_bind(),
    121 		    sym.get_st_visibility(), sym.get_st_nonvis());
    122   this->u_.from_object.object = object;
    123   this->u_.from_object.shndx = st_shndx;
    124   this->is_ordinary_shndx_ = is_ordinary;
    125   this->source_ = FROM_OBJECT;
    126   this->in_reg_ = !object->is_dynamic();
    127   this->in_dyn_ = object->is_dynamic();
    128   this->in_real_elf_ = object->pluginobj() == NULL;
    129 }
    130 
    131 // Initialize the fields in the base class Symbol for a symbol defined
    132 // in an Output_data.
    133 
    134 void
    135 Symbol::init_base_output_data(const char* name, const char* version,
    136 			      Output_data* od, elfcpp::STT type,
    137 			      elfcpp::STB binding, elfcpp::STV visibility,
    138 			      unsigned char nonvis, bool offset_is_from_end,
    139 			      bool is_predefined)
    140 {
    141   this->init_fields(name, version, type, binding, visibility, nonvis);
    142   this->u_.in_output_data.output_data = od;
    143   this->u_.in_output_data.offset_is_from_end = offset_is_from_end;
    144   this->source_ = IN_OUTPUT_DATA;
    145   this->in_reg_ = true;
    146   this->in_real_elf_ = true;
    147   this->is_predefined_ = is_predefined;
    148 }
    149 
    150 // Initialize the fields in the base class Symbol for a symbol defined
    151 // in an Output_segment.
    152 
    153 void
    154 Symbol::init_base_output_segment(const char* name, const char* version,
    155 				 Output_segment* os, elfcpp::STT type,
    156 				 elfcpp::STB binding, elfcpp::STV visibility,
    157 				 unsigned char nonvis,
    158 				 Segment_offset_base offset_base,
    159 				 bool is_predefined)
    160 {
    161   this->init_fields(name, version, type, binding, visibility, nonvis);
    162   this->u_.in_output_segment.output_segment = os;
    163   this->u_.in_output_segment.offset_base = offset_base;
    164   this->source_ = IN_OUTPUT_SEGMENT;
    165   this->in_reg_ = true;
    166   this->in_real_elf_ = true;
    167   this->is_predefined_ = is_predefined;
    168 }
    169 
    170 // Initialize the fields in the base class Symbol for a symbol defined
    171 // as a constant.
    172 
    173 void
    174 Symbol::init_base_constant(const char* name, const char* version,
    175 			   elfcpp::STT type, elfcpp::STB binding,
    176 			   elfcpp::STV visibility, unsigned char nonvis,
    177 			   bool is_predefined)
    178 {
    179   this->init_fields(name, version, type, binding, visibility, nonvis);
    180   this->source_ = IS_CONSTANT;
    181   this->in_reg_ = true;
    182   this->in_real_elf_ = true;
    183   this->is_predefined_ = is_predefined;
    184 }
    185 
    186 // Initialize the fields in the base class Symbol for an undefined
    187 // symbol.
    188 
    189 void
    190 Symbol::init_base_undefined(const char* name, const char* version,
    191 			    elfcpp::STT type, elfcpp::STB binding,
    192 			    elfcpp::STV visibility, unsigned char nonvis)
    193 {
    194   this->init_fields(name, version, type, binding, visibility, nonvis);
    195   this->dynsym_index_ = -1U;
    196   this->source_ = IS_UNDEFINED;
    197   this->in_reg_ = true;
    198   this->in_real_elf_ = true;
    199 }
    200 
    201 // Allocate a common symbol in the base.
    202 
    203 void
    204 Symbol::allocate_base_common(Output_data* od)
    205 {
    206   gold_assert(this->is_common());
    207   this->source_ = IN_OUTPUT_DATA;
    208   this->u_.in_output_data.output_data = od;
    209   this->u_.in_output_data.offset_is_from_end = false;
    210 }
    211 
    212 // Initialize the fields in Sized_symbol for SYM in OBJECT.
    213 
    214 template<int size>
    215 template<bool big_endian>
    216 void
    217 Sized_symbol<size>::init_object(const char* name, const char* version,
    218 				Object* object,
    219 				const elfcpp::Sym<size, big_endian>& sym,
    220 				unsigned int st_shndx, bool is_ordinary)
    221 {
    222   this->init_base_object(name, version, object, sym, st_shndx, is_ordinary);
    223   this->value_ = sym.get_st_value();
    224   this->symsize_ = sym.get_st_size();
    225 }
    226 
    227 // Initialize the fields in Sized_symbol for a symbol defined in an
    228 // Output_data.
    229 
    230 template<int size>
    231 void
    232 Sized_symbol<size>::init_output_data(const char* name, const char* version,
    233 				     Output_data* od, Value_type value,
    234 				     Size_type symsize, elfcpp::STT type,
    235 				     elfcpp::STB binding,
    236 				     elfcpp::STV visibility,
    237 				     unsigned char nonvis,
    238 				     bool offset_is_from_end,
    239 				     bool is_predefined)
    240 {
    241   this->init_base_output_data(name, version, od, type, binding, visibility,
    242 			      nonvis, offset_is_from_end, is_predefined);
    243   this->value_ = value;
    244   this->symsize_ = symsize;
    245 }
    246 
    247 // Initialize the fields in Sized_symbol for a symbol defined in an
    248 // Output_segment.
    249 
    250 template<int size>
    251 void
    252 Sized_symbol<size>::init_output_segment(const char* name, const char* version,
    253 					Output_segment* os, Value_type value,
    254 					Size_type symsize, elfcpp::STT type,
    255 					elfcpp::STB binding,
    256 					elfcpp::STV visibility,
    257 					unsigned char nonvis,
    258 					Segment_offset_base offset_base,
    259 					bool is_predefined)
    260 {
    261   this->init_base_output_segment(name, version, os, type, binding, visibility,
    262 				 nonvis, offset_base, is_predefined);
    263   this->value_ = value;
    264   this->symsize_ = symsize;
    265 }
    266 
    267 // Initialize the fields in Sized_symbol for a symbol defined as a
    268 // constant.
    269 
    270 template<int size>
    271 void
    272 Sized_symbol<size>::init_constant(const char* name, const char* version,
    273 				  Value_type value, Size_type symsize,
    274 				  elfcpp::STT type, elfcpp::STB binding,
    275 				  elfcpp::STV visibility, unsigned char nonvis,
    276 				  bool is_predefined)
    277 {
    278   this->init_base_constant(name, version, type, binding, visibility, nonvis,
    279 			   is_predefined);
    280   this->value_ = value;
    281   this->symsize_ = symsize;
    282 }
    283 
    284 // Initialize the fields in Sized_symbol for an undefined symbol.
    285 
    286 template<int size>
    287 void
    288 Sized_symbol<size>::init_undefined(const char* name, const char* version,
    289 				   Value_type value, elfcpp::STT type,
    290 				   elfcpp::STB binding, elfcpp::STV visibility,
    291 				   unsigned char nonvis)
    292 {
    293   this->init_base_undefined(name, version, type, binding, visibility, nonvis);
    294   this->value_ = value;
    295   this->symsize_ = 0;
    296 }
    297 
    298 // Return an allocated string holding the symbol's name as
    299 // name@version.  This is used for relocatable links.
    300 
    301 std::string
    302 Symbol::versioned_name() const
    303 {
    304   gold_assert(this->version_ != NULL);
    305   std::string ret = this->name_;
    306   ret.push_back('@');
    307   if (this->is_def_)
    308     ret.push_back('@');
    309   ret += this->version_;
    310   return ret;
    311 }
    312 
    313 // Return true if SHNDX represents a common symbol.
    314 
    315 bool
    316 Symbol::is_common_shndx(unsigned int shndx)
    317 {
    318   return (shndx == elfcpp::SHN_COMMON
    319 	  || shndx == parameters->target().small_common_shndx()
    320 	  || shndx == parameters->target().large_common_shndx());
    321 }
    322 
    323 // Allocate a common symbol.
    324 
    325 template<int size>
    326 void
    327 Sized_symbol<size>::allocate_common(Output_data* od, Value_type value)
    328 {
    329   this->allocate_base_common(od);
    330   this->value_ = value;
    331 }
    332 
    333 // The ""'s around str ensure str is a string literal, so sizeof works.
    334 #define strprefix(var, str)   (strncmp(var, str, sizeof("" str "") - 1) == 0)
    335 
    336 // Return true if this symbol should be added to the dynamic symbol
    337 // table.
    338 
    339 bool
    340 Symbol::should_add_dynsym_entry(Symbol_table* symtab) const
    341 {
    342   // If the symbol is only present on plugin files, the plugin decided we
    343   // don't need it.
    344   if (!this->in_real_elf())
    345     return false;
    346 
    347   // If the symbol is used by a dynamic relocation, we need to add it.
    348   if (this->needs_dynsym_entry())
    349     return true;
    350 
    351   // If this symbol's section is not added, the symbol need not be added.
    352   // The section may have been GCed.  Note that export_dynamic is being
    353   // overridden here.  This should not be done for shared objects.
    354   if (parameters->options().gc_sections()
    355       && !parameters->options().shared()
    356       && this->source() == Symbol::FROM_OBJECT
    357       && !this->object()->is_dynamic())
    358     {
    359       Relobj* relobj = static_cast<Relobj*>(this->object());
    360       bool is_ordinary;
    361       unsigned int shndx = this->shndx(&is_ordinary);
    362       if (is_ordinary && shndx != elfcpp::SHN_UNDEF
    363           && !relobj->is_section_included(shndx)
    364           && !symtab->is_section_folded(relobj, shndx))
    365         return false;
    366     }
    367 
    368   // If the symbol was forced dynamic in a --dynamic-list file
    369   // or an --export-dynamic-symbol option, add it.
    370   if (!this->is_from_dynobj()
    371       && (parameters->options().in_dynamic_list(this->name())
    372 	  || parameters->options().is_export_dynamic_symbol(this->name())))
    373     {
    374       if (!this->is_forced_local())
    375         return true;
    376       gold_warning(_("Cannot export local symbol '%s'"),
    377 		   this->demangled_name().c_str());
    378       return false;
    379     }
    380 
    381   // If the symbol was forced local in a version script, do not add it.
    382   if (this->is_forced_local())
    383     return false;
    384 
    385   // If dynamic-list-data was specified, add any STT_OBJECT.
    386   if (parameters->options().dynamic_list_data()
    387       && !this->is_from_dynobj()
    388       && this->type() == elfcpp::STT_OBJECT)
    389     return true;
    390 
    391   // If --dynamic-list-cpp-new was specified, add any new/delete symbol.
    392   // If --dynamic-list-cpp-typeinfo was specified, add any typeinfo symbols.
    393   if ((parameters->options().dynamic_list_cpp_new()
    394        || parameters->options().dynamic_list_cpp_typeinfo())
    395       && !this->is_from_dynobj())
    396     {
    397       // TODO(csilvers): We could probably figure out if we're an operator
    398       //                 new/delete or typeinfo without the need to demangle.
    399       char* demangled_name = cplus_demangle(this->name(),
    400                                             DMGL_ANSI | DMGL_PARAMS);
    401       if (demangled_name == NULL)
    402         {
    403           // Not a C++ symbol, so it can't satisfy these flags
    404         }
    405       else if (parameters->options().dynamic_list_cpp_new()
    406                && (strprefix(demangled_name, "operator new")
    407                    || strprefix(demangled_name, "operator delete")))
    408         {
    409           free(demangled_name);
    410           return true;
    411         }
    412       else if (parameters->options().dynamic_list_cpp_typeinfo()
    413                && (strprefix(demangled_name, "typeinfo name for")
    414                    || strprefix(demangled_name, "typeinfo for")))
    415         {
    416           free(demangled_name);
    417           return true;
    418         }
    419       else
    420         free(demangled_name);
    421     }
    422 
    423   // If exporting all symbols or building a shared library,
    424   // or the symbol should be globally unique (GNU_UNIQUE),
    425   // and the symbol is defined in a regular object and is
    426   // externally visible, we need to add it.
    427   if ((parameters->options().export_dynamic()
    428        || parameters->options().shared()
    429        || (parameters->options().gnu_unique()
    430            && this->binding() == elfcpp::STB_GNU_UNIQUE))
    431       && !this->is_from_dynobj()
    432       && !this->is_undefined()
    433       && this->is_externally_visible())
    434     return true;
    435 
    436   return false;
    437 }
    438 
    439 // Return true if the final value of this symbol is known at link
    440 // time.
    441 
    442 bool
    443 Symbol::final_value_is_known() const
    444 {
    445   // If we are not generating an executable, then no final values are
    446   // known, since they will change at runtime, with the exception of
    447   // TLS symbols in a position-independent executable.
    448   if ((parameters->options().output_is_position_independent()
    449        || parameters->options().relocatable())
    450       && !(this->type() == elfcpp::STT_TLS
    451            && parameters->options().pie()))
    452     return false;
    453 
    454   // If the symbol is not from an object file, and is not undefined,
    455   // then it is defined, and known.
    456   if (this->source_ != FROM_OBJECT)
    457     {
    458       if (this->source_ != IS_UNDEFINED)
    459 	return true;
    460     }
    461   else
    462     {
    463       // If the symbol is from a dynamic object, then the final value
    464       // is not known.
    465       if (this->object()->is_dynamic())
    466 	return false;
    467 
    468       // If the symbol is not undefined (it is defined or common),
    469       // then the final value is known.
    470       if (!this->is_undefined())
    471 	return true;
    472     }
    473 
    474   // If the symbol is undefined, then whether the final value is known
    475   // depends on whether we are doing a static link.  If we are doing a
    476   // dynamic link, then the final value could be filled in at runtime.
    477   // This could reasonably be the case for a weak undefined symbol.
    478   return parameters->doing_static_link();
    479 }
    480 
    481 // Return the output section where this symbol is defined.
    482 
    483 Output_section*
    484 Symbol::output_section() const
    485 {
    486   switch (this->source_)
    487     {
    488     case FROM_OBJECT:
    489       {
    490 	unsigned int shndx = this->u_.from_object.shndx;
    491 	if (shndx != elfcpp::SHN_UNDEF && this->is_ordinary_shndx_)
    492 	  {
    493 	    gold_assert(!this->u_.from_object.object->is_dynamic());
    494 	    gold_assert(this->u_.from_object.object->pluginobj() == NULL);
    495 	    Relobj* relobj = static_cast<Relobj*>(this->u_.from_object.object);
    496 	    return relobj->output_section(shndx);
    497 	  }
    498 	return NULL;
    499       }
    500 
    501     case IN_OUTPUT_DATA:
    502       return this->u_.in_output_data.output_data->output_section();
    503 
    504     case IN_OUTPUT_SEGMENT:
    505     case IS_CONSTANT:
    506     case IS_UNDEFINED:
    507       return NULL;
    508 
    509     default:
    510       gold_unreachable();
    511     }
    512 }
    513 
    514 // Set the symbol's output section.  This is used for symbols defined
    515 // in scripts.  This should only be called after the symbol table has
    516 // been finalized.
    517 
    518 void
    519 Symbol::set_output_section(Output_section* os)
    520 {
    521   switch (this->source_)
    522     {
    523     case FROM_OBJECT:
    524     case IN_OUTPUT_DATA:
    525       gold_assert(this->output_section() == os);
    526       break;
    527     case IS_CONSTANT:
    528       this->source_ = IN_OUTPUT_DATA;
    529       this->u_.in_output_data.output_data = os;
    530       this->u_.in_output_data.offset_is_from_end = false;
    531       break;
    532     case IN_OUTPUT_SEGMENT:
    533     case IS_UNDEFINED:
    534     default:
    535       gold_unreachable();
    536     }
    537 }
    538 
    539 // Set the symbol's output segment.  This is used for pre-defined
    540 // symbols whose segments aren't known until after layout is done
    541 // (e.g., __ehdr_start).
    542 
    543 void
    544 Symbol::set_output_segment(Output_segment* os, Segment_offset_base base)
    545 {
    546   gold_assert(this->is_predefined_);
    547   this->source_ = IN_OUTPUT_SEGMENT;
    548   this->u_.in_output_segment.output_segment = os;
    549   this->u_.in_output_segment.offset_base = base;
    550 }
    551 
    552 // Set the symbol to undefined.  This is used for pre-defined
    553 // symbols whose segments aren't known until after layout is done
    554 // (e.g., __ehdr_start).
    555 
    556 void
    557 Symbol::set_undefined()
    558 {
    559   this->source_ = IS_UNDEFINED;
    560   this->is_predefined_ = false;
    561 }
    562 
    563 // Class Symbol_table.
    564 
    565 Symbol_table::Symbol_table(unsigned int count,
    566                            const Version_script_info& version_script)
    567   : saw_undefined_(0), offset_(0), table_(count), namepool_(),
    568     forwarders_(), commons_(), tls_commons_(), small_commons_(),
    569     large_commons_(), forced_locals_(), warnings_(),
    570     version_script_(version_script), gc_(NULL), icf_(NULL),
    571     target_symbols_()
    572 {
    573   namepool_.reserve(count);
    574 }
    575 
    576 Symbol_table::~Symbol_table()
    577 {
    578 }
    579 
    580 // The symbol table key equality function.  This is called with
    581 // Stringpool keys.
    582 
    583 inline bool
    584 Symbol_table::Symbol_table_eq::operator()(const Symbol_table_key& k1,
    585 					  const Symbol_table_key& k2) const
    586 {
    587   return k1.first == k2.first && k1.second == k2.second;
    588 }
    589 
    590 bool
    591 Symbol_table::is_section_folded(Relobj* obj, unsigned int shndx) const
    592 {
    593   return (parameters->options().icf_enabled()
    594           && this->icf_->is_section_folded(obj, shndx));
    595 }
    596 
    597 // For symbols that have been listed with a -u or --export-dynamic-symbol
    598 // option, add them to the work list to avoid gc'ing them.
