Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "thread.h"
     18 
     19 #include <limits.h>  // for INT_MAX
     20 #include <pthread.h>
     21 #include <signal.h>
     22 #include <sys/resource.h>
     23 #include <sys/time.h>
     24 
     25 #if __has_feature(hwaddress_sanitizer)
     26 #include <sanitizer/hwasan_interface.h>
     27 #else
     28 #define __hwasan_tag_pointer(p, t) (p)
     29 #endif
     30 
     31 #include <algorithm>
     32 #include <bitset>
     33 #include <cerrno>
     34 #include <iostream>
     35 #include <list>
     36 #include <sstream>
     37 
     38 #include "android-base/stringprintf.h"
     39 #include "android-base/strings.h"
     40 
     41 #include "arch/context-inl.h"
     42 #include "arch/context.h"
     43 #include "art_field-inl.h"
     44 #include "art_method-inl.h"
     45 #include "base/atomic.h"
     46 #include "base/bit_utils.h"
     47 #include "base/casts.h"
     48 #include "arch/context.h"
     49 #include "base/file_utils.h"
     50 #include "base/memory_tool.h"
     51 #include "base/mutex.h"
     52 #include "base/stl_util.h"
     53 #include "base/systrace.h"
     54 #include "base/timing_logger.h"
     55 #include "base/to_str.h"
     56 #include "base/utils.h"
     57 #include "class_linker-inl.h"
     58 #include "class_root.h"
     59 #include "debugger.h"
     60 #include "dex/descriptors_names.h"
     61 #include "dex/dex_file-inl.h"
     62 #include "dex/dex_file_annotations.h"
     63 #include "dex/dex_file_types.h"
     64 #include "entrypoints/entrypoint_utils.h"
     65 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     66 #include "gc/accounting/card_table-inl.h"
     67 #include "gc/accounting/heap_bitmap-inl.h"
     68 #include "gc/allocator/rosalloc.h"
     69 #include "gc/heap.h"
     70 #include "gc/space/space-inl.h"
     71 #include "gc_root.h"
     72 #include "handle_scope-inl.h"
     73 #include "indirect_reference_table-inl.h"
     74 #include "instrumentation.h"
     75 #include "interpreter/interpreter.h"
     76 #include "interpreter/mterp/mterp.h"
     77 #include "interpreter/shadow_frame-inl.h"
     78 #include "java_frame_root_info.h"
     79 #include "jni/java_vm_ext.h"
     80 #include "jni/jni_internal.h"
     81 #include "mirror/class-alloc-inl.h"
     82 #include "mirror/class_loader.h"
     83 #include "mirror/object_array-alloc-inl.h"
     84 #include "mirror/object_array-inl.h"
     85 #include "mirror/stack_trace_element.h"
     86 #include "monitor.h"
     87 #include "monitor_objects_stack_visitor.h"
     88 #include "native_stack_dump.h"
     89 #include "nativehelper/scoped_local_ref.h"
     90 #include "nativehelper/scoped_utf_chars.h"
     91 #include "nth_caller_visitor.h"
     92 #include "oat_quick_method_header.h"
     93 #include "obj_ptr-inl.h"
     94 #include "object_lock.h"
     95 #include "palette/palette.h"
     96 #include "quick/quick_method_frame_info.h"
     97 #include "quick_exception_handler.h"
     98 #include "read_barrier-inl.h"
     99 #include "reflection.h"
    100 #include "runtime-inl.h"
    101 #include "runtime.h"
    102 #include "runtime_callbacks.h"
    103 #include "scoped_thread_state_change-inl.h"
    104 #include "stack.h"
    105 #include "stack_map.h"
    106 #include "thread-inl.h"
    107 #include "thread_list.h"
    108 #include "verifier/method_verifier.h"
    109 #include "verify_object.h"
    110 #include "well_known_classes.h"
    111 
    112 #if ART_USE_FUTEXES
    113 #include "linux/futex.h"
    114 #include "sys/syscall.h"
    115 #ifndef SYS_futex
    116 #define SYS_futex __NR_futex
    117 #endif
    118 #endif  // ART_USE_FUTEXES
    119 
    120 namespace art {
    121 
    122 using android::base::StringAppendV;
    123 using android::base::StringPrintf;
    124 
    125 extern "C" NO_RETURN void artDeoptimize(Thread* self);
    126 
    127 bool Thread::is_started_ = false;
    128 pthread_key_t Thread::pthread_key_self_;
    129 ConditionVariable* Thread::resume_cond_ = nullptr;
    130 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
    131 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
    132 Thread* Thread::jit_sensitive_thread_ = nullptr;
    133 
    134 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
    135 
    136 // For implicit overflow checks we reserve an extra piece of memory at the bottom
    137 // of the stack (lowest memory).  The higher portion of the memory
    138 // is protected against reads and the lower is available for use while
    139 // throwing the StackOverflow exception.
    140 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
    141 
    142 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
    143 
    144 void Thread::InitCardTable() {
    145   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
    146 }
    147 
    148 static void UnimplementedEntryPoint() {
    149   UNIMPLEMENTED(FATAL);
    150 }
    151 
    152 void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
    153 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
    154 
    155 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
    156   CHECK(kUseReadBarrier);
    157   tls32_.is_gc_marking = is_marking;
    158   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking);
    159   ResetQuickAllocEntryPointsForThread(is_marking);
    160 }
    161 
    162 void Thread::InitTlsEntryPoints() {
    163   ScopedTrace trace("InitTlsEntryPoints");
    164   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
    165   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
    166   uintptr_t* end = reinterpret_cast<uintptr_t*>(
    167       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
    168   for (uintptr_t* it = begin; it != end; ++it) {
    169     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
    170   }
    171   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
    172 }
    173 
    174 void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
    175   if (kUseReadBarrier && kRuntimeISA != InstructionSet::kX86_64) {
    176     // Allocation entrypoint switching is currently only implemented for X86_64.
    177     is_marking = true;
    178   }
    179   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
    180 }
    181 
    182 class DeoptimizationContextRecord {
    183  public:
    184   DeoptimizationContextRecord(const JValue& ret_val,
    185                               bool is_reference,
    186                               bool from_code,
    187                               ObjPtr<mirror::Throwable> pending_exception,
    188                               DeoptimizationMethodType method_type,
    189                               DeoptimizationContextRecord* link)
    190       : ret_val_(ret_val),
    191         is_reference_(is_reference),
    192         from_code_(from_code),
    193         pending_exception_(pending_exception.Ptr()),
    194         deopt_method_type_(method_type),
    195         link_(link) {}
    196 
    197   JValue GetReturnValue() const { return ret_val_; }
    198   bool IsReference() const { return is_reference_; }
    199   bool GetFromCode() const { return from_code_; }
    200   ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
    201   DeoptimizationContextRecord* GetLink() const { return link_; }
    202   mirror::Object** GetReturnValueAsGCRoot() {
    203     DCHECK(is_reference_);
    204     return ret_val_.GetGCRoot();
    205   }
    206   mirror::Object** GetPendingExceptionAsGCRoot() {
    207     return reinterpret_cast<mirror::Object**>(&pending_exception_);
    208   }
    209   DeoptimizationMethodType GetDeoptimizationMethodType() const {
    210     return deopt_method_type_;
    211   }
    212 
    213  private:
    214   // The value returned by the method at the top of the stack before deoptimization.
    215   JValue ret_val_;
    216 
    217   // Indicates whether the returned value is a reference. If so, the GC will visit it.
    218   const bool is_reference_;
    219 
    220   // Whether the context was created from an explicit deoptimization in the code.
    221   const bool from_code_;
    222 
    223   // The exception that was pending before deoptimization (or null if there was no pending
    224   // exception).
    225   mirror::Throwable* pending_exception_;
    226 
    227   // Whether the context was created for an (idempotent) runtime method.
    228   const DeoptimizationMethodType deopt_method_type_;
    229 
    230   // A link to the previous DeoptimizationContextRecord.
    231   DeoptimizationContextRecord* const link_;
    232 
    233   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
    234 };
    235 
    236 class StackedShadowFrameRecord {
    237  public:
    238   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
    239                            StackedShadowFrameType type,
    240                            StackedShadowFrameRecord* link)
    241       : shadow_frame_(shadow_frame),
    242         type_(type),
    243         link_(link) {}
    244 
    245   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    246   StackedShadowFrameType GetType() const { return type_; }
    247   StackedShadowFrameRecord* GetLink() const { return link_; }
    248 
    249  private:
    250   ShadowFrame* const shadow_frame_;
    251   const StackedShadowFrameType type_;
    252   StackedShadowFrameRecord* const link_;
    253 
    254   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
    255 };
    256 
    257 void Thread::PushDeoptimizationContext(const JValue& return_value,
    258                                        bool is_reference,
    259                                        ObjPtr<mirror::Throwable> exception,
    260                                        bool from_code,
    261                                        DeoptimizationMethodType method_type) {
    262   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
    263       return_value,
    264       is_reference,
    265       from_code,
    266       exception,
    267       method_type,
    268       tlsPtr_.deoptimization_context_stack);
    269   tlsPtr_.deoptimization_context_stack = record;
    270 }
    271 
    272 void Thread::PopDeoptimizationContext(JValue* result,
    273                                       ObjPtr<mirror::Throwable>* exception,
    274                                       bool* from_code,
    275                                       DeoptimizationMethodType* method_type) {
    276   AssertHasDeoptimizationContext();
    277   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
    278   tlsPtr_.deoptimization_context_stack = record->GetLink();
    279   result->SetJ(record->GetReturnValue().GetJ());
    280   *exception = record->GetPendingException();
    281   *from_code = record->GetFromCode();
    282   *method_type = record->GetDeoptimizationMethodType();
    283   delete record;
    284 }
    285 
    286 void Thread::AssertHasDeoptimizationContext() {
    287   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
    288       << "No deoptimization context for thread " << *this;
    289 }
    290 
    291 enum {
    292   kPermitAvailable = 0,  // Incrementing consumes the permit
    293   kNoPermit = 1,  // Incrementing marks as waiter waiting
    294   kNoPermitWaiterWaiting = 2
    295 };
    296 
    297 void Thread::Park(bool is_absolute, int64_t time) {
    298   DCHECK(this == Thread::Current());
    299 #if ART_USE_FUTEXES
    300   // Consume the permit, or mark as waiting. This cannot cause park_state to go
    301   // outside of its valid range (0, 1, 2), because in all cases where 2 is
    302   // assigned it is set back to 1 before returning, and this method cannot run
    303   // concurrently with itself since it operates on the current thread.
    304   int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed);
    305   if (old_state == kNoPermit) {
    306     // no permit was available. block thread until later.
    307     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time);
    308     bool timed_out = false;
    309     if (!is_absolute && time == 0) {
    310       // Thread.getState() is documented to return waiting for untimed parks.
    311       ScopedThreadSuspension sts(this, ThreadState::kWaiting);
    312       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
    313       int result = futex(tls32_.park_state_.Address(),
    314                      FUTEX_WAIT_PRIVATE,
    315                      /* sleep if val = */ kNoPermitWaiterWaiting,
    316                      /* timeout */ nullptr,
    317                      nullptr,
    318                      0);
    319       // This errno check must happen before the scope is closed, to ensure that
    320       // no destructors (such as ScopedThreadSuspension) overwrite errno.
    321       if (result == -1) {
    322         switch (errno) {
    323           case EAGAIN:
    324             FALLTHROUGH_INTENDED;
    325           case EINTR: break;  // park() is allowed to spuriously return
    326           default: PLOG(FATAL) << "Failed to park";
    327         }
    328       }
    329     } else if (time > 0) {
    330       // Only actually suspend and futex_wait if we're going to wait for some
    331       // positive amount of time - the kernel will reject negative times with
    332       // EINVAL, and a zero time will just noop.
    333 
    334       // Thread.getState() is documented to return timed wait for timed parks.
    335       ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting);
    336       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
    337       timespec timespec;
    338       int result = 0;
    339       if (is_absolute) {
    340         // Time is millis when scheduled for an absolute time
    341         timespec.tv_nsec = (time % 1000) * 1000000;
    342         timespec.tv_sec = time / 1000;
    343         // This odd looking pattern is recommended by futex documentation to
    344         // wait until an absolute deadline, with otherwise identical behavior to
    345         // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the
    346         // correct time when the system clock changes.
    347         result = futex(tls32_.park_state_.Address(),
    348                        FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
    349                        /* sleep if val = */ kNoPermitWaiterWaiting,
    350                        &timespec,
    351                        nullptr,
    352                        FUTEX_BITSET_MATCH_ANY);
    353       } else {
    354         // Time is nanos when scheduled for a relative time
    355         timespec.tv_sec = time / 1000000000;
    356         timespec.tv_nsec = time % 1000000000;
    357         result = futex(tls32_.park_state_.Address(),
    358                        FUTEX_WAIT_PRIVATE,
    359                        /* sleep if val = */ kNoPermitWaiterWaiting,
    360                        &timespec,
    361                        nullptr,
    362                        0);
    363       }
    364       // This errno check must happen before the scope is closed, to ensure that
    365       // no destructors (such as ScopedThreadSuspension) overwrite errno.
    366       if (result == -1) {
    367         switch (errno) {
    368           case ETIMEDOUT:
    369             timed_out = true;
    370             FALLTHROUGH_INTENDED;
    371           case EAGAIN:
    372           case EINTR: break;  // park() is allowed to spuriously return
    373           default: PLOG(FATAL) << "Failed to park";
    374         }
    375       }
    376     }
    377     // Mark as no longer waiting, and consume permit if there is one.
    378     tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
    379     // TODO: Call to signal jvmti here
    380     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out);
    381   } else {
    382     // the fetch_add has consumed the permit. immediately return.
    383     DCHECK_EQ(old_state, kPermitAvailable);
    384   }
    385 #else
    386   #pragma clang diagnostic push
    387   #pragma clang diagnostic warning "-W#warnings"
    388   #warning "LockSupport.park/unpark implemented as noops without FUTEX support."
    389   #pragma clang diagnostic pop
    390   UNUSED(is_absolute, time);
    391   UNIMPLEMENTED(WARNING);
    392   sched_yield();
    393 #endif
    394 }
    395 
    396 void Thread::Unpark() {
    397 #if ART_USE_FUTEXES
    398   // Set permit available; will be consumed either by fetch_add (when the thread
    399   // tries to park) or store (when the parked thread is woken up)
    400   if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed)
    401       == kNoPermitWaiterWaiting) {
    402     int result = futex(tls32_.park_state_.Address(),
    403                        FUTEX_WAKE_PRIVATE,
    404                        /* number of waiters = */ 1,
    405                        nullptr,
    406                        nullptr,
    407                        0);
    408     if (result == -1) {
    409       PLOG(FATAL) << "Failed to unpark";
    410     }
    411   }
    412 #else
    413   UNIMPLEMENTED(WARNING);
    414 #endif
    415 }
    416 
    417 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
    418   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
    419       sf, type, tlsPtr_.stacked_shadow_frame_record);
    420   tlsPtr_.stacked_shadow_frame_record = record;
    421 }
    422 
    423 ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
    424   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
    425   if (must_be_present) {
    426     DCHECK(record != nullptr);
    427   } else {
    428     if (record == nullptr || record->GetType() != type) {
    429       return nullptr;
    430     }
    431   }
    432   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
    433   ShadowFrame* shadow_frame = record->GetShadowFrame();
    434   delete record;
    435   return shadow_frame;
    436 }
    437 
    438 class FrameIdToShadowFrame {
    439  public:
    440   static FrameIdToShadowFrame* Create(size_t frame_id,
    441                                       ShadowFrame* shadow_frame,
    442                                       FrameIdToShadowFrame* next,
    443                                       size_t num_vregs) {
    444     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
    445     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
    446     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
    447   }
    448 
    449   static void Delete(FrameIdToShadowFrame* f) {
    450     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
    451     delete[] memory;
    452   }
    453 
    454   size_t GetFrameId() const { return frame_id_; }
    455   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
    456   FrameIdToShadowFrame* GetNext() const { return next_; }
    457   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
    458   bool* GetUpdatedVRegFlags() {
    459     return updated_vreg_flags_;
    460   }
    461 
    462  private:
    463   FrameIdToShadowFrame(size_t frame_id,
    464                        ShadowFrame* shadow_frame,
    465                        FrameIdToShadowFrame* next)
    466       : frame_id_(frame_id),
    467         shadow_frame_(shadow_frame),
    468         next_(next) {}
    469 
    470   const size_t frame_id_;
    471   ShadowFrame* const shadow_frame_;
    472   FrameIdToShadowFrame* next_;
    473   bool updated_vreg_flags_[0];
    474 
    475   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
    476 };
    477 
    478 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
    479                                                       size_t frame_id) {
    480   FrameIdToShadowFrame* found = nullptr;
    481   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
    482     if (record->GetFrameId() == frame_id) {
    483       if (kIsDebugBuild) {
    484         // Sanity check we have at most one record for this frame.
    485         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
    486         found = record;
    487       } else {
    488         return record;
    489       }
    490     }
    491   }
    492   return found;
    493 }
    494 
    495 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
    496   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
    497       tlsPtr_.frame_id_to_shadow_frame, frame_id);
    498   if (record != nullptr) {
    499     return record->GetShadowFrame();
    500   }
    501   return nullptr;
    502 }
    503 
    504 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
    505 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
    506   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
    507       tlsPtr_.frame_id_to_shadow_frame, frame_id);
    508   CHECK(record != nullptr);
    509   return record->GetUpdatedVRegFlags();
    510 }
    511 
    512 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
    513                                                      uint32_t num_vregs,
    514                                                      ArtMethod* method,
    515                                                      uint32_t dex_pc) {
    516   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
    517   if (shadow_frame != nullptr) {
    518     return shadow_frame;
    519   }
    520   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
    521   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
    522   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
    523                                                               shadow_frame,
    524                                                               tlsPtr_.frame_id_to_shadow_frame,
    525                                                               num_vregs);
    526   for (uint32_t i = 0; i < num_vregs; i++) {
    527     // Do this to clear all references for root visitors.
    528     shadow_frame->SetVRegReference(i, nullptr);
    529     // This flag will be changed to true if the debugger modifies the value.
    530     record->GetUpdatedVRegFlags()[i] = false;
    531   }
    532   tlsPtr_.frame_id_to_shadow_frame = record;
    533   return shadow_frame;
    534 }
    535 
    536 TLSData* Thread::GetCustomTLS(const char* key) {
    537   MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
    538   auto it = custom_tls_.find(key);
    539   return (it != custom_tls_.end()) ? it->second.get() : nullptr;
    540 }
    541 
    542 void Thread::SetCustomTLS(const char* key, TLSData* data) {
    543   // We will swap the old data (which might be nullptr) with this and then delete it outside of the
    544   // custom_tls_lock_.
