Home | History | Annotate | Download | only in RISCV
      1 //===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation  --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that RISCV uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "RISCVISelLowering.h"
     16 #include "RISCV.h"
     17 #include "RISCVMachineFunctionInfo.h"
     18 #include "RISCVRegisterInfo.h"
     19 #include "RISCVSubtarget.h"
     20 #include "RISCVTargetMachine.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/CodeGen/CallingConvLower.h"
     23 #include "llvm/CodeGen/MachineFrameInfo.h"
     24 #include "llvm/CodeGen/MachineFunction.h"
     25 #include "llvm/CodeGen/MachineInstrBuilder.h"
     26 #include "llvm/CodeGen/MachineRegisterInfo.h"
     27 #include "llvm/CodeGen/SelectionDAGISel.h"
     28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     29 #include "llvm/CodeGen/ValueTypes.h"
     30 #include "llvm/IR/DiagnosticInfo.h"
     31 #include "llvm/IR/DiagnosticPrinter.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/raw_ostream.h"
     35 
     36 using namespace llvm;
     37 
     38 #define DEBUG_TYPE "riscv-lower"
     39 
     40 STATISTIC(NumTailCalls, "Number of tail calls");
     41 
     42 RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
     43                                          const RISCVSubtarget &STI)
     44     : TargetLowering(TM), Subtarget(STI) {
     45 
     46   MVT XLenVT = Subtarget.getXLenVT();
     47 
     48   // Set up the register classes.
     49   addRegisterClass(XLenVT, &RISCV::GPRRegClass);
     50 
     51   if (Subtarget.hasStdExtF())
     52     addRegisterClass(MVT::f32, &RISCV::FPR32RegClass);
     53   if (Subtarget.hasStdExtD())
     54     addRegisterClass(MVT::f64, &RISCV::FPR64RegClass);
     55 
     56   // Compute derived properties from the register classes.
     57   computeRegisterProperties(STI.getRegisterInfo());
     58 
     59   setStackPointerRegisterToSaveRestore(RISCV::X2);
     60 
     61   for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
     62     setLoadExtAction(N, XLenVT, MVT::i1, Promote);
     63 
     64   // TODO: add all necessary setOperationAction calls.
     65   setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
     66 
     67   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
     68   setOperationAction(ISD::BR_CC, XLenVT, Expand);
     69   setOperationAction(ISD::SELECT, XLenVT, Custom);
     70   setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
     71 
     72   setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
     73   setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
     74 
     75   setOperationAction(ISD::VASTART, MVT::Other, Custom);
     76   setOperationAction(ISD::VAARG, MVT::Other, Expand);
     77   setOperationAction(ISD::VACOPY, MVT::Other, Expand);
     78   setOperationAction(ISD::VAEND, MVT::Other, Expand);
     79 
     80   for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
     81     setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
     82 
     83   if (!Subtarget.hasStdExtM()) {
     84     setOperationAction(ISD::MUL, XLenVT, Expand);
     85     setOperationAction(ISD::MULHS, XLenVT, Expand);
     86     setOperationAction(ISD::MULHU, XLenVT, Expand);
     87     setOperationAction(ISD::SDIV, XLenVT, Expand);
     88     setOperationAction(ISD::UDIV, XLenVT, Expand);
     89     setOperationAction(ISD::SREM, XLenVT, Expand);
     90     setOperationAction(ISD::UREM, XLenVT, Expand);
     91   }
     92 
     93   setOperationAction(ISD::SDIVREM, XLenVT, Expand);
     94   setOperationAction(ISD::UDIVREM, XLenVT, Expand);
     95   setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
     96   setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
     97 
     98   setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
     99   setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
    100   setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
    101 
    102   setOperationAction(ISD::ROTL, XLenVT, Expand);
    103   setOperationAction(ISD::ROTR, XLenVT, Expand);
    104   setOperationAction(ISD::BSWAP, XLenVT, Expand);
    105   setOperationAction(ISD::CTTZ, XLenVT, Expand);
    106   setOperationAction(ISD::CTLZ, XLenVT, Expand);
    107   setOperationAction(ISD::CTPOP, XLenVT, Expand);
    108 
    109   ISD::CondCode FPCCToExtend[] = {
    110       ISD::SETOGT, ISD::SETOGE, ISD::SETONE, ISD::SETO,   ISD::SETUEQ,
    111       ISD::SETUGT, ISD::SETUGE, ISD::SETULT, ISD::SETULE, ISD::SETUNE,
    112       ISD::SETGT,  ISD::SETGE,  ISD::SETNE};
    113 
    114   if (Subtarget.hasStdExtF()) {
    115     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
    116     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
    117     for (auto CC : FPCCToExtend)
    118       setCondCodeAction(CC, MVT::f32, Expand);
    119     setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
    120     setOperationAction(ISD::SELECT, MVT::f32, Custom);
    121     setOperationAction(ISD::BR_CC, MVT::f32, Expand);
    122   }
    123 
    124   if (Subtarget.hasStdExtD()) {
    125     setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
    126     setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
    127     for (auto CC : FPCCToExtend)
    128       setCondCodeAction(CC, MVT::f64, Expand);
    129     setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
    130     setOperationAction(ISD::SELECT, MVT::f64, Custom);
    131     setOperationAction(ISD::BR_CC, MVT::f64, Expand);
    132     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
    133     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    134   }
    135 
    136   setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
    137   setOperationAction(ISD::BlockAddress, XLenVT, Custom);
    138   setOperationAction(ISD::ConstantPool, XLenVT, Custom);
    139 
    140   if (Subtarget.hasStdExtA())
    141     setMaxAtomicSizeInBitsSupported(Subtarget.getXLen());
    142   else
    143     setMaxAtomicSizeInBitsSupported(0);
    144 
    145   setBooleanContents(ZeroOrOneBooleanContent);
    146 
    147   // Function alignments (log2).
    148   unsigned FunctionAlignment = Subtarget.hasStdExtC() ? 1 : 2;
    149   setMinFunctionAlignment(FunctionAlignment);
    150   setPrefFunctionAlignment(FunctionAlignment);
    151 
    152   // Effectively disable jump table generation.