    599 
    600 void
    601 Symbol_table::gc_mark_undef_symbols(Layout* layout)
    602 {
    603   for (options::String_set::const_iterator p =
    604 	 parameters->options().undefined_begin();
    605        p != parameters->options().undefined_end();
    606        ++p)
    607     {
    608       const char* name = p->c_str();
    609       Symbol* sym = this->lookup(name);
    610       gold_assert(sym != NULL);
    611       if (sym->source() == Symbol::FROM_OBJECT
    612           && !sym->object()->is_dynamic())
    613         {
    614 	  this->gc_mark_symbol(sym);
    615         }
    616     }
    617 
    618   for (options::String_set::const_iterator p =
    619 	 parameters->options().export_dynamic_symbol_begin();
    620        p != parameters->options().export_dynamic_symbol_end();
    621        ++p)
    622     {
    623       const char* name = p->c_str();
    624       Symbol* sym = this->lookup(name);
    625       // It's not an error if a symbol named by --export-dynamic-symbol
    626       // is undefined.
    627       if (sym != NULL
    628 	  && sym->source() == Symbol::FROM_OBJECT
    629           && !sym->object()->is_dynamic())
    630         {
    631 	  this->gc_mark_symbol(sym);
    632         }
    633     }
    634 
    635   for (Script_options::referenced_const_iterator p =
    636 	 layout->script_options()->referenced_begin();
    637        p != layout->script_options()->referenced_end();
    638        ++p)
    639     {
    640       Symbol* sym = this->lookup(p->c_str());
    641       gold_assert(sym != NULL);
    642       if (sym->source() == Symbol::FROM_OBJECT
    643 	  && !sym->object()->is_dynamic())
    644 	{
    645 	  this->gc_mark_symbol(sym);
    646 	}
    647     }
    648 }
    649 
    650 void
    651 Symbol_table::gc_mark_symbol(Symbol* sym)
    652 {
    653   // Add the object and section to the work list.
    654   bool is_ordinary;
    655   unsigned int shndx = sym->shndx(&is_ordinary);
    656   if (is_ordinary && shndx != elfcpp::SHN_UNDEF && !sym->object()->is_dynamic())
    657     {
    658       gold_assert(this->gc_!= NULL);
    659       Relobj* relobj = static_cast<Relobj*>(sym->object());
    660       this->gc_->worklist().push_back(Section_id(relobj, shndx));
    661     }
    662   parameters->target().gc_mark_symbol(this, sym);
    663 }
    664 
    665 // When doing garbage collection, keep symbols that have been seen in
    666 // dynamic objects.
    667 inline void
    668 Symbol_table::gc_mark_dyn_syms(Symbol* sym)
    669 {
    670   if (sym->in_dyn() && sym->source() == Symbol::FROM_OBJECT
    671       && !sym->object()->is_dynamic())
    672     this->gc_mark_symbol(sym);
    673 }
    674 
    675 // Make TO a symbol which forwards to FROM.
    676 
    677 void
    678 Symbol_table::make_forwarder(Symbol* from, Symbol* to)
    679 {
    680   gold_assert(from != to);
    681   gold_assert(!from->is_forwarder() && !to->is_forwarder());
    682   this->forwarders_[from] = to;
    683   from->set_forwarder();
    684 }
    685 
    686 // Resolve the forwards from FROM, returning the real symbol.
    687 
    688 Symbol*
    689 Symbol_table::resolve_forwards(const Symbol* from) const
    690 {
    691   gold_assert(from->is_forwarder());
    692   Unordered_map<const Symbol*, Symbol*>::const_iterator p =
    693     this->forwarders_.find(from);
    694   gold_assert(p != this->forwarders_.end());
    695   return p->second;
    696 }
    697 
    698 // Look up a symbol by name.
    699 
    700 Symbol*
    701 Symbol_table::lookup(const char* name, const char* version) const
    702 {
    703   Stringpool::Key name_key;
    704   name = this->namepool_.find(name, &name_key);
    705   if (name == NULL)
    706     return NULL;
    707 
    708   Stringpool::Key version_key = 0;
    709   if (version != NULL)
    710     {
    711       version = this->namepool_.find(version, &version_key);
    712       if (version == NULL)
    713 	return NULL;
    714     }
    715 
    716   Symbol_table_key key(name_key, version_key);
    717   Symbol_table::Symbol_table_type::const_iterator p = this->table_.find(key);
    718   if (p == this->table_.end())
    719     return NULL;
    720   return p->second;
    721 }
    722 
    723 // Resolve a Symbol with another Symbol.  This is only used in the
    724 // unusual case where there are references to both an unversioned
    725 // symbol and a symbol with a version, and we then discover that that
    726 // version is the default version.  Because this is unusual, we do
    727 // this the slow way, by converting back to an ELF symbol.
    728 
    729 template<int size, bool big_endian>
    730 void
    731 Symbol_table::resolve(Sized_symbol<size>* to, const Sized_symbol<size>* from)
    732 {
    733   unsigned char buf[elfcpp::Elf_sizes<size>::sym_size];
    734   elfcpp::Sym_write<size, big_endian> esym(buf);
    735   // We don't bother to set the st_name or the st_shndx field.
    736   esym.put_st_value(from->value());
    737   esym.put_st_size(from->symsize());
    738   esym.put_st_info(from->binding(), from->type());
    739   esym.put_st_other(from->visibility(), from->nonvis());
    740   bool is_ordinary;
    741   unsigned int shndx = from->shndx(&is_ordinary);
    742   this->resolve(to, esym.sym(), shndx, is_ordinary, shndx, from->object(),
    743 		from->version(), true);
    744   if (from->in_reg())
    745     to->set_in_reg();
    746   if (from->in_dyn())
    747     to->set_in_dyn();
    748   if (parameters->options().gc_sections())
    749     this->gc_mark_dyn_syms(to);
    750 }
    751 
    752 // Record that a symbol is forced to be local by a version script or
    753 // by visibility.
    754 
    755 void
    756 Symbol_table::force_local(Symbol* sym)
    757 {
    758   if (!sym->is_defined() && !sym->is_common())
    759     return;
    760   if (sym->is_forced_local())
    761     {
    762       // We already got this one.
    763       return;
    764     }
    765   sym->set_is_forced_local();
    766   this->forced_locals_.push_back(sym);
    767 }
    768 
    769 // Adjust NAME for wrapping, and update *NAME_KEY if necessary.  This
    770 // is only called for undefined symbols, when at least one --wrap
    771 // option was used.
    772 
    773 const char*
    774 Symbol_table::wrap_symbol(const char* name, Stringpool::Key* name_key)
    775 {
    776   // For some targets, we need to ignore a specific character when
    777   // wrapping, and add it back later.
    778   char prefix = '\0';
    779   if (name[0] == parameters->target().wrap_char())
    780     {
    781       prefix = name[0];
    782       ++name;
    783     }
    784 
    785   if (parameters->options().is_wrap(name))
    786     {
    787       // Turn NAME into __wrap_NAME.
    788       std::string s;
    789       if (prefix != '\0')
    790 	s += prefix;
    791       s += "__wrap_";
    792       s += name;
    793 
    794       // This will give us both the old and new name in NAMEPOOL_, but
    795       // that is OK.  Only the versions we need will wind up in the
    796       // real string table in the output file.
    797       return this->namepool_.add(s.c_str(), true, name_key);
    798     }
    799 
    800   const char* const real_prefix = "__real_";
    801   const size_t real_prefix_length = strlen(real_prefix);
    802   if (strncmp(name, real_prefix, real_prefix_length) == 0
    803       && parameters->options().is_wrap(name + real_prefix_length))
    804     {
    805       // Turn __real_NAME into NAME.
    806       std::string s;
    807       if (prefix != '\0')
    808 	s += prefix;
    809       s += name + real_prefix_length;
    810       return this->namepool_.add(s.c_str(), true, name_key);
    811     }
    812 
    813   return name;
    814 }
    815 
    816 // This is called when we see a symbol NAME/VERSION, and the symbol
    817 // already exists in the symbol table, and VERSION is marked as being
    818 // the default version.  SYM is the NAME/VERSION symbol we just added.
    819 // DEFAULT_IS_NEW is true if this is the first time we have seen the
    820 // symbol NAME/NULL.  PDEF points to the entry for NAME/NULL.
    821 
    822 template<int size, bool big_endian>
    823 void
    824 Symbol_table::define_default_version(Sized_symbol<size>* sym,
    825 				     bool default_is_new,
    826 				     Symbol_table_type::iterator pdef)
    827 {
    828   if (default_is_new)
    829     {
    830       // This is the first time we have seen NAME/NULL.  Make
    831       // NAME/NULL point to NAME/VERSION, and mark SYM as the default
    832       // version.
    833       pdef->second = sym;
    834       sym->set_is_default();
    835     }
    836   else if (pdef->second == sym)
    837     {
    838       // NAME/NULL already points to NAME/VERSION.  Don't mark the
    839       // symbol as the default if it is not already the default.
    840     }
    841   else
    842     {
    843       // This is the unfortunate case where we already have entries
    844       // for both NAME/VERSION and NAME/NULL.  We now see a symbol
    845       // NAME/VERSION where VERSION is the default version.  We have
    846       // already resolved this new symbol with the existing
    847       // NAME/VERSION symbol.
    848 
    849       // It's possible that NAME/NULL and NAME/VERSION are both
    850       // defined in regular objects.  This can only happen if one
    851       // object file defines foo and another defines foo@@ver.  This
    852       // is somewhat obscure, but we call it a multiple definition
    853       // error.
    854 
    855       // It's possible that NAME/NULL actually has a version, in which
    856       // case it won't be the same as VERSION.  This happens with
    857       // ver_test_7.so in the testsuite for the symbol t2_2.  We see
    858       // t2_2@@VER2, so we define both t2_2/VER2 and t2_2/NULL.  We
    859       // then see an unadorned t2_2 in an object file and give it
    860       // version VER1 from the version script.  This looks like a
    861       // default definition for VER1, so it looks like we should merge
    862       // t2_2/NULL with t2_2/VER1.  That doesn't make sense, but it's
    863       // not obvious that this is an error, either.  So we just punt.
    864 
    865       // If one of the symbols has non-default visibility, and the
    866       // other is defined in a shared object, then they are different
    867       // symbols.
    868 
    869       // If the two symbols are from different shared objects,
    870       // they are different symbols.
    871 
    872       // Otherwise, we just resolve the symbols as though they were
    873       // the same.
    874 
    875       if (pdef->second->version() != NULL)
    876 	gold_assert(pdef->second->version() != sym->version());
    877       else if (sym->visibility() != elfcpp::STV_DEFAULT
    878 	       && pdef->second->is_from_dynobj())
    879 	;
    880       else if (pdef->second->visibility() != elfcpp::STV_DEFAULT
    881 	       && sym->is_from_dynobj())
    882 	;
    883       else if (pdef->second->is_from_dynobj()
    884 	       && sym->is_from_dynobj()
    885 	       && pdef->second->is_defined()
    886 	       && pdef->second->object() != sym->object())
    887         ;
    888       else
    889 	{
    890 	  const Sized_symbol<size>* symdef;
    891 	  symdef = this->get_sized_symbol<size>(pdef->second);
    892 	  Symbol_table::resolve<size, big_endian>(sym, symdef);
    893 	  this->make_forwarder(pdef->second, sym);
    894 	  pdef->second = sym;
    895 	  sym->set_is_default();
    896 	}
    897     }
    898 }
    899 
    900 // Add one symbol from OBJECT to the symbol table.  NAME is symbol
    901 // name and VERSION is the version; both are canonicalized.  DEF is
    902 // whether this is the default version.  ST_SHNDX is the symbol's
    903 // section index; IS_ORDINARY is whether this is a normal section
    904 // rather than a special code.
    905 
    906 // If IS_DEFAULT_VERSION is true, then this is the definition of a
    907 // default version of a symbol.  That means that any lookup of
    908 // NAME/NULL and any lookup of NAME/VERSION should always return the
    909 // same symbol.  This is obvious for references, but in particular we
    910 // want to do this for definitions: overriding NAME/NULL should also
    911 // override NAME/VERSION.  If we don't do that, it would be very hard
    912 // to override functions in a shared library which uses versioning.
    913 
    914 // We implement this by simply making both entries in the hash table
    915 // point to the same Symbol structure.  That is easy enough if this is
    916 // the first time we see NAME/NULL or NAME/VERSION, but it is possible
    917 // that we have seen both already, in which case they will both have
    918 // independent entries in the symbol table.  We can't simply change
    919 // the symbol table entry, because we have pointers to the entries
    920 // attached to the object files.  So we mark the entry attached to the
    921 // object file as a forwarder, and record it in the forwarders_ map.
    922 // Note that entries in the hash table will never be marked as
    923 // forwarders.
    924 //
    925 // ORIG_ST_SHNDX and ST_SHNDX are almost always the same.
    926 // ORIG_ST_SHNDX is the section index in the input file, or SHN_UNDEF
    927 // for a special section code.  ST_SHNDX may be modified if the symbol
    928 // is defined in a section being discarded.
    929 
    930 template<int size, bool big_endian>
    931 Sized_symbol<size>*
    932 Symbol_table::add_from_object(Object* object,
    933 			      const char* name,
    934 			      Stringpool::Key name_key,
    935 			      const char* version,
    936 			      Stringpool::Key version_key,
    937 			      bool is_default_version,
    938 			      const elfcpp::Sym<size, big_endian>& sym,
    939 			      unsigned int st_shndx,
    940 			      bool is_ordinary,
    941 			      unsigned int orig_st_shndx)
    942 {
    943   // Print a message if this symbol is being traced.
    944   if (parameters->options().is_trace_symbol(name))
    945     {
    946       if (orig_st_shndx == elfcpp::SHN_UNDEF)
    947         gold_info(_("%s: reference to %s"), object->name().c_str(), name);
    948       else
    949         gold_info(_("%s: definition of %s"), object->name().c_str(), name);
    950     }
    951 
    952   // For an undefined symbol, we may need to adjust the name using
    953   // --wrap.
    954   if (orig_st_shndx == elfcpp::SHN_UNDEF
    955       && parameters->options().any_wrap())
    956     {
    957       const char* wrap_name = this->wrap_symbol(name, &name_key);
    958       if (wrap_name != name)
    959 	{
    960 	  // If we see a reference to malloc with version GLIBC_2.0,
    961 	  // and we turn it into a reference to __wrap_malloc, then we
    962 	  // discard the version number.  Otherwise the user would be
    963 	  // required to specify the correct version for
    964 	  // __wrap_malloc.
    965 	  version = NULL;
    966 	  version_key = 0;
    967 	  name = wrap_name;
    968 	}
    969     }
    970 
    971   Symbol* const snull = NULL;
    972   std::pair<typename Symbol_table_type::iterator, bool> ins =
    973     this->table_.insert(std::make_pair(std::make_pair(name_key, version_key),
    974 				       snull));
    975 
    976   std::pair<typename Symbol_table_type::iterator, bool> insdefault =
    977     std::make_pair(this->table_.end(), false);
    978   if (is_default_version)
    979     {
    980       const Stringpool::Key vnull_key = 0;
    981       insdefault = this->table_.insert(std::make_pair(std::make_pair(name_key,
    982 								     vnull_key),
    983 						      snull));
    984     }
    985 
    986   // ins.first: an iterator, which is a pointer to a pair.
    987   // ins.first->first: the key (a pair of name and version).
    988   // ins.first->second: the value (Symbol*).
    989   // ins.second: true if new entry was inserted, false if not.
    990 
    991   Sized_symbol<size>* ret;
    992   bool was_undefined;
    993   bool was_common;
    994   if (!ins.second)
    995     {
    996       // We already have an entry for NAME/VERSION.
    997       ret = this->get_sized_symbol<size>(ins.first->second);
    998       gold_assert(ret != NULL);
    999 
   1000       was_undefined = ret->is_undefined();
   1001       // Commons from plugins are just placeholders.
   1002       was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
   1003 
   1004       this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
   1005 		    version, is_default_version);
   1006       if (parameters->options().gc_sections())
   1007         this->gc_mark_dyn_syms(ret);
   1008 
   1009       if (is_default_version)
   1010 	this->define_default_version<size, big_endian>(ret, insdefault.second,
   1011 						       insdefault.first);
   1012       else
   1013 	{
   1014 	  bool dummy;
   1015 	  if (version != NULL
   1016 	      && ret->source() == Symbol::FROM_OBJECT
   1017 	      && ret->object() == object
   1018 	      && is_ordinary
   1019 	      && ret->shndx(&dummy) == st_shndx
   1020 	      && ret->is_default())
   1021 	    {
   1022 	      // We have seen NAME/VERSION already, and marked it as the
   1023 	      // default version, but now we see a definition for
   1024 	      // NAME/VERSION that is not the default version. This can
   1025 	      // happen when the assembler generates two symbols for
   1026 	      // a symbol as a result of a ".symver foo,foo@VER"
   1027 	      // directive. We see the first unversioned symbol and
   1028 	      // we may mark it as the default version (from a
   1029 	      // version script); then we see the second versioned
   1030 	      // symbol and we need to override the first.
   1031 	      // In any other case, the two symbols should have generated
   1032 	      // a multiple definition error.
   1033 	      // (See PR gold/18703.)
   1034 	      ret->set_is_not_default();
   1035 	      const Stringpool::Key vnull_key = 0;
   1036 	      this->table_.erase(std::make_pair(name_key, vnull_key));
   1037 	    }
   1038 	}
   1039     }
   1040   else
   1041     {
   1042       // This is the first time we have seen NAME/VERSION.
   1043       gold_assert(ins.first->second == NULL);
   1044 
   1045       if (is_default_version && !insdefault.second)
   1046 	{
   1047 	  // We already have an entry for NAME/NULL.  If we override
   1048 	  // it, then change it to NAME/VERSION.
   1049 	  ret = this->get_sized_symbol<size>(insdefault.first->second);
   1050 
   1051 	  was_undefined = ret->is_undefined();
   1052 	  // Commons from plugins are just placeholders.
   1053 	  was_common = ret->is_common() && ret->object()->pluginobj() == NULL;
   1054 
   1055 	  this->resolve(ret, sym, st_shndx, is_ordinary, orig_st_shndx, object,
   1056 			version, is_default_version);
   1057           if (parameters->options().gc_sections())
   1058             this->gc_mark_dyn_syms(ret);
   1059 	  ins.first->second = ret;
   1060 	}
   1061       else
   1062 	{
   1063 	  was_undefined = false;
   1064 	  was_common = false;
   1065 
   1066 	  Sized_target<size, big_endian>* target =
   1067 	    parameters->sized_target<size, big_endian>();
   1068 	  if (!target->has_make_symbol())
   1069 	    ret = new Sized_symbol<size>();
   1070 	  else
   1071 	    {
   1072 	      ret = target->make_symbol(name, sym.get_st_type(), object,
   1073 					st_shndx, sym.get_st_value());
   1074 	      if (ret == NULL)
   1075 		{
   1076 		  // This means that we don't want a symbol table
   1077 		  // entry after all.