    545   std::unique_ptr<TLSData> old_data(data);
    546   {
    547     MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
    548     custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data);
    549   }
    550 }
    551 
    552 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
    553   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
    554   if (head->GetFrameId() == frame_id) {
    555     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
    556     FrameIdToShadowFrame::Delete(head);
    557     return;
    558   }
    559   FrameIdToShadowFrame* prev = head;
    560   for (FrameIdToShadowFrame* record = head->GetNext();
    561        record != nullptr;
    562        prev = record, record = record->GetNext()) {
    563     if (record->GetFrameId() == frame_id) {
    564       prev->SetNext(record->GetNext());
    565       FrameIdToShadowFrame::Delete(record);
    566       return;
    567     }
    568   }
    569   LOG(FATAL) << "No shadow frame for frame " << frame_id;
    570   UNREACHABLE();
    571 }
    572 
    573 void Thread::InitTid() {
    574   tls32_.tid = ::art::GetTid();
    575 }
    576 
    577 void Thread::InitAfterFork() {
    578   // One thread (us) survived the fork, but we have a new tid so we need to
    579   // update the value stashed in this Thread*.
    580   InitTid();
    581 }
    582 
    583 void* Thread::CreateCallback(void* arg) {
    584   Thread* self = reinterpret_cast<Thread*>(arg);
    585   Runtime* runtime = Runtime::Current();
    586   if (runtime == nullptr) {
    587     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
    588     return nullptr;
    589   }
    590   {
    591     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
    592     //       after self->Init().
    593     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    594     // Check that if we got here we cannot be shutting down (as shutdown should never have started
    595     // while threads are being born).
    596     CHECK(!runtime->IsShuttingDownLocked());
    597     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
    598     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
    599     //       the runtime in such a case. In case this ever changes, we need to make sure here to
    600     //       delete the tmp_jni_env, as we own it at this point.
    601     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
    602     self->tlsPtr_.tmp_jni_env = nullptr;
    603     Runtime::Current()->EndThreadBirth();
    604   }
    605   {
    606     ScopedObjectAccess soa(self);
    607     self->InitStringEntryPoints();
    608 
    609     // Copy peer into self, deleting global reference when done.
    610     CHECK(self->tlsPtr_.jpeer != nullptr);
    611     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
    612     self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
    613     self->tlsPtr_.jpeer = nullptr;
    614     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
    615 
    616     ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
    617     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
    618 
    619     runtime->GetRuntimeCallbacks()->ThreadStart(self);
    620 
    621     // Unpark ourselves if the java peer was unparked before it started (see
    622     // b/28845097#comment49 for more information)
    623 
    624     ArtField* unparkedField = jni::DecodeArtField(
    625         WellKnownClasses::java_lang_Thread_unparkedBeforeStart);
    626     bool should_unpark = false;
    627     {
    628       // Hold the lock here, so that if another thread calls unpark before the thread starts
    629       // we don't observe the unparkedBeforeStart field before the unparker writes to it,
    630       // which could cause a lost unpark.
    631       art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_);
    632       should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE;
    633     }
    634     if (should_unpark) {
    635       self->Unpark();
    636     }
    637     // Invoke the 'run' method of our java.lang.Thread.
    638     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
    639     jmethodID mid = WellKnownClasses::java_lang_Thread_run;
    640     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
    641     InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
    642   }
    643   // Detach and delete self.
    644   Runtime::Current()->GetThreadList()->Unregister(self);
    645 
    646   return nullptr;
    647 }
    648 
    649 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    650                                   ObjPtr<mirror::Object> thread_peer) {
    651   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
    652   Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer));
    653   // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
    654   // to stop it from going away.
    655   if (kIsDebugBuild) {
    656     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
    657     if (result != nullptr && !result->IsSuspended()) {
    658       Locks::thread_list_lock_->AssertHeld(soa.Self());
    659     }
    660   }
    661   return result;
    662 }
    663 
    664 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
    665                                   jobject java_thread) {
    666   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread));
    667 }
    668 
    669 static size_t FixStackSize(size_t stack_size) {
    670   // A stack size of zero means "use the default".
    671   if (stack_size == 0) {
    672     stack_size = Runtime::Current()->GetDefaultStackSize();
    673   }
    674 
    675   // Dalvik used the bionic pthread default stack size for native threads,
    676   // so include that here to support apps that expect large native stacks.
    677   stack_size += 1 * MB;
    678 
    679   // Under sanitization, frames of the interpreter may become bigger, both for C code as
    680   // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization
    681   // of all core classes cannot be done in all test circumstances.
    682   if (kMemoryToolIsAvailable) {
    683     stack_size = std::max(2 * MB, stack_size);
    684   }
    685 
    686   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
    687   if (stack_size < PTHREAD_STACK_MIN) {
    688     stack_size = PTHREAD_STACK_MIN;
    689   }
    690 
    691   if (Runtime::Current()->ExplicitStackOverflowChecks()) {
    692     // It's likely that callers are trying to ensure they have at least a certain amount of
    693     // stack space, so we should add our reserved space on top of what they requested, rather
    694     // than implicitly take it away from them.
    695     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
    696   } else {
    697     // If we are going to use implicit stack checks, allocate space for the protected
    698     // region at the bottom of the stack.
    699     stack_size += Thread::kStackOverflowImplicitCheckSize +
    700         GetStackOverflowReservedBytes(kRuntimeISA);
    701   }
    702 
    703   // Some systems require the stack size to be a multiple of the system page size, so round up.
    704   stack_size = RoundUp(stack_size, kPageSize);
    705 
    706   return stack_size;
    707 }
    708 
    709 // Return the nearest page-aligned address below the current stack top.
    710 NO_INLINE
    711 static uint8_t* FindStackTop() {
    712   return reinterpret_cast<uint8_t*>(
    713       AlignDown(__builtin_frame_address(0), kPageSize));
    714 }
    715 
    716 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
    717 // overflow is detected.  It is located right below the stack_begin_.
    718 ATTRIBUTE_NO_SANITIZE_ADDRESS
    719 void Thread::InstallImplicitProtection() {
    720   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
    721   // Page containing current top of stack.
    722   uint8_t* stack_top = FindStackTop();
    723 
    724   // Try to directly protect the stack.
    725   VLOG(threads) << "installing stack protected region at " << std::hex <<
    726         static_cast<void*>(pregion) << " to " <<
    727         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    728   if (ProtectStack(/* fatal_on_error= */ false)) {
    729     // Tell the kernel that we won't be needing these pages any more.
    730     // NB. madvise will probably write zeroes into the memory (on linux it does).
    731     uint32_t unwanted_size = stack_top - pregion - kPageSize;
    732     madvise(pregion, unwanted_size, MADV_DONTNEED);
    733     return;
    734   }
    735 
    736   // There is a little complexity here that deserves a special mention.  On some
    737   // architectures, the stack is created using a VM_GROWSDOWN flag
    738   // to prevent memory being allocated when it's not needed.  This flag makes the
    739   // kernel only allocate memory for the stack by growing down in memory.  Because we
    740   // want to put an mprotected region far away from that at the stack top, we need
    741   // to make sure the pages for the stack are mapped in before we call mprotect.
    742   //
    743   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
    744   // with a non-mapped stack (usually only the main thread).
    745   //
    746   // We map in the stack by reading every page from the stack bottom (highest address)
    747   // to the stack top. (We then madvise this away.) This must be done by reading from the
    748   // current stack pointer downwards.
    749   //
    750   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
    751   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
    752   // thus have to move the stack pointer. We do this portably by using a recursive function with a
    753   // large stack frame size.
    754 
    755   // (Defensively) first remove the protection on the protected region as we'll want to read
    756   // and write it. Ignore errors.
    757   UnprotectStack();
    758 
    759   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
    760       static_cast<void*>(pregion);
    761 
    762   struct RecurseDownStack {
    763     // This function has an intentionally large stack size.
    764 #pragma GCC diagnostic push
    765 #pragma GCC diagnostic ignored "-Wframe-larger-than="
    766     NO_INLINE
    767     static void Touch(uintptr_t target) {
    768       volatile size_t zero = 0;
    769       // Use a large local volatile array to ensure a large frame size. Do not use anything close
    770       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
    771       // there is no pragma support for this.
    772       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
    773       constexpr size_t kAsanMultiplier =
    774 #ifdef ADDRESS_SANITIZER
    775           2u;
    776 #else
    777           1u;
    778 #endif
    779       volatile char space[kPageSize - (kAsanMultiplier * 256)];
    780       char sink ATTRIBUTE_UNUSED = space[zero];  // NOLINT
    781       // Remove tag from the pointer. Nop in non-hwasan builds.
    782       uintptr_t addr = reinterpret_cast<uintptr_t>(__hwasan_tag_pointer(space, 0));
    783       if (addr >= target + kPageSize) {
    784         Touch(target);
    785       }
    786       zero *= 2;  // Try to avoid tail recursion.
    787     }
    788 #pragma GCC diagnostic pop
    789   };
    790   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
    791 
    792   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
    793       static_cast<void*>(pregion) << " to " <<
    794       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
    795 
    796   // Protect the bottom of the stack to prevent read/write to it.
    797   ProtectStack(/* fatal_on_error= */ true);
    798 
    799   // Tell the kernel that we won't be needing these pages any more.
    800   // NB. madvise will probably write zeroes into the memory (on linux it does).
    801   uint32_t unwanted_size = stack_top - pregion - kPageSize;
    802   madvise(pregion, unwanted_size, MADV_DONTNEED);
    803 }
    804 
    805 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
    806   CHECK(java_peer != nullptr);
    807   Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
    808 
    809   if (VLOG_IS_ON(threads)) {
    810     ScopedObjectAccess soa(env);
    811 
    812     ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
    813     ObjPtr<mirror::String> java_name =
    814         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
    815     std::string thread_name;
    816     if (java_name != nullptr) {
    817       thread_name = java_name->ToModifiedUtf8();
    818     } else {
    819       thread_name = "(Unnamed)";
    820     }
    821 
    822     VLOG(threads) << "Creating native thread for " << thread_name;
    823     self->Dump(LOG_STREAM(INFO));
    824   }
    825 
    826   Runtime* runtime = Runtime::Current();
    827 
    828   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
    829   bool thread_start_during_shutdown = false;
    830   {
    831     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    832     if (runtime->IsShuttingDownLocked()) {
    833       thread_start_during_shutdown = true;
    834     } else {
    835       runtime->StartThreadBirth();
    836     }
    837   }
    838   if (thread_start_during_shutdown) {
    839     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
    840     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
    841     return;
    842   }
    843 
    844   Thread* child_thread = new Thread(is_daemon);
    845   // Use global JNI ref to hold peer live while child thread starts.
    846   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
    847   stack_size = FixStackSize(stack_size);
    848 
    849   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
    850   // to assign it.
    851   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
    852                     reinterpret_cast<jlong>(child_thread));
    853 
    854   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
    855   // do not have a good way to report this on the child's side.
    856   std::string error_msg;
    857   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
    858       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
    859 
    860   int pthread_create_result = 0;
    861   if (child_jni_env_ext.get() != nullptr) {
    862     pthread_t new_pthread;
    863     pthread_attr_t attr;
    864     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
    865     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
    866     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
    867                        "PTHREAD_CREATE_DETACHED");
    868     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
    869     pthread_create_result = pthread_create(&new_pthread,
    870                                            &attr,
    871                                            Thread::CreateCallback,
    872                                            child_thread);
    873     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
    874 
    875     if (pthread_create_result == 0) {
    876       // pthread_create started the new thread. The child is now responsible for managing the
    877       // JNIEnvExt we created.
    878       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
    879       //       between the threads.
    880       child_jni_env_ext.release();  // NOLINT pthreads API.
    881       return;
    882     }
    883   }
    884 
    885   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
    886   {
    887     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
    888     runtime->EndThreadBirth();
    889   }
    890   // Manually delete the global reference since Thread::Init will not have been run.
    891   env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
    892   child_thread->tlsPtr_.jpeer = nullptr;
    893   delete child_thread;
    894   child_thread = nullptr;
    895   // TODO: remove from thread group?
    896   env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
    897   {
    898     std::string msg(child_jni_env_ext.get() == nullptr ?
    899         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
    900         StringPrintf("pthread_create (%s stack) failed: %s",
    901                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
    902     ScopedObjectAccess soa(env);
    903     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
    904   }
    905 }
    906 
    907 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
    908   // This function does all the initialization that must be run by the native thread it applies to.
    909   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
    910   // we can handshake with the corresponding native thread when it's ready.) Check this native
    911   // thread hasn't been through here already...
    912   CHECK(Thread::Current() == nullptr);
    913 
    914   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
    915   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
    916   tlsPtr_.pthread_self = pthread_self();
    917   CHECK(is_started_);
    918 
    919   ScopedTrace trace("Thread::Init");
    920 
    921   SetUpAlternateSignalStack();
    922   if (!InitStackHwm()) {
    923     return false;
    924   }
    925   InitCpu();
    926   InitTlsEntryPoints();
    927   RemoveSuspendTrigger();
    928   InitCardTable();
    929   InitTid();
    930   {
    931     ScopedTrace trace2("InitInterpreterTls");
    932     interpreter::InitInterpreterTls(this);
    933   }
    934 
    935 #ifdef ART_TARGET_ANDROID
    936   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
    937 #else
    938   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
    939 #endif
    940   DCHECK_EQ(Thread::Current(), this);
    941 
    942   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
    943 
    944   if (jni_env_ext != nullptr) {
    945     DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
    946     DCHECK_EQ(jni_env_ext->GetSelf(), this);
    947     tlsPtr_.jni_env = jni_env_ext;
    948   } else {
    949     std::string error_msg;
    950     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
    951     if (tlsPtr_.jni_env == nullptr) {
    952       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
    953       return false;
    954     }
    955   }
    956 
    957   ScopedTrace trace3("ThreadList::Register");
    958   thread_list->Register(this);
    959   return true;
    960 }
    961 
    962 template <typename PeerAction>
    963 Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
    964   Runtime* runtime = Runtime::Current();
    965   ScopedTrace trace("Thread::Attach");
    966   if (runtime == nullptr) {
    967     LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
    968         ((thread_name != nullptr) ? thread_name : "(Unnamed)");
    969     return nullptr;
    970   }
    971   Thread* self;
    972   {
    973     ScopedTrace trace2("Thread birth");
    974     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    975     if (runtime->IsShuttingDownLocked()) {
    976       LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
    977           ((thread_name != nullptr) ? thread_name : "(Unnamed)");
    978       return nullptr;
    979     } else {
    980       Runtime::Current()->StartThreadBirth();
    981       self = new Thread(as_daemon);
    982       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
    983       Runtime::Current()->EndThreadBirth();
    984       if (!init_success) {
    985         delete self;
    986         return nullptr;
    987       }
    988     }
    989   }
    990 
    991   self->InitStringEntryPoints();
    992 
    993   CHECK_NE(self->GetState(), kRunnable);
    994   self->SetState(kNative);
    995 
    996   // Run the action that is acting on the peer.
    997   if (!peer_action(self)) {
    998     runtime->GetThreadList()->Unregister(self);
    999     // Unregister deletes self, no need to do this here.
   1000     return nullptr;
   1001   }
   1002 
   1003   if (VLOG_IS_ON(threads)) {
   1004     if (thread_name != nullptr) {
   1005       VLOG(threads) << "Attaching thread " << thread_name;
   1006     } else {
   1007       VLOG(threads) << "Attaching unnamed thread.";
   1008     }
   1009     ScopedObjectAccess soa(self);
   1010     self->Dump(LOG_STREAM(INFO));
   1011   }
   1012 
   1013   {
   1014     ScopedObjectAccess soa(self);
   1015     runtime->GetRuntimeCallbacks()->ThreadStart(self);
   1016   }
   1017 
   1018   return self;
   1019 }
   1020 
   1021 Thread* Thread::Attach(const char* thread_name,
   1022                        bool as_daemon,
   1023                        jobject thread_group,
   1024                        bool create_peer) {
   1025   auto create_peer_action = [&](Thread* self) {
   1026     // If we're the main thread, ClassLinker won't be created until after we're attached,
   1027     // so that thread needs a two-stage attach. Regular threads don't need this hack.
   1028     // In the compiler, all threads need this hack, because no-one's going to be getting
   1029     // a native peer!
   1030     if (create_peer) {
   1031       self->CreatePeer(thread_name, as_daemon, thread_group);
   1032       if (self->IsExceptionPending()) {
   1033         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
   1034         // it.
   1035         {
   1036           ScopedObjectAccess soa(self);
   1037           LOG(ERROR) << "Exception creating thread peer:";
   1038           LOG(ERROR) << self->GetException()->Dump();
   1039           self->ClearException();
   1040         }
   1041         return false;
   1042       }
   1043     } else {
   1044       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
   1045       if (thread_name != nullptr) {
   1046         self->tlsPtr_.name->assign(thread_name);
   1047         ::art::SetThreadName(thread_name);
   1048       } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
   1049         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
   1050       }
   1051     }
   1052     return true;
   1053   };
   1054   return Attach(thread_name, as_daemon, create_peer_action);
   1055 }
   1056 
   1057 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
   1058   auto set_peer_action = [&](Thread* self) {
   1059     // Install the given peer.
   1060     {
   1061       DCHECK(self == Thread::Current());
   1062       ScopedObjectAccess soa(self);
   1063       self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
   1064     }
   1065     self->GetJniEnv()->SetLongField(thread_peer,
   1066                                     WellKnownClasses::java_lang_Thread_nativePeer,
   1067                                     reinterpret_cast64<jlong>(self));
   1068     return true;
   1069   };
   1070   return Attach(thread_name, as_daemon, set_peer_action);
   1071 }
   1072 
   1073 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
   1074   Runtime* runtime = Runtime::Current();
   1075   CHECK(runtime->IsStarted());
   1076   JNIEnv* env = tlsPtr_.jni_env;
   1077 
   1078   if (thread_group == nullptr) {
   1079     thread_group = runtime->GetMainThreadGroup();
   1080   }
   1081   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
   1082   // Add missing null check in case of OOM b/18297817
   1083   if (name != nullptr && thread_name.get() == nullptr) {
   1084     CHECK(IsExceptionPending());
   1085     return;
   1086   }
   1087   jint thread_priority = GetNativePriority();
   1088   jboolean thread_is_daemon = as_daemon;
   1089 
   1090   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
   1091   if (peer.get() == nullptr) {
   1092     CHECK(IsExceptionPending());
   1093     return;
   1094   }
   1095   {
   1096     ScopedObjectAccess soa(this);
   1097     tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
   1098   }
   1099   env->CallNonvirtualVoidMethod(peer.get(),
   1100                                 WellKnownClasses::java_lang_Thread,
   1101                                 WellKnownClasses::java_lang_Thread_init,
   1102                                 thread_group, thread_name.get(), thread_priority, thread_is_daemon);
   1103   if (IsExceptionPending()) {
   1104     return;
   1105   }
   1106 
   1107   Thread* self = this;
   1108   DCHECK_EQ(self, Thread::Current());
   1109   env->SetLongField(peer.get(),
   1110                     WellKnownClasses::java_lang_Thread_nativePeer,
   1111                     reinterpret_cast64<jlong>(self));
   1112 
   1113   ScopedObjectAccess soa(self);
   1114   StackHandleScope<1> hs(self);
   1115   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
   1116   if (peer_thread_name == nullptr) {
   1117     // The Thread constructor should have set the Thread.name to a
   1118     // non-null value. However, because we can run without code
   1119     // available (in the compiler, in tests), we manually assign the
   1120     // fields the constructor should have set.