    153   setMinimumJumpTableEntries(INT_MAX);
    154 }
    155 
    156 EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
    157                                             EVT VT) const {
    158   if (!VT.isVector())
    159     return getPointerTy(DL);
    160   return VT.changeVectorElementTypeToInteger();
    161 }
    162 
    163 bool RISCVTargetLowering::isLegalAddressingMode(const DataLayout &DL,
    164                                                 const AddrMode &AM, Type *Ty,
    165                                                 unsigned AS,
    166                                                 Instruction *I) const {
    167   // No global is ever allowed as a base.
    168   if (AM.BaseGV)
    169     return false;
    170 
    171   // Require a 12-bit signed offset.
    172   if (!isInt<12>(AM.BaseOffs))
    173     return false;
    174 
    175   switch (AM.Scale) {
    176   case 0: // "r+i" or just "i", depending on HasBaseReg.
    177     break;
    178   case 1:
    179     if (!AM.HasBaseReg) // allow "r+i".
    180       break;
    181     return false; // disallow "r+r" or "r+r+i".
    182   default:
    183     return false;
    184   }
    185 
    186   return true;
    187 }
    188 
    189 bool RISCVTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
    190   return isInt<12>(Imm);
    191 }
    192 
    193 bool RISCVTargetLowering::isLegalAddImmediate(int64_t Imm) const {
    194   return isInt<12>(Imm);
    195 }
    196 
    197 // On RV32, 64-bit integers are split into their high and low parts and held
    198 // in two different registers, so the trunc is free since the low register can
    199 // just be used.
    200 bool RISCVTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
    201   if (Subtarget.is64Bit() || !SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
    202     return false;
    203   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
    204   unsigned DestBits = DstTy->getPrimitiveSizeInBits();
    205   return (SrcBits == 64 && DestBits == 32);
    206 }
    207 
    208 bool RISCVTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
    209   if (Subtarget.is64Bit() || SrcVT.isVector() || DstVT.isVector() ||
    210       !SrcVT.isInteger() || !DstVT.isInteger())
    211     return false;
    212   unsigned SrcBits = SrcVT.getSizeInBits();
    213   unsigned DestBits = DstVT.getSizeInBits();
    214   return (SrcBits == 64 && DestBits == 32);
    215 }
    216 
    217 bool RISCVTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
    218   // Zexts are free if they can be combined with a load.
    219   if (auto *LD = dyn_cast<LoadSDNode>(Val)) {
    220     EVT MemVT = LD->getMemoryVT();
    221     if ((MemVT == MVT::i8 || MemVT == MVT::i16 ||
    222          (Subtarget.is64Bit() && MemVT == MVT::i32)) &&
    223         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
    224          LD->getExtensionType() == ISD::ZEXTLOAD))
    225       return true;
    226   }
    227 
    228   return TargetLowering::isZExtFree(Val, VT2);
    229 }
    230 
    231 // Changes the condition code and swaps operands if necessary, so the SetCC
    232 // operation matches one of the comparisons supported directly in the RISC-V
    233 // ISA.
    234 static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
    235   switch (CC) {
    236   default:
    237     break;
    238   case ISD::SETGT:
    239   case ISD::SETLE:
    240   case ISD::SETUGT:
    241   case ISD::SETULE:
    242     CC = ISD::getSetCCSwappedOperands(CC);
    243     std::swap(LHS, RHS);
    244     break;
    245   }
    246 }
    247 
    248 // Return the RISC-V branch opcode that matches the given DAG integer
    249 // condition code. The CondCode must be one of those supported by the RISC-V
    250 // ISA (see normaliseSetCC).
    251 static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
    252   switch (CC) {
    253   default:
    254     llvm_unreachable("Unsupported CondCode");
    255   case ISD::SETEQ:
    256     return RISCV::BEQ;
    257   case ISD::SETNE:
    258     return RISCV::BNE;
    259   case ISD::SETLT:
    260     return RISCV::BLT;
    261   case ISD::SETGE:
    262     return RISCV::BGE;
    263   case ISD::SETULT:
    264     return RISCV::BLTU;
    265   case ISD::SETUGE:
    266     return RISCV::BGEU;
    267   }
    268 }
    269 
    270 SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
    271                                             SelectionDAG &DAG) const {
    272   switch (Op.getOpcode()) {
    273   default:
    274     report_fatal_error("unimplemented operand");
    275   case ISD::GlobalAddress:
    276     return lowerGlobalAddress(Op, DAG);
    277   case ISD::BlockAddress:
    278     return lowerBlockAddress(Op, DAG);
    279   case ISD::ConstantPool:
    280     return lowerConstantPool(Op, DAG);
    281   case ISD::SELECT:
    282     return lowerSELECT(Op, DAG);
    283   case ISD::VASTART:
    284     return lowerVASTART(Op, DAG);
    285   case ISD::FRAMEADDR:
    286     return LowerFRAMEADDR(Op, DAG);
    287   case ISD::RETURNADDR:
    288     return LowerRETURNADDR(Op, DAG);
    289   }
    290 }
    291 
    292 SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
    293                                                 SelectionDAG &DAG) const {
    294   SDLoc DL(Op);
    295   EVT Ty = Op.getValueType();
    296   GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
    297   const GlobalValue *GV = N->getGlobal();
    298   int64_t Offset = N->getOffset();
    299   MVT XLenVT = Subtarget.getXLenVT();
    300 
    301   if (isPositionIndependent() || Subtarget.is64Bit())
    302     report_fatal_error("Unable to lowerGlobalAddress");
    303   // In order to maximise the opportunity for common subexpression elimination,
    304   // emit a separate ADD node for the global address offset instead of folding
    305   // it in the global address node. Later peephole optimisations may choose to
    306   // fold it back in when profitable.