   1078 		  if (!is_default_version)
   1079 		    this->table_.erase(ins.first);
   1080 		  else
   1081 		    {
   1082 		      this->table_.erase(insdefault.first);
   1083 		      // Inserting INSDEFAULT invalidated INS.
   1084 		      this->table_.erase(std::make_pair(name_key,
   1085 							version_key));
   1086 		    }
   1087 		  return NULL;
   1088 		}
   1089 	    }
   1090 
   1091 	  ret->init_object(name, version, object, sym, st_shndx, is_ordinary);
   1092 
   1093 	  ins.first->second = ret;
   1094 	  if (is_default_version)
   1095 	    {
   1096 	      // This is the first time we have seen NAME/NULL.  Point
   1097 	      // it at the new entry for NAME/VERSION.
   1098 	      gold_assert(insdefault.second);
   1099 	      insdefault.first->second = ret;
   1100 	    }
   1101 	}
   1102 
   1103       if (is_default_version)
   1104 	ret->set_is_default();
   1105     }
   1106 
   1107   // Record every time we see a new undefined symbol, to speed up
   1108   // archive groups.
   1109   if (!was_undefined && ret->is_undefined())
   1110     {
   1111       ++this->saw_undefined_;
   1112       if (parameters->options().has_plugins())
   1113 	parameters->options().plugins()->new_undefined_symbol(ret);
   1114     }
   1115 
   1116   // Keep track of common symbols, to speed up common symbol
   1117   // allocation.  Don't record commons from plugin objects;
   1118   // we need to wait until we see the real symbol in the
   1119   // replacement file.
   1120   if (!was_common && ret->is_common() && ret->object()->pluginobj() == NULL)
   1121     {
   1122       if (ret->type() == elfcpp::STT_TLS)
   1123 	this->tls_commons_.push_back(ret);
   1124       else if (!is_ordinary
   1125 	       && st_shndx == parameters->target().small_common_shndx())
   1126 	this->small_commons_.push_back(ret);
   1127       else if (!is_ordinary
   1128 	       && st_shndx == parameters->target().large_common_shndx())
   1129 	this->large_commons_.push_back(ret);
   1130       else
   1131 	this->commons_.push_back(ret);
   1132     }
   1133 
   1134   // If we're not doing a relocatable link, then any symbol with
   1135   // hidden or internal visibility is local.
   1136   if ((ret->visibility() == elfcpp::STV_HIDDEN
   1137        || ret->visibility() == elfcpp::STV_INTERNAL)
   1138       && (ret->binding() == elfcpp::STB_GLOBAL
   1139 	  || ret->binding() == elfcpp::STB_GNU_UNIQUE
   1140 	  || ret->binding() == elfcpp::STB_WEAK)
   1141       && !parameters->options().relocatable())
   1142     this->force_local(ret);
   1143 
   1144   return ret;
   1145 }
   1146 
   1147 // Add all the symbols in a relocatable object to the hash table.
   1148 
   1149 template<int size, bool big_endian>
   1150 void
   1151 Symbol_table::add_from_relobj(
   1152     Sized_relobj_file<size, big_endian>* relobj,
   1153     const unsigned char* syms,
   1154     size_t count,
   1155     size_t symndx_offset,
   1156     const char* sym_names,
   1157     size_t sym_name_size,
   1158     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
   1159     size_t* defined)
   1160 {
   1161   *defined = 0;
   1162 
   1163   gold_assert(size == parameters->target().get_size());
   1164 
   1165   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   1166 
   1167   const bool just_symbols = relobj->just_symbols();
   1168 
   1169   const unsigned char* p = syms;
   1170   for (size_t i = 0; i < count; ++i, p += sym_size)
   1171     {
   1172       (*sympointers)[i] = NULL;
   1173 
   1174       elfcpp::Sym<size, big_endian> sym(p);
   1175 
   1176       unsigned int st_name = sym.get_st_name();
   1177       if (st_name >= sym_name_size)
   1178 	{
   1179 	  relobj->error(_("bad global symbol name offset %u at %zu"),
   1180 			st_name, i);
   1181 	  continue;
   1182 	}
   1183 
   1184       const char* name = sym_names + st_name;
   1185 
   1186       if (!parameters->options().relocatable()
   1187 	  && strcmp (name, "__gnu_lto_slim") == 0)
   1188         gold_info(_("%s: plugin needed to handle lto object"),
   1189 		  relobj->name().c_str());
   1190 
   1191       bool is_ordinary;
   1192       unsigned int st_shndx = relobj->adjust_sym_shndx(i + symndx_offset,
   1193 						       sym.get_st_shndx(),
   1194 						       &is_ordinary);
   1195       unsigned int orig_st_shndx = st_shndx;
   1196       if (!is_ordinary)
   1197 	orig_st_shndx = elfcpp::SHN_UNDEF;
   1198 
   1199       if (st_shndx != elfcpp::SHN_UNDEF)
   1200 	++*defined;
   1201 
   1202       // A symbol defined in a section which we are not including must
   1203       // be treated as an undefined symbol.
   1204       bool is_defined_in_discarded_section = false;
   1205       if (st_shndx != elfcpp::SHN_UNDEF
   1206 	  && is_ordinary
   1207 	  && !relobj->is_section_included(st_shndx)
   1208           && !this->is_section_folded(relobj, st_shndx))
   1209 	{
   1210 	  st_shndx = elfcpp::SHN_UNDEF;
   1211 	  is_defined_in_discarded_section = true;
   1212 	}
   1213 
   1214       // In an object file, an '@' in the name separates the symbol
   1215       // name from the version name.  If there are two '@' characters,
   1216       // this is the default version.
   1217       const char* ver = strchr(name, '@');
   1218       Stringpool::Key ver_key = 0;
   1219       int namelen = 0;
   1220       // IS_DEFAULT_VERSION: is the version default?
   1221       // IS_FORCED_LOCAL: is the symbol forced local?
   1222       bool is_default_version = false;
   1223       bool is_forced_local = false;
   1224 
   1225       // FIXME: For incremental links, we don't store version information,
   1226       // so we need to ignore version symbols for now.
   1227       if (parameters->incremental_update() && ver != NULL)
   1228 	{
   1229 	  namelen = ver - name;
   1230 	  ver = NULL;
   1231 	}
   1232 
   1233       if (ver != NULL)
   1234         {
   1235           // The symbol name is of the form foo@VERSION or foo@@VERSION
   1236           namelen = ver - name;
   1237           ++ver;
   1238 	  if (*ver == '@')
   1239 	    {
   1240 	      is_default_version = true;
   1241 	      ++ver;
   1242 	    }
   1243 	  ver = this->namepool_.add(ver, true, &ver_key);
   1244         }
   1245       // We don't want to assign a version to an undefined symbol,
   1246       // even if it is listed in the version script.  FIXME: What
   1247       // about a common symbol?
   1248       else
   1249 	{
   1250 	  namelen = strlen(name);
   1251 	  if (!this->version_script_.empty()
   1252 	      && st_shndx != elfcpp::SHN_UNDEF)
   1253 	    {
   1254 	      // The symbol name did not have a version, but the
   1255 	      // version script may assign a version anyway.
   1256 	      std::string version;
   1257 	      bool is_global;
   1258 	      if (this->version_script_.get_symbol_version(name, &version,
   1259 							   &is_global))
   1260 		{
   1261 		  if (!is_global)
   1262 		    is_forced_local = true;
   1263 		  else if (!version.empty())
   1264 		    {
   1265 		      ver = this->namepool_.add_with_length(version.c_str(),
   1266 							    version.length(),
   1267 							    true,
   1268 							    &ver_key);
   1269 		      is_default_version = true;
   1270 		    }
   1271 		}
   1272 	    }
   1273 	}
   1274 
   1275       elfcpp::Sym<size, big_endian>* psym = &sym;
   1276       unsigned char symbuf[sym_size];
   1277       elfcpp::Sym<size, big_endian> sym2(symbuf);
   1278       if (just_symbols)
   1279 	{
   1280 	  memcpy(symbuf, p, sym_size);
   1281 	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
   1282 	  if (orig_st_shndx != elfcpp::SHN_UNDEF
   1283 	      && is_ordinary
   1284 	      && relobj->e_type() == elfcpp::ET_REL)
   1285 	    {
   1286 	      // Symbol values in relocatable object files are section
   1287 	      // relative.  This is normally what we want, but since here
   1288 	      // we are converting the symbol to absolute we need to add
   1289 	      // the section address.  The section address in an object
   1290 	      // file is normally zero, but people can use a linker
   1291 	      // script to change it.
   1292 	      sw.put_st_value(sym.get_st_value()
   1293 			      + relobj->section_address(orig_st_shndx));
   1294 	    }
   1295 	  st_shndx = elfcpp::SHN_ABS;
   1296 	  is_ordinary = false;
   1297 	  psym = &sym2;
   1298 	}
   1299 
   1300       // Fix up visibility if object has no-export set.
   1301       if (relobj->no_export()
   1302 	  && (orig_st_shndx != elfcpp::SHN_UNDEF || !is_ordinary))
   1303         {
   1304 	  // We may have copied symbol already above.
   1305 	  if (psym != &sym2)
   1306 	    {
   1307 	      memcpy(symbuf, p, sym_size);
   1308 	      psym = &sym2;
   1309 	    }
   1310 
   1311 	  elfcpp::STV visibility = sym2.get_st_visibility();
   1312 	  if (visibility == elfcpp::STV_DEFAULT
   1313 	      || visibility == elfcpp::STV_PROTECTED)
   1314 	    {
   1315 	      elfcpp::Sym_write<size, big_endian> sw(symbuf);
   1316 	      unsigned char nonvis = sym2.get_st_nonvis();
   1317 	      sw.put_st_other(elfcpp::STV_HIDDEN, nonvis);
   1318 	    }
   1319         }
   1320 
   1321       Stringpool::Key name_key;
   1322       name = this->namepool_.add_with_length(name, namelen, true,
   1323 					     &name_key);
   1324 
   1325       Sized_symbol<size>* res;
   1326       res = this->add_from_object(relobj, name, name_key, ver, ver_key,
   1327 				  is_default_version, *psym, st_shndx,
   1328 				  is_ordinary, orig_st_shndx);
   1329 
   1330       if (res == NULL)
   1331 	continue;
   1332 
   1333       if (is_forced_local)
   1334 	this->force_local(res);
   1335 
   1336       // Do not treat this symbol as garbage if this symbol will be
   1337       // exported to the dynamic symbol table.  This is true when
   1338       // building a shared library or using --export-dynamic and
   1339       // the symbol is externally visible.
   1340       if (parameters->options().gc_sections()
   1341 	  && res->is_externally_visible()
   1342 	  && !res->is_from_dynobj()
   1343           && (parameters->options().shared()
   1344 	      || parameters->options().export_dynamic()
   1345 	      || parameters->options().in_dynamic_list(res->name())))
   1346         this->gc_mark_symbol(res);
   1347 
   1348       if (is_defined_in_discarded_section)
   1349 	res->set_is_defined_in_discarded_section();
   1350 
   1351       (*sympointers)[i] = res;
   1352     }
   1353 }
   1354 
   1355 // Add a symbol from a plugin-claimed file.
   1356 
   1357 template<int size, bool big_endian>
   1358 Symbol*
   1359 Symbol_table::add_from_pluginobj(
   1360     Sized_pluginobj<size, big_endian>* obj,
   1361     const char* name,
   1362     const char* ver,
   1363     elfcpp::Sym<size, big_endian>* sym)
   1364 {
   1365   unsigned int st_shndx = sym->get_st_shndx();
   1366   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
   1367 
   1368   Stringpool::Key ver_key = 0;
   1369   bool is_default_version = false;
   1370   bool is_forced_local = false;
   1371 
   1372   if (ver != NULL)
   1373     {
   1374       ver = this->namepool_.add(ver, true, &ver_key);
   1375     }
   1376   // We don't want to assign a version to an undefined symbol,
   1377   // even if it is listed in the version script.  FIXME: What
   1378   // about a common symbol?
   1379   else
   1380     {
   1381       if (!this->version_script_.empty()
   1382           && st_shndx != elfcpp::SHN_UNDEF)
   1383         {
   1384           // The symbol name did not have a version, but the
   1385           // version script may assign a version anyway.
   1386           std::string version;
   1387 	  bool is_global;
   1388           if (this->version_script_.get_symbol_version(name, &version,
   1389 						       &is_global))
   1390             {
   1391 	      if (!is_global)
   1392 		is_forced_local = true;
   1393 	      else if (!version.empty())
   1394                 {
   1395                   ver = this->namepool_.add_with_length(version.c_str(),
   1396                                                         version.length(),
   1397                                                         true,
   1398                                                         &ver_key);
   1399                   is_default_version = true;
   1400                 }
   1401             }
   1402         }
   1403     }
   1404 
   1405   Stringpool::Key name_key;
   1406   name = this->namepool_.add(name, true, &name_key);
   1407 
   1408   Sized_symbol<size>* res;
   1409   res = this->add_from_object(obj, name, name_key, ver, ver_key,
   1410 		              is_default_version, *sym, st_shndx,
   1411 			      is_ordinary, st_shndx);
   1412 
   1413   if (res == NULL)
   1414     return NULL;
   1415 
   1416   if (is_forced_local)
   1417     this->force_local(res);
   1418 
   1419   return res;
   1420 }
   1421 
   1422 // Add all the symbols in a dynamic object to the hash table.
   1423 
   1424 template<int size, bool big_endian>
   1425 void
   1426 Symbol_table::add_from_dynobj(
   1427     Sized_dynobj<size, big_endian>* dynobj,
   1428     const unsigned char* syms,
   1429     size_t count,
   1430     const char* sym_names,
   1431     size_t sym_name_size,
   1432     const unsigned char* versym,
   1433     size_t versym_size,
   1434     const std::vector<const char*>* version_map,
   1435     typename Sized_relobj_file<size, big_endian>::Symbols* sympointers,
   1436     size_t* defined)
   1437 {
   1438   *defined = 0;
   1439 
   1440   gold_assert(size == parameters->target().get_size());
   1441 
   1442   if (dynobj->just_symbols())
   1443     {
   1444       gold_error(_("--just-symbols does not make sense with a shared object"));
   1445       return;
   1446     }
   1447 
   1448   // FIXME: For incremental links, we don't store version information,
   1449   // so we need to ignore version symbols for now.
   1450   if (parameters->incremental_update())
   1451     versym = NULL;
   1452 
   1453   if (versym != NULL && versym_size / 2 < count)
   1454     {
   1455       dynobj->error(_("too few symbol versions"));
   1456       return;
   1457     }
   1458 
   1459   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   1460 
   1461   // We keep a list of all STT_OBJECT symbols, so that we can resolve
   1462   // weak aliases.  This is necessary because if the dynamic object
   1463   // provides the same variable under two names, one of which is a
   1464   // weak definition, and the regular object refers to the weak
   1465   // definition, we have to put both the weak definition and the
   1466   // strong definition into the dynamic symbol table.  Given a weak
   1467   // definition, the only way that we can find the corresponding
   1468   // strong definition, if any, is to search the symbol table.
   1469   std::vector<Sized_symbol<size>*> object_symbols;
   1470 
   1471   const unsigned char* p = syms;
   1472   const unsigned char* vs = versym;
   1473   for (size_t i = 0; i < count; ++i, p += sym_size, vs += 2)
   1474     {
   1475       elfcpp::Sym<size, big_endian> sym(p);
   1476 
   1477       if (sympointers != NULL)
   1478 	(*sympointers)[i] = NULL;
   1479 
   1480       // Ignore symbols with local binding or that have
   1481       // internal or hidden visibility.
   1482       if (sym.get_st_bind() == elfcpp::STB_LOCAL
   1483           || sym.get_st_visibility() == elfcpp::STV_INTERNAL
   1484           || sym.get_st_visibility() == elfcpp::STV_HIDDEN)
   1485 	continue;
   1486 
   1487       // A protected symbol in a shared library must be treated as a
   1488       // normal symbol when viewed from outside the shared library.
   1489       // Implement this by overriding the visibility here.
   1490       // Likewise, an IFUNC symbol in a shared library must be treated
   1491       // as a normal FUNC symbol.
   1492       elfcpp::Sym<size, big_endian>* psym = &sym;
   1493       unsigned char symbuf[sym_size];
   1494       elfcpp::Sym<size, big_endian> sym2(symbuf);
   1495       if (sym.get_st_visibility() == elfcpp::STV_PROTECTED
   1496 	  || sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
   1497 	{
   1498 	  memcpy(symbuf, p, sym_size);
   1499 	  elfcpp::Sym_write<size, big_endian> sw(symbuf);
   1500 	  if (sym.get_st_visibility() == elfcpp::STV_PROTECTED)
   1501 	    sw.put_st_other(elfcpp::STV_DEFAULT, sym.get_st_nonvis());
   1502 	  if (sym.get_st_type() == elfcpp::STT_GNU_IFUNC)
   1503 	    sw.put_st_info(sym.get_st_bind(), elfcpp::STT_FUNC);
   1504 	  psym = &sym2;
   1505 	}
   1506 
   1507       unsigned int st_name = psym->get_st_name();
   1508       if (st_name >= sym_name_size)
   1509 	{
   1510 	  dynobj->error(_("bad symbol name offset %u at %zu"),
   1511 			st_name, i);
   1512 	  continue;
   1513 	}
   1514 
   1515       const char* name = sym_names + st_name;
   1516 
   1517       bool is_ordinary;
   1518       unsigned int st_shndx = dynobj->adjust_sym_shndx(i, psym->get_st_shndx(),
   1519 						       &is_ordinary);
   1520 
   1521       if (st_shndx != elfcpp::SHN_UNDEF)
   1522 	++*defined;
   1523 
   1524       Sized_symbol<size>* res;
   1525 
   1526       if (versym == NULL)
   1527 	{
   1528 	  Stringpool::Key name_key;
   1529 	  name = this->namepool_.add(name, true, &name_key);
   1530 	  res = this->add_from_object(dynobj, name, name_key, NULL, 0,
   1531 				      false, *psym, st_shndx, is_ordinary,
   1532 				      st_shndx);
   1533 	}
   1534       else
   1535 	{
   1536 	  // Read the version information.