   1121     if (runtime->IsActiveTransaction()) {
   1122       InitPeer<true>(soa,
   1123                      tlsPtr_.opeer,
   1124                      thread_is_daemon,
   1125                      thread_group,
   1126                      thread_name.get(),
   1127                      thread_priority);
   1128     } else {
   1129       InitPeer<false>(soa,
   1130                       tlsPtr_.opeer,
   1131                       thread_is_daemon,
   1132                       thread_group,
   1133                       thread_name.get(),
   1134                       thread_priority);
   1135     }
   1136     peer_thread_name.Assign(GetThreadName());
   1137   }
   1138   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
   1139   if (peer_thread_name != nullptr) {
   1140     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
   1141   }
   1142 }
   1143 
   1144 jobject Thread::CreateCompileTimePeer(JNIEnv* env,
   1145                                       const char* name,
   1146                                       bool as_daemon,
   1147                                       jobject thread_group) {
   1148   Runtime* runtime = Runtime::Current();
   1149   CHECK(!runtime->IsStarted());
   1150 
   1151   if (thread_group == nullptr) {
   1152     thread_group = runtime->GetMainThreadGroup();
   1153   }
   1154   ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
   1155   // Add missing null check in case of OOM b/18297817
   1156   if (name != nullptr && thread_name.get() == nullptr) {
   1157     CHECK(Thread::Current()->IsExceptionPending());
   1158     return nullptr;
   1159   }
   1160   jint thread_priority = kNormThreadPriority;  // Always normalize to NORM priority.
   1161   jboolean thread_is_daemon = as_daemon;
   1162 
   1163   ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
   1164   if (peer.get() == nullptr) {
   1165     CHECK(Thread::Current()->IsExceptionPending());
   1166     return nullptr;
   1167   }
   1168 
   1169   // We cannot call Thread.init, as it will recursively ask for currentThread.
   1170 
   1171   // The Thread constructor should have set the Thread.name to a
   1172   // non-null value. However, because we can run without code
   1173   // available (in the compiler, in tests), we manually assign the
   1174   // fields the constructor should have set.
   1175   ScopedObjectAccessUnchecked soa(Thread::Current());
   1176   if (runtime->IsActiveTransaction()) {
   1177     InitPeer<true>(soa,
   1178                    soa.Decode<mirror::Object>(peer.get()),
   1179                    thread_is_daemon,
   1180                    thread_group,
   1181                    thread_name.get(),
   1182                    thread_priority);
   1183   } else {
   1184     InitPeer<false>(soa,
   1185                     soa.Decode<mirror::Object>(peer.get()),
   1186                     thread_is_daemon,
   1187                     thread_group,
   1188                     thread_name.get(),
   1189                     thread_priority);
   1190   }
   1191 
   1192   return peer.release();
   1193 }
   1194 
   1195 template<bool kTransactionActive>
   1196 void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
   1197                       ObjPtr<mirror::Object> peer,
   1198                       jboolean thread_is_daemon,
   1199                       jobject thread_group,
   1200                       jobject thread_name,
   1201                       jint thread_priority) {
   1202   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
   1203       SetBoolean<kTransactionActive>(peer, thread_is_daemon);
   1204   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
   1205       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
   1206   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
   1207       SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
   1208   jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
   1209       SetInt<kTransactionActive>(peer, thread_priority);
   1210 }
   1211 
   1212 void Thread::SetThreadName(const char* name) {
   1213   tlsPtr_.name->assign(name);
   1214   ::art::SetThreadName(name);
   1215   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
   1216 }
   1217 
   1218 static void GetThreadStack(pthread_t thread,
   1219                            void** stack_base,
   1220                            size_t* stack_size,
   1221                            size_t* guard_size) {
   1222 #if defined(__APPLE__)
   1223   *stack_size = pthread_get_stacksize_np(thread);
   1224   void* stack_addr = pthread_get_stackaddr_np(thread);
   1225 
   1226   // Check whether stack_addr is the base or end of the stack.
   1227   // (On Mac OS 10.7, it's the end.)
   1228   int stack_variable;
   1229   if (stack_addr > &stack_variable) {
   1230     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
   1231   } else {
   1232     *stack_base = stack_addr;
   1233   }
   1234 
   1235   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
   1236   pthread_attr_t attributes;
   1237   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
   1238   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
   1239   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
   1240 #else
   1241   pthread_attr_t attributes;
   1242   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
   1243   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
   1244   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
   1245   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
   1246 
   1247 #if defined(__GLIBC__)
   1248   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
   1249   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
   1250   // will be broken because we'll die long before we get close to 2GB.
   1251   bool is_main_thread = (::art::GetTid() == getpid());
   1252   if (is_main_thread) {
   1253     rlimit stack_limit;
   1254     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
   1255       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
   1256     }
   1257     if (stack_limit.rlim_cur == RLIM_INFINITY) {
   1258       size_t old_stack_size = *stack_size;
   1259 
   1260       // Use the kernel default limit as our size, and adjust the base to match.
   1261       *stack_size = 8 * MB;
   1262       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
   1263 
   1264       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
   1265                     << " to " << PrettySize(*stack_size)
   1266                     << " with base " << *stack_base;
   1267     }
   1268   }
   1269 #endif
   1270 
   1271 #endif
   1272 }
   1273 
   1274 bool Thread::InitStackHwm() {
   1275   ScopedTrace trace("InitStackHwm");
   1276   void* read_stack_base;
   1277   size_t read_stack_size;
   1278   size_t read_guard_size;
   1279   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
   1280 
   1281   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
   1282   tlsPtr_.stack_size = read_stack_size;
   1283 
   1284   // The minimum stack size we can cope with is the overflow reserved bytes (typically
   1285   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
   1286   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
   1287   // between 8K and 12K.
   1288   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
   1289     + 4 * KB;
   1290   if (read_stack_size <= min_stack) {
   1291     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
   1292     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
   1293                                __LINE__,
   1294                                ::android::base::ERROR,
   1295                                "Attempt to attach a thread with a too-small stack");
   1296     return false;
   1297   }
   1298 
   1299   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
   1300   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
   1301                                 read_stack_base,
   1302                                 PrettySize(read_stack_size).c_str(),
   1303                                 PrettySize(read_guard_size).c_str());
   1304 
   1305   // Set stack_end_ to the bottom of the stack saving space of stack overflows
   1306 
   1307   Runtime* runtime = Runtime::Current();
   1308   bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
   1309 
   1310   ResetDefaultStackEnd();
   1311 
   1312   // Install the protected region if we are doing implicit overflow checks.
   1313   if (implicit_stack_check) {
   1314     // The thread might have protected region at the bottom.  We need
   1315     // to install our own region so we need to move the limits
   1316     // of the stack to make room for it.
   1317 
   1318     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
   1319     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
   1320     tlsPtr_.stack_size -= read_guard_size;
   1321 
   1322     InstallImplicitProtection();
   1323   }
   1324 
   1325   // Sanity check.
   1326   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
   1327 
   1328   return true;
   1329 }
   1330 
   1331 void Thread::ShortDump(std::ostream& os) const {
   1332   os << "Thread[";
   1333   if (GetThreadId() != 0) {
   1334     // If we're in kStarting, we won't have a thin lock id or tid yet.
   1335     os << GetThreadId()
   1336        << ",tid=" << GetTid() << ',';
   1337   }
   1338   os << GetState()
   1339      << ",Thread*=" << this
   1340      << ",peer=" << tlsPtr_.opeer
   1341      << ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
   1342      << "]";
   1343 }
   1344 
   1345 void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
   1346                   bool force_dump_stack) const {
   1347   DumpState(os);
   1348   DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
   1349 }
   1350 
   1351 ObjPtr<mirror::String> Thread::GetThreadName() const {
   1352   ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
   1353   if (tlsPtr_.opeer == nullptr) {
   1354     return nullptr;
   1355   }
   1356   ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
   1357   return name == nullptr ? nullptr : name->AsString();
   1358 }
   1359 
   1360 void Thread::GetThreadName(std::string& name) const {
   1361   name.assign(*tlsPtr_.name);
   1362 }
   1363 
   1364 uint64_t Thread::GetCpuMicroTime() const {
   1365 #if defined(__linux__)
   1366   clockid_t cpu_clock_id;
   1367   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
   1368   timespec now;
   1369   clock_gettime(cpu_clock_id, &now);
   1370   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
   1371 #else  // __APPLE__
   1372   UNIMPLEMENTED(WARNING);
   1373   return -1;
   1374 #endif
   1375 }
   1376 
   1377 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
   1378 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
   1379   LOG(ERROR) << *thread << " suspend count already zero.";
   1380   Locks::thread_suspend_count_lock_->Unlock(self);
   1381   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
   1382     Locks::mutator_lock_->SharedTryLock(self);
   1383     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
   1384       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
   1385     }
   1386   }
   1387   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
   1388     Locks::thread_list_lock_->TryLock(self);
   1389     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
   1390       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
   1391     }
   1392   }
   1393   std::ostringstream ss;
   1394   Runtime::Current()->GetThreadList()->Dump(ss);
   1395   LOG(FATAL) << ss.str();
   1396 }
   1397 
   1398 bool Thread::ModifySuspendCountInternal(Thread* self,
   1399                                         int delta,
   1400                                         AtomicInteger* suspend_barrier,
   1401                                         SuspendReason reason) {
   1402   if (kIsDebugBuild) {
   1403     DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
   1404           << reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
   1405     DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
   1406     Locks::thread_suspend_count_lock_->AssertHeld(self);
   1407     if (this != self && !IsSuspended()) {
   1408       Locks::thread_list_lock_->AssertHeld(self);
   1409     }
   1410   }
   1411   // User code suspensions need to be checked more closely since they originate from code outside of
   1412   // the runtime's control.
   1413   if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
   1414     Locks::user_code_suspension_lock_->AssertHeld(self);
   1415     if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
   1416       LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
   1417       return false;
   1418     }
   1419   }
   1420   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
   1421     UnsafeLogFatalForSuspendCount(self, this);
   1422     return false;
   1423   }
   1424 
   1425   if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
   1426     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
   1427     // deadlock. b/31683379.
   1428     return false;
   1429   }
   1430 
   1431   uint16_t flags = kSuspendRequest;
   1432   if (delta > 0 && suspend_barrier != nullptr) {
   1433     uint32_t available_barrier = kMaxSuspendBarriers;
   1434     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1435       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
   1436         available_barrier = i;
   1437         break;
   1438       }
   1439     }
   1440     if (available_barrier == kMaxSuspendBarriers) {
   1441       // No barrier spaces available, we can't add another.
   1442       return false;
   1443     }
   1444     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
   1445     flags |= kActiveSuspendBarrier;
   1446   }
   1447 
   1448   tls32_.suspend_count += delta;
   1449   switch (reason) {
   1450     case SuspendReason::kForDebugger:
   1451       tls32_.debug_suspend_count += delta;
   1452       break;
   1453     case SuspendReason::kForUserCode:
   1454       tls32_.user_code_suspend_count += delta;
   1455       break;
   1456     case SuspendReason::kInternal:
   1457       break;
   1458   }
   1459 
   1460   if (tls32_.suspend_count == 0) {
   1461     AtomicClearFlag(kSuspendRequest);
   1462   } else {
   1463     // Two bits might be set simultaneously.
   1464     tls32_.state_and_flags.as_atomic_int.fetch_or(flags, std::memory_order_seq_cst);
   1465     TriggerSuspend();
   1466   }
   1467   return true;
   1468 }
   1469 
   1470 bool Thread::PassActiveSuspendBarriers(Thread* self) {
   1471   // Grab the suspend_count lock and copy the current set of
   1472   // barriers. Then clear the list and the flag. The ModifySuspendCount
   1473   // function requires the lock so we prevent a race between setting
   1474   // the kActiveSuspendBarrier flag and clearing it.
   1475   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
   1476   {
   1477     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1478     if (!ReadFlag(kActiveSuspendBarrier)) {
   1479       // quick exit test: the barriers have already been claimed - this is
   1480       // possible as there may be a race to claim and it doesn't matter
   1481       // who wins.
   1482       // All of the callers of this function (except the SuspendAllInternal)
   1483       // will first test the kActiveSuspendBarrier flag without lock. Here
   1484       // double-check whether the barrier has been passed with the
   1485       // suspend_count lock.
   1486       return false;
   1487     }
   1488 
   1489     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1490       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
   1491       tlsPtr_.active_suspend_barriers[i] = nullptr;
   1492     }
   1493     AtomicClearFlag(kActiveSuspendBarrier);
   1494   }
   1495 
   1496   uint32_t barrier_count = 0;
   1497   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
   1498     AtomicInteger* pending_threads = pass_barriers[i];
   1499     if (pending_threads != nullptr) {
   1500       bool done = false;
   1501       do {
   1502         int32_t cur_val = pending_threads->load(std::memory_order_relaxed);
   1503         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
   1504         // Reduce value by 1.
   1505         done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
   1506 #if ART_USE_FUTEXES
   1507         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
   1508           futex(pending_threads->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
   1509         }
   1510 #endif
   1511       } while (!done);
   1512       ++barrier_count;
   1513     }
   1514   }
   1515   CHECK_GT(barrier_count, 0U);
   1516   return true;
   1517 }
   1518 
   1519 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
   1520   CHECK(ReadFlag(kActiveSuspendBarrier));
   1521   bool clear_flag = true;
   1522   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   1523     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
   1524     if (ptr == target) {
   1525       tlsPtr_.active_suspend_barriers[i] = nullptr;
   1526     } else if (ptr != nullptr) {
   1527       clear_flag = false;
   1528     }
   1529   }
   1530   if (LIKELY(clear_flag)) {
   1531     AtomicClearFlag(kActiveSuspendBarrier);
   1532   }
   1533 }
   1534 
   1535 void Thread::RunCheckpointFunction() {
   1536   // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
   1537   // there are no more checkpoints we will also clear the kCheckpointRequest flag.
   1538   Closure* checkpoint;
   1539   {
   1540     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
   1541     checkpoint = tlsPtr_.checkpoint_function;
   1542     if (!checkpoint_overflow_.empty()) {
   1543       // Overflow list not empty, copy the first one out and continue.
   1544       tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
   1545       checkpoint_overflow_.pop_front();
   1546     } else {
   1547       // No overflow checkpoints. Clear the kCheckpointRequest flag
   1548       tlsPtr_.checkpoint_function = nullptr;
   1549       AtomicClearFlag(kCheckpointRequest);
   1550     }
   1551   }
   1552   // Outside the lock, run the checkpoint function.
   1553   ScopedTrace trace("Run checkpoint function");
   1554   CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
   1555   checkpoint->Run(this);
   1556 }
   1557 
   1558 void Thread::RunEmptyCheckpoint() {
   1559   DCHECK_EQ(Thread::Current(), this);
   1560   AtomicClearFlag(kEmptyCheckpointRequest);
   1561   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
   1562 }
   1563 
   1564 bool Thread::RequestCheckpoint(Closure* function) {
   1565   union StateAndFlags old_state_and_flags;
   1566   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
   1567   if (old_state_and_flags.as_struct.state != kRunnable) {
   1568     return false;  // Fail, thread is suspended and so can't run a checkpoint.
   1569   }
   1570 
   1571   // We must be runnable to request a checkpoint.
   1572   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
   1573   union StateAndFlags new_state_and_flags;
   1574   new_state_and_flags.as_int = old_state_and_flags.as_int;
   1575   new_state_and_flags.as_struct.flags |= kCheckpointRequest;
   1576   bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
   1577       old_state_and_flags.as_int, new_state_and_flags.as_int);
   1578   if (success) {
   1579     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
   1580     if (tlsPtr_.checkpoint_function == nullptr) {
   1581       tlsPtr_.checkpoint_function = function;
   1582     } else {
   1583       checkpoint_overflow_.push_back(function);
   1584     }
   1585     CHECK_EQ(ReadFlag(kCheckpointRequest), true);
   1586     TriggerSuspend();
   1587   }
   1588   return success;
   1589 }
   1590 
   1591 bool Thread::RequestEmptyCheckpoint() {
   1592   union StateAndFlags old_state_and_flags;
   1593   old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
   1594   if (old_state_and_flags.as_struct.state != kRunnable) {
   1595     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
   1596     // heap access (eg. the read barrier).
   1597     return false;
   1598   }
   1599 
   1600   // We must be runnable to request a checkpoint.
   1601   DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
   1602   union StateAndFlags new_state_and_flags;
   1603   new_state_and_flags.as_int = old_state_and_flags.as_int;
   1604   new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
   1605   bool success = tls32_.state_and_flags.as_atomic_int.CompareAndSetStrongSequentiallyConsistent(
   1606       old_state_and_flags.as_int, new_state_and_flags.as_int);
   1607   if (success) {
   1608     TriggerSuspend();
   1609   }
   1610   return success;
   1611 }
   1612 
   1613 class BarrierClosure : public Closure {
   1614  public:
   1615   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
   1616 
   1617   void Run(Thread* self) override {
   1618     wrapped_->Run(self);
   1619     barrier_.Pass(self);
   1620   }
   1621 
   1622   void Wait(Thread* self, ThreadState suspend_state) {
   1623     if (suspend_state != ThreadState::kRunnable) {
   1624       barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
   1625     } else {
   1626       barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
   1627     }
   1628   }
   1629 
   1630  private:
   1631   Closure* wrapped_;
   1632   Barrier barrier_;
   1633 };
   1634 
   1635 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
   1636 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
   1637   Thread* self = Thread::Current();
   1638   if (this == Thread::Current()) {
   1639     Locks::thread_list_lock_->AssertExclusiveHeld(self);
   1640     // Unlock the tll before running so that the state is the same regardless of thread.