    307   SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_HI);
    308   SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, Ty, 0, RISCVII::MO_LO);
    309   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
    310   SDValue MNLo =
    311     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
    312   if (Offset != 0)
    313     return DAG.getNode(ISD::ADD, DL, Ty, MNLo,
    314                        DAG.getConstant(Offset, DL, XLenVT));
    315   return MNLo;
    316 }
    317 
    318 SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
    319                                                SelectionDAG &DAG) const {
    320   SDLoc DL(Op);
    321   EVT Ty = Op.getValueType();
    322   BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
    323   const BlockAddress *BA = N->getBlockAddress();
    324   int64_t Offset = N->getOffset();
    325 
    326   if (isPositionIndependent() || Subtarget.is64Bit())
    327     report_fatal_error("Unable to lowerBlockAddress");
    328 
    329   SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
    330   SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
    331   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
    332   SDValue MNLo =
    333     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
    334   return MNLo;
    335 }
    336 
    337 SDValue RISCVTargetLowering::lowerConstantPool(SDValue Op,
    338                                                SelectionDAG &DAG) const {
    339   SDLoc DL(Op);
    340   EVT Ty = Op.getValueType();
    341   ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
    342   const Constant *CPA = N->getConstVal();
    343   int64_t Offset = N->getOffset();
    344   unsigned Alignment = N->getAlignment();
    345 
    346   if (!isPositionIndependent()) {
    347     SDValue CPAHi =
    348         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_HI);
    349     SDValue CPALo =
    350         DAG.getTargetConstantPool(CPA, Ty, Alignment, Offset, RISCVII::MO_LO);
    351     SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, CPAHi), 0);
    352     SDValue MNLo =
    353         SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, CPALo), 0);
    354     return MNLo;
    355   } else {
    356     report_fatal_error("Unable to lowerConstantPool");
    357   }
    358 }
    359 
    360 SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op,
    361                                                  SelectionDAG &DAG) const {
    362   SDLoc DL(Op);
    363   EVT Ty = Op.getValueType();
    364   ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op);
    365   const char *Sym = N->getSymbol();
    366 
    367   // TODO: should also handle gp-relative loads.
    368 
    369   if (isPositionIndependent() || Subtarget.is64Bit())
    370     report_fatal_error("Unable to lowerExternalSymbol");
    371 
    372   SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI);
    373   SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO);
    374   SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
    375   SDValue MNLo =
    376     SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
    377   return MNLo;
    378 }
    379 
    380 SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
    381   SDValue CondV = Op.getOperand(0);
    382   SDValue TrueV = Op.getOperand(1);
    383   SDValue FalseV = Op.getOperand(2);
    384   SDLoc DL(Op);
    385   MVT XLenVT = Subtarget.getXLenVT();
    386 
    387   // If the result type is XLenVT and CondV is the output of a SETCC node
    388   // which also operated on XLenVT inputs, then merge the SETCC node into the
    389   // lowered RISCVISD::SELECT_CC to take advantage of the integer
    390   // compare+branch instructions. i.e.:
    391   // (select (setcc lhs, rhs, cc), truev, falsev)
    392   // -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
    393   if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
    394       CondV.getOperand(0).getSimpleValueType() == XLenVT) {
    395     SDValue LHS = CondV.getOperand(0);
    396     SDValue RHS = CondV.getOperand(1);
    397     auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
    398     ISD::CondCode CCVal = CC->get();
    399 
    400     normaliseSetCC(LHS, RHS, CCVal);
    401 
    402     SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
    403     SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
    404     SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
    405     return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
    406   }
    407 
    408   // Otherwise:
    409   // (select condv, truev, falsev)
    410   // -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
    411   SDValue Zero = DAG.getConstant(0, DL, XLenVT);
    412   SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
    413 
    414   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
    415   SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
    416 
    417   return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
    418 }
    419 
    420 SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
    421   MachineFunction &MF = DAG.getMachineFunction();
    422   RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
    423 
    424   SDLoc DL(Op);
    425   SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
    426                                  getPointerTy(MF.getDataLayout()));
    427 
    428   // vastart just stores the address of the VarArgsFrameIndex slot into the
    429   // memory location argument.
    430   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
    431   return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
    432                       MachinePointerInfo(SV));
    433 }
    434 
    435 SDValue RISCVTargetLowering::LowerFRAMEADDR(SDValue Op,
    436                                             SelectionDAG &DAG) const {
    437   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
    438   MachineFunction &MF = DAG.getMachineFunction();
    439   MachineFrameInfo &MFI = MF.getFrameInfo();
    440   MFI.setFrameAddressIsTaken(true);
    441   unsigned FrameReg = RI.getFrameRegister(MF);
    442   int XLenInBytes = Subtarget.getXLen() / 8;
    443 
    444   EVT VT = Op.getValueType();
    445   SDLoc DL(Op);
    446   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
    447   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    448   while (Depth--) {
    449     int Offset = -(XLenInBytes * 2);
    450     SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
    451                               DAG.getIntPtrConstant(Offset, DL));
    452     FrameAddr =
    453         DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
    454   }
    455   return FrameAddr;
    456 }
    457 
    458 SDValue RISCVTargetLowering::LowerRETURNADDR(SDValue Op,
    459                                              SelectionDAG &DAG) const {
    460   const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
    461   MachineFunction &MF = DAG.getMachineFunction();
    462   MachineFrameInfo &MFI = MF.getFrameInfo();
    463   MFI.setReturnAddressIsTaken(true);
    464   MVT XLenVT = Subtarget.getXLenVT();
    465   int XLenInBytes = Subtarget.getXLen() / 8;
    466 
    467   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
    468     return SDValue();
    469 
    470   EVT VT = Op.getValueType();
    471   SDLoc DL(Op);
    472   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    473   if (Depth) {
    474     int Off = -XLenInBytes;
    475     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
    476     SDValue Offset = DAG.getConstant(Off, DL, VT);
    477     return DAG.getLoad(VT, DL, DAG.getEntryNode(),
    478                        DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
    479                        MachinePointerInfo());
    480   }
    481 
    482   // Return the value of the return address register, marking it an implicit
    483   // live-in.
    484   unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
    485   return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
    486 }
    487 
    488 static MachineBasicBlock *emitSplitF64Pseudo(MachineInstr &MI,
    489                                              MachineBasicBlock *BB) {
    490   assert(MI.getOpcode() == RISCV::SplitF64Pseudo && "Unexpected instruction");
    491 
    492   MachineFunction &MF = *BB->getParent();
    493   DebugLoc DL = MI.getDebugLoc();
    494   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
    495   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
    496   unsigned LoReg = MI.getOperand(0).getReg();
    497   unsigned HiReg = MI.getOperand(1).getReg();
    498   unsigned SrcReg = MI.getOperand(2).getReg();
    499   const TargetRegisterClass *SrcRC = &RISCV::FPR64RegClass;
    500   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
    501 
    502   TII.storeRegToStackSlot(*BB, MI, SrcReg, MI.getOperand(2).isKill(), FI, SrcRC,
    503                           RI);
    504   MachineMemOperand *MMO =
    505       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
    506                               MachineMemOperand::MOLoad, 8, 8);
    507   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), LoReg)
    508       .addFrameIndex(FI)
    509       .addImm(0)
    510       .addMemOperand(MMO);
    511   BuildMI(*BB, MI, DL, TII.get(RISCV::LW), HiReg)
    512       .addFrameIndex(FI)
    513       .addImm(4)
    514       .addMemOperand(MMO);