   1537 
   1538 	  unsigned int v = elfcpp::Swap<16, big_endian>::readval(vs);
   1539 
   1540 	  bool hidden = (v & elfcpp::VERSYM_HIDDEN) != 0;
   1541 	  v &= elfcpp::VERSYM_VERSION;
   1542 
   1543 	  // The Sun documentation says that V can be VER_NDX_LOCAL,
   1544 	  // or VER_NDX_GLOBAL, or a version index.  The meaning of
   1545 	  // VER_NDX_LOCAL is defined as "Symbol has local scope."
   1546 	  // The old GNU linker will happily generate VER_NDX_LOCAL
   1547 	  // for an undefined symbol.  I don't know what the Sun
   1548 	  // linker will generate.
   1549 
   1550 	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
   1551 	      && st_shndx != elfcpp::SHN_UNDEF)
   1552 	    {
   1553 	      // This symbol should not be visible outside the object.
   1554 	      continue;
   1555 	    }
   1556 
   1557 	  // At this point we are definitely going to add this symbol.
   1558 	  Stringpool::Key name_key;
   1559 	  name = this->namepool_.add(name, true, &name_key);
   1560 
   1561 	  if (v == static_cast<unsigned int>(elfcpp::VER_NDX_LOCAL)
   1562 	      || v == static_cast<unsigned int>(elfcpp::VER_NDX_GLOBAL))
   1563 	    {
   1564 	      // This symbol does not have a version.
   1565 	      res = this->add_from_object(dynobj, name, name_key, NULL, 0,
   1566 					  false, *psym, st_shndx, is_ordinary,
   1567 					  st_shndx);
   1568 	    }
   1569 	  else
   1570 	    {
   1571 	      if (v >= version_map->size())
   1572 		{
   1573 		  dynobj->error(_("versym for symbol %zu out of range: %u"),
   1574 				i, v);
   1575 		  continue;
   1576 		}
   1577 
   1578 	      const char* version = (*version_map)[v];
   1579 	      if (version == NULL)
   1580 		{
   1581 		  dynobj->error(_("versym for symbol %zu has no name: %u"),
   1582 				i, v);
   1583 		  continue;
   1584 		}
   1585 
   1586 	      Stringpool::Key version_key;
   1587 	      version = this->namepool_.add(version, true, &version_key);
   1588 
   1589 	      // If this is an absolute symbol, and the version name
   1590 	      // and symbol name are the same, then this is the
   1591 	      // version definition symbol.  These symbols exist to
   1592 	      // support using -u to pull in particular versions.  We
   1593 	      // do not want to record a version for them.
   1594 	      if (st_shndx == elfcpp::SHN_ABS
   1595 		  && !is_ordinary
   1596 		  && name_key == version_key)
   1597 		res = this->add_from_object(dynobj, name, name_key, NULL, 0,
   1598 					    false, *psym, st_shndx, is_ordinary,
   1599 					    st_shndx);
   1600 	      else
   1601 		{
   1602 		  const bool is_default_version =
   1603 		    !hidden && st_shndx != elfcpp::SHN_UNDEF;
   1604 		  res = this->add_from_object(dynobj, name, name_key, version,
   1605 					      version_key, is_default_version,
   1606 					      *psym, st_shndx,
   1607 					      is_ordinary, st_shndx);
   1608 		}
   1609 	    }
   1610 	}
   1611 
   1612       if (res == NULL)
   1613 	continue;
   1614 
   1615       // Note that it is possible that RES was overridden by an
   1616       // earlier object, in which case it can't be aliased here.
   1617       if (st_shndx != elfcpp::SHN_UNDEF
   1618 	  && is_ordinary
   1619 	  && psym->get_st_type() == elfcpp::STT_OBJECT
   1620 	  && res->source() == Symbol::FROM_OBJECT
   1621 	  && res->object() == dynobj)
   1622 	object_symbols.push_back(res);
   1623 
   1624       // If the symbol has protected visibility in the dynobj,
   1625       // mark it as such if it was not overridden.
   1626       if (res->source() == Symbol::FROM_OBJECT
   1627           && res->object() == dynobj
   1628           && sym.get_st_visibility() == elfcpp::STV_PROTECTED)
   1629         res->set_is_protected();
   1630 
   1631       if (sympointers != NULL)
   1632 	(*sympointers)[i] = res;
   1633     }
   1634 
   1635   this->record_weak_aliases(&object_symbols);
   1636 }
   1637 
   1638 // Add a symbol from a incremental object file.
   1639 
   1640 template<int size, bool big_endian>
   1641 Sized_symbol<size>*
   1642 Symbol_table::add_from_incrobj(
   1643     Object* obj,
   1644     const char* name,
   1645     const char* ver,
   1646     elfcpp::Sym<size, big_endian>* sym)
   1647 {
   1648   unsigned int st_shndx = sym->get_st_shndx();
   1649   bool is_ordinary = st_shndx < elfcpp::SHN_LORESERVE;
   1650 
   1651   Stringpool::Key ver_key = 0;
   1652   bool is_default_version = false;
   1653 
   1654   Stringpool::Key name_key;
   1655   name = this->namepool_.add(name, true, &name_key);
   1656 
   1657   Sized_symbol<size>* res;
   1658   res = this->add_from_object(obj, name, name_key, ver, ver_key,
   1659 		              is_default_version, *sym, st_shndx,
   1660 			      is_ordinary, st_shndx);
   1661 
   1662   return res;
   1663 }
   1664 
   1665 // This is used to sort weak aliases.  We sort them first by section
   1666 // index, then by offset, then by weak ahead of strong.
   1667 
   1668 template<int size>
   1669 class Weak_alias_sorter
   1670 {
   1671  public:
   1672   bool operator()(const Sized_symbol<size>*, const Sized_symbol<size>*) const;
   1673 };
   1674 
   1675 template<int size>
   1676 bool
   1677 Weak_alias_sorter<size>::operator()(const Sized_symbol<size>* s1,
   1678 				    const Sized_symbol<size>* s2) const
   1679 {
   1680   bool is_ordinary;
   1681   unsigned int s1_shndx = s1->shndx(&is_ordinary);
   1682   gold_assert(is_ordinary);
   1683   unsigned int s2_shndx = s2->shndx(&is_ordinary);
   1684   gold_assert(is_ordinary);
   1685   if (s1_shndx != s2_shndx)
   1686     return s1_shndx < s2_shndx;
   1687 
   1688   if (s1->value() != s2->value())
   1689     return s1->value() < s2->value();
   1690   if (s1->binding() != s2->binding())
   1691     {
   1692       if (s1->binding() == elfcpp::STB_WEAK)
   1693 	return true;
   1694       if (s2->binding() == elfcpp::STB_WEAK)
   1695 	return false;
   1696     }
   1697   return std::string(s1->name()) < std::string(s2->name());
   1698 }
   1699 
   1700 // SYMBOLS is a list of object symbols from a dynamic object.  Look
   1701 // for any weak aliases, and record them so that if we add the weak
   1702 // alias to the dynamic symbol table, we also add the corresponding
   1703 // strong symbol.
   1704 
   1705 template<int size>
   1706 void
   1707 Symbol_table::record_weak_aliases(std::vector<Sized_symbol<size>*>* symbols)
   1708 {
   1709   // Sort the vector by section index, then by offset, then by weak
   1710   // ahead of strong.
   1711   std::sort(symbols->begin(), symbols->end(), Weak_alias_sorter<size>());
   1712 
   1713   // Walk through the vector.  For each weak definition, record
   1714   // aliases.
   1715   for (typename std::vector<Sized_symbol<size>*>::const_iterator p =
   1716 	 symbols->begin();
   1717        p != symbols->end();
   1718        ++p)
   1719     {
   1720       if ((*p)->binding() != elfcpp::STB_WEAK)
   1721 	continue;
   1722 
   1723       // Build a circular list of weak aliases.  Each symbol points to
   1724       // the next one in the circular list.
   1725 
   1726       Sized_symbol<size>* from_sym = *p;
   1727       typename std::vector<Sized_symbol<size>*>::const_iterator q;
   1728       for (q = p + 1; q != symbols->end(); ++q)
   1729 	{
   1730 	  bool dummy;
   1731 	  if ((*q)->shndx(&dummy) != from_sym->shndx(&dummy)
   1732 	      || (*q)->value() != from_sym->value())
   1733 	    break;
   1734 
   1735 	  this->weak_aliases_[from_sym] = *q;
   1736 	  from_sym->set_has_alias();
   1737 	  from_sym = *q;
   1738 	}
   1739 
   1740       if (from_sym != *p)
   1741 	{
   1742 	  this->weak_aliases_[from_sym] = *p;
   1743 	  from_sym->set_has_alias();
   1744 	}
   1745 
   1746       p = q - 1;
   1747     }
   1748 }
   1749 
   1750 // Create and return a specially defined symbol.  If ONLY_IF_REF is
   1751 // true, then only create the symbol if there is a reference to it.
   1752 // If this does not return NULL, it sets *POLDSYM to the existing
   1753 // symbol if there is one.  This sets *RESOLVE_OLDSYM if we should
   1754 // resolve the newly created symbol to the old one.  This
   1755 // canonicalizes *PNAME and *PVERSION.
   1756 
   1757 template<int size, bool big_endian>
   1758 Sized_symbol<size>*
   1759 Symbol_table::define_special_symbol(const char** pname, const char** pversion,
   1760 				    bool only_if_ref,
   1761                                     Sized_symbol<size>** poldsym,
   1762 				    bool* resolve_oldsym)
   1763 {
   1764   *resolve_oldsym = false;
   1765   *poldsym = NULL;
   1766 
   1767   // If the caller didn't give us a version, see if we get one from
   1768   // the version script.
   1769   std::string v;
   1770   bool is_default_version = false;
   1771   if (*pversion == NULL)
   1772     {
   1773       bool is_global;
   1774       if (this->version_script_.get_symbol_version(*pname, &v, &is_global))
   1775 	{
   1776 	  if (is_global && !v.empty())
   1777 	    {
   1778 	      *pversion = v.c_str();
   1779 	      // If we get the version from a version script, then we
   1780 	      // are also the default version.
   1781 	      is_default_version = true;
   1782 	    }
   1783 	}
   1784     }
   1785 
   1786   Symbol* oldsym;
   1787   Sized_symbol<size>* sym;
   1788 
   1789   bool add_to_table = false;
   1790   typename Symbol_table_type::iterator add_loc = this->table_.end();
   1791   bool add_def_to_table = false;
   1792   typename Symbol_table_type::iterator add_def_loc = this->table_.end();
   1793 
   1794   if (only_if_ref)
   1795     {
   1796       oldsym = this->lookup(*pname, *pversion);
   1797       if (oldsym == NULL && is_default_version)
   1798 	oldsym = this->lookup(*pname, NULL);
   1799       if (oldsym == NULL || !oldsym->is_undefined())
   1800 	return NULL;
   1801 
   1802       *pname = oldsym->name();
   1803       if (is_default_version)
   1804 	*pversion = this->namepool_.add(*pversion, true, NULL);
   1805       else
   1806 	*pversion = oldsym->version();
   1807     }
   1808   else
   1809     {
   1810       // Canonicalize NAME and VERSION.
   1811       Stringpool::Key name_key;
   1812       *pname = this->namepool_.add(*pname, true, &name_key);
   1813 
   1814       Stringpool::Key version_key = 0;
   1815       if (*pversion != NULL)
   1816 	*pversion = this->namepool_.add(*pversion, true, &version_key);
   1817 
   1818       Symbol* const snull = NULL;
   1819       std::pair<typename Symbol_table_type::iterator, bool> ins =
   1820 	this->table_.insert(std::make_pair(std::make_pair(name_key,
   1821 							  version_key),
   1822 					   snull));
   1823 
   1824       std::pair<typename Symbol_table_type::iterator, bool> insdefault =
   1825 	std::make_pair(this->table_.end(), false);
   1826       if (is_default_version)
   1827 	{
   1828 	  const Stringpool::Key vnull = 0;
   1829 	  insdefault =
   1830 	    this->table_.insert(std::make_pair(std::make_pair(name_key,
   1831 							      vnull),
   1832 					       snull));
   1833 	}
   1834 
   1835       if (!ins.second)
   1836 	{
   1837 	  // We already have a symbol table entry for NAME/VERSION.
   1838 	  oldsym = ins.first->second;
   1839 	  gold_assert(oldsym != NULL);
   1840 
   1841 	  if (is_default_version)
   1842 	    {
   1843 	      Sized_symbol<size>* soldsym =
   1844 		this->get_sized_symbol<size>(oldsym);
   1845 	      this->define_default_version<size, big_endian>(soldsym,
   1846 							     insdefault.second,
   1847 							     insdefault.first);
   1848 	    }
   1849 	}
   1850       else
   1851 	{
   1852 	  // We haven't seen this symbol before.
   1853 	  gold_assert(ins.first->second == NULL);
   1854 
   1855 	  add_to_table = true;
   1856 	  add_loc = ins.first;
   1857 
   1858 	  if (is_default_version && !insdefault.second)
   1859 	    {
   1860 	      // We are adding NAME/VERSION, and it is the default
   1861 	      // version.  We already have an entry for NAME/NULL.
   1862 	      oldsym = insdefault.first->second;
   1863 	      *resolve_oldsym = true;
   1864 	    }
   1865 	  else
   1866 	    {
   1867 	      oldsym = NULL;
   1868 
   1869 	      if (is_default_version)
   1870 		{
   1871 		  add_def_to_table = true;
   1872 		  add_def_loc = insdefault.first;
   1873 		}
   1874 	    }
   1875 	}
   1876     }
   1877 
   1878   const Target& target = parameters->target();
   1879   if (!target.has_make_symbol())
   1880     sym = new Sized_symbol<size>();
   1881   else
   1882     {
   1883       Sized_target<size, big_endian>* sized_target =
   1884 	parameters->sized_target<size, big_endian>();
   1885       sym = sized_target->make_symbol(*pname, elfcpp::STT_NOTYPE,
   1886 				      NULL, elfcpp::SHN_UNDEF, 0);
   1887       if (sym == NULL)
   1888         return NULL;
   1889     }
   1890 
   1891   if (add_to_table)
   1892     add_loc->second = sym;
   1893   else
   1894     gold_assert(oldsym != NULL);
   1895 
   1896   if (add_def_to_table)
   1897     add_def_loc->second = sym;
   1898 
   1899   *poldsym = this->get_sized_symbol<size>(oldsym);
   1900 
   1901   return sym;
   1902 }
   1903 
   1904 // Define a symbol based on an Output_data.
   1905 
   1906 Symbol*
   1907 Symbol_table::define_in_output_data(const char* name,
   1908 				    const char* version,
   1909 				    Defined defined,
   1910 				    Output_data* od,
   1911 				    uint64_t value,
   1912 				    uint64_t symsize,
   1913 				    elfcpp::STT type,
   1914 				    elfcpp::STB binding,
   1915 				    elfcpp::STV visibility,
   1916 				    unsigned char nonvis,
   1917 				    bool offset_is_from_end,
   1918 				    bool only_if_ref)
   1919 {
   1920   if (parameters->target().get_size() == 32)
   1921     {
   1922 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   1923       return this->do_define_in_output_data<32>(name, version, defined, od,
   1924                                                 value, symsize, type, binding,
   1925                                                 visibility, nonvis,
   1926                                                 offset_is_from_end,
   1927                                                 only_if_ref);
   1928 #else
   1929       gold_unreachable();
   1930 #endif
   1931     }
   1932   else if (parameters->target().get_size() == 64)
   1933     {
   1934 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   1935       return this->do_define_in_output_data<64>(name, version, defined, od,
   1936                                                 value, symsize, type, binding,
   1937                                                 visibility, nonvis,
   1938                                                 offset_is_from_end,
   1939                                                 only_if_ref);
   1940 #else
   1941       gold_unreachable();
   1942 #endif
   1943     }
   1944   else
   1945     gold_unreachable();
   1946 }
   1947 
   1948 // Define a symbol in an Output_data, sized version.
   1949 
   1950 template<int size>
   1951 Sized_symbol<size>*
   1952 Symbol_table::do_define_in_output_data(
   1953     const char* name,
   1954     const char* version,
   1955     Defined defined,
   1956     Output_data* od,
   1957     typename elfcpp::Elf_types<size>::Elf_Addr value,
   1958     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
   1959     elfcpp::STT type,
   1960     elfcpp::STB binding,
   1961     elfcpp::STV visibility,
   1962     unsigned char nonvis,
   1963     bool offset_is_from_end,
   1964     bool only_if_ref)
   1965 {
   1966   Sized_symbol<size>* sym;
   1967   Sized_symbol<size>* oldsym;
   1968   bool resolve_oldsym;
   1969 
   1970   if (parameters->target().is_big_endian())
   1971     {
   1972 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
   1973       sym = this->define_special_symbol<size, true>(&name, &version,
   1974 						    only_if_ref, &oldsym,
   1975 						    &resolve_oldsym);
   1976 #else
   1977       gold_unreachable();
   1978 #endif
   1979     }
   1980   else
   1981     {
   1982 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
   1983       sym = this->define_special_symbol<size, false>(&name, &version,
   1984 						     only_if_ref, &oldsym,
   1985 						     &resolve_oldsym);
   1986 #else
   1987       gold_unreachable();
   1988 #endif
   1989     }
   1990 
   1991   if (sym == NULL)
   1992     return NULL;
   1993 
   1994   sym->init_output_data(name, version, od, value, symsize, type, binding,
   1995 			visibility, nonvis, offset_is_from_end,
   1996 			defined == PREDEFINED);
   1997 
   1998   if (oldsym == NULL)
   1999     {
   2000       if (binding == elfcpp::STB_LOCAL
   2001 	  || this->version_script_.symbol_is_local(name))
   2002 	this->force_local(sym);
   2003       else if (version != NULL)
   2004 	sym->set_is_default();
   2005       return sym;
   2006     }
   2007 
   2008   if (Symbol_table::should_override_with_special(oldsym, type, defined))
   2009     this->override_with_special(oldsym, sym);
   2010 
   2011   if (resolve_oldsym)
   2012     return sym;
   2013   else
   2014     {
   2015       if (defined == PREDEFINED
   2016 	  && (binding == elfcpp::STB_LOCAL
   2017 	      || this->version_script_.symbol_is_local(name)))
   2018 	this->force_local(oldsym);
   2019       delete sym;
   2020       return oldsym;
   2021     }
   2022 }
   2023 
   2024 // Define a symbol based on an Output_segment.