   1641     Locks::thread_list_lock_->ExclusiveUnlock(self);
   1642     // Asked to run on this thread. Just run.
   1643     function->Run(this);
   1644     return true;
   1645   }
   1646 
   1647   // The current thread is not this thread.
   1648 
   1649   if (GetState() == ThreadState::kTerminated) {
   1650     Locks::thread_list_lock_->ExclusiveUnlock(self);
   1651     return false;
   1652   }
   1653 
   1654   struct ScopedThreadListLockUnlock {
   1655     explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
   1656         : self_thread(self_in) {
   1657       Locks::thread_list_lock_->AssertHeld(self_thread);
   1658       Locks::thread_list_lock_->Unlock(self_thread);
   1659     }
   1660 
   1661     ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
   1662       Locks::thread_list_lock_->AssertNotHeld(self_thread);
   1663       Locks::thread_list_lock_->Lock(self_thread);
   1664     }
   1665 
   1666     Thread* self_thread;
   1667   };
   1668 
   1669   for (;;) {
   1670     Locks::thread_list_lock_->AssertExclusiveHeld(self);
   1671     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
   1672     // suspend-count lock for too long.
   1673     if (GetState() == ThreadState::kRunnable) {
   1674       BarrierClosure barrier_closure(function);
   1675       bool installed = false;
   1676       {
   1677         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1678         installed = RequestCheckpoint(&barrier_closure);
   1679       }
   1680       if (installed) {
   1681         // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
   1682         // reacquire it since we don't know if 'this' hasn't been deleted yet.
   1683         Locks::thread_list_lock_->ExclusiveUnlock(self);
   1684         ScopedThreadStateChange sts(self, suspend_state);
   1685         barrier_closure.Wait(self, suspend_state);
   1686         return true;
   1687       }
   1688       // Fall-through.
   1689     }
   1690 
   1691     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
   1692     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
   1693     //       certain situations.
   1694     {
   1695       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1696 
   1697       if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
   1698         // Just retry the loop.
   1699         sched_yield();
   1700         continue;
   1701       }
   1702     }
   1703 
   1704     {
   1705       // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
   1706       // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
   1707       ScopedThreadListLockUnlock stllu(self);
   1708       {
   1709         ScopedThreadStateChange sts(self, suspend_state);
   1710         while (GetState() == ThreadState::kRunnable) {
   1711           // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
   1712           // moves us to suspended.
   1713           sched_yield();
   1714         }
   1715       }
   1716 
   1717       function->Run(this);
   1718     }
   1719 
   1720     {
   1721       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1722 
   1723       DCHECK_NE(GetState(), ThreadState::kRunnable);
   1724       bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
   1725       DCHECK(updated);
   1726     }
   1727 
   1728     {
   1729       // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
   1730       // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
   1731       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
   1732       Thread::resume_cond_->Broadcast(self);
   1733     }
   1734 
   1735     // Release the thread_list_lock_ to be consistent with the barrier-closure path.
   1736     Locks::thread_list_lock_->ExclusiveUnlock(self);
   1737 
   1738     return true;  // We're done, break out of the loop.
   1739   }
   1740 }
   1741 
   1742 Closure* Thread::GetFlipFunction() {
   1743   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
   1744   Closure* func;
   1745   do {
   1746     func = atomic_func->load(std::memory_order_relaxed);
   1747     if (func == nullptr) {
   1748       return nullptr;
   1749     }
   1750   } while (!atomic_func->CompareAndSetWeakSequentiallyConsistent(func, nullptr));
   1751   DCHECK(func != nullptr);
   1752   return func;
   1753 }
   1754 
   1755 void Thread::SetFlipFunction(Closure* function) {
   1756   CHECK(function != nullptr);
   1757   Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
   1758   atomic_func->store(function, std::memory_order_seq_cst);
   1759 }
   1760 
   1761 void Thread::FullSuspendCheck() {
   1762   ScopedTrace trace(__FUNCTION__);
   1763   VLOG(threads) << this << " self-suspending";
   1764   // Make thread appear suspended to other threads, release mutator_lock_.
   1765   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
   1766   ScopedThreadSuspension(this, kSuspended);  // NOLINT
   1767   VLOG(threads) << this << " self-reviving";
   1768 }
   1769 
   1770 static std::string GetSchedulerGroupName(pid_t tid) {
   1771   // /proc/<pid>/cgroup looks like this:
   1772   // 2:devices:/
   1773   // 1:cpuacct,cpu:/
   1774   // We want the third field from the line whose second field contains the "cpu" token.
   1775   std::string cgroup_file;
   1776   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
   1777     return "";
   1778   }
   1779   std::vector<std::string> cgroup_lines;
   1780   Split(cgroup_file, '\n', &cgroup_lines);
   1781   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
   1782     std::vector<std::string> cgroup_fields;
   1783     Split(cgroup_lines[i], ':', &cgroup_fields);
   1784     std::vector<std::string> cgroups;
   1785     Split(cgroup_fields[1], ',', &cgroups);
   1786     for (size_t j = 0; j < cgroups.size(); ++j) {
   1787       if (cgroups[j] == "cpu") {
   1788         return cgroup_fields[2].substr(1);  // Skip the leading slash.
   1789       }
   1790     }
   1791   }
   1792   return "";
   1793 }
   1794 
   1795 
   1796 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
   1797   std::string group_name;
   1798   int priority;
   1799   bool is_daemon = false;
   1800   Thread* self = Thread::Current();
   1801 
   1802   // If flip_function is not null, it means we have run a checkpoint
   1803   // before the thread wakes up to execute the flip function and the
   1804   // thread roots haven't been forwarded.  So the following access to
   1805   // the roots (opeer or methods in the frames) would be bad. Run it
   1806   // here. TODO: clean up.
   1807   if (thread != nullptr) {
   1808     ScopedObjectAccessUnchecked soa(self);
   1809     Thread* this_thread = const_cast<Thread*>(thread);
   1810     Closure* flip_func = this_thread->GetFlipFunction();
   1811     if (flip_func != nullptr) {
   1812       flip_func->Run(this_thread);
   1813     }
   1814   }
   1815 
   1816   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
   1817   // cause ScopedObjectAccessUnchecked to deadlock.
   1818   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
   1819     ScopedObjectAccessUnchecked soa(self);
   1820     priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
   1821         ->GetInt(thread->tlsPtr_.opeer);
   1822     is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
   1823         ->GetBoolean(thread->tlsPtr_.opeer);
   1824 
   1825     ObjPtr<mirror::Object> thread_group =
   1826         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
   1827             ->GetObject(thread->tlsPtr_.opeer);
   1828 
   1829     if (thread_group != nullptr) {
   1830       ArtField* group_name_field =
   1831           jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
   1832       ObjPtr<mirror::String> group_name_string =
   1833           group_name_field->GetObject(thread_group)->AsString();
   1834       group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
   1835     }
   1836   } else {
   1837     priority = GetNativePriority();
   1838   }
   1839 
   1840   std::string scheduler_group_name(GetSchedulerGroupName(tid));
   1841   if (scheduler_group_name.empty()) {
   1842     scheduler_group_name = "default";
   1843   }
   1844 
   1845   if (thread != nullptr) {
   1846     os << '"' << *thread->tlsPtr_.name << '"';
   1847     if (is_daemon) {
   1848       os << " daemon";
   1849     }
   1850     os << " prio=" << priority
   1851        << " tid=" << thread->GetThreadId()
   1852        << " " << thread->GetState();
   1853     if (thread->IsStillStarting()) {
   1854       os << " (still starting up)";
   1855     }
   1856     os << "\n";
   1857   } else {
   1858     os << '"' << ::art::GetThreadName(tid) << '"'
   1859        << " prio=" << priority
   1860        << " (not attached)\n";
   1861   }
   1862 
   1863   if (thread != nullptr) {
   1864     auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) {
   1865       os << "  | group=\"" << group_name << "\""
   1866          << " sCount=" << thread->tls32_.suspend_count
   1867          << " dsCount=" << thread->tls32_.debug_suspend_count
   1868          << " flags=" << thread->tls32_.state_and_flags.as_struct.flags
   1869          << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
   1870          << " self=" << reinterpret_cast<const void*>(thread) << "\n";
   1871     };
   1872     if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) {
   1873       Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self);  // For annotalysis.
   1874       suspend_log_fn();
   1875     } else {
   1876       MutexLock mu(self, *Locks::thread_suspend_count_lock_);
   1877       suspend_log_fn();
   1878     }
   1879   }
   1880 
   1881   os << "  | sysTid=" << tid
   1882      << " nice=" << getpriority(PRIO_PROCESS, tid)
   1883      << " cgrp=" << scheduler_group_name;
   1884   if (thread != nullptr) {
   1885     int policy;
   1886     sched_param sp;
   1887 #if !defined(__APPLE__)
   1888     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
   1889     policy = sched_getscheduler(tid);
   1890     if (policy == -1) {
   1891       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
   1892     }
   1893     int sched_getparam_result = sched_getparam(tid, &sp);
   1894     if (sched_getparam_result == -1) {
   1895       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
   1896       sp.sched_priority = -1;
   1897     }
   1898 #else
   1899     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
   1900                        __FUNCTION__);
   1901 #endif
   1902     os << " sched=" << policy << "/" << sp.sched_priority
   1903        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
   1904   }
   1905   os << "\n";
   1906 
   1907   // Grab the scheduler stats for this thread.
   1908   std::string scheduler_stats;
   1909   if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)
   1910       && !scheduler_stats.empty()) {
   1911     scheduler_stats = android::base::Trim(scheduler_stats);  // Lose the trailing '\n'.
   1912   } else {
   1913     scheduler_stats = "0 0 0";
   1914   }
   1915 
   1916   char native_thread_state = '?';
   1917   int utime = 0;
   1918   int stime = 0;
   1919   int task_cpu = 0;
   1920   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
   1921 
   1922   os << "  | state=" << native_thread_state
   1923      << " schedstat=( " << scheduler_stats << " )"
   1924      << " utm=" << utime
   1925      << " stm=" << stime
   1926      << " core=" << task_cpu
   1927      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
   1928   if (thread != nullptr) {
   1929     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
   1930         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
   1931         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
   1932     // Dump the held mutexes.
   1933     os << "  | held mutexes=";
   1934     for (size_t i = 0; i < kLockLevelCount; ++i) {
   1935       if (i != kMonitorLock) {
   1936         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
   1937         if (mutex != nullptr) {
   1938           os << " \"" << mutex->GetName() << "\"";
   1939           if (mutex->IsReaderWriterMutex()) {
   1940             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
   1941             if (rw_mutex->GetExclusiveOwnerTid() == tid) {
   1942               os << "(exclusive held)";
   1943             } else {
   1944               os << "(shared held)";
   1945             }
   1946           }
   1947         }
   1948       }
   1949     }
   1950     os << "\n";
   1951   }
   1952 }
   1953 
   1954 void Thread::DumpState(std::ostream& os) const {
   1955   Thread::DumpState(os, this, GetTid());
   1956 }
   1957 
   1958 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
   1959   StackDumpVisitor(std::ostream& os_in,
   1960                    Thread* thread_in,
   1961                    Context* context,
   1962                    bool can_allocate,
   1963                    bool check_suspended = true,
   1964                    bool dump_locks = true)
   1965       REQUIRES_SHARED(Locks::mutator_lock_)
   1966       : MonitorObjectsStackVisitor(thread_in,
   1967                                    context,
   1968                                    check_suspended,
   1969                                    can_allocate && dump_locks),
   1970         os(os_in),
   1971         last_method(nullptr),
   1972         last_line_number(0),
   1973         repetition_count(0) {}
   1974 
   1975   virtual ~StackDumpVisitor() {
   1976     if (frame_count == 0) {
   1977       os << "  (no managed stack frames)\n";
   1978     }
   1979   }
   1980 
   1981   static constexpr size_t kMaxRepetition = 3u;
   1982 
   1983   VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
   1984       override
   1985       REQUIRES_SHARED(Locks::mutator_lock_) {
   1986     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
   1987     ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache();
   1988     int line_number = -1;
   1989     if (dex_cache != nullptr) {  // be tolerant of bad input
   1990       const DexFile* dex_file = dex_cache->GetDexFile();
   1991       line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
   1992     }
   1993     if (line_number == last_line_number && last_method == m) {
   1994       ++repetition_count;
   1995     } else {
   1996       if (repetition_count >= kMaxRepetition) {
   1997         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
   1998       }
   1999       repetition_count = 0;
   2000       last_line_number = line_number;
   2001       last_method = m;
   2002     }
   2003 
   2004     if (repetition_count >= kMaxRepetition) {
   2005       // Skip visiting=printing anything.
   2006       return VisitMethodResult::kSkipMethod;
   2007     }
   2008 
   2009     os << "  at " << m->PrettyMethod(false);
   2010     if (m->IsNative()) {
   2011       os << "(Native method)";
   2012     } else {
   2013       const char* source_file(m->GetDeclaringClassSourceFile());
   2014       os << "(" << (source_file != nullptr ? source_file : "unavailable")
   2015                        << ":" << line_number << ")";
   2016     }
   2017     os << "\n";
   2018     // Go and visit locks.
   2019     return VisitMethodResult::kContinueMethod;
   2020   }
   2021 
   2022   VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
   2023     return VisitMethodResult::kContinueMethod;
   2024   }
   2025 
   2026   void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
   2027       override
   2028       REQUIRES_SHARED(Locks::mutator_lock_) {
   2029     PrintObject(obj, "  - waiting on ", ThreadList::kInvalidThreadId);
   2030   }
   2031   void VisitSleepingObject(ObjPtr<mirror::Object> obj)
   2032       override
   2033       REQUIRES_SHARED(Locks::mutator_lock_) {
   2034     PrintObject(obj, "  - sleeping on ", ThreadList::kInvalidThreadId);
   2035   }
   2036   void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
   2037                             ThreadState state,
   2038                             uint32_t owner_tid)
   2039       override
   2040       REQUIRES_SHARED(Locks::mutator_lock_) {
   2041     const char* msg;
   2042     switch (state) {
   2043       case kBlocked:
   2044         msg = "  - waiting to lock ";
   2045         break;
   2046 
   2047       case kWaitingForLockInflation:
   2048         msg = "  - waiting for lock inflation of ";
   2049         break;
   2050 
   2051       default:
   2052         LOG(FATAL) << "Unreachable";
   2053         UNREACHABLE();
   2054     }
   2055     PrintObject(obj, msg, owner_tid);
   2056   }
   2057   void VisitLockedObject(ObjPtr<mirror::Object> obj)
   2058       override
   2059       REQUIRES_SHARED(Locks::mutator_lock_) {
   2060     PrintObject(obj, "  - locked ", ThreadList::kInvalidThreadId);
   2061   }
   2062 
   2063   void PrintObject(ObjPtr<mirror::Object> obj,
   2064                    const char* msg,
   2065                    uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
   2066     if (obj == nullptr) {
   2067       os << msg << "an unknown object";
   2068     } else {
   2069       if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
   2070           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
   2071         // Getting the identity hashcode here would result in lock inflation and suspension of the
   2072         // current thread, which isn't safe if this is the only runnable thread.
   2073         os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
   2074                                   reinterpret_cast<intptr_t>(obj.Ptr()),
   2075                                   obj->PrettyTypeOf().c_str());
   2076       } else {
   2077         // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
   2078         // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
   2079         // suspension and move pretty_object.
   2080         const std::string pretty_type(obj->PrettyTypeOf());
   2081         os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
   2082       }
   2083     }
   2084     if (owner_tid != ThreadList::kInvalidThreadId) {
   2085       os << " held by thread " << owner_tid;
   2086     }
   2087     os << "\n";
   2088   }
   2089 
   2090   std::ostream& os;
   2091   ArtMethod* last_method;
   2092   int last_line_number;
   2093   size_t repetition_count;
   2094 };
   2095 
   2096 static bool ShouldShowNativeStack(const Thread* thread)
   2097     REQUIRES_SHARED(Locks::mutator_lock_) {
   2098   ThreadState state = thread->GetState();
   2099 
   2100   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
   2101   if (state > kWaiting && state < kStarting) {
   2102     return true;
   2103   }
   2104 
   2105   // In an Object.wait variant or Thread.sleep? That's not interesting.
   2106   if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
   2107     return false;
   2108   }
   2109 
   2110   // Threads with no managed stack frames should be shown.
   2111   if (!thread->HasManagedStack()) {
   2112     return true;
   2113   }
   2114 
   2115   // In some other native method? That's interesting.
   2116   // We don't just check kNative because native methods will be in state kSuspended if they're
   2117   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
   2118   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
   2119   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
   2120   return current_method != nullptr && current_method->IsNative();
   2121 }
   2122 
   2123 void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
   2124   // If flip_function is not null, it means we have run a checkpoint
   2125   // before the thread wakes up to execute the flip function and the
   2126   // thread roots haven't been forwarded.  So the following access to
   2127   // the roots (locks or methods in the frames) would be bad. Run it
   2128   // here. TODO: clean up.
   2129   {
   2130     Thread* this_thread = const_cast<Thread*>(this);
   2131     Closure* flip_func = this_thread->GetFlipFunction();
   2132     if (flip_func != nullptr) {
   2133       flip_func->Run(this_thread);
   2134     }
   2135   }
   2136 
   2137   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
   2138   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
   2139   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
   2140   // thread.
   2141   StackHandleScope<1> scope(Thread::Current());
   2142   Handle<mirror::Throwable> exc;
   2143   bool have_exception = false;
   2144   if (IsExceptionPending()) {
   2145     exc = scope.NewHandle(GetException());
   2146     const_cast<Thread*>(this)->ClearException();
   2147     have_exception = true;
   2148   }
   2149 
   2150   std::unique_ptr<Context> context(Context::Create());
   2151   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
   2152                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
   2153   dumper.WalkStack();
   2154 
   2155   if (have_exception) {
   2156     const_cast<Thread*>(this)->SetException(exc.Get());
   2157   }
   2158 }
   2159 
   2160 void Thread::DumpStack(std::ostream& os,
   2161                        bool dump_native_stack,
   2162                        BacktraceMap* backtrace_map,
   2163                        bool force_dump_stack) const {
   2164   // TODO: we call this code when dying but may not have suspended the thread ourself. The
   2165   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
   2166   //       the race with the thread_suspend_count_lock_).
   2167   bool dump_for_abort = (gAborting > 0);
   2168   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
   2169   if (!kIsDebugBuild) {
   2170     // We always want to dump the stack for an abort, however, there is no point dumping another
   2171     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
   2172     safe_to_dump = (safe_to_dump || dump_for_abort);
   2173   }
   2174   if (safe_to_dump || force_dump_stack) {
   2175     // If we're currently in native code, dump that stack before dumping the managed stack.