    515   MI.eraseFromParent(); // The pseudo instruction is gone now.
    516   return BB;
    517 }
    518 
    519 static MachineBasicBlock *emitBuildPairF64Pseudo(MachineInstr &MI,
    520                                                  MachineBasicBlock *BB) {
    521   assert(MI.getOpcode() == RISCV::BuildPairF64Pseudo &&
    522          "Unexpected instruction");
    523 
    524   MachineFunction &MF = *BB->getParent();
    525   DebugLoc DL = MI.getDebugLoc();
    526   const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
    527   const TargetRegisterInfo *RI = MF.getSubtarget().getRegisterInfo();
    528   unsigned DstReg = MI.getOperand(0).getReg();
    529   unsigned LoReg = MI.getOperand(1).getReg();
    530   unsigned HiReg = MI.getOperand(2).getReg();
    531   const TargetRegisterClass *DstRC = &RISCV::FPR64RegClass;
    532   int FI = MF.getInfo<RISCVMachineFunctionInfo>()->getMoveF64FrameIndex();
    533 
    534   MachineMemOperand *MMO =
    535       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI),
    536                               MachineMemOperand::MOStore, 8, 8);
    537   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
    538       .addReg(LoReg, getKillRegState(MI.getOperand(1).isKill()))
    539       .addFrameIndex(FI)
    540       .addImm(0)
    541       .addMemOperand(MMO);
    542   BuildMI(*BB, MI, DL, TII.get(RISCV::SW))
    543       .addReg(HiReg, getKillRegState(MI.getOperand(2).isKill()))
    544       .addFrameIndex(FI)
    545       .addImm(4)
    546       .addMemOperand(MMO);
    547   TII.loadRegFromStackSlot(*BB, MI, DstReg, FI, DstRC, RI);
    548   MI.eraseFromParent(); // The pseudo instruction is gone now.
    549   return BB;
    550 }
    551 
    552 MachineBasicBlock *
    553 RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
    554                                                  MachineBasicBlock *BB) const {
    555   switch (MI.getOpcode()) {
    556   default:
    557     llvm_unreachable("Unexpected instr type to insert");
    558   case RISCV::Select_GPR_Using_CC_GPR:
    559   case RISCV::Select_FPR32_Using_CC_GPR:
    560   case RISCV::Select_FPR64_Using_CC_GPR:
    561     break;
    562   case RISCV::BuildPairF64Pseudo:
    563     return emitBuildPairF64Pseudo(MI, BB);
    564   case RISCV::SplitF64Pseudo:
    565     return emitSplitF64Pseudo(MI, BB);
    566   }
    567 
    568   // To "insert" a SELECT instruction, we actually have to insert the triangle
    569   // control-flow pattern.  The incoming instruction knows the destination vreg
    570   // to set, the condition code register to branch on, the true/false values to
    571   // select between, and the condcode to use to select the appropriate branch.
    572   //
    573   // We produce the following control flow:
    574   //     HeadMBB
    575   //     |  \
    576   //     |  IfFalseMBB
    577   //     | /
    578   //    TailMBB
    579   const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
    580   const BasicBlock *LLVM_BB = BB->getBasicBlock();
    581   DebugLoc DL = MI.getDebugLoc();
    582   MachineFunction::iterator I = ++BB->getIterator();
    583 
    584   MachineBasicBlock *HeadMBB = BB;
    585   MachineFunction *F = BB->getParent();
    586   MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
    587   MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
    588 
    589   F->insert(I, IfFalseMBB);
    590   F->insert(I, TailMBB);
    591   // Move all remaining instructions to TailMBB.
    592   TailMBB->splice(TailMBB->begin(), HeadMBB,
    593                   std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
    594   // Update machine-CFG edges by transferring all successors of the current
    595   // block to the new block which will contain the Phi node for the select.
    596   TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
    597   // Set the successors for HeadMBB.
    598   HeadMBB->addSuccessor(IfFalseMBB);
    599   HeadMBB->addSuccessor(TailMBB);
    600 
    601   // Insert appropriate branch.
    602   unsigned LHS = MI.getOperand(1).getReg();
    603   unsigned RHS = MI.getOperand(2).getReg();
    604   auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
    605   unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
    606 
    607   BuildMI(HeadMBB, DL, TII.get(Opcode))
    608     .addReg(LHS)
    609     .addReg(RHS)
    610     .addMBB(TailMBB);
    611 
    612   // IfFalseMBB just falls through to TailMBB.
    613   IfFalseMBB->addSuccessor(TailMBB);
    614 
    615   // %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
    616   BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
    617           MI.getOperand(0).getReg())
    618       .addReg(MI.getOperand(4).getReg())
    619       .addMBB(HeadMBB)
    620       .addReg(MI.getOperand(5).getReg())
    621       .addMBB(IfFalseMBB);
    622 
    623   MI.eraseFromParent(); // The pseudo instruction is gone now.
    624   return TailMBB;
    625 }
    626 
    627 // Calling Convention Implementation.
    628 // The expectations for frontend ABI lowering vary from target to target.
    629 // Ideally, an LLVM frontend would be able to avoid worrying about many ABI
    630 // details, but this is a longer term goal. For now, we simply try to keep the
    631 // role of the frontend as simple and well-defined as possible. The rules can
    632 // be summarised as:
    633 // * Never split up large scalar arguments. We handle them here.
    634 // * If a hardfloat calling convention is being used, and the struct may be
    635 // passed in a pair of registers (fp+fp, int+fp), and both registers are
    636 // available, then pass as two separate arguments. If either the GPRs or FPRs
    637 // are exhausted, then pass according to the rule below.
    638 // * If a struct could never be passed in registers or directly in a stack
    639 // slot (as it is larger than 2*XLEN and the floating point rules don't
    640 // apply), then pass it using a pointer with the byval attribute.
    641 // * If a struct is less than 2*XLEN, then coerce to either a two-element
    642 // word-sized array or a 2*XLEN scalar (depending on alignment).