   2025 
   2026 Symbol*
   2027 Symbol_table::define_in_output_segment(const char* name,
   2028 				       const char* version,
   2029 				       Defined defined,
   2030 				       Output_segment* os,
   2031 				       uint64_t value,
   2032 				       uint64_t symsize,
   2033 				       elfcpp::STT type,
   2034 				       elfcpp::STB binding,
   2035 				       elfcpp::STV visibility,
   2036 				       unsigned char nonvis,
   2037 				       Symbol::Segment_offset_base offset_base,
   2038 				       bool only_if_ref)
   2039 {
   2040   if (parameters->target().get_size() == 32)
   2041     {
   2042 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   2043       return this->do_define_in_output_segment<32>(name, version, defined, os,
   2044                                                    value, symsize, type,
   2045                                                    binding, visibility, nonvis,
   2046                                                    offset_base, only_if_ref);
   2047 #else
   2048       gold_unreachable();
   2049 #endif
   2050     }
   2051   else if (parameters->target().get_size() == 64)
   2052     {
   2053 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   2054       return this->do_define_in_output_segment<64>(name, version, defined, os,
   2055                                                    value, symsize, type,
   2056                                                    binding, visibility, nonvis,
   2057                                                    offset_base, only_if_ref);
   2058 #else
   2059       gold_unreachable();
   2060 #endif
   2061     }
   2062   else
   2063     gold_unreachable();
   2064 }
   2065 
   2066 // Define a symbol in an Output_segment, sized version.
   2067 
   2068 template<int size>
   2069 Sized_symbol<size>*
   2070 Symbol_table::do_define_in_output_segment(
   2071     const char* name,
   2072     const char* version,
   2073     Defined defined,
   2074     Output_segment* os,
   2075     typename elfcpp::Elf_types<size>::Elf_Addr value,
   2076     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
   2077     elfcpp::STT type,
   2078     elfcpp::STB binding,
   2079     elfcpp::STV visibility,
   2080     unsigned char nonvis,
   2081     Symbol::Segment_offset_base offset_base,
   2082     bool only_if_ref)
   2083 {
   2084   Sized_symbol<size>* sym;
   2085   Sized_symbol<size>* oldsym;
   2086   bool resolve_oldsym;
   2087 
   2088   if (parameters->target().is_big_endian())
   2089     {
   2090 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
   2091       sym = this->define_special_symbol<size, true>(&name, &version,
   2092 						    only_if_ref, &oldsym,
   2093 						    &resolve_oldsym);
   2094 #else
   2095       gold_unreachable();
   2096 #endif
   2097     }
   2098   else
   2099     {
   2100 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
   2101       sym = this->define_special_symbol<size, false>(&name, &version,
   2102 						     only_if_ref, &oldsym,
   2103 						     &resolve_oldsym);
   2104 #else
   2105       gold_unreachable();
   2106 #endif
   2107     }
   2108 
   2109   if (sym == NULL)
   2110     return NULL;
   2111 
   2112   sym->init_output_segment(name, version, os, value, symsize, type, binding,
   2113 			   visibility, nonvis, offset_base,
   2114 			   defined == PREDEFINED);
   2115 
   2116   if (oldsym == NULL)
   2117     {
   2118       if (binding == elfcpp::STB_LOCAL
   2119 	  || this->version_script_.symbol_is_local(name))
   2120 	this->force_local(sym);
   2121       else if (version != NULL)
   2122 	sym->set_is_default();
   2123       return sym;
   2124     }
   2125 
   2126   if (Symbol_table::should_override_with_special(oldsym, type, defined))
   2127     this->override_with_special(oldsym, sym);
   2128 
   2129   if (resolve_oldsym)
   2130     return sym;
   2131   else
   2132     {
   2133       if (binding == elfcpp::STB_LOCAL
   2134 	  || this->version_script_.symbol_is_local(name))
   2135 	this->force_local(oldsym);
   2136       delete sym;
   2137       return oldsym;
   2138     }
   2139 }
   2140 
   2141 // Define a special symbol with a constant value.  It is a multiple
   2142 // definition error if this symbol is already defined.
   2143 
   2144 Symbol*
   2145 Symbol_table::define_as_constant(const char* name,
   2146 				 const char* version,
   2147 				 Defined defined,
   2148 				 uint64_t value,
   2149 				 uint64_t symsize,
   2150 				 elfcpp::STT type,
   2151 				 elfcpp::STB binding,
   2152 				 elfcpp::STV visibility,
   2153 				 unsigned char nonvis,
   2154 				 bool only_if_ref,
   2155                                  bool force_override)
   2156 {
   2157   if (parameters->target().get_size() == 32)
   2158     {
   2159 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   2160       return this->do_define_as_constant<32>(name, version, defined, value,
   2161                                              symsize, type, binding,
   2162                                              visibility, nonvis, only_if_ref,
   2163                                              force_override);
   2164 #else
   2165       gold_unreachable();
   2166 #endif
   2167     }
   2168   else if (parameters->target().get_size() == 64)
   2169     {
   2170 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   2171       return this->do_define_as_constant<64>(name, version, defined, value,
   2172                                              symsize, type, binding,
   2173                                              visibility, nonvis, only_if_ref,
   2174                                              force_override);
   2175 #else
   2176       gold_unreachable();
   2177 #endif
   2178     }
   2179   else
   2180     gold_unreachable();
   2181 }
   2182 
   2183 // Define a symbol as a constant, sized version.
   2184 
   2185 template<int size>
   2186 Sized_symbol<size>*
   2187 Symbol_table::do_define_as_constant(
   2188     const char* name,
   2189     const char* version,
   2190     Defined defined,
   2191     typename elfcpp::Elf_types<size>::Elf_Addr value,
   2192     typename elfcpp::Elf_types<size>::Elf_WXword symsize,
   2193     elfcpp::STT type,
   2194     elfcpp::STB binding,
   2195     elfcpp::STV visibility,
   2196     unsigned char nonvis,
   2197     bool only_if_ref,
   2198     bool force_override)
   2199 {
   2200   Sized_symbol<size>* sym;
   2201   Sized_symbol<size>* oldsym;
   2202   bool resolve_oldsym;
   2203 
   2204   if (parameters->target().is_big_endian())
   2205     {
   2206 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
   2207       sym = this->define_special_symbol<size, true>(&name, &version,
   2208 						    only_if_ref, &oldsym,
   2209 						    &resolve_oldsym);
   2210 #else
   2211       gold_unreachable();
   2212 #endif
   2213     }
   2214   else
   2215     {
   2216 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
   2217       sym = this->define_special_symbol<size, false>(&name, &version,
   2218 						     only_if_ref, &oldsym,
   2219 						     &resolve_oldsym);
   2220 #else
   2221       gold_unreachable();
   2222 #endif
   2223     }
   2224 
   2225   if (sym == NULL)
   2226     return NULL;
   2227 
   2228   sym->init_constant(name, version, value, symsize, type, binding, visibility,
   2229 		     nonvis, defined == PREDEFINED);
   2230 
   2231   if (oldsym == NULL)
   2232     {
   2233       // Version symbols are absolute symbols with name == version.
   2234       // We don't want to force them to be local.
   2235       if ((version == NULL
   2236 	   || name != version
   2237 	   || value != 0)
   2238 	  && (binding == elfcpp::STB_LOCAL
   2239 	      || this->version_script_.symbol_is_local(name)))
   2240 	this->force_local(sym);
   2241       else if (version != NULL
   2242 	       && (name != version || value != 0))
   2243 	sym->set_is_default();
   2244       return sym;
   2245     }
   2246 
   2247   if (force_override
   2248       || Symbol_table::should_override_with_special(oldsym, type, defined))
   2249     this->override_with_special(oldsym, sym);
   2250 
   2251   if (resolve_oldsym)
   2252     return sym;
   2253   else
   2254     {
   2255       if (binding == elfcpp::STB_LOCAL
   2256 	  || this->version_script_.symbol_is_local(name))
   2257 	this->force_local(oldsym);
   2258       delete sym;
   2259       return oldsym;
   2260     }
   2261 }
   2262 
   2263 // Define a set of symbols in output sections.
   2264 
   2265 void
   2266 Symbol_table::define_symbols(const Layout* layout, int count,
   2267 			     const Define_symbol_in_section* p,
   2268 			     bool only_if_ref)
   2269 {
   2270   for (int i = 0; i < count; ++i, ++p)
   2271     {
   2272       Output_section* os = layout->find_output_section(p->output_section);
   2273       if (os != NULL)
   2274 	this->define_in_output_data(p->name, NULL, PREDEFINED, os, p->value,
   2275 				    p->size, p->type, p->binding,
   2276 				    p->visibility, p->nonvis,
   2277 				    p->offset_is_from_end,
   2278 				    only_if_ref || p->only_if_ref);
   2279       else
   2280 	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
   2281 				 p->type, p->binding, p->visibility, p->nonvis,
   2282 				 only_if_ref || p->only_if_ref,
   2283                                  false);
   2284     }
   2285 }
   2286 
   2287 // Define a set of symbols in output segments.
   2288 
   2289 void
   2290 Symbol_table::define_symbols(const Layout* layout, int count,
   2291 			     const Define_symbol_in_segment* p,
   2292 			     bool only_if_ref)
   2293 {
   2294   for (int i = 0; i < count; ++i, ++p)
   2295     {
   2296       Output_segment* os = layout->find_output_segment(p->segment_type,
   2297 						       p->segment_flags_set,
   2298 						       p->segment_flags_clear);
   2299       if (os != NULL)
   2300 	this->define_in_output_segment(p->name, NULL, PREDEFINED, os, p->value,
   2301 				       p->size, p->type, p->binding,
   2302 				       p->visibility, p->nonvis,
   2303 				       p->offset_base,
   2304 				       only_if_ref || p->only_if_ref);
   2305       else
   2306 	this->define_as_constant(p->name, NULL, PREDEFINED, 0, p->size,
   2307 				 p->type, p->binding, p->visibility, p->nonvis,
   2308 				 only_if_ref || p->only_if_ref,
   2309                                  false);
   2310     }
   2311 }
   2312 
   2313 // Define CSYM using a COPY reloc.  POSD is the Output_data where the
   2314 // symbol should be defined--typically a .dyn.bss section.  VALUE is
   2315 // the offset within POSD.
   2316 
   2317 template<int size>
   2318 void
   2319 Symbol_table::define_with_copy_reloc(
   2320     Sized_symbol<size>* csym,
   2321     Output_data* posd,
   2322     typename elfcpp::Elf_types<size>::Elf_Addr value)
   2323 {
   2324   gold_assert(csym->is_from_dynobj());
   2325   gold_assert(!csym->is_copied_from_dynobj());
   2326   Object* object = csym->object();
   2327   gold_assert(object->is_dynamic());
   2328   Dynobj* dynobj = static_cast<Dynobj*>(object);
   2329 
   2330   // Our copied variable has to override any variable in a shared
   2331   // library.
   2332   elfcpp::STB binding = csym->binding();
   2333   if (binding == elfcpp::STB_WEAK)
   2334     binding = elfcpp::STB_GLOBAL;
   2335 
   2336   this->define_in_output_data(csym->name(), csym->version(), COPY,
   2337 			      posd, value, csym->symsize(),
   2338 			      csym->type(), binding,
   2339 			      csym->visibility(), csym->nonvis(),
   2340 			      false, false);
   2341 
   2342   csym->set_is_copied_from_dynobj();
   2343   csym->set_needs_dynsym_entry();
   2344 
   2345   this->copied_symbol_dynobjs_[csym] = dynobj;
   2346 
   2347   // We have now defined all aliases, but we have not entered them all
   2348   // in the copied_symbol_dynobjs_ map.
   2349   if (csym->has_alias())
   2350     {
   2351       Symbol* sym = csym;
   2352       while (true)
   2353 	{
   2354 	  sym = this->weak_aliases_[sym];
   2355 	  if (sym == csym)
   2356 	    break;
   2357 	  gold_assert(sym->output_data() == posd);
   2358 
   2359 	  sym->set_is_copied_from_dynobj();
   2360 	  this->copied_symbol_dynobjs_[sym] = dynobj;
   2361 	}
   2362     }
   2363 }
   2364 
   2365 // SYM is defined using a COPY reloc.  Return the dynamic object where
   2366 // the original definition was found.
   2367 
   2368 Dynobj*
   2369 Symbol_table::get_copy_source(const Symbol* sym) const
   2370 {
   2371   gold_assert(sym->is_copied_from_dynobj());
   2372   Copied_symbol_dynobjs::const_iterator p =
   2373     this->copied_symbol_dynobjs_.find(sym);
   2374   gold_assert(p != this->copied_symbol_dynobjs_.end());
   2375   return p->second;
   2376 }
   2377 
   2378 // Add any undefined symbols named on the command line.
   2379 
   2380 void
   2381 Symbol_table::add_undefined_symbols_from_command_line(Layout* layout)
   2382 {
   2383   if (parameters->options().any_undefined()
   2384       || layout->script_options()->any_unreferenced())
   2385     {
   2386       if (parameters->target().get_size() == 32)
   2387 	{
   2388 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   2389 	  this->do_add_undefined_symbols_from_command_line<32>(layout);
   2390 #else
   2391 	  gold_unreachable();
   2392 #endif
   2393 	}
   2394       else if (parameters->target().get_size() == 64)
   2395 	{
   2396 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   2397 	  this->do_add_undefined_symbols_from_command_line<64>(layout);
   2398 #else
   2399 	  gold_unreachable();
   2400 #endif
   2401 	}
   2402       else
   2403 	gold_unreachable();
   2404     }
   2405 }
   2406 
   2407 template<int size>
   2408 void
   2409 Symbol_table::do_add_undefined_symbols_from_command_line(Layout* layout)
   2410 {
   2411   for (options::String_set::const_iterator p =
   2412 	 parameters->options().undefined_begin();
   2413        p != parameters->options().undefined_end();
   2414        ++p)
   2415     this->add_undefined_symbol_from_command_line<size>(p->c_str());
   2416 
   2417   for (options::String_set::const_iterator p =
   2418 	 parameters->options().export_dynamic_symbol_begin();
   2419        p != parameters->options().export_dynamic_symbol_end();
   2420        ++p)
   2421     this->add_undefined_symbol_from_command_line<size>(p->c_str());
   2422 
   2423   for (Script_options::referenced_const_iterator p =
   2424 	 layout->script_options()->referenced_begin();
   2425        p != layout->script_options()->referenced_end();
   2426        ++p)
   2427     this->add_undefined_symbol_from_command_line<size>(p->c_str());
   2428 }
   2429 
   2430 template<int size>
   2431 void
   2432 Symbol_table::add_undefined_symbol_from_command_line(const char* name)
   2433 {
   2434   if (this->lookup(name) != NULL)
   2435     return;
   2436 
   2437   const char* version = NULL;
   2438 
   2439   Sized_symbol<size>* sym;
   2440   Sized_symbol<size>* oldsym;
   2441   bool resolve_oldsym;
   2442   if (parameters->target().is_big_endian())
   2443     {
   2444 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
   2445       sym = this->define_special_symbol<size, true>(&name, &version,
   2446 						    false, &oldsym,
   2447 						    &resolve_oldsym);
   2448 #else
   2449       gold_unreachable();
   2450 #endif
   2451     }
   2452   else
   2453     {
   2454 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
   2455       sym = this->define_special_symbol<size, false>(&name, &version,
   2456 						     false, &oldsym,
   2457 						     &resolve_oldsym);
   2458 #else
   2459       gold_unreachable();
   2460 #endif
   2461     }
   2462 
   2463   gold_assert(oldsym == NULL);
   2464 
   2465   sym->init_undefined(name, version, 0, elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
   2466 		      elfcpp::STV_DEFAULT, 0);
   2467   ++this->saw_undefined_;
   2468 }
   2469 
   2470 // Set the dynamic symbol indexes.  INDEX is the index of the first
   2471 // global dynamic symbol.  Pointers to the symbols are stored into the
   2472 // vector SYMS.  The names are added to DYNPOOL.  This returns an
   2473 // updated dynamic symbol index.
   2474 
   2475 unsigned int
   2476 Symbol_table::set_dynsym_indexes(unsigned int index,
   2477 				 std::vector<Symbol*>* syms,
   2478 				 Stringpool* dynpool,
   2479 				 Versions* versions)
   2480 {
   2481   std::vector<Symbol*> as_needed_sym;
   2482 
   2483   // Allow a target to set dynsym indexes.
   2484   if (parameters->target().has_custom_set_dynsym_indexes())
   2485     {
   2486       std::vector<Symbol*> dyn_symbols;
   2487       for (Symbol_table_type::iterator p = this->table_.begin();
   2488            p != this->table_.end();
   2489            ++p)
   2490         {
   2491           Symbol* sym = p->second;
   2492           if (!sym->should_add_dynsym_entry(this))
   2493             sym->set_dynsym_index(-1U);
   2494           else
   2495             dyn_symbols.push_back(sym);
   2496         }
   2497 
   2498       return parameters->target().set_dynsym_indexes(&dyn_symbols, index, syms,
   2499                                                      dynpool, versions, this);
   2500     }
   2501 
   2502   for (Symbol_table_type::iterator p = this->table_.begin();
   2503        p != this->table_.end();
   2504        ++p)
   2505     {
   2506       Symbol* sym = p->second;
   2507 
   2508       // Note that SYM may already have a dynamic symbol index, since
   2509       // some symbols appear more than once in the symbol table, with
   2510       // and without a version.
   2511 
   2512       if (!sym->should_add_dynsym_entry(this))
   2513 	sym->set_dynsym_index(-1U);
   2514       else if (!sym->has_dynsym_index())
   2515 	{
   2516 	  sym->set_dynsym_index(index);
   2517 	  ++index;
   2518 	  syms->push_back(sym);
   2519 	  dynpool->add(sym->name(), false, NULL);
   2520 
   2521 	  // If the symbol is defined in a dynamic object and is
   2522 	  // referenced strongly in a regular object, then mark the
   2523 	  // dynamic object as needed.  This is used to implement
   2524 	  // --as-needed.