   2176     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
   2177       DumpKernelStack(os, GetTid(), "  kernel: ", false);
   2178       ArtMethod* method =
   2179           GetCurrentMethod(nullptr,
   2180                            /*check_suspended=*/ !force_dump_stack,
   2181                            /*abort_on_error=*/ !(dump_for_abort || force_dump_stack));
   2182       DumpNativeStack(os, GetTid(), backtrace_map, "  native: ", method);
   2183     }
   2184     DumpJavaStack(os,
   2185                   /*check_suspended=*/ !force_dump_stack,
   2186                   /*dump_locks=*/ !force_dump_stack);
   2187   } else {
   2188     os << "Not able to dump stack of thread that isn't suspended";
   2189   }
   2190 }
   2191 
   2192 void Thread::ThreadExitCallback(void* arg) {
   2193   Thread* self = reinterpret_cast<Thread*>(arg);
   2194   if (self->tls32_.thread_exit_check_count == 0) {
   2195     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
   2196         "going to use a pthread_key_create destructor?): " << *self;
   2197     CHECK(is_started_);
   2198 #ifdef ART_TARGET_ANDROID
   2199     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
   2200 #else
   2201     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
   2202 #endif
   2203     self->tls32_.thread_exit_check_count = 1;
   2204   } else {
   2205     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
   2206   }
   2207 }
   2208 
   2209 void Thread::Startup() {
   2210   CHECK(!is_started_);
   2211   is_started_ = true;
   2212   {
   2213     // MutexLock to keep annotalysis happy.
   2214     //
   2215     // Note we use null for the thread because Thread::Current can
   2216     // return garbage since (is_started_ == true) and
   2217     // Thread::pthread_key_self_ is not yet initialized.
   2218     // This was seen on glibc.
   2219     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
   2220     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
   2221                                          *Locks::thread_suspend_count_lock_);
   2222   }
   2223 
   2224   // Allocate a TLS slot.
   2225   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
   2226                      "self key");
   2227 
   2228   // Double-check the TLS slot allocation.
   2229   if (pthread_getspecific(pthread_key_self_) != nullptr) {
   2230     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
   2231   }
   2232 }
   2233 
   2234 void Thread::FinishStartup() {
   2235   Runtime* runtime = Runtime::Current();
   2236   CHECK(runtime->IsStarted());
   2237 
   2238   // Finish attaching the main thread.
   2239   ScopedObjectAccess soa(Thread::Current());
   2240   soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup());
   2241   soa.Self()->AssertNoPendingException();
   2242 
   2243   runtime->RunRootClinits(soa.Self());
   2244 
   2245   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
   2246   // threads, this is done in Thread.start() on the Java side.
   2247   soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
   2248   soa.Self()->AssertNoPendingException();
   2249 }
   2250 
   2251 void Thread::Shutdown() {
   2252   CHECK(is_started_);
   2253   is_started_ = false;
   2254   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
   2255   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   2256   if (resume_cond_ != nullptr) {
   2257     delete resume_cond_;
   2258     resume_cond_ = nullptr;
   2259   }
   2260 }
   2261 
   2262 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
   2263   ScopedLocalRef<jobject> thread_jobject(
   2264       soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
   2265   ScopedLocalRef<jobject> thread_group_jobject_scoped(
   2266       soa.Env(), nullptr);
   2267   jobject thread_group_jobject = thread_group;
   2268   if (thread_group == nullptr || kIsDebugBuild) {
   2269     // There is always a group set. Retrieve it.
   2270     thread_group_jobject_scoped.reset(
   2271         soa.Env()->GetObjectField(thread_jobject.get(),
   2272                                   WellKnownClasses::java_lang_Thread_group));
   2273     thread_group_jobject = thread_group_jobject_scoped.get();
   2274     if (kIsDebugBuild && thread_group != nullptr) {
   2275       CHECK(soa.Env()->IsSameObject(thread_group, thread_group_jobject));
   2276     }
   2277   }
   2278   soa.Env()->CallNonvirtualVoidMethod(thread_group_jobject,
   2279                                       WellKnownClasses::java_lang_ThreadGroup,
   2280                                       WellKnownClasses::java_lang_ThreadGroup_add,
   2281                                       thread_jobject.get());
   2282 }
   2283 
   2284 Thread::Thread(bool daemon)
   2285     : tls32_(daemon),
   2286       wait_monitor_(nullptr),
   2287       is_runtime_thread_(false) {
   2288   wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock);
   2289   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
   2290   tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
   2291   tlsPtr_.name = new std::string(kThreadNameDuringStartup);
   2292 
   2293   static_assert((sizeof(Thread) % 4) == 0U,
   2294                 "art::Thread has a size which is not a multiple of 4.");
   2295   tls32_.state_and_flags.as_struct.flags = 0;
   2296   tls32_.state_and_flags.as_struct.state = kNative;
   2297   tls32_.interrupted.store(false, std::memory_order_relaxed);
   2298   // Initialize with no permit; if the java Thread was unparked before being
   2299   // started, it will unpark itself before calling into java code.
   2300   tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
   2301   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
   2302   std::fill(tlsPtr_.rosalloc_runs,
   2303             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
   2304             gc::allocator::RosAlloc::GetDedicatedFullRun());
   2305   tlsPtr_.checkpoint_function = nullptr;
   2306   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
   2307     tlsPtr_.active_suspend_barriers[i] = nullptr;
   2308   }
   2309   tlsPtr_.flip_function = nullptr;
   2310   tlsPtr_.thread_local_mark_stack = nullptr;
   2311   tls32_.is_transitioning_to_runnable = false;
   2312   tls32_.use_mterp = false;
   2313 }
   2314 
   2315 void Thread::NotifyInTheadList() {
   2316   tls32_.use_mterp = interpreter::CanUseMterp();
   2317 }
   2318 
   2319 bool Thread::CanLoadClasses() const {
   2320   return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable();
   2321 }
   2322 
   2323 bool Thread::IsStillStarting() const {
   2324   // You might think you can check whether the state is kStarting, but for much of thread startup,
   2325   // the thread is in kNative; it might also be in kVmWait.
   2326   // You might think you can check whether the peer is null, but the peer is actually created and
   2327   // assigned fairly early on, and needs to be.
   2328   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
   2329   // this thread _ever_ entered kRunnable".
   2330   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
   2331       (*tlsPtr_.name == kThreadNameDuringStartup);
   2332 }
   2333 
   2334 void Thread::AssertPendingException() const {
   2335   CHECK(IsExceptionPending()) << "Pending exception expected.";
   2336 }
   2337 
   2338 void Thread::AssertPendingOOMException() const {
   2339   AssertPendingException();
   2340   auto* e = GetException();
   2341   CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
   2342       << e->Dump();
   2343 }
   2344 
   2345 void Thread::AssertNoPendingException() const {
   2346   if (UNLIKELY(IsExceptionPending())) {
   2347     ScopedObjectAccess soa(Thread::Current());
   2348     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
   2349   }
   2350 }
   2351 
   2352 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
   2353   if (UNLIKELY(IsExceptionPending())) {
   2354     ScopedObjectAccess soa(Thread::Current());
   2355     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
   2356         << GetException()->Dump();
   2357   }
   2358 }
   2359 
   2360 class MonitorExitVisitor : public SingleRootVisitor {
   2361  public:
   2362   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
   2363 
   2364   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
   2365   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
   2366       override NO_THREAD_SAFETY_ANALYSIS {
   2367     if (self_->HoldsLock(entered_monitor)) {
   2368       LOG(WARNING) << "Calling MonitorExit on object "
   2369                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
   2370                    << " left locked by native thread "
   2371                    << *Thread::Current() << " which is detaching";
   2372       entered_monitor->MonitorExit(self_);
   2373     }
   2374   }
   2375 
   2376  private:
   2377   Thread* const self_;
   2378 };
   2379 
   2380 void Thread::Destroy() {
   2381   Thread* self = this;
   2382   DCHECK_EQ(self, Thread::Current());
   2383 
   2384   if (tlsPtr_.jni_env != nullptr) {
   2385     {
   2386       ScopedObjectAccess soa(self);
   2387       MonitorExitVisitor visitor(self);
   2388       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
   2389       tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
   2390     }
   2391     // Release locally held global references which releasing may require the mutator lock.
   2392     if (tlsPtr_.jpeer != nullptr) {
   2393       // If pthread_create fails we don't have a jni env here.
   2394       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
   2395       tlsPtr_.jpeer = nullptr;
   2396     }
   2397     if (tlsPtr_.class_loader_override != nullptr) {
   2398       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
   2399       tlsPtr_.class_loader_override = nullptr;
   2400     }
   2401   }
   2402 
   2403   if (tlsPtr_.opeer != nullptr) {
   2404     ScopedObjectAccess soa(self);
   2405     // We may need to call user-supplied managed code, do this before final clean-up.
   2406     HandleUncaughtExceptions(soa);
   2407     RemoveFromThreadGroup(soa);
   2408     Runtime* runtime = Runtime::Current();
   2409     if (runtime != nullptr) {
   2410       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
   2411     }
   2412 
   2413     // this.nativePeer = 0;
   2414     if (Runtime::Current()->IsActiveTransaction()) {
   2415       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
   2416           ->SetLong<true>(tlsPtr_.opeer, 0);
   2417     } else {
   2418       jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
   2419           ->SetLong<false>(tlsPtr_.opeer, 0);
   2420     }
   2421 
   2422     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
   2423     // who is waiting.
   2424     ObjPtr<mirror::Object> lock =
   2425         jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
   2426     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
   2427     if (lock != nullptr) {
   2428       StackHandleScope<1> hs(self);
   2429       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
   2430       ObjectLock<mirror::Object> locker(self, h_obj);
   2431       locker.NotifyAll();
   2432     }
   2433     tlsPtr_.opeer = nullptr;
   2434   }
   2435 
   2436   {
   2437     ScopedObjectAccess soa(self);
   2438     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
   2439     if (kUseReadBarrier) {
   2440       Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
   2441     }
   2442   }
   2443 }
   2444 
   2445 Thread::~Thread() {
   2446   CHECK(tlsPtr_.class_loader_override == nullptr);
   2447   CHECK(tlsPtr_.jpeer == nullptr);
   2448   CHECK(tlsPtr_.opeer == nullptr);
   2449   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
   2450   if (initialized) {
   2451     delete tlsPtr_.jni_env;
   2452     tlsPtr_.jni_env = nullptr;
   2453   }
   2454   CHECK_NE(GetState(), kRunnable);
   2455   CHECK(!ReadFlag(kCheckpointRequest));
   2456   CHECK(!ReadFlag(kEmptyCheckpointRequest));
   2457   CHECK(tlsPtr_.checkpoint_function == nullptr);
   2458   CHECK_EQ(checkpoint_overflow_.size(), 0u);
   2459   CHECK(tlsPtr_.flip_function == nullptr);
   2460   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
   2461 
   2462   // Make sure we processed all deoptimization requests.
   2463   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
   2464   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
   2465       "Not all deoptimized frames have been consumed by the debugger.";
   2466 
   2467   // We may be deleting a still born thread.
   2468   SetStateUnsafe(kTerminated);
   2469 
   2470   delete wait_cond_;
   2471   delete wait_mutex_;
   2472 
   2473   if (tlsPtr_.long_jump_context != nullptr) {
   2474     delete tlsPtr_.long_jump_context;
   2475   }
   2476 
   2477   if (initialized) {
   2478     CleanupCpu();
   2479   }
   2480 
   2481   if (tlsPtr_.single_step_control != nullptr) {
   2482     delete tlsPtr_.single_step_control;
   2483   }
   2484   delete tlsPtr_.instrumentation_stack;
   2485   delete tlsPtr_.name;
   2486   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
   2487 
   2488   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
   2489 
   2490   TearDownAlternateSignalStack();
   2491 }
   2492 
   2493 void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
   2494   if (!IsExceptionPending()) {
   2495     return;
   2496   }
   2497   ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   2498   ScopedThreadStateChange tsc(this, kNative);
   2499 
   2500   // Get and clear the exception.
   2501   ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
   2502   tlsPtr_.jni_env->ExceptionClear();
   2503 
   2504   // Call the Thread instance's dispatchUncaughtException(Throwable)
   2505   tlsPtr_.jni_env->CallVoidMethod(peer.get(),
   2506       WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
   2507       exception.get());
   2508 
   2509   // If the dispatchUncaughtException threw, clear that exception too.
   2510   tlsPtr_.jni_env->ExceptionClear();
   2511 }
   2512 
   2513 void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
   2514   // this.group.removeThread(this);
   2515   // group can be null if we're in the compiler or a test.
   2516   ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
   2517       ->GetObject(tlsPtr_.opeer);
   2518   if (ogroup != nullptr) {
   2519     ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
   2520     ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
   2521     ScopedThreadStateChange tsc(soa.Self(), kNative);
   2522     tlsPtr_.jni_env->CallVoidMethod(group.get(),
   2523                                     WellKnownClasses::java_lang_ThreadGroup_removeThread,
   2524                                     peer.get());
   2525   }
   2526 }
   2527 
   2528 bool Thread::HandleScopeContains(jobject obj) const {
   2529   StackReference<mirror::Object>* hs_entry =
   2530       reinterpret_cast<StackReference<mirror::Object>*>(obj);
   2531   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
   2532     if (cur->Contains(hs_entry)) {
   2533       return true;
   2534     }
   2535   }
   2536   // JNI code invoked from portable code uses shadow frames rather than the handle scope.
   2537   return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
   2538 }
   2539 
   2540 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, pid_t thread_id) {
   2541   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
   2542       visitor, RootInfo(kRootNativeStack, thread_id));
   2543   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
   2544     cur->VisitRoots(buffered_visitor);
   2545   }
   2546 }
   2547 
   2548 ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
   2549   if (obj == nullptr) {
   2550     return nullptr;
   2551   }
   2552   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   2553   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
   2554   ObjPtr<mirror::Object> result;
   2555   bool expect_null = false;
   2556   // The "kinds" below are sorted by the frequency we expect to encounter them.
   2557   if (kind == kLocal) {
   2558     IndirectReferenceTable& locals = tlsPtr_.jni_env->locals_;
   2559     // Local references do not need a read barrier.
   2560     result = locals.Get<kWithoutReadBarrier>(ref);
   2561   } else if (kind == kHandleScopeOrInvalid) {
   2562     // TODO: make stack indirect reference table lookup more efficient.
   2563     // Check if this is a local reference in the handle scope.
   2564     if (LIKELY(HandleScopeContains(obj))) {
   2565       // Read from handle scope.
   2566       result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
   2567       VerifyObject(result);
   2568     } else {
   2569       tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of invalid jobject %p", obj);
   2570       expect_null = true;
   2571       result = nullptr;
   2572     }
   2573   } else if (kind == kGlobal) {
   2574     result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
   2575   } else {
   2576     DCHECK_EQ(kind, kWeakGlobal);
   2577     result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
   2578     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
   2579       // This is a special case where it's okay to return null.
   2580       expect_null = true;
   2581       result = nullptr;
   2582     }
   2583   }
   2584 
   2585   if (UNLIKELY(!expect_null && result == nullptr)) {
   2586     tlsPtr_.jni_env->vm_->JniAbortF(nullptr, "use of deleted %s %p",
   2587                                    ToStr<IndirectRefKind>(kind).c_str(), obj);
   2588   }
   2589   return result;
   2590 }
   2591 
   2592 bool Thread::IsJWeakCleared(jweak obj) const {
   2593   CHECK(obj != nullptr);
   2594   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
   2595   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
   2596   CHECK_EQ(kind, kWeakGlobal);
   2597   return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
   2598 }
   2599 
   2600 // Implements java.lang.Thread.interrupted.
   2601 bool Thread::Interrupted() {
   2602   DCHECK_EQ(Thread::Current(), this);
   2603   // No other thread can concurrently reset the interrupted flag.
   2604   bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst);
   2605   if (interrupted) {
   2606     tls32_.interrupted.store(false, std::memory_order_seq_cst);
   2607   }
   2608   return interrupted;
   2609 }
   2610 
   2611 // Implements java.lang.Thread.isInterrupted.
   2612 bool Thread::IsInterrupted() {
   2613   return tls32_.interrupted.load(std::memory_order_seq_cst);
   2614 }
   2615 
   2616 void Thread::Interrupt(Thread* self) {
   2617   {
   2618     MutexLock mu(self, *wait_mutex_);
   2619     if (tls32_.interrupted.load(std::memory_order_seq_cst)) {
   2620       return;
   2621     }
   2622     tls32_.interrupted.store(true, std::memory_order_seq_cst);
   2623     NotifyLocked(self);
   2624   }
   2625   Unpark();
   2626 }
   2627 
   2628 void Thread::Notify() {
   2629   Thread* self = Thread::Current();
   2630   MutexLock mu(self, *wait_mutex_);
   2631   NotifyLocked(self);
   2632 }
   2633 
   2634 void Thread::NotifyLocked(Thread* self) {
   2635   if (wait_monitor_ != nullptr) {
   2636     wait_cond_->Signal(self);
   2637   }
   2638 }
   2639 
   2640 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
   2641   if (tlsPtr_.class_loader_override != nullptr) {
   2642     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
   2643   }
   2644   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
   2645 }
   2646 
   2647 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
   2648 
   2649 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
   2650 class FetchStackTraceVisitor : public StackVisitor {
   2651  public:
   2652   explicit FetchStackTraceVisitor(Thread* thread,
   2653                                   ArtMethodDexPcPair* saved_frames = nullptr,
   2654                                   size_t max_saved_frames = 0)
   2655       REQUIRES_SHARED(Locks::mutator_lock_)
   2656       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2657         saved_frames_(saved_frames),
   2658         max_saved_frames_(max_saved_frames) {}
   2659 
   2660   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
   2661     // We want to skip frames up to and including the exception's constructor.