    643 // * The frontend can determine whether a struct is returned by reference or
    644 // not based on its size and fields. If it will be returned by reference, the
    645 // frontend must modify the prototype so a pointer with the sret annotation is
    646 // passed as the first argument. This is not necessary for large scalar
    647 // returns.
    648 // * Struct return values and varargs should be coerced to structs containing
    649 // register-size fields in the same situations they would be for fixed
    650 // arguments.
    651 
    652 static const MCPhysReg ArgGPRs[] = {
    653   RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
    654   RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
    655 };
    656 
    657 // Pass a 2*XLEN argument that has been split into two XLEN values through
    658 // registers or the stack as necessary.
    659 static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
    660                                 ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
    661                                 MVT ValVT2, MVT LocVT2,
    662                                 ISD::ArgFlagsTy ArgFlags2) {
    663   unsigned XLenInBytes = XLen / 8;
    664   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
    665     // At least one half can be passed via register.
    666     State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
    667                                      VA1.getLocVT(), CCValAssign::Full));
    668   } else {
    669     // Both halves must be passed on the stack, with proper alignment.
    670     unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
    671     State.addLoc(
    672         CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
    673                             State.AllocateStack(XLenInBytes, StackAlign),
    674                             VA1.getLocVT(), CCValAssign::Full));
    675     State.addLoc(CCValAssign::getMem(
    676         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
    677         CCValAssign::Full));
    678     return false;
    679   }
    680 
    681   if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
    682     // The second half can also be passed via register.
    683     State.addLoc(
    684         CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
    685   } else {
    686     // The second half is passed via the stack, without additional alignment.
    687     State.addLoc(CCValAssign::getMem(
    688         ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
    689         CCValAssign::Full));
    690   }
    691 
    692   return false;
    693 }
    694 
    695 // Implements the RISC-V calling convention. Returns true upon failure.
    696 static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
    697                      CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
    698                      CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) {
    699   unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
    700   assert(XLen == 32 || XLen == 64);
    701   MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
    702   if (ValVT == MVT::f32) {
    703     LocVT = MVT::i32;
    704     LocInfo = CCValAssign::BCvt;
    705   }
    706 
    707   // Any return value split in to more than two values can't be returned
    708   // directly.
    709   if (IsRet && ValNo > 1)
    710     return true;
    711 
    712   // If this is a variadic argument, the RISC-V calling convention requires
    713   // that it is assigned an 'even' or 'aligned' register if it has 8-byte
    714   // alignment (RV32) or 16-byte alignment (RV64). An aligned register should
    715   // be used regardless of whether the original argument was split during
    716   // legalisation or not. The argument will not be passed by registers if the
    717   // original type is larger than 2*XLEN, so the register alignment rule does
    718   // not apply.
    719   unsigned TwoXLenInBytes = (2 * XLen) / 8;
    720   if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
    721       DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
    722     unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
    723     // Skip 'odd' register if necessary.
    724     if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
    725       State.AllocateReg(ArgGPRs);
    726   }
    727 
    728   SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
    729   SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
    730       State.getPendingArgFlags();
    731 
    732   assert(PendingLocs.size() == PendingArgFlags.size() &&
    733          "PendingLocs and PendingArgFlags out of sync");
    734 
    735   // Handle passing f64 on RV32D with a soft float ABI.
    736   if (XLen == 32 && ValVT == MVT::f64) {
    737     assert(!ArgFlags.isSplit() && PendingLocs.empty() &&
    738            "Can't lower f64 if it is split");
    739     // Depending on available argument GPRS, f64 may be passed in a pair of
    740     // GPRs, split between a GPR and the stack, or passed completely on the
    741     // stack. LowerCall/LowerFormalArguments/LowerReturn must recognise these
    742     // cases.
    743     unsigned Reg = State.AllocateReg(ArgGPRs);
    744     LocVT = MVT::i32;
    745     if (!Reg) {
    746       unsigned StackOffset = State.AllocateStack(8, 8);
    747       State.addLoc(
    748           CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
    749       return false;
    750     }
    751     if (!State.AllocateReg(ArgGPRs))
    752       State.AllocateStack(4, 4);
    753     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
    754     return false;
    755   }
    756 
    757   // Split arguments might be passed indirectly, so keep track of the pending
    758   // values.
    759   if (ArgFlags.isSplit() || !PendingLocs.empty()) {
    760     LocVT = XLenVT;
    761     LocInfo = CCValAssign::Indirect;
    762     PendingLocs.push_back(
    763         CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
    764     PendingArgFlags.push_back(ArgFlags);
    765     if (!ArgFlags.isSplitEnd()) {
    766       return false;
    767     }
    768   }
    769 
    770   // If the split argument only had two elements, it should be passed directly
    771   // in registers or on the stack.
    772   if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
    773     assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
    774     // Apply the normal calling convention rules to the first half of the
    775     // split argument.
    776     CCValAssign VA = PendingLocs[0];
    777     ISD::ArgFlagsTy AF = PendingArgFlags[0];
    778     PendingLocs.clear();
    779     PendingArgFlags.clear();
    780     return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
    781                                ArgFlags);
    782   }
    783 
    784   // Allocate to a register if possible, or else a stack slot.
    785   unsigned Reg = State.AllocateReg(ArgGPRs);
    786   unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
    787 
    788   // If we reach this point and PendingLocs is non-empty, we must be at the
    789   // end of a split argument that must be passed indirectly.