   2525 	  if (sym->is_from_dynobj()
   2526 	      && sym->in_reg()
   2527 	      && !sym->is_undef_binding_weak())
   2528 	    sym->object()->set_is_needed();
   2529 
   2530 	  // Record any version information, except those from
   2531 	  // as-needed libraries not seen to be needed.  Note that the
   2532 	  // is_needed state for such libraries can change in this loop.
   2533 	  if (sym->version() != NULL)
   2534 	    {
   2535 	      if (!sym->is_from_dynobj()
   2536 		  || !sym->object()->as_needed()
   2537 		  || sym->object()->is_needed())
   2538 		versions->record_version(this, dynpool, sym);
   2539 	      else
   2540 		as_needed_sym.push_back(sym);
   2541 	    }
   2542 	}
   2543     }
   2544 
   2545   // Process version information for symbols from as-needed libraries.
   2546   for (std::vector<Symbol*>::iterator p = as_needed_sym.begin();
   2547        p != as_needed_sym.end();
   2548        ++p)
   2549     {
   2550       Symbol* sym = *p;
   2551 
   2552       if (sym->object()->is_needed())
   2553 	versions->record_version(this, dynpool, sym);
   2554       else
   2555 	sym->clear_version();
   2556     }
   2557 
   2558   // Finish up the versions.  In some cases this may add new dynamic
   2559   // symbols.
   2560   index = versions->finalize(this, index, syms);
   2561 
   2562   // Process target-specific symbols.
   2563   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
   2564        p != this->target_symbols_.end();
   2565        ++p)
   2566     {
   2567       (*p)->set_dynsym_index(index);
   2568       ++index;
   2569       syms->push_back(*p);
   2570       dynpool->add((*p)->name(), false, NULL);
   2571     }
   2572 
   2573   return index;
   2574 }
   2575 
   2576 // Set the final values for all the symbols.  The index of the first
   2577 // global symbol in the output file is *PLOCAL_SYMCOUNT.  Record the
   2578 // file offset OFF.  Add their names to POOL.  Return the new file
   2579 // offset.  Update *PLOCAL_SYMCOUNT if necessary.
   2580 
   2581 off_t
   2582 Symbol_table::finalize(off_t off, off_t dynoff, size_t dyn_global_index,
   2583 		       size_t dyncount, Stringpool* pool,
   2584 		       unsigned int* plocal_symcount)
   2585 {
   2586   off_t ret;
   2587 
   2588   gold_assert(*plocal_symcount != 0);
   2589   this->first_global_index_ = *plocal_symcount;
   2590 
   2591   this->dynamic_offset_ = dynoff;
   2592   this->first_dynamic_global_index_ = dyn_global_index;
   2593   this->dynamic_count_ = dyncount;
   2594 
   2595   if (parameters->target().get_size() == 32)
   2596     {
   2597 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_32_LITTLE)
   2598       ret = this->sized_finalize<32>(off, pool, plocal_symcount);
   2599 #else
   2600       gold_unreachable();
   2601 #endif
   2602     }
   2603   else if (parameters->target().get_size() == 64)
   2604     {
   2605 #if defined(HAVE_TARGET_64_BIG) || defined(HAVE_TARGET_64_LITTLE)
   2606       ret = this->sized_finalize<64>(off, pool, plocal_symcount);
   2607 #else
   2608       gold_unreachable();
   2609 #endif
   2610     }
   2611   else
   2612     gold_unreachable();
   2613 
   2614   // Now that we have the final symbol table, we can reliably note
   2615   // which symbols should get warnings.
   2616   this->warnings_.note_warnings(this);
   2617 
   2618   return ret;
   2619 }
   2620 
   2621 // SYM is going into the symbol table at *PINDEX.  Add the name to
   2622 // POOL, update *PINDEX and *POFF.
   2623 
   2624 template<int size>
   2625 void
   2626 Symbol_table::add_to_final_symtab(Symbol* sym, Stringpool* pool,
   2627 				  unsigned int* pindex, off_t* poff)
   2628 {
   2629   sym->set_symtab_index(*pindex);
   2630   if (sym->version() == NULL || !parameters->options().relocatable())
   2631     pool->add(sym->name(), false, NULL);
   2632   else
   2633     pool->add(sym->versioned_name(), true, NULL);
   2634   ++*pindex;
   2635   *poff += elfcpp::Elf_sizes<size>::sym_size;
   2636 }
   2637 
   2638 // Set the final value for all the symbols.  This is called after
   2639 // Layout::finalize, so all the output sections have their final
   2640 // address.
   2641 
   2642 template<int size>
   2643 off_t
   2644 Symbol_table::sized_finalize(off_t off, Stringpool* pool,
   2645 			     unsigned int* plocal_symcount)
   2646 {
   2647   off = align_address(off, size >> 3);
   2648   this->offset_ = off;
   2649 
   2650   unsigned int index = *plocal_symcount;
   2651   const unsigned int orig_index = index;
   2652 
   2653   // First do all the symbols which have been forced to be local, as
   2654   // they must appear before all global symbols.
   2655   for (Forced_locals::iterator p = this->forced_locals_.begin();
   2656        p != this->forced_locals_.end();
   2657        ++p)
   2658     {
   2659       Symbol* sym = *p;
   2660       gold_assert(sym->is_forced_local());
   2661       if (this->sized_finalize_symbol<size>(sym))
   2662 	{
   2663 	  this->add_to_final_symtab<size>(sym, pool, &index, &off);
   2664 	  ++*plocal_symcount;
   2665 	}
   2666     }
   2667 
   2668   // Now do all the remaining symbols.
   2669   for (Symbol_table_type::iterator p = this->table_.begin();
   2670        p != this->table_.end();
   2671        ++p)
   2672     {
   2673       Symbol* sym = p->second;
   2674       if (this->sized_finalize_symbol<size>(sym))
   2675 	this->add_to_final_symtab<size>(sym, pool, &index, &off);
   2676     }
   2677 
   2678   // Now do target-specific symbols.
   2679   for (std::vector<Symbol*>::iterator p = this->target_symbols_.begin();
   2680        p != this->target_symbols_.end();
   2681        ++p)
   2682     {
   2683       this->add_to_final_symtab<size>(*p, pool, &index, &off);
   2684     }
   2685 
   2686   this->output_count_ = index - orig_index;
   2687 
   2688   return off;
   2689 }
   2690 
   2691 // Compute the final value of SYM and store status in location PSTATUS.
   2692 // During relaxation, this may be called multiple times for a symbol to
   2693 // compute its would-be final value in each relaxation pass.
   2694 
   2695 template<int size>
   2696 typename Sized_symbol<size>::Value_type
   2697 Symbol_table::compute_final_value(
   2698     const Sized_symbol<size>* sym,
   2699     Compute_final_value_status* pstatus) const
   2700 {
   2701   typedef typename Sized_symbol<size>::Value_type Value_type;
   2702   Value_type value;
   2703 
   2704   switch (sym->source())
   2705     {
   2706     case Symbol::FROM_OBJECT:
   2707       {
   2708 	bool is_ordinary;
   2709 	unsigned int shndx = sym->shndx(&is_ordinary);
   2710 
   2711 	if (!is_ordinary
   2712 	    && shndx != elfcpp::SHN_ABS
   2713 	    && !Symbol::is_common_shndx(shndx))
   2714 	  {
   2715 	    *pstatus = CFVS_UNSUPPORTED_SYMBOL_SECTION;
   2716 	    return 0;
   2717 	  }
   2718 
   2719 	Object* symobj = sym->object();
   2720 	if (symobj->is_dynamic())
   2721 	  {
   2722 	    value = 0;
   2723 	    shndx = elfcpp::SHN_UNDEF;
   2724 	  }
   2725 	else if (symobj->pluginobj() != NULL)
   2726 	  {
   2727 	    value = 0;
   2728 	    shndx = elfcpp::SHN_UNDEF;
   2729 	  }
   2730 	else if (shndx == elfcpp::SHN_UNDEF)
   2731 	  value = 0;
   2732 	else if (!is_ordinary
   2733 		 && (shndx == elfcpp::SHN_ABS
   2734 		     || Symbol::is_common_shndx(shndx)))
   2735 	  value = sym->value();
   2736 	else
   2737 	  {
   2738 	    Relobj* relobj = static_cast<Relobj*>(symobj);
   2739 	    Output_section* os = relobj->output_section(shndx);
   2740 
   2741             if (this->is_section_folded(relobj, shndx))
   2742               {
   2743                 gold_assert(os == NULL);
   2744                 // Get the os of the section it is folded onto.
   2745                 Section_id folded = this->icf_->get_folded_section(relobj,
   2746                                                                    shndx);
   2747                 gold_assert(folded.first != NULL);
   2748                 Relobj* folded_obj = reinterpret_cast<Relobj*>(folded.first);
   2749 		unsigned folded_shndx = folded.second;
   2750 
   2751                 os = folded_obj->output_section(folded_shndx);
   2752                 gold_assert(os != NULL);
   2753 
   2754 		// Replace (relobj, shndx) with canonical ICF input section.
   2755 		shndx = folded_shndx;
   2756 		relobj = folded_obj;
   2757               }
   2758 
   2759             uint64_t secoff64 = relobj->output_section_offset(shndx);
   2760  	    if (os == NULL)
   2761 	      {
   2762                 bool static_or_reloc = (parameters->doing_static_link() ||
   2763                                         parameters->options().relocatable());
   2764                 gold_assert(static_or_reloc || sym->dynsym_index() == -1U);
   2765 
   2766 		*pstatus = CFVS_NO_OUTPUT_SECTION;
   2767 		return 0;
   2768 	      }
   2769 
   2770             if (secoff64 == -1ULL)
   2771               {
   2772                 // The section needs special handling (e.g., a merge section).
   2773 
   2774 	        value = os->output_address(relobj, shndx, sym->value());
   2775 	      }
   2776             else
   2777               {
   2778                 Value_type secoff =
   2779                   convert_types<Value_type, uint64_t>(secoff64);
   2780 	        if (sym->type() == elfcpp::STT_TLS)
   2781 	          value = sym->value() + os->tls_offset() + secoff;
   2782 	        else
   2783 	          value = sym->value() + os->address() + secoff;
   2784 	      }
   2785 	  }
   2786       }
   2787       break;
   2788 
   2789     case Symbol::IN_OUTPUT_DATA:
   2790       {
   2791 	Output_data* od = sym->output_data();
   2792 	value = sym->value();
   2793 	if (sym->type() != elfcpp::STT_TLS)
   2794 	  value += od->address();
   2795 	else
   2796 	  {
   2797 	    Output_section* os = od->output_section();
   2798 	    gold_assert(os != NULL);
   2799 	    value += os->tls_offset() + (od->address() - os->address());
   2800 	  }
   2801 	if (sym->offset_is_from_end())
   2802 	  value += od->data_size();
   2803       }
   2804       break;
   2805 
   2806     case Symbol::IN_OUTPUT_SEGMENT:
   2807       {
   2808 	Output_segment* os = sym->output_segment();
   2809 	value = sym->value();
   2810         if (sym->type() != elfcpp::STT_TLS)
   2811 	  value += os->vaddr();
   2812 	switch (sym->offset_base())
   2813 	  {
   2814 	  case Symbol::SEGMENT_START:
   2815 	    break;
   2816 	  case Symbol::SEGMENT_END:
   2817 	    value += os->memsz();
   2818 	    break;
   2819 	  case Symbol::SEGMENT_BSS:
   2820 	    value += os->filesz();
   2821 	    break;
   2822 	  default:
   2823 	    gold_unreachable();
   2824 	  }
   2825       }
   2826       break;
   2827 
   2828     case Symbol::IS_CONSTANT:
   2829       value = sym->value();
   2830       break;
   2831 
   2832     case Symbol::IS_UNDEFINED:
   2833       value = 0;
   2834       break;
   2835 
   2836     default:
   2837       gold_unreachable();
   2838     }
   2839 
   2840   *pstatus = CFVS_OK;
   2841   return value;
   2842 }
   2843 
   2844 // Finalize the symbol SYM.  This returns true if the symbol should be
   2845 // added to the symbol table, false otherwise.
   2846 
   2847 template<int size>
   2848 bool
   2849 Symbol_table::sized_finalize_symbol(Symbol* unsized_sym)
   2850 {
   2851   typedef typename Sized_symbol<size>::Value_type Value_type;
   2852 
   2853   Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(unsized_sym);
   2854 
   2855   // The default version of a symbol may appear twice in the symbol
   2856   // table.  We only need to finalize it once.
   2857   if (sym->has_symtab_index())
   2858     return false;
   2859 
   2860   if (!sym->in_reg())
   2861     {
   2862       gold_assert(!sym->has_symtab_index());
   2863       sym->set_symtab_index(-1U);
   2864       gold_assert(sym->dynsym_index() == -1U);
   2865       return false;
   2866     }
   2867 
   2868   // If the symbol is only present on plugin files, the plugin decided we
   2869   // don't need it.
   2870   if (!sym->in_real_elf())
   2871     {
   2872       gold_assert(!sym->has_symtab_index());
   2873       sym->set_symtab_index(-1U);
   2874       return false;
   2875     }
   2876 
   2877   // Compute final symbol value.
   2878   Compute_final_value_status status;
   2879   Value_type value = this->compute_final_value(sym, &status);
   2880 
   2881   switch (status)
   2882     {
   2883     case CFVS_OK:
   2884       break;
   2885     case CFVS_UNSUPPORTED_SYMBOL_SECTION:
   2886       {
   2887 	bool is_ordinary;
   2888 	unsigned int shndx = sym->shndx(&is_ordinary);
   2889 	gold_error(_("%s: unsupported symbol section 0x%x"),
   2890 		   sym->demangled_name().c_str(), shndx);
   2891       }
   2892       break;
   2893     case CFVS_NO_OUTPUT_SECTION:
   2894       sym->set_symtab_index(-1U);
   2895       return false;
   2896     default:
   2897       gold_unreachable();
   2898     }
   2899 
   2900   sym->set_value(value);
   2901 
   2902   if (parameters->options().strip_all()
   2903       || !parameters->options().should_retain_symbol(sym->name()))
   2904     {
   2905       sym->set_symtab_index(-1U);
   2906       return false;
   2907     }
   2908 
   2909   return true;
   2910 }
   2911 
   2912 // Write out the global symbols.
   2913 
   2914 void
   2915 Symbol_table::write_globals(const Stringpool* sympool,
   2916 			    const Stringpool* dynpool,
   2917 			    Output_symtab_xindex* symtab_xindex,
   2918 			    Output_symtab_xindex* dynsym_xindex,
   2919 			    Output_file* of) const
   2920 {
   2921   switch (parameters->size_and_endianness())
   2922     {
   2923 #ifdef HAVE_TARGET_32_LITTLE
   2924     case Parameters::TARGET_32_LITTLE:
   2925       this->sized_write_globals<32, false>(sympool, dynpool, symtab_xindex,
   2926 					   dynsym_xindex, of);
   2927       break;
   2928 #endif
   2929 #ifdef HAVE_TARGET_32_BIG
   2930     case Parameters::TARGET_32_BIG:
   2931       this->sized_write_globals<32, true>(sympool, dynpool, symtab_xindex,
   2932 					  dynsym_xindex, of);
   2933       break;
   2934 #endif
   2935 #ifdef HAVE_TARGET_64_LITTLE
   2936     case Parameters::TARGET_64_LITTLE:
   2937       this->sized_write_globals<64, false>(sympool, dynpool, symtab_xindex,
   2938 					   dynsym_xindex, of);
   2939       break;
   2940 #endif
   2941 #ifdef HAVE_TARGET_64_BIG
   2942     case Parameters::TARGET_64_BIG:
   2943       this->sized_write_globals<64, true>(sympool, dynpool, symtab_xindex,
   2944 					  dynsym_xindex, of);
   2945       break;
   2946 #endif
   2947     default:
   2948       gold_unreachable();
   2949     }
   2950 }
   2951 
   2952 // Write out the global symbols.
   2953 
   2954 template<int size, bool big_endian>
   2955 void
   2956 Symbol_table::sized_write_globals(const Stringpool* sympool,
   2957 				  const Stringpool* dynpool,
   2958 				  Output_symtab_xindex* symtab_xindex,
   2959 				  Output_symtab_xindex* dynsym_xindex,
   2960 				  Output_file* of) const
   2961 {
   2962   const Target& target = parameters->target();
   2963 
   2964   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   2965 
   2966   const unsigned int output_count = this->output_count_;
   2967   const section_size_type oview_size = output_count * sym_size;
   2968   const unsigned int first_global_index = this->first_global_index_;
   2969   unsigned char* psyms;
   2970   if (this->offset_ == 0 || output_count == 0)
   2971     psyms = NULL;
   2972   else
   2973     psyms = of->get_output_view(this->offset_, oview_size);
   2974 
   2975   const unsigned int dynamic_count = this->dynamic_count_;
   2976   const section_size_type dynamic_size = dynamic_count * sym_size;
   2977   const unsigned int first_dynamic_global_index =
   2978     this->first_dynamic_global_index_;
   2979   unsigned char* dynamic_view;
   2980   if (this->dynamic_offset_ == 0 || dynamic_count == 0)
   2981     dynamic_view = NULL;
   2982   else
   2983     dynamic_view = of->get_output_view(this->dynamic_offset_, dynamic_size);
   2984 
   2985   for (Symbol_table_type::const_iterator p = this->table_.begin();
   2986        p != this->table_.end();
   2987        ++p)
   2988     {
   2989       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(p->second);
   2990 
   2991       // Possibly warn about unresolved symbols in shared libraries.
   2992       this->warn_about_undefined_dynobj_symbol(sym);
   2993 
   2994       unsigned int sym_index = sym->symtab_index();
   2995       unsigned int dynsym_index;
   2996       if (dynamic_view == NULL)
   2997 	dynsym_index = -1U;
   2998       else
   2999 	dynsym_index = sym->dynsym_index();
   3000 
   3001       if (sym_index == -1U && dynsym_index == -1U)
   3002 	{
   3003 	  // This symbol is not included in the output file.