   2662     // Note we also skip the frame if it doesn't have a method (namely the callee
   2663     // save frame)
   2664     ArtMethod* m = GetMethod();
   2665     if (skipping_ && !m->IsRuntimeMethod() &&
   2666         !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) {
   2667       skipping_ = false;
   2668     }
   2669     if (!skipping_) {
   2670       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
   2671         if (depth_ < max_saved_frames_) {
   2672           saved_frames_[depth_].first = m;
   2673           saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
   2674         }
   2675         ++depth_;
   2676       }
   2677     } else {
   2678       ++skip_depth_;
   2679     }
   2680     return true;
   2681   }
   2682 
   2683   uint32_t GetDepth() const {
   2684     return depth_;
   2685   }
   2686 
   2687   uint32_t GetSkipDepth() const {
   2688     return skip_depth_;
   2689   }
   2690 
   2691  private:
   2692   uint32_t depth_ = 0;
   2693   uint32_t skip_depth_ = 0;
   2694   bool skipping_ = true;
   2695   ArtMethodDexPcPair* saved_frames_;
   2696   const size_t max_saved_frames_;
   2697 
   2698   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
   2699 };
   2700 
   2701 template<bool kTransactionActive>
   2702 class BuildInternalStackTraceVisitor : public StackVisitor {
   2703  public:
   2704   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
   2705       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
   2706         self_(self),
   2707         skip_depth_(skip_depth),
   2708         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
   2709 
   2710   bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
   2711     // Allocate method trace as an object array where the first element is a pointer array that
   2712     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
   2713     // class of the ArtMethod pointers.
   2714     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   2715     StackHandleScope<1> hs(self_);
   2716     ObjPtr<mirror::Class> array_class =
   2717         GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker);
   2718     // The first element is the methods and dex pc array, the other elements are declaring classes
   2719     // for the methods to ensure classes in the stack trace don't get unloaded.
   2720     Handle<mirror::ObjectArray<mirror::Object>> trace(
   2721         hs.NewHandle(
   2722             mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
   2723     if (trace == nullptr) {
   2724       // Acquire uninterruptible_ in all paths.
   2725       self_->StartAssertNoThreadSuspension("Building internal stack trace");
   2726       self_->AssertPendingOOMException();
   2727       return false;
   2728     }
   2729     ObjPtr<mirror::PointerArray> methods_and_pcs =
   2730         class_linker->AllocPointerArray(self_, depth * 2);
   2731     const char* last_no_suspend_cause =
   2732         self_->StartAssertNoThreadSuspension("Building internal stack trace");
   2733     if (methods_and_pcs == nullptr) {
   2734       self_->AssertPendingOOMException();
   2735       return false;
   2736     }
   2737     trace->Set(0, methods_and_pcs);
   2738     trace_ = trace.Get();
   2739     // If We are called from native, use non-transactional mode.
   2740     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
   2741     return true;
   2742   }
   2743 
   2744   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
   2745     self_->EndAssertNoThreadSuspension(nullptr);
   2746   }
   2747 
   2748   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
   2749     if (trace_ == nullptr) {
   2750       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
   2751     }
   2752     if (skip_depth_ > 0) {
   2753       skip_depth_--;
   2754       return true;
   2755     }
   2756     ArtMethod* m = GetMethod();
   2757     if (m->IsRuntimeMethod()) {
   2758       return true;  // Ignore runtime frames (in particular callee save).
   2759     }
   2760     AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
   2761     return true;
   2762   }
   2763 
   2764   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
   2765     ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
   2766     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
   2767     trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
   2768         trace_methods_and_pcs->GetLength() / 2 + count_,
   2769         dex_pc,
   2770         pointer_size_);
   2771     // Save the declaring class of the method to ensure that the declaring classes of the methods
   2772     // do not get unloaded while the stack trace is live.
   2773     trace_->Set(count_ + 1, method->GetDeclaringClass());
   2774     ++count_;
   2775   }
   2776 
   2777   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
   2778     return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0));
   2779   }
   2780 
   2781   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
   2782     return trace_;
   2783   }
   2784 
   2785  private:
   2786   Thread* const self_;
   2787   // How many more frames to skip.
   2788   int32_t skip_depth_;
   2789   // Current position down stack trace.
   2790   uint32_t count_ = 0;
   2791   // An object array where the first element is a pointer array that contains the ArtMethod
   2792   // pointers on the stack and dex PCs. The rest of the elements are the declaring
   2793   // class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
   2794   // the i'th frame.
   2795   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
   2796   // For cross compilation.
   2797   const PointerSize pointer_size_;
   2798 
   2799   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
   2800 };
   2801 
   2802 template<bool kTransactionActive>
   2803 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   2804   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
   2805   constexpr size_t kMaxSavedFrames = 256;
   2806   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
   2807   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
   2808                                        &saved_frames[0],
   2809                                        kMaxSavedFrames);
   2810   count_visitor.WalkStack();
   2811   const uint32_t depth = count_visitor.GetDepth();
   2812   const uint32_t skip_depth = count_visitor.GetSkipDepth();
   2813 
   2814   // Build internal stack trace.
   2815   BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
   2816                                                                          const_cast<Thread*>(this),
   2817                                                                          skip_depth);
   2818   if (!build_trace_visitor.Init(depth)) {
   2819     return nullptr;  // Allocation failed.
   2820   }
   2821   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
   2822   // than doing the stack walk twice.
   2823   if (depth < kMaxSavedFrames) {
   2824     for (size_t i = 0; i < depth; ++i) {
   2825       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
   2826     }
   2827   } else {
   2828     build_trace_visitor.WalkStack();
   2829   }
   2830 
   2831   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
   2832   if (kIsDebugBuild) {
   2833     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
   2834     // Second half of trace_methods is dex PCs.
   2835     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
   2836       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
   2837           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
   2838       CHECK(method != nullptr);
   2839     }
   2840   }
   2841   return soa.AddLocalReference<jobject>(trace);
   2842 }
   2843 template jobject Thread::CreateInternalStackTrace<false>(
   2844     const ScopedObjectAccessAlreadyRunnable& soa) const;
   2845 template jobject Thread::CreateInternalStackTrace<true>(
   2846     const ScopedObjectAccessAlreadyRunnable& soa) const;
   2847 
   2848 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
   2849   // Only count the depth since we do not pass a stack frame array as an argument.
   2850   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
   2851   count_visitor.WalkStack();
   2852   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
   2853 }
   2854 
   2855 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
   2856     const ScopedObjectAccessAlreadyRunnable& soa,
   2857     ArtMethod* method,
   2858     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
   2859   int32_t line_number;
   2860   StackHandleScope<3> hs(soa.Self());
   2861   auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
   2862   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
   2863   if (method->IsProxyMethod()) {
   2864     line_number = -1;
   2865     class_name_object.Assign(method->GetDeclaringClass()->GetName());
   2866     // source_name_object intentionally left null for proxy methods
   2867   } else {
   2868     line_number = method->GetLineNumFromDexPC(dex_pc);
   2869     // Allocate element, potentially triggering GC
   2870     // TODO: reuse class_name_object via Class::name_?
   2871     const char* descriptor = method->GetDeclaringClassDescriptor();
   2872     CHECK(descriptor != nullptr);
   2873     std::string class_name(PrettyDescriptor(descriptor));
   2874     class_name_object.Assign(
   2875         mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
   2876     if (class_name_object == nullptr) {
   2877       soa.Self()->AssertPendingOOMException();
   2878       return nullptr;
   2879     }
   2880     const char* source_file = method->GetDeclaringClassSourceFile();
   2881     if (line_number == -1) {
   2882       // Make the line_number field of StackTraceElement hold the dex pc.
   2883       // source_name_object is intentionally left null if we failed to map the dex pc to
   2884       // a line number (most probably because there is no debug info). See b/30183883.
   2885       line_number = dex_pc;
   2886     } else {
   2887       if (source_file != nullptr) {
   2888         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
   2889         if (source_name_object == nullptr) {
   2890           soa.Self()->AssertPendingOOMException();
   2891           return nullptr;
   2892         }
   2893       }
   2894     }
   2895   }
   2896   const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
   2897   CHECK(method_name != nullptr);
   2898   Handle<mirror::String> method_name_object(
   2899       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
   2900   if (method_name_object == nullptr) {
   2901     return nullptr;
   2902   }
   2903   return mirror::StackTraceElement::Alloc(soa.Self(),
   2904                                           class_name_object,
   2905                                           method_name_object,
   2906                                           source_name_object,
   2907                                           line_number);
   2908 }
   2909 
   2910 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
   2911     const ScopedObjectAccessAlreadyRunnable& soa,
   2912     jobject internal,
   2913     jobjectArray output_array,
   2914     int* stack_depth) {
   2915   // Decode the internal stack trace into the depth, method trace and PC trace.
   2916   // Subtract one for the methods and PC trace.
   2917   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
   2918   DCHECK_GE(depth, 0);
   2919 
   2920   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
   2921 
   2922   jobjectArray result;
   2923 
   2924   if (output_array != nullptr) {
   2925     // Reuse the array we were given.
   2926     result = output_array;
   2927     // ...adjusting the number of frames we'll write to not exceed the array length.
   2928     const int32_t traces_length =
   2929         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
   2930     depth = std::min(depth, traces_length);
   2931   } else {
   2932     // Create java_trace array and place in local reference table
   2933     ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces =
   2934         class_linker->AllocStackTraceElementArray(soa.Self(), depth);
   2935     if (java_traces == nullptr) {
   2936       return nullptr;
   2937     }
   2938     result = soa.AddLocalReference<jobjectArray>(java_traces);
   2939   }
   2940 
   2941   if (stack_depth != nullptr) {
   2942     *stack_depth = depth;
   2943   }
   2944 
   2945   for (int32_t i = 0; i < depth; ++i) {
   2946     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
   2947         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
   2948     // Methods and dex PC trace is element 0.
   2949     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
   2950     const ObjPtr<mirror::PointerArray> method_trace =
   2951         ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0));
   2952     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
   2953     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
   2954     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
   2955         i + method_trace->GetLength() / 2, kRuntimePointerSize);
   2956     const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
   2957     if (obj == nullptr) {
   2958       return nullptr;
   2959     }
   2960     // We are called from native: use non-transactional mode.
   2961     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
   2962   }
   2963   return result;
   2964 }
   2965 
   2966 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
   2967   // This code allocates. Do not allow it to operate with a pending exception.
   2968   if (IsExceptionPending()) {
   2969     return nullptr;
   2970   }
   2971 
   2972   // If flip_function is not null, it means we have run a checkpoint
   2973   // before the thread wakes up to execute the flip function and the
   2974   // thread roots haven't been forwarded.  So the following access to
   2975   // the roots (locks or methods in the frames) would be bad. Run it
   2976   // here. TODO: clean up.
   2977   // Note: copied from DumpJavaStack.
   2978   {
   2979     Thread* this_thread = const_cast<Thread*>(this);
   2980     Closure* flip_func = this_thread->GetFlipFunction();
   2981     if (flip_func != nullptr) {
   2982       flip_func->Run(this_thread);
   2983     }
   2984   }
   2985 
   2986   class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
   2987    public:
   2988     CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
   2989                                       Thread* self,
   2990                                       Context* context)
   2991         : MonitorObjectsStackVisitor(self, context),
   2992           wait_jobject_(soaa_in.Env(), nullptr),
   2993           block_jobject_(soaa_in.Env(), nullptr),
   2994           soaa_(soaa_in) {}
   2995 
   2996    protected:
   2997     VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
   2998         override
   2999         REQUIRES_SHARED(Locks::mutator_lock_) {
   3000       ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
   3001           soaa_, m, GetDexPc(/* abort on error */ false));
   3002       if (obj == nullptr) {
   3003         return VisitMethodResult::kEndStackWalk;
   3004       }
   3005       stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
   3006       return VisitMethodResult::kContinueMethod;
   3007     }
   3008 
   3009     VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
   3010       lock_objects_.push_back({});
   3011       lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
   3012 
   3013       DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
   3014 
   3015       return VisitMethodResult::kContinueMethod;
   3016     }
   3017 
   3018     void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
   3019         override
   3020         REQUIRES_SHARED(Locks::mutator_lock_) {
   3021       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
   3022     }
   3023     void VisitSleepingObject(ObjPtr<mirror::Object> obj)
   3024         override
   3025         REQUIRES_SHARED(Locks::mutator_lock_) {
   3026       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
   3027     }
   3028     void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
   3029                               ThreadState state ATTRIBUTE_UNUSED,
   3030                               uint32_t owner_tid ATTRIBUTE_UNUSED)
   3031         override
   3032         REQUIRES_SHARED(Locks::mutator_lock_) {
   3033       block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
   3034     }
   3035     void VisitLockedObject(ObjPtr<mirror::Object> obj)
   3036         override
   3037         REQUIRES_SHARED(Locks::mutator_lock_) {
   3038       frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
   3039     }
   3040 
   3041    public:
   3042     std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
   3043     ScopedLocalRef<jobject> wait_jobject_;
   3044     ScopedLocalRef<jobject> block_jobject_;
   3045     std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
   3046 
   3047    private:
   3048     const ScopedObjectAccessAlreadyRunnable& soaa_;
   3049 
   3050     std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
   3051   };
   3052 
   3053   std::unique_ptr<Context> context(Context::Create());
   3054   CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
   3055   dumper.WalkStack();
   3056 
   3057   // There should not be a pending exception. Otherwise, return with it pending.
   3058   if (IsExceptionPending()) {
   3059     return nullptr;
   3060   }
   3061 
   3062   // Now go and create Java arrays.
   3063 
   3064   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
   3065 
   3066   StackHandleScope<6> hs(soa.Self());
   3067   Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass(
   3068       soa.Self(),
   3069       "[Ldalvik/system/AnnotatedStackTraceElement;"));
   3070   if (h_aste_array_class == nullptr) {
   3071     return nullptr;
   3072   }
   3073   Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType());
   3074 
   3075   Handle<mirror::Class> h_o_array_class =
   3076       hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
   3077   DCHECK(h_o_array_class != nullptr);  // Class roots must be already initialized.
   3078 
   3079 
   3080   // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
   3081   class_linker->EnsureInitialized(soa.Self(),
   3082                                   h_aste_class,
   3083                                   /* can_init_fields= */ true,
   3084                                   /* can_init_parents= */ true);
   3085   if (soa.Self()->IsExceptionPending()) {
   3086     // This should not fail in a healthy runtime.
   3087     return nullptr;
   3088   }
   3089 
   3090   ArtField* stack_trace_element_field = h_aste_class->FindField(
   3091       soa.Self(), h_aste_class.Get(), "stackTraceElement", "Ljava/lang/StackTraceElement;");
   3092   DCHECK(stack_trace_element_field != nullptr);
   3093   ArtField* held_locks_field = h_aste_class->FindField(
   3094         soa.Self(), h_aste_class.Get(), "heldLocks", "[Ljava/lang/Object;");
   3095   DCHECK(held_locks_field != nullptr);
   3096   ArtField* blocked_on_field = h_aste_class->FindField(
   3097         soa.Self(), h_aste_class.Get(), "blockedOn", "Ljava/lang/Object;");
   3098   DCHECK(blocked_on_field != nullptr);
   3099 
   3100   size_t length = dumper.stack_trace_elements_.size();
   3101   ObjPtr<mirror::ObjectArray<mirror::Object>> array =
   3102       mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length);
   3103   if (array == nullptr) {
   3104     soa.Self()->AssertPendingOOMException();
   3105     return nullptr;
   3106   }
   3107 
   3108   ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
   3109 
   3110   MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
   3111   MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
   3112       hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
   3113   for (size_t i = 0; i != length; ++i) {
   3114     handle.Assign(h_aste_class->AllocObject(soa.Self()));
   3115     if (handle == nullptr) {
   3116       soa.Self()->AssertPendingOOMException();
   3117       return nullptr;
   3118     }
   3119 
   3120     // Set stack trace element.
   3121     stack_trace_element_field->SetObject<false>(
   3122         handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
   3123 
   3124     // Create locked-on array.
   3125     if (!dumper.lock_objects_[i].empty()) {
   3126       handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(),
   3127                                                                 h_o_array_class.Get(),
   3128                                                                 dumper.lock_objects_[i].size()));
   3129       if (handle2 == nullptr) {
   3130         soa.Self()->AssertPendingOOMException();
   3131         return nullptr;
   3132       }
   3133       int32_t j = 0;
   3134       for (auto& scoped_local : dumper.lock_objects_[i]) {
   3135         if (scoped_local == nullptr) {
   3136           continue;
   3137         }
   3138         handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
   3139         DCHECK(!soa.Self()->IsExceptionPending());
   3140         j++;
   3141       }
   3142       held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
   3143     }
   3144 
   3145     // Set blocked-on object.
   3146     if (i == 0) {
   3147       if (dumper.block_jobject_ != nullptr) {
   3148         blocked_on_field->SetObject<false>(
   3149             handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
   3150       }
   3151     }
   3152 
   3153     ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
   3154     soa.Env()->SetObjectArrayElement(result.get(), i, elem.get());
   3155     DCHECK(!soa.Self()->IsExceptionPending());
   3156   }
   3157 
   3158   return result.release();
   3159 }
   3160 
   3161 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
   3162   va_list args;
   3163   va_start(args, fmt);
   3164   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
   3165   va_end(args);
   3166 }
   3167 
   3168 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
   3169                                 const char* fmt, va_list ap) {
   3170   std::string msg;
   3171   StringAppendV(&msg, fmt, ap);
   3172   ThrowNewException(exception_class_descriptor, msg.c_str());
   3173 }
   3174 
   3175 void Thread::ThrowNewException(const char* exception_class_descriptor,
   3176                                const char* msg) {
   3177   // Callers should either clear or call ThrowNewWrappedException.
   3178   AssertNoPendingExceptionForNewException(msg);
   3179   ThrowNewWrappedException(exception_class_descriptor, msg);
   3180 }
   3181 
   3182 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
   3183     REQUIRES_SHARED(Locks::mutator_lock_) {
   3184   ArtMethod* method = self->GetCurrentMethod(nullptr);
   3185   return method != nullptr
   3186       ? method->GetDeclaringClass()->GetClassLoader()
   3187       : nullptr;
   3188 }
   3189 
   3190 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
   3191                                       const char* msg) {
   3192   DCHECK_EQ(this, Thread::Current());
   3193   ScopedObjectAccessUnchecked soa(this);
   3194   StackHandleScope<3> hs(soa.Self());
   3195   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
   3196   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
   3197   ClearException();
   3198   Runtime* runtime = Runtime::Current();
   3199   auto* cl = runtime->GetClassLinker();
   3200   Handle<mirror::Class> exception_class(
   3201       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
   3202   if (UNLIKELY(exception_class == nullptr)) {
   3203     CHECK(IsExceptionPending());
   3204     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
   3205     return;
   3206   }
   3207 
   3208   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
   3209                                                              true))) {
   3210     DCHECK(IsExceptionPending());
   3211     return;
   3212   }
   3213   DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
   3214   Handle<mirror::Throwable> exception(
   3215       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
   3216 
   3217   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
   3218   if (exception == nullptr) {
   3219     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
   3220     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
   3221     return;
   3222   }
   3223 
   3224   // Choose an appropriate constructor and set up the arguments.
   3225   const char* signature;
   3226   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
   3227   if (msg != nullptr) {
   3228     // Ensure we remember this and the method over the String allocation.