    790   if (!PendingLocs.empty()) {
    791     assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
    792     assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
    793 
    794     for (auto &It : PendingLocs) {
    795       if (Reg)
    796         It.convertToReg(Reg);
    797       else
    798         It.convertToMem(StackOffset);
    799       State.addLoc(It);
    800     }
    801     PendingLocs.clear();
    802     PendingArgFlags.clear();
    803     return false;
    804   }
    805 
    806   assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
    807 
    808   if (Reg) {
    809     State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
    810   } else {
    811     State.addLoc(
    812         CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
    813   }
    814   return false;
    815 }
    816 
    817 void RISCVTargetLowering::analyzeInputArgs(
    818     MachineFunction &MF, CCState &CCInfo,
    819     const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
    820   unsigned NumArgs = Ins.size();
    821   FunctionType *FType = MF.getFunction().getFunctionType();
    822 
    823   for (unsigned i = 0; i != NumArgs; ++i) {
    824     MVT ArgVT = Ins[i].VT;
    825     ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
    826 
    827     Type *ArgTy = nullptr;
    828     if (IsRet)
    829       ArgTy = FType->getReturnType();
    830     else if (Ins[i].isOrigArg())
    831       ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
    832 
    833     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
    834                  ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
    835       LLVM_DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
    836                         << EVT(ArgVT).getEVTString() << '\n');
    837       llvm_unreachable(nullptr);
    838     }
    839   }
    840 }
    841 
    842 void RISCVTargetLowering::analyzeOutputArgs(
    843     MachineFunction &MF, CCState &CCInfo,
    844     const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
    845     CallLoweringInfo *CLI) const {
    846   unsigned NumArgs = Outs.size();
    847 
    848   for (unsigned i = 0; i != NumArgs; i++) {
    849     MVT ArgVT = Outs[i].VT;
    850     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
    851     Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
    852 
    853     if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
    854                  ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
    855       LLVM_DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
    856                         << EVT(ArgVT).getEVTString() << "\n");
    857       llvm_unreachable(nullptr);
    858     }
    859   }
    860 }
    861 
    862 // The caller is responsible for loading the full value if the argument is
    863 // passed with CCValAssign::Indirect.
    864 static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
    865                                 const CCValAssign &VA, const SDLoc &DL) {
    866   MachineFunction &MF = DAG.getMachineFunction();
    867   MachineRegisterInfo &RegInfo = MF.getRegInfo();
    868   EVT LocVT = VA.getLocVT();
    869   EVT ValVT = VA.getValVT();
    870   SDValue Val;
    871 
    872   unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
    873   RegInfo.addLiveIn(VA.getLocReg(), VReg);
    874   Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
    875 
    876   switch (VA.getLocInfo()) {
    877   default:
    878     llvm_unreachable("Unexpected CCValAssign::LocInfo");
    879   case CCValAssign::Full:
    880   case CCValAssign::Indirect:
    881     break;
    882   case CCValAssign::BCvt:
    883     Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
    884     break;
    885   }
    886   return Val;
    887 }
    888 
    889 // The caller is responsible for loading the full value if the argument is
    890 // passed with CCValAssign::Indirect.
    891 static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
    892                                 const CCValAssign &VA, const SDLoc &DL) {
    893   MachineFunction &MF = DAG.getMachineFunction();
    894   MachineFrameInfo &MFI = MF.getFrameInfo();
    895   EVT LocVT = VA.getLocVT();
    896   EVT ValVT = VA.getValVT();
    897   EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
    898   int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
    899                                  VA.getLocMemOffset(), /*Immutable=*/true);
    900   SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
    901   SDValue Val;
    902 
    903   ISD::LoadExtType ExtType;
    904   switch (VA.getLocInfo()) {
    905   default:
    906     llvm_unreachable("Unexpected CCValAssign::LocInfo");
    907   case CCValAssign::Full:
    908   case CCValAssign::Indirect:
    909     ExtType = ISD::NON_EXTLOAD;
    910     break;
    911   }
    912   Val = DAG.getExtLoad(
    913       ExtType, DL, LocVT, Chain, FIN,
    914       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
    915   return Val;
    916 }
    917 
    918 static SDValue unpackF64OnRV32DSoftABI(SelectionDAG &DAG, SDValue Chain,
    919                                        const CCValAssign &VA, const SDLoc &DL) {
    920   assert(VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64 &&
    921          "Unexpected VA");
    922   MachineFunction &MF = DAG.getMachineFunction();
    923   MachineFrameInfo &MFI = MF.getFrameInfo();
    924   MachineRegisterInfo &RegInfo = MF.getRegInfo();
    925 
    926   if (VA.isMemLoc()) {
    927     // f64 is passed on the stack.
    928     int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), /*Immutable=*/true);
    929     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
    930     return DAG.getLoad(MVT::f64, DL, Chain, FIN,
    931                        MachinePointerInfo::getFixedStack(MF, FI));
    932   }
    933 
    934   assert(VA.isRegLoc() && "Expected register VA assignment");
    935 
    936   unsigned LoVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
    937   RegInfo.addLiveIn(VA.getLocReg(), LoVReg);
    938   SDValue Lo = DAG.getCopyFromReg(Chain, DL, LoVReg, MVT::i32);
    939   SDValue Hi;
    940   if (VA.getLocReg() == RISCV::X17) {
    941     // Second half of f64 is passed on the stack.
    942     int FI = MFI.CreateFixedObject(4, 0, /*Immutable=*/true);
    943     SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
    944     Hi = DAG.getLoad(MVT::i32, DL, Chain, FIN,
    945                      MachinePointerInfo::getFixedStack(MF, FI));
    946   } else {
    947     // Second half of f64 is passed in another GPR.
    948     unsigned HiVReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
    949     RegInfo.addLiveIn(VA.getLocReg() + 1, HiVReg);
    950     Hi = DAG.getCopyFromReg(Chain, DL, HiVReg, MVT::i32);
    951   }
    952   return DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, Lo, Hi);
    953 }
    954 
    955 // Transform physical registers into virtual registers.
    956 SDValue RISCVTargetLowering::LowerFormalArguments(
    957     SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
    958     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    959     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
    960 
    961   switch (CallConv) {
    962   default:
    963     report_fatal_error("Unsupported calling convention");
    964   case CallingConv::C:
    965   case CallingConv::Fast:
    966     break;
    967   }
    968 
    969   MachineFunction &MF = DAG.getMachineFunction();
    970 
    971   const Function &Func = MF.getFunction();
    972   if (Func.hasFnAttribute("interrupt")) {
    973     if (!Func.arg_empty())
    974       report_fatal_error(
    975         "Functions with the interrupt attribute cannot have arguments!");
    976 
    977     StringRef Kind =
    978       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
    979 
    980     if (!(Kind == "user" || Kind == "supervisor" || Kind == "machine"))
    981       report_fatal_error(
    982         "Function interrupt attribute argument not supported!");
    983   }
    984 
    985   EVT PtrVT = getPointerTy(DAG.getDataLayout());
    986   MVT XLenVT = Subtarget.getXLenVT();
    987   unsigned XLenInBytes = Subtarget.getXLen() / 8;
    988   // Used with vargs to acumulate store chains.
    989   std::vector<SDValue> OutChains;
    990 
    991   // Assign locations to all of the incoming arguments.