   3004 	  continue;
   3005 	}
   3006 
   3007       unsigned int shndx;
   3008       typename elfcpp::Elf_types<size>::Elf_Addr sym_value = sym->value();
   3009       typename elfcpp::Elf_types<size>::Elf_Addr dynsym_value = sym_value;
   3010       elfcpp::STB binding = sym->binding();
   3011 
   3012       // If --weak-unresolved-symbols is set, change binding of unresolved
   3013       // global symbols to STB_WEAK.
   3014       if (parameters->options().weak_unresolved_symbols()
   3015 	  && binding == elfcpp::STB_GLOBAL
   3016 	  && sym->is_undefined())
   3017 	binding = elfcpp::STB_WEAK;
   3018 
   3019       // If --no-gnu-unique is set, change STB_GNU_UNIQUE to STB_GLOBAL.
   3020       if (binding == elfcpp::STB_GNU_UNIQUE
   3021 	  && !parameters->options().gnu_unique())
   3022 	binding = elfcpp::STB_GLOBAL;
   3023 
   3024       switch (sym->source())
   3025 	{
   3026 	case Symbol::FROM_OBJECT:
   3027 	  {
   3028 	    bool is_ordinary;
   3029 	    unsigned int in_shndx = sym->shndx(&is_ordinary);
   3030 
   3031 	    if (!is_ordinary
   3032 		&& in_shndx != elfcpp::SHN_ABS
   3033 		&& !Symbol::is_common_shndx(in_shndx))
   3034 	      {
   3035 		gold_error(_("%s: unsupported symbol section 0x%x"),
   3036 			   sym->demangled_name().c_str(), in_shndx);
   3037 		shndx = in_shndx;
   3038 	      }
   3039 	    else
   3040 	      {
   3041 		Object* symobj = sym->object();
   3042 		if (symobj->is_dynamic())
   3043 		  {
   3044 		    if (sym->needs_dynsym_value())
   3045 		      dynsym_value = target.dynsym_value(sym);
   3046 		    shndx = elfcpp::SHN_UNDEF;
   3047 		    if (sym->is_undef_binding_weak())
   3048 		      binding = elfcpp::STB_WEAK;
   3049 		    else
   3050 		      binding = elfcpp::STB_GLOBAL;
   3051 		  }
   3052 		else if (symobj->pluginobj() != NULL)
   3053 		  shndx = elfcpp::SHN_UNDEF;
   3054 		else if (in_shndx == elfcpp::SHN_UNDEF
   3055 			 || (!is_ordinary
   3056 			     && (in_shndx == elfcpp::SHN_ABS
   3057 				 || Symbol::is_common_shndx(in_shndx))))
   3058 		  shndx = in_shndx;
   3059 		else
   3060 		  {
   3061 		    Relobj* relobj = static_cast<Relobj*>(symobj);
   3062 		    Output_section* os = relobj->output_section(in_shndx);
   3063                     if (this->is_section_folded(relobj, in_shndx))
   3064                       {
   3065                         // This global symbol must be written out even though
   3066                         // it is folded.
   3067                         // Get the os of the section it is folded onto.
   3068                         Section_id folded =
   3069                              this->icf_->get_folded_section(relobj, in_shndx);
   3070                         gold_assert(folded.first !=NULL);
   3071                         Relobj* folded_obj =
   3072                           reinterpret_cast<Relobj*>(folded.first);
   3073                         os = folded_obj->output_section(folded.second);
   3074                         gold_assert(os != NULL);
   3075                       }
   3076 		    gold_assert(os != NULL);
   3077 		    shndx = os->out_shndx();
   3078 
   3079 		    if (shndx >= elfcpp::SHN_LORESERVE)
   3080 		      {
   3081 			if (sym_index != -1U)
   3082 			  symtab_xindex->add(sym_index, shndx);
   3083 			if (dynsym_index != -1U)
   3084 			  dynsym_xindex->add(dynsym_index, shndx);
   3085 			shndx = elfcpp::SHN_XINDEX;
   3086 		      }
   3087 
   3088 		    // In object files symbol values are section
   3089 		    // relative.
   3090 		    if (parameters->options().relocatable())
   3091 		      sym_value -= os->address();
   3092 		  }
   3093 	      }
   3094 	  }
   3095 	  break;
   3096 
   3097 	case Symbol::IN_OUTPUT_DATA:
   3098 	  {
   3099 	    Output_data* od = sym->output_data();
   3100 
   3101 	    shndx = od->out_shndx();
   3102 	    if (shndx >= elfcpp::SHN_LORESERVE)
   3103 	      {
   3104 		if (sym_index != -1U)
   3105 		  symtab_xindex->add(sym_index, shndx);
   3106 		if (dynsym_index != -1U)
   3107 		  dynsym_xindex->add(dynsym_index, shndx);
   3108 		shndx = elfcpp::SHN_XINDEX;
   3109 	      }
   3110 
   3111 	    // In object files symbol values are section
   3112 	    // relative.
   3113 	    if (parameters->options().relocatable())
   3114 	      sym_value -= od->address();
   3115 	  }
   3116 	  break;
   3117 
   3118 	case Symbol::IN_OUTPUT_SEGMENT:
   3119 	  shndx = elfcpp::SHN_ABS;
   3120 	  break;
   3121 
   3122 	case Symbol::IS_CONSTANT:
   3123 	  shndx = elfcpp::SHN_ABS;
   3124 	  break;
   3125 
   3126 	case Symbol::IS_UNDEFINED:
   3127 	  shndx = elfcpp::SHN_UNDEF;
   3128 	  break;
   3129 
   3130 	default:
   3131 	  gold_unreachable();
   3132 	}
   3133 
   3134       if (sym_index != -1U)
   3135 	{
   3136 	  sym_index -= first_global_index;
   3137 	  gold_assert(sym_index < output_count);
   3138 	  unsigned char* ps = psyms + (sym_index * sym_size);
   3139 	  this->sized_write_symbol<size, big_endian>(sym, sym_value, shndx,
   3140 						     binding, sympool, ps);
   3141 	}
   3142 
   3143       if (dynsym_index != -1U)
   3144 	{
   3145 	  dynsym_index -= first_dynamic_global_index;
   3146 	  gold_assert(dynsym_index < dynamic_count);
   3147 	  unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
   3148 	  this->sized_write_symbol<size, big_endian>(sym, dynsym_value, shndx,
   3149 						     binding, dynpool, pd);
   3150           // Allow a target to adjust dynamic symbol value.
   3151           parameters->target().adjust_dyn_symbol(sym, pd);
   3152 	}
   3153     }
   3154 
   3155   // Write the target-specific symbols.
   3156   for (std::vector<Symbol*>::const_iterator p = this->target_symbols_.begin();
   3157        p != this->target_symbols_.end();
   3158        ++p)
   3159     {
   3160       Sized_symbol<size>* sym = static_cast<Sized_symbol<size>*>(*p);
   3161 
   3162       unsigned int sym_index = sym->symtab_index();
   3163       unsigned int dynsym_index;
   3164       if (dynamic_view == NULL)
   3165 	dynsym_index = -1U;
   3166       else
   3167 	dynsym_index = sym->dynsym_index();
   3168 
   3169       unsigned int shndx;
   3170       switch (sym->source())
   3171 	{
   3172 	case Symbol::IS_CONSTANT:
   3173 	  shndx = elfcpp::SHN_ABS;
   3174 	  break;
   3175 	case Symbol::IS_UNDEFINED:
   3176 	  shndx = elfcpp::SHN_UNDEF;
   3177 	  break;
   3178 	default:
   3179 	  gold_unreachable();
   3180 	}
   3181 
   3182       if (sym_index != -1U)
   3183 	{
   3184 	  sym_index -= first_global_index;
   3185 	  gold_assert(sym_index < output_count);
   3186 	  unsigned char* ps = psyms + (sym_index * sym_size);
   3187 	  this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
   3188 						     sym->binding(), sympool,
   3189 						     ps);
   3190 	}
   3191 
   3192       if (dynsym_index != -1U)
   3193 	{
   3194 	  dynsym_index -= first_dynamic_global_index;
   3195 	  gold_assert(dynsym_index < dynamic_count);
   3196 	  unsigned char* pd = dynamic_view + (dynsym_index * sym_size);
   3197 	  this->sized_write_symbol<size, big_endian>(sym, sym->value(), shndx,
   3198 						     sym->binding(), dynpool,
   3199 						     pd);
   3200 	}
   3201     }
   3202 
   3203   of->write_output_view(this->offset_, oview_size, psyms);
   3204   if (dynamic_view != NULL)
   3205     of->write_output_view(this->dynamic_offset_, dynamic_size, dynamic_view);
   3206 }
   3207 
   3208 // Write out the symbol SYM, in section SHNDX, to P.  POOL is the
   3209 // strtab holding the name.
   3210 
   3211 template<int size, bool big_endian>
   3212 void
   3213 Symbol_table::sized_write_symbol(
   3214     Sized_symbol<size>* sym,
   3215     typename elfcpp::Elf_types<size>::Elf_Addr value,
   3216     unsigned int shndx,
   3217     elfcpp::STB binding,
   3218     const Stringpool* pool,
   3219     unsigned char* p) const
   3220 {
   3221   elfcpp::Sym_write<size, big_endian> osym(p);
   3222   if (sym->version() == NULL || !parameters->options().relocatable())
   3223     osym.put_st_name(pool->get_offset(sym->name()));
   3224   else
   3225     osym.put_st_name(pool->get_offset(sym->versioned_name()));
   3226   osym.put_st_value(value);
   3227   // Use a symbol size of zero for undefined symbols from shared libraries.
   3228   if (shndx == elfcpp::SHN_UNDEF && sym->is_from_dynobj())
   3229     osym.put_st_size(0);
   3230   else
   3231     osym.put_st_size(sym->symsize());
   3232   elfcpp::STT type = sym->type();
   3233   gold_assert(type != elfcpp::STT_GNU_IFUNC || !sym->is_from_dynobj());
   3234   // A version script may have overridden the default binding.
   3235   if (sym->is_forced_local())
   3236     osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL, type));
   3237   else
   3238     osym.put_st_info(elfcpp::elf_st_info(binding, type));
   3239   osym.put_st_other(elfcpp::elf_st_other(sym->visibility(), sym->nonvis()));
   3240   osym.put_st_shndx(shndx);
   3241 }
   3242 
   3243 // Check for unresolved symbols in shared libraries.  This is
   3244 // controlled by the --allow-shlib-undefined option.
   3245 
   3246 // We only warn about libraries for which we have seen all the
   3247 // DT_NEEDED entries.  We don't try to track down DT_NEEDED entries
   3248 // which were not seen in this link.  If we didn't see a DT_NEEDED
   3249 // entry, we aren't going to be able to reliably report whether the
   3250 // symbol is undefined.
   3251 
   3252 // We also don't warn about libraries found in a system library
   3253 // directory (e.g., /lib or /usr/lib); we assume that those libraries
   3254 // are OK.  This heuristic avoids problems on GNU/Linux, in which -ldl
   3255 // can have undefined references satisfied by ld-linux.so.
   3256 
   3257 inline void
   3258 Symbol_table::warn_about_undefined_dynobj_symbol(Symbol* sym) const
   3259 {
   3260   bool dummy;
   3261   if (sym->source() == Symbol::FROM_OBJECT
   3262       && sym->object()->is_dynamic()
   3263       && sym->shndx(&dummy) == elfcpp::SHN_UNDEF
   3264       && sym->binding() != elfcpp::STB_WEAK
   3265       && !parameters->options().allow_shlib_undefined()
   3266       && !parameters->target().is_defined_by_abi(sym)
   3267       && !sym->object()->is_in_system_directory())
   3268     {
   3269       // A very ugly cast.
   3270       Dynobj* dynobj = static_cast<Dynobj*>(sym->object());
   3271       if (!dynobj->has_unknown_needed_entries())
   3272         gold_undefined_symbol(sym);
   3273     }
   3274 }
   3275 
   3276 // Write out a section symbol.  Return the update offset.
   3277 
   3278 void
   3279 Symbol_table::write_section_symbol(const Output_section* os,
   3280 				   Output_symtab_xindex* symtab_xindex,
   3281 				   Output_file* of,
   3282 				   off_t offset) const
   3283 {
   3284   switch (parameters->size_and_endianness())
   3285     {
   3286 #ifdef HAVE_TARGET_32_LITTLE
   3287     case Parameters::TARGET_32_LITTLE:
   3288       this->sized_write_section_symbol<32, false>(os, symtab_xindex, of,
   3289 						  offset);
   3290       break;
   3291 #endif
   3292 #ifdef HAVE_TARGET_32_BIG
   3293     case Parameters::TARGET_32_BIG:
   3294       this->sized_write_section_symbol<32, true>(os, symtab_xindex, of,
   3295 						 offset);
   3296       break;
   3297 #endif
   3298 #ifdef HAVE_TARGET_64_LITTLE
   3299     case Parameters::TARGET_64_LITTLE:
   3300       this->sized_write_section_symbol<64, false>(os, symtab_xindex, of,
   3301 						  offset);
   3302       break;
   3303 #endif
   3304 #ifdef HAVE_TARGET_64_BIG
   3305     case Parameters::TARGET_64_BIG:
   3306       this->sized_write_section_symbol<64, true>(os, symtab_xindex, of,
   3307 						 offset);
   3308       break;
   3309 #endif
   3310     default:
   3311       gold_unreachable();
   3312     }
   3313 }
   3314 
   3315 // Write out a section symbol, specialized for size and endianness.
   3316 
   3317 template<int size, bool big_endian>
   3318 void
   3319 Symbol_table::sized_write_section_symbol(const Output_section* os,
   3320 					 Output_symtab_xindex* symtab_xindex,
   3321 					 Output_file* of,
   3322 					 off_t offset) const
   3323 {
   3324   const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
   3325 
   3326   unsigned char* pov = of->get_output_view(offset, sym_size);
   3327 
   3328   elfcpp::Sym_write<size, big_endian> osym(pov);
   3329   osym.put_st_name(0);
   3330   if (parameters->options().relocatable())
   3331     osym.put_st_value(0);
   3332   else
   3333     osym.put_st_value(os->address());
   3334   osym.put_st_size(0);
   3335   osym.put_st_info(elfcpp::elf_st_info(elfcpp::STB_LOCAL,
   3336 				       elfcpp::STT_SECTION));
   3337   osym.put_st_other(elfcpp::elf_st_other(elfcpp::STV_DEFAULT, 0));
   3338 
   3339   unsigned int shndx = os->out_shndx();
   3340   if (shndx >= elfcpp::SHN_LORESERVE)
   3341     {
   3342       symtab_xindex->add(os->symtab_index(), shndx);
   3343       shndx = elfcpp::SHN_XINDEX;
   3344     }
   3345   osym.put_st_shndx(shndx);
   3346 
   3347   of->write_output_view(offset, sym_size, pov);
   3348 }
   3349 
   3350 // Print statistical information to stderr.  This is used for --stats.
   3351 
   3352 void
   3353 Symbol_table::print_stats() const
   3354 {
   3355 #if defined(HAVE_TR1_UNORDERED_MAP) || defined(HAVE_EXT_HASH_MAP)
   3356   fprintf(stderr, _("%s: symbol table entries: %zu; buckets: %zu\n"),
   3357 	  program_name, this->table_.size(), this->table_.bucket_count());
   3358 #else
   3359   fprintf(stderr, _("%s: symbol table entries: %zu\n"),
   3360 	  program_name, this->table_.size());
   3361 #endif
   3362   this->namepool_.print_stats("symbol table stringpool");
   3363 }
   3364 
   3365 // We check for ODR violations by looking for symbols with the same
   3366 // name for which the debugging information reports that they were
   3367 // defined in disjoint source locations.  When comparing the source
   3368 // location, we consider instances with the same base filename to be
   3369 // the same.  This is because different object files/shared libraries
   3370 // can include the same header file using different paths, and
   3371 // different optimization settings can make the line number appear to
   3372 // be a couple lines off, and we don't want to report an ODR violation
   3373 // in those cases.
   3374 
   3375 // This struct is used to compare line information, as returned by
   3376 // Dwarf_line_info::one_addr2line.  It implements a < comparison
   3377 // operator used with std::sort.
   3378 
   3379 struct Odr_violation_compare
   3380 {
   3381   bool
   3382   operator()(const std::string& s1, const std::string& s2) const
   3383   {
   3384     // Inputs should be of the form "dirname/filename:linenum" where
   3385     // "dirname/" is optional.  We want to compare just the filename:linenum.
   3386 
   3387     // Find the last '/' in each string.
   3388     std::string::size_type s1begin = s1.rfind('/');
   3389     std::string::size_type s2begin = s2.rfind('/');
   3390     // If there was no '/' in a string, start at the beginning.
   3391     if (s1begin == std::string::npos)
   3392       s1begin = 0;
   3393     if (s2begin == std::string::npos)
   3394       s2begin = 0;
   3395     return s1.compare(s1begin, std::string::npos,
   3396 		      s2, s2begin, std::string::npos) < 0;
   3397   }
   3398 };
   3399 
   3400 // Returns all of the lines attached to LOC, not just the one the
   3401 // instruction actually came from.
   3402 std::vector<std::string>
   3403 Symbol_table::linenos_from_loc(const Task* task,
   3404                                const Symbol_location& loc)
   3405 {
   3406   // We need to lock the object in order to read it.  This
   3407   // means that we have to run in a singleton Task.  If we
   3408   // want to run this in a general Task for better
   3409   // performance, we will need one Task for object, plus
   3410   // appropriate locking to ensure that we don't conflict with
   3411   // other uses of the object.  Also note, one_addr2line is not
   3412   // currently thread-safe.
   3413   Task_lock_obj<Object> tl(task, loc.object);
   3414 
   3415   std::vector<std::string> result;
   3416   Symbol_location code_loc = loc;
   3417   parameters->target().function_location(&code_loc);
   3418   // 16 is the size of the object-cache that one_addr2line should use.
   3419   std::string canonical_result = Dwarf_line_info::one_addr2line(
   3420       code_loc.object, code_loc.shndx, code_loc.offset, 16, &result);
   3421   if (!canonical_result.empty())
   3422     result.push_back(canonical_result);
   3423   return result;
   3424 }
   3425 
   3426 // OutputIterator that records if it was ever assigned to.  This
   3427 // allows it to be used with std::set_intersection() to check for
   3428 // intersection rather than computing the intersection.