   3229     msg_string.reset(
   3230         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
   3231     if (UNLIKELY(msg_string.get() == nullptr)) {
   3232       CHECK(IsExceptionPending());  // OOME.
   3233       return;
   3234     }
   3235     if (cause.get() == nullptr) {
   3236       signature = "(Ljava/lang/String;)V";
   3237     } else {
   3238       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
   3239     }
   3240   } else {
   3241     if (cause.get() == nullptr) {
   3242       signature = "()V";
   3243     } else {
   3244       signature = "(Ljava/lang/Throwable;)V";
   3245     }
   3246   }
   3247   ArtMethod* exception_init_method =
   3248       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
   3249 
   3250   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
   3251       << PrettyDescriptor(exception_class_descriptor);
   3252 
   3253   if (UNLIKELY(!runtime->IsStarted())) {
   3254     // Something is trying to throw an exception without a started runtime, which is the common
   3255     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
   3256     // the exception fields directly.
   3257     if (msg != nullptr) {
   3258       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
   3259     }
   3260     if (cause.get() != nullptr) {
   3261       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
   3262     }
   3263     ScopedLocalRef<jobject> trace(GetJniEnv(),
   3264                                   Runtime::Current()->IsActiveTransaction()
   3265                                       ? CreateInternalStackTrace<true>(soa)
   3266                                       : CreateInternalStackTrace<false>(soa));
   3267     if (trace.get() != nullptr) {
   3268       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
   3269     }
   3270     SetException(exception.Get());
   3271   } else {
   3272     jvalue jv_args[2];
   3273     size_t i = 0;
   3274 
   3275     if (msg != nullptr) {
   3276       jv_args[i].l = msg_string.get();
   3277       ++i;
   3278     }
   3279     if (cause.get() != nullptr) {
   3280       jv_args[i].l = cause.get();
   3281       ++i;
   3282     }
   3283     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
   3284     InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
   3285     if (LIKELY(!IsExceptionPending())) {
   3286       SetException(exception.Get());
   3287     }
   3288   }
   3289 }
   3290 
   3291 void Thread::ThrowOutOfMemoryError(const char* msg) {
   3292   LOG(WARNING) << "Throwing OutOfMemoryError "
   3293                << '"' << msg << '"'
   3294                << " (VmSize " << GetProcessStatus("VmSize")
   3295                << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")");
   3296   if (!tls32_.throwing_OutOfMemoryError) {
   3297     tls32_.throwing_OutOfMemoryError = true;
   3298     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
   3299     tls32_.throwing_OutOfMemoryError = false;
   3300   } else {
   3301     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
   3302     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
   3303   }
   3304 }
   3305 
   3306 Thread* Thread::CurrentFromGdb() {
   3307   return Thread::Current();
   3308 }
   3309 
   3310 void Thread::DumpFromGdb() const {
   3311   std::ostringstream ss;
   3312   Dump(ss);
   3313   std::string str(ss.str());
   3314   // log to stderr for debugging command line processes
   3315   std::cerr << str;
   3316 #ifdef ART_TARGET_ANDROID
   3317   // log to logcat for debugging frameworks processes
   3318   LOG(INFO) << str;
   3319 #endif
   3320 }
   3321 
   3322 // Explicitly instantiate 32 and 64bit thread offset dumping support.
   3323 template
   3324 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
   3325 template
   3326 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
   3327 
   3328 template<PointerSize ptr_size>
   3329 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
   3330 #define DO_THREAD_OFFSET(x, y) \
   3331     if (offset == (x).Uint32Value()) { \
   3332       os << (y); \
   3333       return; \
   3334     }
   3335   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
   3336   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
   3337   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
   3338   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
   3339   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
   3340   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
   3341   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
   3342   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
   3343   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
   3344   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
   3345   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
   3346   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
   3347   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
   3348 #undef DO_THREAD_OFFSET
   3349 
   3350 #define JNI_ENTRY_POINT_INFO(x) \
   3351     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   3352       os << #x; \
   3353       return; \
   3354     }
   3355   JNI_ENTRY_POINT_INFO(pDlsymLookup)
   3356 #undef JNI_ENTRY_POINT_INFO
   3357 
   3358 #define QUICK_ENTRY_POINT_INFO(x) \
   3359     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
   3360       os << #x; \
   3361       return; \
   3362     }
   3363   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
   3364   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
   3365   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
   3366   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
   3367   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
   3368   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
   3369   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
   3370   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
   3371   QUICK_ENTRY_POINT_INFO(pAllocStringObject)
   3372   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
   3373   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
   3374   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
   3375   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
   3376   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
   3377   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
   3378   QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess)
   3379   QUICK_ENTRY_POINT_INFO(pResolveType)
   3380   QUICK_ENTRY_POINT_INFO(pResolveString)
   3381   QUICK_ENTRY_POINT_INFO(pSet8Instance)
   3382   QUICK_ENTRY_POINT_INFO(pSet8Static)
   3383   QUICK_ENTRY_POINT_INFO(pSet16Instance)
   3384   QUICK_ENTRY_POINT_INFO(pSet16Static)
   3385   QUICK_ENTRY_POINT_INFO(pSet32Instance)
   3386   QUICK_ENTRY_POINT_INFO(pSet32Static)
   3387   QUICK_ENTRY_POINT_INFO(pSet64Instance)
   3388   QUICK_ENTRY_POINT_INFO(pSet64Static)
   3389   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
   3390   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
   3391   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
   3392   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
   3393   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
   3394   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
   3395   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
   3396   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
   3397   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
   3398   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
   3399   QUICK_ENTRY_POINT_INFO(pGet32Instance)
   3400   QUICK_ENTRY_POINT_INFO(pGet32Static)
   3401   QUICK_ENTRY_POINT_INFO(pGet64Instance)
   3402   QUICK_ENTRY_POINT_INFO(pGet64Static)
   3403   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
   3404   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
   3405   QUICK_ENTRY_POINT_INFO(pAputObject)
   3406   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
   3407   QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
   3408   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
   3409   QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
   3410   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
   3411   QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
   3412   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
   3413   QUICK_ENTRY_POINT_INFO(pLockObject)
   3414   QUICK_ENTRY_POINT_INFO(pUnlockObject)
   3415   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
   3416   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
   3417   QUICK_ENTRY_POINT_INFO(pCmplDouble)
   3418   QUICK_ENTRY_POINT_INFO(pCmplFloat)
   3419   QUICK_ENTRY_POINT_INFO(pCos)
   3420   QUICK_ENTRY_POINT_INFO(pSin)
   3421   QUICK_ENTRY_POINT_INFO(pAcos)
   3422   QUICK_ENTRY_POINT_INFO(pAsin)
   3423   QUICK_ENTRY_POINT_INFO(pAtan)
   3424   QUICK_ENTRY_POINT_INFO(pAtan2)
   3425   QUICK_ENTRY_POINT_INFO(pCbrt)
   3426   QUICK_ENTRY_POINT_INFO(pCosh)
   3427   QUICK_ENTRY_POINT_INFO(pExp)
   3428   QUICK_ENTRY_POINT_INFO(pExpm1)
   3429   QUICK_ENTRY_POINT_INFO(pHypot)
   3430   QUICK_ENTRY_POINT_INFO(pLog)
   3431   QUICK_ENTRY_POINT_INFO(pLog10)
   3432   QUICK_ENTRY_POINT_INFO(pNextAfter)
   3433   QUICK_ENTRY_POINT_INFO(pSinh)
   3434   QUICK_ENTRY_POINT_INFO(pTan)
   3435   QUICK_ENTRY_POINT_INFO(pTanh)
   3436   QUICK_ENTRY_POINT_INFO(pFmod)
   3437   QUICK_ENTRY_POINT_INFO(pL2d)
   3438   QUICK_ENTRY_POINT_INFO(pFmodf)
   3439   QUICK_ENTRY_POINT_INFO(pL2f)
   3440   QUICK_ENTRY_POINT_INFO(pD2iz)
   3441   QUICK_ENTRY_POINT_INFO(pF2iz)
   3442   QUICK_ENTRY_POINT_INFO(pIdivmod)
   3443   QUICK_ENTRY_POINT_INFO(pD2l)
   3444   QUICK_ENTRY_POINT_INFO(pF2l)
   3445   QUICK_ENTRY_POINT_INFO(pLdiv)
   3446   QUICK_ENTRY_POINT_INFO(pLmod)
   3447   QUICK_ENTRY_POINT_INFO(pLmul)
   3448   QUICK_ENTRY_POINT_INFO(pShlLong)
   3449   QUICK_ENTRY_POINT_INFO(pShrLong)
   3450   QUICK_ENTRY_POINT_INFO(pUshrLong)
   3451   QUICK_ENTRY_POINT_INFO(pIndexOf)
   3452   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
   3453   QUICK_ENTRY_POINT_INFO(pMemcpy)
   3454   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
   3455   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
   3456   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
   3457   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
   3458   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
   3459   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
   3460   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
   3461   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
   3462   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
   3463   QUICK_ENTRY_POINT_INFO(pTestSuspend)
   3464   QUICK_ENTRY_POINT_INFO(pDeliverException)
   3465   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
   3466   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
   3467   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
   3468   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
   3469   QUICK_ENTRY_POINT_INFO(pDeoptimize)
   3470   QUICK_ENTRY_POINT_INFO(pA64Load)
   3471   QUICK_ENTRY_POINT_INFO(pA64Store)
   3472   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
   3473   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
   3474   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
   3475   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
   3476   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
   3477   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
   3478   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
   3479   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
   3480   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
   3481   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
   3482   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
   3483   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
   3484   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
   3485   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
   3486   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
   3487   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
   3488   QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
   3489   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
   3490   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
   3491   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
   3492   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
   3493   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
   3494   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
   3495   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
   3496   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
   3497   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
   3498   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
   3499   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
   3500   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
   3501   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
   3502   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
   3503   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
   3504   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
   3505   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
   3506   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
   3507   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
   3508   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
   3509   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
   3510   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
   3511   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
   3512   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
   3513   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
   3514   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
   3515   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
   3516   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
   3517   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
   3518   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
   3519   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
   3520   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
   3521 
   3522   QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
   3523   QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
   3524 #undef QUICK_ENTRY_POINT_INFO
   3525 
   3526   os << offset;
   3527 }
   3528 
   3529 void Thread::QuickDeliverException() {
   3530   // Get exception from thread.
   3531   ObjPtr<mirror::Throwable> exception = GetException();
   3532   CHECK(exception != nullptr);
   3533   if (exception == GetDeoptimizationException()) {
   3534     artDeoptimize(this);
   3535     UNREACHABLE();
   3536   }
   3537 
   3538   ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
   3539 
   3540   // This is a real exception: let the instrumentation know about it.
   3541   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
   3542   if (instrumentation->HasExceptionThrownListeners() &&
   3543       IsExceptionThrownByCurrentMethod(exception)) {
   3544     // Instrumentation may cause GC so keep the exception object safe.
   3545     StackHandleScope<1> hs(this);
   3546     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
   3547     instrumentation->ExceptionThrownEvent(this, exception.Ptr());
   3548   }
   3549   // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something?
   3550   // Note: we do this *after* reporting the exception to instrumentation in case it now requires
   3551   // deoptimization. It may happen if a debugger is attached and requests new events (single-step,
   3552   // breakpoint, ...) when the exception is reported.
   3553   //
   3554   // Note we need to check for both force_frame_pop and force_retry_instruction. The first is
   3555   // expected to happen fairly regularly but the second can only happen if we are using
   3556   // instrumentation trampolines (for example with DDMS tracing). That forces us to do deopt later
   3557   // and see every frame being popped. We don't need to handle it any differently.
   3558   ShadowFrame* cf;
   3559   bool force_deopt;
   3560   {
   3561     NthCallerVisitor visitor(this, 0, false);
   3562     visitor.WalkStack();
   3563     cf = visitor.GetCurrentShadowFrame();
   3564     if (cf == nullptr) {
   3565       cf = FindDebuggerShadowFrame(visitor.GetFrameId());
   3566     }
   3567     bool force_frame_pop = cf != nullptr && cf->GetForcePopFrame();
   3568     bool force_retry_instr = cf != nullptr && cf->GetForceRetryInstruction();
   3569     if (kIsDebugBuild && force_frame_pop) {
   3570       NthCallerVisitor penultimate_visitor(this, 1, false);
   3571       penultimate_visitor.WalkStack();
   3572       ShadowFrame* penultimate_frame = penultimate_visitor.GetCurrentShadowFrame();
   3573       if (penultimate_frame == nullptr) {
   3574         penultimate_frame = FindDebuggerShadowFrame(penultimate_visitor.GetFrameId());
   3575       }
   3576       DCHECK(penultimate_frame != nullptr &&
   3577              penultimate_frame->GetForceRetryInstruction())
   3578           << "Force pop frame without retry instruction found. penultimate frame is null: "
   3579           << (penultimate_frame == nullptr ? "true" : "false");
   3580     }
   3581     force_deopt = force_frame_pop || force_retry_instr;
   3582   }
   3583   if (Dbg::IsForcedInterpreterNeededForException(this) || force_deopt || IsForceInterpreter()) {
   3584     NthCallerVisitor visitor(this, 0, false);
   3585     visitor.WalkStack();
   3586     if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
   3587       // method_type shouldn't matter due to exception handling.
   3588       const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
   3589       // Save the exception into the deoptimization context so it can be restored
   3590       // before entering the interpreter.
   3591       if (force_deopt) {
   3592         VLOG(deopt) << "Deopting " << cf->GetMethod()->PrettyMethod() << " for frame-pop";
   3593         DCHECK(Runtime::Current()->AreNonStandardExitsEnabled());
   3594         // Get rid of the exception since we are doing a framepop instead.
   3595         LOG(WARNING) << "Suppressing pending exception for retry-instruction/frame-pop: "
   3596                      << exception->Dump();
   3597         ClearException();
   3598       }
   3599       PushDeoptimizationContext(
   3600           JValue(),
   3601           /* is_reference= */ false,
   3602           (force_deopt ? nullptr : exception),
   3603           /* from_code= */ false,
   3604           method_type);
   3605       artDeoptimize(this);
   3606       UNREACHABLE();
   3607     } else {
   3608       LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
   3609                    << visitor.caller->PrettyMethod();
   3610     }
   3611   }
   3612 
   3613   // Don't leave exception visible while we try to find the handler, which may cause class
   3614   // resolution.
   3615   ClearException();
   3616   QuickExceptionHandler exception_handler(this, false);
   3617   exception_handler.FindCatch(exception);
   3618   if (exception_handler.GetClearException()) {
   3619     // Exception was cleared as part of delivery.
   3620     DCHECK(!IsExceptionPending());
   3621   } else {
   3622     // Exception was put back with a throw location.
   3623     DCHECK(IsExceptionPending());
   3624     // Check the to-space invariant on the re-installed exception (if applicable).
   3625     ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
   3626   }
   3627   exception_handler.DoLongJump();
   3628 }
   3629 
   3630 Context* Thread::GetLongJumpContext() {
   3631   Context* result = tlsPtr_.long_jump_context;
   3632   if (result == nullptr) {
   3633     result = Context::Create();
   3634   } else {
   3635     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
   3636     result->Reset();
   3637   }
   3638   return result;
   3639 }
   3640 
   3641 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out,
   3642                                     bool check_suspended,
   3643                                     bool abort_on_error) const {
   3644   // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
   3645   //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java
   3646   //       stack.
   3647   ArtMethod* method = nullptr;
   3648   uint32_t dex_pc = dex::kDexNoIndex;
   3649   StackVisitor::WalkStack(
   3650       [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
   3651         ArtMethod* m = visitor->GetMethod();
   3652         if (m->IsRuntimeMethod()) {
   3653           // Continue if this is a runtime method.
   3654           return true;
   3655         }
   3656         method = m;
   3657         dex_pc = visitor->GetDexPc(abort_on_error);
   3658         return false;
   3659       },
   3660       const_cast<Thread*>(this),
   3661       /* context= */ nullptr,
   3662       StackVisitor::StackWalkKind::kIncludeInlinedFrames,
   3663       check_suspended);
   3664 
   3665   if (dex_pc_out != nullptr) {
   3666     *dex_pc_out = dex_pc;
   3667   }
   3668   return method;
   3669 }
   3670 
   3671 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
   3672   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
   3673 }
   3674 
   3675 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
   3676     REQUIRES_SHARED(Locks::mutator_lock_);
   3677 
   3678 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
   3679 template <typename RootVisitor, bool kPrecise = false>
   3680 class ReferenceMapVisitor : public StackVisitor {
   3681  public:
   3682   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
   3683       REQUIRES_SHARED(Locks::mutator_lock_)
   3684         // We are visiting the references in compiled frames, so we do not need
   3685         // to know the inlined frames.
   3686       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
   3687         visitor_(visitor) {}
   3688 
   3689   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
   3690     if (false) {
   3691       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
   3692                 << StringPrintf("@ PC:%04x", GetDexPc());
   3693     }
   3694     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
   3695     if (shadow_frame != nullptr) {
   3696       VisitShadowFrame(shadow_frame);
   3697     } else {
   3698       VisitQuickFrame();
   3699     }
   3700     return true;
   3701   }
   3702 
   3703   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
   3704     ArtMethod* m = shadow_frame->GetMethod();
   3705     VisitDeclaringClass(m);
   3706     DCHECK(m != nullptr);
   3707     size_t num_regs = shadow_frame->NumberOfVRegs();
   3708     DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
   3709     // handle scope for JNI or References for interpreter.
   3710     for (size_t reg = 0; reg < num_regs; ++reg) {
   3711       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
   3712       if (ref != nullptr) {
   3713         mirror::Object* new_ref = ref;
   3714         visitor_(&new_ref, reg, this);
   3715         if (new_ref != ref) {
   3716           shadow_frame->SetVRegReference(reg, new_ref);
   3717         }
   3718       }
   3719     }
   3720     // Mark lock count map required for structured locking checks.
   3721     shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this);
   3722   }
   3723 
   3724  private:
   3725   // Visiting the declaring class is necessary so that we don't unload the class of a method that
   3726   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
   3727   // the threads do not all hold the heap bitmap lock for parallel GC.
   3728   void VisitDeclaringClass(ArtMethod* method)
   3729       REQUIRES_SHARED(Locks::mutator_lock_)
   3730       NO_THREAD_SAFETY_ANALYSIS {
   3731     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
   3732     // klass can be null for runtime methods.