    992   SmallVector<CCValAssign, 16> ArgLocs;
    993   CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
    994   analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
    995 
    996   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
    997     CCValAssign &VA = ArgLocs[i];
    998     assert(VA.getLocVT() == XLenVT && "Unhandled argument type");
    999     SDValue ArgValue;
   1000     // Passing f64 on RV32D with a soft float ABI must be handled as a special
   1001     // case.
   1002     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64)
   1003       ArgValue = unpackF64OnRV32DSoftABI(DAG, Chain, VA, DL);
   1004     else if (VA.isRegLoc())
   1005       ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
   1006     else
   1007       ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
   1008 
   1009     if (VA.getLocInfo() == CCValAssign::Indirect) {
   1010       // If the original argument was split and passed by reference (e.g. i128
   1011       // on RV32), we need to load all parts of it here (using the same
   1012       // address).
   1013       InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
   1014                                    MachinePointerInfo()));
   1015       unsigned ArgIndex = Ins[i].OrigArgIndex;
   1016       assert(Ins[i].PartOffset == 0);
   1017       while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
   1018         CCValAssign &PartVA = ArgLocs[i + 1];
   1019         unsigned PartOffset = Ins[i + 1].PartOffset;
   1020         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
   1021                                       DAG.getIntPtrConstant(PartOffset, DL));
   1022         InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
   1023                                      MachinePointerInfo()));
   1024         ++i;
   1025       }
   1026       continue;
   1027     }
   1028     InVals.push_back(ArgValue);
   1029   }
   1030 
   1031   if (IsVarArg) {
   1032     ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
   1033     unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
   1034     const TargetRegisterClass *RC = &RISCV::GPRRegClass;
   1035     MachineFrameInfo &MFI = MF.getFrameInfo();
   1036     MachineRegisterInfo &RegInfo = MF.getRegInfo();
   1037     RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
   1038 
   1039     // Offset of the first variable argument from stack pointer, and size of
   1040     // the vararg save area. For now, the varargs save area is either zero or
   1041     // large enough to hold a0-a7.
   1042     int VaArgOffset, VarArgsSaveSize;
   1043 
   1044     // If all registers are allocated, then all varargs must be passed on the
   1045     // stack and we don't need to save any argregs.
   1046     if (ArgRegs.size() == Idx) {
   1047       VaArgOffset = CCInfo.getNextStackOffset();
   1048       VarArgsSaveSize = 0;
   1049     } else {
   1050       VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
   1051       VaArgOffset = -VarArgsSaveSize;
   1052     }
   1053 
   1054     // Record the frame index of the first variable argument
   1055     // which is a value necessary to VASTART.
   1056     int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
   1057     RVFI->setVarArgsFrameIndex(FI);
   1058 
   1059     // If saving an odd number of registers then create an extra stack slot to
   1060     // ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
   1061     // offsets to even-numbered registered remain 2*XLEN-aligned.
   1062     if (Idx % 2) {
   1063       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes,
   1064                                  true);
   1065       VarArgsSaveSize += XLenInBytes;
   1066     }
   1067 
   1068     // Copy the integer registers that may have been used for passing varargs
   1069     // to the vararg save area.
   1070     for (unsigned I = Idx; I < ArgRegs.size();
   1071          ++I, VaArgOffset += XLenInBytes) {
   1072       const unsigned Reg = RegInfo.createVirtualRegister(RC);
   1073       RegInfo.addLiveIn(ArgRegs[I], Reg);
   1074       SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
   1075       FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
   1076       SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   1077       SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
   1078                                    MachinePointerInfo::getFixedStack(MF, FI));
   1079       cast<StoreSDNode>(Store.getNode())
   1080           ->getMemOperand()
   1081           ->setValue((Value *)nullptr);
   1082       OutChains.push_back(Store);
   1083     }
   1084     RVFI->setVarArgsSaveSize(VarArgsSaveSize);
   1085   }
   1086 
   1087   // All stores are grouped in one node to allow the matching between
   1088   // the size of Ins and InVals. This only happens for vararg functions.
   1089   if (!OutChains.empty()) {
   1090     OutChains.push_back(Chain);
   1091     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
   1092   }
   1093 
   1094   return Chain;
   1095 }
   1096 
   1097 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   1098 /// for tail call optimization.
   1099 /// Note: This is modelled after ARM's IsEligibleForTailCallOptimization.
   1100 bool RISCVTargetLowering::IsEligibleForTailCallOptimization(
   1101   CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
   1102   const SmallVector<CCValAssign, 16> &ArgLocs) const {
   1103 
   1104   auto &Callee = CLI.Callee;
   1105   auto CalleeCC = CLI.CallConv;
   1106   auto IsVarArg = CLI.IsVarArg;
   1107   auto &Outs = CLI.Outs;
   1108   auto &Caller = MF.getFunction();
   1109   auto CallerCC = Caller.getCallingConv();
   1110 
   1111   // Do not tail call opt functions with "disable-tail-calls" attribute.
   1112   if (Caller.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
   1113     return false;
   1114 
   1115   // Exception-handling functions need a special set of instructions to
   1116   // indicate a return to the hardware. Tail-calling another function would
   1117   // probably break this.
   1118   // TODO: The "interrupt" attribute isn't currently defined by RISC-V. This
   1119   // should be expanded as new function attributes are introduced.
   1120   if (Caller.hasFnAttribute("interrupt"))
   1121     return false;
   1122 
   1123   // Do not tail call opt functions with varargs.
   1124   if (IsVarArg)
   1125     return false;
   1126 
   1127   // Do not tail call opt if the stack is used to pass parameters.
   1128   if (CCInfo.getNextStackOffset() != 0)
   1129     return false;
   1130 
   1131   // Do not tail call opt if any parameters need to be passed indirectly.
   1132   // Since long doubles (fp128) and i128 are larger than 2*XLEN, they are
   1133   // passed indirectly. So the address of the value will be passed in a
   1134   // register, or if not available, then the address is put on the stack. In
   1135   // order to pass indirectly, space on the stack often needs to be allocated
   1136   // in order to store the value. In this case the CCInfo.getNextStackOffset()
   1137   // != 0 check is not enough and we need to check if any CCValAssign ArgsLocs
   1138   // are passed CCValAssign::Indirect.
   1139   for (auto &VA : ArgLocs)
   1140     if (VA.getLocInfo() == CCValAssign::Indirect)
   1141       return false;
   1142 
   1143   // Do not tail call opt if either caller or callee uses struct return
   1144   // semantics.