   3429 struct Check_intersection
   3430 {
   3431   Check_intersection()
   3432     : value_(false)
   3433   {}
   3434 
   3435   bool had_intersection() const
   3436   { return this->value_; }
   3437 
   3438   Check_intersection& operator++()
   3439   { return *this; }
   3440 
   3441   Check_intersection& operator*()
   3442   { return *this; }
   3443 
   3444   template<typename T>
   3445   Check_intersection& operator=(const T&)
   3446   {
   3447     this->value_ = true;
   3448     return *this;
   3449   }
   3450 
   3451  private:
   3452   bool value_;
   3453 };
   3454 
   3455 // Check candidate_odr_violations_ to find symbols with the same name
   3456 // but apparently different definitions (different source-file/line-no
   3457 // for each line assigned to the first instruction).
   3458 
   3459 void
   3460 Symbol_table::detect_odr_violations(const Task* task,
   3461 				    const char* output_file_name) const
   3462 {
   3463   for (Odr_map::const_iterator it = candidate_odr_violations_.begin();
   3464        it != candidate_odr_violations_.end();
   3465        ++it)
   3466     {
   3467       const char* const symbol_name = it->first;
   3468 
   3469       std::string first_object_name;
   3470       std::vector<std::string> first_object_linenos;
   3471 
   3472       Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
   3473           locs = it->second.begin();
   3474       const Unordered_set<Symbol_location, Symbol_location_hash>::const_iterator
   3475           locs_end = it->second.end();
   3476       for (; locs != locs_end && first_object_linenos.empty(); ++locs)
   3477         {
   3478           // Save the line numbers from the first definition to
   3479           // compare to the other definitions.  Ideally, we'd compare
   3480           // every definition to every other, but we don't want to
   3481           // take O(N^2) time to do this.  This shortcut may cause
   3482           // false negatives that appear or disappear depending on the
   3483           // link order, but it won't cause false positives.
   3484           first_object_name = locs->object->name();
   3485           first_object_linenos = this->linenos_from_loc(task, *locs);
   3486         }
   3487       if (first_object_linenos.empty())
   3488 	continue;
   3489 
   3490       // Sort by Odr_violation_compare to make std::set_intersection work.
   3491       std::string first_object_canonical_result = first_object_linenos.back();
   3492       std::sort(first_object_linenos.begin(), first_object_linenos.end(),
   3493                 Odr_violation_compare());
   3494 
   3495       for (; locs != locs_end; ++locs)
   3496         {
   3497           std::vector<std::string> linenos =
   3498               this->linenos_from_loc(task, *locs);
   3499           // linenos will be empty if we couldn't parse the debug info.
   3500           if (linenos.empty())
   3501             continue;
   3502           // Sort by Odr_violation_compare to make std::set_intersection work.
   3503           gold_assert(!linenos.empty());
   3504           std::string second_object_canonical_result = linenos.back();
   3505           std::sort(linenos.begin(), linenos.end(), Odr_violation_compare());
   3506 
   3507           Check_intersection intersection_result =
   3508               std::set_intersection(first_object_linenos.begin(),
   3509                                     first_object_linenos.end(),
   3510                                     linenos.begin(),
   3511                                     linenos.end(),
   3512                                     Check_intersection(),
   3513                                     Odr_violation_compare());
   3514           if (!intersection_result.had_intersection())
   3515             {
   3516               gold_warning(_("while linking %s: symbol '%s' defined in "
   3517                              "multiple places (possible ODR violation):"),
   3518                            output_file_name, demangle(symbol_name).c_str());
   3519               // This only prints one location from each definition,
   3520               // which may not be the location we expect to intersect
   3521               // with another definition.  We could print the whole
   3522               // set of locations, but that seems too verbose.
   3523               fprintf(stderr, _("  %s from %s\n"),
   3524                       first_object_canonical_result.c_str(),
   3525                       first_object_name.c_str());
   3526               fprintf(stderr, _("  %s from %s\n"),
   3527                       second_object_canonical_result.c_str(),
   3528                       locs->object->name().c_str());
   3529               // Only print one broken pair, to avoid needing to
   3530               // compare against a list of the disjoint definition
   3531               // locations we've found so far.  (If we kept comparing
   3532               // against just the first one, we'd get a lot of
   3533               // redundant complaints about the second definition
   3534               // location.)
   3535               break;
   3536             }
   3537         }
   3538     }
   3539   // We only call one_addr2line() in this function, so we can clear its cache.
   3540   Dwarf_line_info::clear_addr2line_cache();
   3541 }
   3542 
   3543 // Warnings functions.
   3544 
   3545 // Add a new warning.
   3546 
   3547 void
   3548 Warnings::add_warning(Symbol_table* symtab, const char* name, Object* obj,
   3549 		      const std::string& warning)
   3550 {
   3551   name = symtab->canonicalize_name(name);
   3552   this->warnings_[name].set(obj, warning);
   3553 }
   3554 
   3555 // Look through the warnings and mark the symbols for which we should
   3556 // warn.  This is called during Layout::finalize when we know the
   3557 // sources for all the symbols.
   3558 
   3559 void
   3560 Warnings::note_warnings(Symbol_table* symtab)
   3561 {
   3562   for (Warning_table::iterator p = this->warnings_.begin();
   3563        p != this->warnings_.end();
   3564        ++p)
   3565     {
   3566       Symbol* sym = symtab->lookup(p->first, NULL);
   3567       if (sym != NULL
   3568 	  && sym->source() == Symbol::FROM_OBJECT
   3569 	  && sym->object() == p->second.object)
   3570 	sym->set_has_warning();
   3571     }
   3572 }
   3573 
   3574 // Issue a warning.  This is called when we see a relocation against a
   3575 // symbol for which has a warning.
   3576 
   3577 template<int size, bool big_endian>
   3578 void
   3579 Warnings::issue_warning(const Symbol* sym,
   3580 			const Relocate_info<size, big_endian>* relinfo,
   3581 			size_t relnum, off_t reloffset) const
   3582 {
   3583   gold_assert(sym->has_warning());
   3584 
   3585   // We don't want to issue a warning for a relocation against the
   3586   // symbol in the same object file in which the symbol is defined.
   3587   if (sym->object() == relinfo->object)
   3588     return;
   3589 
   3590   Warning_table::const_iterator p = this->warnings_.find(sym->name());
   3591   gold_assert(p != this->warnings_.end());
   3592   gold_warning_at_location(relinfo, relnum, reloffset,
   3593 			   "%s", p->second.text.c_str());
   3594 }
   3595 
   3596 // Instantiate the templates we need.  We could use the configure
   3597 // script to restrict this to only the ones needed for implemented
   3598 // targets.
   3599 
   3600 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   3601 template
   3602 void
   3603 Sized_symbol<32>::allocate_common(Output_data*, Value_type);
   3604 #endif
   3605 
   3606 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   3607 template
   3608 void
   3609 Sized_symbol<64>::allocate_common(Output_data*, Value_type);
   3610 #endif
   3611 
   3612 #ifdef HAVE_TARGET_32_LITTLE
   3613 template
   3614 void
   3615 Symbol_table::add_from_relobj<32, false>(
   3616     Sized_relobj_file<32, false>* relobj,
   3617     const unsigned char* syms,
   3618     size_t count,
   3619     size_t symndx_offset,
   3620     const char* sym_names,
   3621     size_t sym_name_size,
   3622     Sized_relobj_file<32, false>::Symbols* sympointers,
   3623     size_t* defined);
   3624 #endif
   3625 
   3626 #ifdef HAVE_TARGET_32_BIG
   3627 template
   3628 void
   3629 Symbol_table::add_from_relobj<32, true>(
   3630     Sized_relobj_file<32, true>* relobj,
   3631     const unsigned char* syms,
   3632     size_t count,
   3633     size_t symndx_offset,
   3634     const char* sym_names,
   3635     size_t sym_name_size,
   3636     Sized_relobj_file<32, true>::Symbols* sympointers,
   3637     size_t* defined);
   3638 #endif
   3639 
   3640 #ifdef HAVE_TARGET_64_LITTLE
   3641 template
   3642 void
   3643 Symbol_table::add_from_relobj<64, false>(
   3644     Sized_relobj_file<64, false>* relobj,
   3645     const unsigned char* syms,
   3646     size_t count,
   3647     size_t symndx_offset,
   3648     const char* sym_names,
   3649     size_t sym_name_size,
   3650     Sized_relobj_file<64, false>::Symbols* sympointers,
   3651     size_t* defined);
   3652 #endif
   3653 
   3654 #ifdef HAVE_TARGET_64_BIG
   3655 template
   3656 void
   3657 Symbol_table::add_from_relobj<64, true>(
   3658     Sized_relobj_file<64, true>* relobj,
   3659     const unsigned char* syms,
   3660     size_t count,
   3661     size_t symndx_offset,
   3662     const char* sym_names,
   3663     size_t sym_name_size,
   3664     Sized_relobj_file<64, true>::Symbols* sympointers,
   3665     size_t* defined);
   3666 #endif
   3667 
   3668 #ifdef HAVE_TARGET_32_LITTLE
   3669 template
   3670 Symbol*
   3671 Symbol_table::add_from_pluginobj<32, false>(
   3672     Sized_pluginobj<32, false>* obj,
   3673     const char* name,
   3674     const char* ver,
   3675     elfcpp::Sym<32, false>* sym);
   3676 #endif
   3677 
   3678 #ifdef HAVE_TARGET_32_BIG
   3679 template
   3680 Symbol*
   3681 Symbol_table::add_from_pluginobj<32, true>(
   3682     Sized_pluginobj<32, true>* obj,
   3683     const char* name,
   3684     const char* ver,
   3685     elfcpp::Sym<32, true>* sym);
   3686 #endif
   3687 
   3688 #ifdef HAVE_TARGET_64_LITTLE
   3689 template
   3690 Symbol*
   3691 Symbol_table::add_from_pluginobj<64, false>(
   3692     Sized_pluginobj<64, false>* obj,
   3693     const char* name,
   3694     const char* ver,
   3695     elfcpp::Sym<64, false>* sym);
   3696 #endif
   3697 
   3698 #ifdef HAVE_TARGET_64_BIG
   3699 template
   3700 Symbol*
   3701 Symbol_table::add_from_pluginobj<64, true>(
   3702     Sized_pluginobj<64, true>* obj,
   3703     const char* name,
   3704     const char* ver,
   3705     elfcpp::Sym<64, true>* sym);
   3706 #endif
   3707 
   3708 #ifdef HAVE_TARGET_32_LITTLE
   3709 template
   3710 void
   3711 Symbol_table::add_from_dynobj<32, false>(
   3712     Sized_dynobj<32, false>* dynobj,
   3713     const unsigned char* syms,
   3714     size_t count,
   3715     const char* sym_names,
   3716     size_t sym_name_size,
   3717     const unsigned char* versym,
   3718     size_t versym_size,
   3719     const std::vector<const char*>* version_map,
   3720     Sized_relobj_file<32, false>::Symbols* sympointers,
   3721     size_t* defined);
   3722 #endif
   3723 
   3724 #ifdef HAVE_TARGET_32_BIG
   3725 template
   3726 void
   3727 Symbol_table::add_from_dynobj<32, true>(
   3728     Sized_dynobj<32, true>* dynobj,
   3729     const unsigned char* syms,
   3730     size_t count,
   3731     const char* sym_names,
   3732     size_t sym_name_size,
   3733     const unsigned char* versym,
   3734     size_t versym_size,
   3735     const std::vector<const char*>* version_map,
   3736     Sized_relobj_file<32, true>::Symbols* sympointers,
   3737     size_t* defined);
   3738 #endif
   3739 
   3740 #ifdef HAVE_TARGET_64_LITTLE
   3741 template
   3742 void
   3743 Symbol_table::add_from_dynobj<64, false>(
   3744     Sized_dynobj<64, false>* dynobj,
   3745     const unsigned char* syms,
   3746     size_t count,
   3747     const char* sym_names,
   3748     size_t sym_name_size,
   3749     const unsigned char* versym,
   3750     size_t versym_size,
   3751     const std::vector<const char*>* version_map,
   3752     Sized_relobj_file<64, false>::Symbols* sympointers,
   3753     size_t* defined);
   3754 #endif
   3755 
   3756 #ifdef HAVE_TARGET_64_BIG
   3757 template
   3758 void
   3759 Symbol_table::add_from_dynobj<64, true>(
   3760     Sized_dynobj<64, true>* dynobj,
   3761     const unsigned char* syms,
   3762     size_t count,
   3763     const char* sym_names,
   3764     size_t sym_name_size,
   3765     const unsigned char* versym,
   3766     size_t versym_size,
   3767     const std::vector<const char*>* version_map,
   3768     Sized_relobj_file<64, true>::Symbols* sympointers,
   3769     size_t* defined);
   3770 #endif
   3771 
   3772 #ifdef HAVE_TARGET_32_LITTLE
   3773 template
   3774 Sized_symbol<32>*
   3775 Symbol_table::add_from_incrobj(
   3776     Object* obj,
   3777     const char* name,
   3778     const char* ver,
   3779     elfcpp::Sym<32, false>* sym);
   3780 #endif
   3781 
   3782 #ifdef HAVE_TARGET_32_BIG
   3783 template
   3784 Sized_symbol<32>*
   3785 Symbol_table::add_from_incrobj(
   3786     Object* obj,
   3787     const char* name,
   3788     const char* ver,
   3789     elfcpp::Sym<32, true>* sym);
   3790 #endif
   3791 
   3792 #ifdef HAVE_TARGET_64_LITTLE
   3793 template
   3794 Sized_symbol<64>*
   3795 Symbol_table::add_from_incrobj(
   3796     Object* obj,
   3797     const char* name,
   3798     const char* ver,
   3799     elfcpp::Sym<64, false>* sym);
   3800 #endif
   3801 
   3802 #ifdef HAVE_TARGET_64_BIG
   3803 template
   3804 Sized_symbol<64>*
   3805 Symbol_table::add_from_incrobj(
   3806     Object* obj,
   3807     const char* name,
   3808     const char* ver,
   3809     elfcpp::Sym<64, true>* sym);
   3810 #endif
   3811 
   3812 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   3813 template
   3814 void
   3815 Symbol_table::define_with_copy_reloc<32>(
   3816     Sized_symbol<32>* sym,
   3817     Output_data* posd,
   3818     elfcpp::Elf_types<32>::Elf_Addr value);
   3819 #endif
   3820 
   3821 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   3822 template
   3823 void
   3824 Symbol_table::define_with_copy_reloc<64>(
   3825     Sized_symbol<64>* sym,
   3826     Output_data* posd,
   3827     elfcpp::Elf_types<64>::Elf_Addr value);
   3828 #endif
   3829 
   3830 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
   3831 template
   3832 void
   3833 Sized_symbol<32>::init_output_data(const char* name, const char* version,
   3834 				   Output_data* od, Value_type value,
   3835 				   Size_type symsize, elfcpp::STT type,
   3836 				   elfcpp::STB binding,
   3837 				   elfcpp::STV visibility,
   3838 				   unsigned char nonvis,
   3839 				   bool offset_is_from_end,
   3840 				   bool is_predefined);
   3841 
   3842 template
   3843 void
   3844 Sized_symbol<32>::init_constant(const char* name, const char* version,
   3845 				Value_type value, Size_type symsize,
   3846 				elfcpp::STT type, elfcpp::STB binding,
   3847 				elfcpp::STV visibility, unsigned char nonvis,
   3848 				bool is_predefined);
   3849 
   3850 template
   3851 void
   3852 Sized_symbol<32>::init_undefined(const char* name, const char* version,
   3853 				 Value_type value, elfcpp::STT type,
   3854 				 elfcpp::STB binding, elfcpp::STV visibility,
   3855 				 unsigned char nonvis);
   3856 #endif
   3857 
   3858 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
   3859 template
   3860 void
   3861 Sized_symbol<64>::init_output_data(const char* name, const char* version,
   3862 				   Output_data* od, Value_type value,
   3863 				   Size_type symsize, elfcpp::STT type,
   3864 				   elfcpp::STB binding,
   3865 				   elfcpp::STV visibility,
   3866 				   unsigned char nonvis,
   3867 				   bool offset_is_from_end,
   3868 				   bool is_predefined);
   3869 
   3870 template
   3871 void
   3872 Sized_symbol<64>::init_constant(const char* name, const char* version,
   3873 				Value_type value, Size_type symsize,
   3874 				elfcpp::STT type, elfcpp::STB binding,
   3875 				elfcpp::STV visibility, unsigned char nonvis,
   3876 				bool is_predefined);
   3877 
   3878 template
   3879 void
   3880 Sized_symbol<64>::init_undefined(const char* name, const char* version,
   3881 				 Value_type value, elfcpp::STT type,
   3882 				 elfcpp::STB binding, elfcpp::STV visibility,
   3883 				 unsigned char nonvis);
   3884 #endif
   3885 
   3886 #ifdef HAVE_TARGET_32_LITTLE
   3887 template
   3888 void
   3889 Warnings::issue_warning<32, false>(const Symbol* sym,
   3890 				   const Relocate_info<32, false>* relinfo,
   3891 				   size_t relnum, off_t reloffset) const;
   3892 #endif
   3893 
   3894 #ifdef HAVE_TARGET_32_BIG
   3895 template
   3896 void
   3897 Warnings::issue_warning<32, true>(const Symbol* sym,
   3898 				  const Relocate_info<32, true>* relinfo,
   3899 				  size_t relnum, off_t reloffset) const;
   3900 #endif
   3901 
   3902 #ifdef HAVE_TARGET_64_LITTLE
   3903 template
   3904 void
   3905 Warnings::issue_warning<64, false>(const Symbol* sym,
   3906 				   const Relocate_info<64, false>* relinfo,
   3907 				   size_t relnum, off_t reloffset) const;
   3908 #endif
   3909 
   3910 #ifdef HAVE_TARGET_64_BIG
   3911 template
   3912 void
   3913 Warnings::issue_warning<64, true>(const Symbol* sym,
   3914 				  const Relocate_info<64, true>* relinfo,
   3915 				  size_t relnum, off_t reloffset) const;
   3916 #endif
   3917 
   3918 } // End namespace gold.
   3919