   3733     if (klass != nullptr) {
   3734       if (kVerifyImageObjectsMarked) {
   3735         gc::Heap* const heap = Runtime::Current()->GetHeap();
   3736         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
   3737                                                                                 /*fail_ok=*/true);
   3738         if (space != nullptr && space->IsImageSpace()) {
   3739           bool failed = false;
   3740           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
   3741             failed = true;
   3742             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
   3743           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
   3744             failed = true;
   3745             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
   3746           }
   3747           if (failed) {
   3748             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
   3749             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
   3750             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
   3751                                      << " klass@" << klass.Ptr();
   3752             // Pretty info last in case it crashes.
   3753             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
   3754                        << klass->PrettyClass();
   3755           }
   3756         }
   3757       }
   3758       mirror::Object* new_ref = klass.Ptr();
   3759       visitor_(&new_ref, /* vreg= */ -1, this);
   3760       if (new_ref != klass) {
   3761         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
   3762       }
   3763     }
   3764   }
   3765 
   3766   template <typename T>
   3767   ALWAYS_INLINE
   3768   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
   3769     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
   3770     DCHECK(cur_quick_frame != nullptr);
   3771     ArtMethod* m = *cur_quick_frame;
   3772     VisitDeclaringClass(m);
   3773 
   3774     // Process register map (which native and runtime methods don't have)
   3775     if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
   3776       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
   3777       DCHECK(method_header->IsOptimized());
   3778       StackReference<mirror::Object>* vreg_base =
   3779           reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame);
   3780       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
   3781       CodeInfo code_info(method_header, kPrecise
   3782           ? CodeInfo::DecodeFlags::AllTables  // We will need dex register maps.
   3783           : CodeInfo::DecodeFlags::GcMasksOnly);
   3784       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
   3785       DCHECK(map.IsValid());
   3786 
   3787       T vreg_info(m, code_info, map, visitor_);
   3788 
   3789       // Visit stack entries that hold pointers.
   3790       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map);
   3791       for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) {
   3792         if (stack_mask.LoadBit(i)) {
   3793           StackReference<mirror::Object>* ref_addr = vreg_base + i;
   3794           mirror::Object* ref = ref_addr->AsMirrorPtr();
   3795           if (ref != nullptr) {
   3796             mirror::Object* new_ref = ref;
   3797             vreg_info.VisitStack(&new_ref, i, this);
   3798             if (ref != new_ref) {
   3799               ref_addr->Assign(new_ref);
   3800             }
   3801           }
   3802         }
   3803       }
   3804       // Visit callee-save registers that hold pointers.
   3805       uint32_t register_mask = code_info.GetRegisterMaskOf(map);
   3806       for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
   3807         if (register_mask & (1 << i)) {
   3808           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
   3809           if (kIsDebugBuild && ref_addr == nullptr) {
   3810             std::string thread_name;
   3811             GetThread()->GetThreadName(thread_name);
   3812             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
   3813             DescribeStack(GetThread());
   3814             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
   3815                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
   3816           }
   3817           if (*ref_addr != nullptr) {
   3818             vreg_info.VisitRegister(ref_addr, i, this);
   3819           }
   3820         }
   3821       }
   3822     } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
   3823       // If this is a proxy method, visit its reference arguments.
   3824       DCHECK(!m->IsStatic());
   3825       DCHECK(!m->IsNative());
   3826       std::vector<StackReference<mirror::Object>*> ref_addrs =
   3827           GetProxyReferenceArguments(cur_quick_frame);
   3828       for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
   3829         mirror::Object* ref = ref_addr->AsMirrorPtr();
   3830         if (ref != nullptr) {
   3831           mirror::Object* new_ref = ref;
   3832           visitor_(&new_ref, /* vreg= */ -1, this);
   3833           if (ref != new_ref) {
   3834             ref_addr->Assign(new_ref);
   3835           }
   3836         }
   3837       }
   3838     }
   3839   }
   3840 
   3841   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
   3842     if (kPrecise) {
   3843       VisitQuickFramePrecise();
   3844     } else {
   3845       VisitQuickFrameNonPrecise();
   3846     }
   3847   }
   3848 
   3849   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
   3850     struct UndefinedVRegInfo {
   3851       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
   3852                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
   3853                         const StackMap& map ATTRIBUTE_UNUSED,
   3854                         RootVisitor& _visitor)
   3855           : visitor(_visitor) {
   3856       }
   3857 
   3858       ALWAYS_INLINE
   3859       void VisitStack(mirror::Object** ref,
   3860                       size_t stack_index ATTRIBUTE_UNUSED,
   3861                       const StackVisitor* stack_visitor)
   3862           REQUIRES_SHARED(Locks::mutator_lock_) {
   3863         visitor(ref, -1, stack_visitor);
   3864       }
   3865 
   3866       ALWAYS_INLINE
   3867       void VisitRegister(mirror::Object** ref,
   3868                          size_t register_index ATTRIBUTE_UNUSED,
   3869                          const StackVisitor* stack_visitor)
   3870           REQUIRES_SHARED(Locks::mutator_lock_) {
   3871         visitor(ref, -1, stack_visitor);
   3872       }
   3873 
   3874       RootVisitor& visitor;
   3875     };
   3876     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
   3877   }
   3878 
   3879   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
   3880     struct StackMapVRegInfo {
   3881       StackMapVRegInfo(ArtMethod* method,
   3882                        const CodeInfo& _code_info,
   3883                        const StackMap& map,
   3884                        RootVisitor& _visitor)
   3885           : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
   3886             code_info(_code_info),
   3887             dex_register_map(code_info.GetDexRegisterMapOf(map)),
   3888             visitor(_visitor) {
   3889       }
   3890 
   3891       // TODO: If necessary, we should consider caching a reverse map instead of the linear
   3892       //       lookups for each location.
   3893       void FindWithType(const size_t index,
   3894                         const DexRegisterLocation::Kind kind,
   3895                         mirror::Object** ref,
   3896                         const StackVisitor* stack_visitor)
   3897           REQUIRES_SHARED(Locks::mutator_lock_) {
   3898         bool found = false;
   3899         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
   3900           DexRegisterLocation location = dex_register_map[dex_reg];
   3901           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
   3902             visitor(ref, dex_reg, stack_visitor);
   3903             found = true;
   3904           }
   3905         }
   3906 
   3907         if (!found) {
   3908           // If nothing found, report with -1.
   3909           visitor(ref, -1, stack_visitor);
   3910         }
   3911       }
   3912 
   3913       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
   3914           REQUIRES_SHARED(Locks::mutator_lock_) {
   3915         const size_t stack_offset = stack_index * kFrameSlotSize;
   3916         FindWithType(stack_offset,
   3917                      DexRegisterLocation::Kind::kInStack,
   3918                      ref,
   3919                      stack_visitor);
   3920       }
   3921 
   3922       void VisitRegister(mirror::Object** ref,
   3923                          size_t register_index,
   3924                          const StackVisitor* stack_visitor)
   3925           REQUIRES_SHARED(Locks::mutator_lock_) {
   3926         FindWithType(register_index,
   3927                      DexRegisterLocation::Kind::kInRegister,
   3928                      ref,
   3929                      stack_visitor);
   3930       }
   3931 
   3932       size_t number_of_dex_registers;
   3933       const CodeInfo& code_info;
   3934       DexRegisterMap dex_register_map;
   3935       RootVisitor& visitor;
   3936     };
   3937     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
   3938   }
   3939 
   3940   // Visitor for when we visit a root.
   3941   RootVisitor& visitor_;
   3942 };
   3943 
   3944 class RootCallbackVisitor {
   3945  public:
   3946   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
   3947 
   3948   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
   3949       REQUIRES_SHARED(Locks::mutator_lock_) {
   3950     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
   3951   }
   3952 
   3953  private:
   3954   RootVisitor* const visitor_;
   3955   const uint32_t tid_;
   3956 };
   3957 
   3958 template <bool kPrecise>
   3959 void Thread::VisitRoots(RootVisitor* visitor) {
   3960   const pid_t thread_id = GetThreadId();
   3961   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
   3962   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
   3963     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
   3964                        RootInfo(kRootNativeStack, thread_id));
   3965   }
   3966   if (tlsPtr_.async_exception != nullptr) {
   3967     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
   3968                        RootInfo(kRootNativeStack, thread_id));
   3969   }
   3970   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
   3971   tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
   3972   tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
   3973   HandleScopeVisitRoots(visitor, thread_id);
   3974   if (tlsPtr_.debug_invoke_req != nullptr) {
   3975     tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
   3976   }
   3977   // Visit roots for deoptimization.
   3978   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
   3979     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   3980     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
   3981     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
   3982          record != nullptr;
   3983          record = record->GetLink()) {
   3984       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
   3985            shadow_frame != nullptr;
   3986            shadow_frame = shadow_frame->GetLink()) {
   3987         mapper.VisitShadowFrame(shadow_frame);
   3988       }
   3989     }
   3990   }
   3991   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
   3992        record != nullptr;
   3993        record = record->GetLink()) {
   3994     if (record->IsReference()) {
   3995       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
   3996                                   RootInfo(kRootThreadObject, thread_id));
   3997     }
   3998     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
   3999                                 RootInfo(kRootThreadObject, thread_id));
   4000   }
   4001   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
   4002     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   4003     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
   4004     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
   4005          record != nullptr;
   4006          record = record->GetNext()) {
   4007       mapper.VisitShadowFrame(record->GetShadowFrame());
   4008     }
   4009   }
   4010   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
   4011     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
   4012   }
   4013   // Visit roots on this thread's stack
   4014   RuntimeContextType context;
   4015   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
   4016   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
   4017   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
   4018   for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
   4019     visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
   4020   }
   4021 }
   4022 
   4023 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
   4024   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
   4025     VisitRoots</* kPrecise= */ true>(visitor);
   4026   } else {
   4027     VisitRoots</* kPrecise= */ false>(visitor);
   4028   }
   4029 }
   4030 
   4031 class VerifyRootVisitor : public SingleRootVisitor {
   4032  public:
   4033   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
   4034       override REQUIRES_SHARED(Locks::mutator_lock_) {
   4035     VerifyObject(root);
   4036   }
   4037 };
   4038 
   4039 void Thread::VerifyStackImpl() {
   4040   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
   4041     VerifyRootVisitor visitor;
   4042     std::unique_ptr<Context> context(Context::Create());
   4043     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
   4044     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
   4045     mapper.WalkStack();
   4046   }
   4047 }
   4048 
   4049 // Set the stack end to that to be used during a stack overflow
   4050 void Thread::SetStackEndForStackOverflow() {
   4051   // During stack overflow we allow use of the full stack.
   4052   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
   4053     // However, we seem to have already extended to use the full stack.
   4054     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
   4055                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
   4056     DumpStack(LOG_STREAM(ERROR));
   4057     LOG(FATAL) << "Recursive stack overflow.";
   4058   }
   4059 
   4060   tlsPtr_.stack_end = tlsPtr_.stack_begin;
   4061 
   4062   // Remove the stack overflow protection if is it set up.
   4063   bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
   4064   if (implicit_stack_check) {
   4065     if (!UnprotectStack()) {
   4066       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
   4067     }
   4068   }
   4069 }
   4070 
   4071 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
   4072   DCHECK_LE(start, end);
   4073   DCHECK_LE(end, limit);
   4074   tlsPtr_.thread_local_start = start;
   4075   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
   4076   tlsPtr_.thread_local_end = end;
   4077   tlsPtr_.thread_local_limit = limit;
   4078   tlsPtr_.thread_local_objects = 0;
   4079 }
   4080 
   4081 bool Thread::HasTlab() const {
   4082   bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
   4083   if (has_tlab) {
   4084     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
   4085   } else {
   4086     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
   4087   }
   4088   return has_tlab;
   4089 }
   4090 
   4091 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
   4092   thread.ShortDump(os);
   4093   return os;
   4094 }
   4095 
   4096 bool Thread::ProtectStack(bool fatal_on_error) {
   4097   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   4098   VLOG(threads) << "Protecting stack at " << pregion;
   4099   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
   4100     if (fatal_on_error) {
   4101       LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
   4102           "Reason: "
   4103           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
   4104     }
   4105     return false;
   4106   }
   4107   return true;
   4108 }
   4109 
   4110 bool Thread::UnprotectStack() {
   4111   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
   4112   VLOG(threads) << "Unprotecting stack at " << pregion;
   4113   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
   4114 }
   4115 
   4116 void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
   4117   CHECK(Dbg::IsDebuggerActive());
   4118   CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
   4119   CHECK(ssc != nullptr);
   4120   tlsPtr_.single_step_control = ssc;
   4121 }
   4122 
   4123 void Thread::DeactivateSingleStepControl() {
   4124   CHECK(Dbg::IsDebuggerActive());
   4125   CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
   4126   SingleStepControl* ssc = GetSingleStepControl();
   4127   tlsPtr_.single_step_control = nullptr;
   4128   delete ssc;
   4129 }
   4130 
   4131 void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
   4132   CHECK(Dbg::IsDebuggerActive());
   4133   CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
   4134   CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
   4135   CHECK(req != nullptr);
   4136   tlsPtr_.debug_invoke_req = req;
   4137 }
   4138 
   4139 void Thread::ClearDebugInvokeReq() {
   4140   CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
   4141   CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
   4142   DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
   4143   tlsPtr_.debug_invoke_req = nullptr;
   4144   delete req;
   4145 }
   4146 
   4147 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
   4148   verifier->link_ = tlsPtr_.method_verifier;
   4149   tlsPtr_.method_verifier = verifier;
   4150 }
   4151 
   4152 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
   4153   CHECK_EQ(tlsPtr_.method_verifier, verifier);
   4154   tlsPtr_.method_verifier = verifier->link_;
   4155 }
   4156 
   4157 size_t Thread::NumberOfHeldMutexes() const {
   4158   size_t count = 0;
   4159   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
   4160     count += mu != nullptr ? 1 : 0;
   4161   }
   4162   return count;
   4163 }
   4164 
   4165 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
   4166   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
   4167   ClearException();
   4168   ShadowFrame* shadow_frame =
   4169       PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
   4170   ObjPtr<mirror::Throwable> pending_exception;
   4171   bool from_code = false;
   4172   DeoptimizationMethodType method_type;
   4173   PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
   4174   SetTopOfStack(nullptr);
   4175   SetTopOfShadowStack(shadow_frame);
   4176 
   4177   // Restore the exception that was pending before deoptimization then interpret the
   4178   // deoptimized frames.
   4179   if (pending_exception != nullptr) {
   4180     SetException(pending_exception);
   4181   }
   4182   interpreter::EnterInterpreterFromDeoptimize(this,
   4183                                               shadow_frame,
   4184                                               result,
   4185                                               from_code,
   4186                                               method_type);
   4187 }
   4188 
   4189 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
   4190   CHECK(new_exception != nullptr);
   4191   Runtime::Current()->SetAsyncExceptionsThrown();
   4192   if (kIsDebugBuild) {
   4193     // Make sure we are in a checkpoint.
   4194     MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
   4195     CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
   4196         << "It doesn't look like this was called in a checkpoint! this: "
   4197         << this << " count: " << GetSuspendCount();
   4198   }
   4199   tlsPtr_.async_exception = new_exception.Ptr();
   4200 }
   4201 
   4202 bool Thread::ObserveAsyncException() {
   4203   DCHECK(this == Thread::Current());
   4204   if (tlsPtr_.async_exception != nullptr) {
   4205     if (tlsPtr_.exception != nullptr) {
   4206       LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
   4207                    << tlsPtr_.exception->Dump();
   4208       LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
   4209     }
   4210     tlsPtr_.exception = tlsPtr_.async_exception;
   4211     tlsPtr_.async_exception = nullptr;
   4212     return true;
   4213   } else {
   4214     return IsExceptionPending();
   4215   }
   4216 }
   4217 
   4218 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
   4219   CHECK(new_exception != nullptr);
   4220   // TODO: DCHECK(!IsExceptionPending());
   4221   tlsPtr_.exception = new_exception.Ptr();
   4222 }
   4223 
   4224 bool Thread::IsAotCompiler() {
   4225   return Runtime::Current()->IsAotCompiler();
   4226 }
   4227 
   4228 mirror::Object* Thread::GetPeerFromOtherThread() const {
   4229   DCHECK(tlsPtr_.jpeer == nullptr);
   4230   mirror::Object* peer = tlsPtr_.opeer;
   4231   if (kUseReadBarrier && Current()->GetIsGcMarking()) {
   4232     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
   4233     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
   4234     // mark/forward it here.
   4235     peer = art::ReadBarrier::Mark(peer);
   4236   }
   4237   return peer;
   4238 }
   4239 
   4240 void Thread::SetReadBarrierEntrypoints() {
   4241   // Make sure entrypoints aren't null.
   4242   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true);
   4243 }
   4244 
   4245 void Thread::ClearAllInterpreterCaches() {
   4246   static struct ClearInterpreterCacheClosure : Closure {
   4247     void Run(Thread* thread) override {
   4248       thread->GetInterpreterCache()->Clear(thread);
   4249     }
   4250   } closure;
   4251   Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
   4252 }
   4253 
   4254 
   4255 void Thread::ReleaseLongJumpContextInternal() {
   4256   // Each QuickExceptionHandler gets a long jump context and uses
   4257   // it for doing the long jump, after finding catch blocks/doing deoptimization.
   4258   // Both finding catch blocks and deoptimization can trigger another
   4259   // exception such as a result of class loading. So there can be nested
   4260   // cases of exception handling and multiple contexts being used.
   4261   // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
   4262   // for reuse so there is no need to always allocate a new one each time when
   4263   // getting a context. Since we only keep one context for reuse, delete the
   4264   // existing one since the passed in context is yet to be used for longjump.
   4265   delete tlsPtr_.long_jump_context;
   4266 }
   4267 
   4268 void Thread::SetNativePriority(int new_priority) {
   4269   // ART tests on JVM can reach this code path, use tid = 0 as shorthand for current thread.
   4270   PaletteStatus status = PaletteSchedSetPriority(0, new_priority);
   4271   CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
   4272 }
   4273 
   4274 int Thread::GetNativePriority() {
   4275   int priority = 0;
   4276   // ART tests on JVM can reach this code path, use tid = 0 as shorthand for current thread.
   4277   PaletteStatus status = PaletteSchedGetPriority(0, &priority);
   4278   CHECK(status == PaletteStatus::kOkay || status == PaletteStatus::kCheckErrno);
   4279   return priority;
   4280 }
   4281 
   4282 bool Thread::IsSystemDaemon() const {
   4283   if (GetPeer() == nullptr) {
   4284     return false;
   4285   }
   4286   return jni::DecodeArtField(
   4287       WellKnownClasses::java_lang_Thread_systemDaemon)->GetBoolean(GetPeer());
   4288 }
   4289 
   4290 }  // namespace art
   4291