   1145   auto IsCallerStructRet = Caller.hasStructRetAttr();
   1146   auto IsCalleeStructRet = Outs.empty() ? false : Outs[0].Flags.isSRet();
   1147   if (IsCallerStructRet || IsCalleeStructRet)
   1148     return false;
   1149 
   1150   // Externally-defined functions with weak linkage should not be
   1151   // tail-called. The behaviour of branch instructions in this situation (as
   1152   // used for tail calls) is implementation-defined, so we cannot rely on the
   1153   // linker replacing the tail call with a return.
   1154   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1155     const GlobalValue *GV = G->getGlobal();
   1156     if (GV->hasExternalWeakLinkage())
   1157       return false;
   1158   }
   1159 
   1160   // The callee has to preserve all registers the caller needs to preserve.
   1161   const RISCVRegisterInfo *TRI = Subtarget.getRegisterInfo();
   1162   const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
   1163   if (CalleeCC != CallerCC) {
   1164     const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
   1165     if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
   1166       return false;
   1167   }
   1168 
   1169   // Byval parameters hand the function a pointer directly into the stack area
   1170   // we want to reuse during a tail call. Working around this *is* possible
   1171   // but less efficient and uglier in LowerCall.
   1172   for (auto &Arg : Outs)
   1173     if (Arg.Flags.isByVal())
   1174       return false;
   1175 
   1176   return true;
   1177 }
   1178 
   1179 // Lower a call to a callseq_start + CALL + callseq_end chain, and add input
   1180 // and output parameter nodes.
   1181 SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
   1182                                        SmallVectorImpl<SDValue> &InVals) const {
   1183   SelectionDAG &DAG = CLI.DAG;
   1184   SDLoc &DL = CLI.DL;
   1185   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1186   SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
   1187   SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
   1188   SDValue Chain = CLI.Chain;
   1189   SDValue Callee = CLI.Callee;
   1190   bool &IsTailCall = CLI.IsTailCall;
   1191   CallingConv::ID CallConv = CLI.CallConv;
   1192   bool IsVarArg = CLI.IsVarArg;
   1193   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   1194   MVT XLenVT = Subtarget.getXLenVT();
   1195 
   1196   MachineFunction &MF = DAG.getMachineFunction();
   1197 
   1198   // Analyze the operands of the call, assigning locations to each operand.
   1199   SmallVector<CCValAssign, 16> ArgLocs;
   1200   CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
   1201   analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
   1202 
   1203   // Check if it's really possible to do a tail call.
   1204   if (IsTailCall)
   1205     IsTailCall = IsEligibleForTailCallOptimization(ArgCCInfo, CLI, MF,
   1206                                                    ArgLocs);
   1207 
   1208   if (IsTailCall)
   1209     ++NumTailCalls;
   1210   else if (CLI.CS && CLI.CS.isMustTailCall())
   1211     report_fatal_error("failed to perform tail call elimination on a call "
   1212                        "site marked musttail");
   1213 
   1214   // Get a count of how many bytes are to be pushed on the stack.
   1215   unsigned NumBytes = ArgCCInfo.getNextStackOffset();
   1216 
   1217   // Create local copies for byval args
   1218   SmallVector<SDValue, 8> ByValArgs;
   1219   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
   1220     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   1221     if (!Flags.isByVal())
   1222       continue;
   1223 
   1224     SDValue Arg = OutVals[i];
   1225     unsigned Size = Flags.getByValSize();
   1226     unsigned Align = Flags.getByValAlign();
   1227 
   1228     int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
   1229     SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   1230     SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
   1231 
   1232     Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
   1233                           /*IsVolatile=*/false,
   1234                           /*AlwaysInline=*/false,
   1235                           IsTailCall, MachinePointerInfo(),
   1236                           MachinePointerInfo());
   1237     ByValArgs.push_back(FIPtr);
   1238   }
   1239 
   1240   if (!IsTailCall)
   1241     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
   1242 
   1243   // Copy argument values to their designated locations.
   1244   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
   1245   SmallVector<SDValue, 8> MemOpChains;
   1246   SDValue StackPtr;
   1247   for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
   1248     CCValAssign &VA = ArgLocs[i];
   1249     SDValue ArgValue = OutVals[i];
   1250     ISD::ArgFlagsTy Flags = Outs[i].Flags;
   1251 
   1252     // Handle passing f64 on RV32D with a soft float ABI as a special case.
   1253     bool IsF64OnRV32DSoftABI =
   1254         VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64;
   1255     if (IsF64OnRV32DSoftABI && VA.isRegLoc()) {
   1256       SDValue SplitF64 = DAG.getNode(
   1257           RISCVISD::SplitF64, DL, DAG.getVTList(MVT::i32, MVT::i32), ArgValue);
   1258       SDValue Lo = SplitF64.getValue(0);
   1259       SDValue Hi = SplitF64.getValue(1);
   1260 
   1261       unsigned RegLo = VA.getLocReg();
   1262       RegsToPass.push_back(std::make_pair(RegLo, Lo));
   1263 
   1264       if (RegLo == RISCV::X17) {
   1265         // Second half of f64 is passed on the stack.
   1266         // Work out the address of the stack slot.
   1267         if (!StackPtr.getNode())
   1268           StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
   1269         // Emit the store.
   1270         MemOpChains.push_back(
   1271             DAG.getStore(Chain, DL, Hi, StackPtr, MachinePointerInfo()));
   1272       } else {
   1273         // Second half of f64 is passed in another GPR.
   1274         unsigned RegHigh = RegLo + 1;
   1275         RegsToPass.push_back(std::make_pair(RegHigh, Hi));
   1276       }
   1277       continue;
   1278     }
   1279 
   1280     // IsF64OnRV32DSoftABI && VA.isMemLoc() is handled below in the same way
   1281     // as any other MemLoc.
   1282 
   1283     // Promote the value if needed.
   1284     // For now, only handle fully promoted and indirect arguments.
   1285     switch (VA.getLocInfo()) {
   1286     case CCValAssign::Full:
   1287       break;
   1288     case CCValAssign::BCvt:
   1289       ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), ArgValue);
   1290       break;
   1291     case CCValAssign::Indirect: {
   1292       // Store the argument in a stack slot and pass its address.
   1293       SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
   1294       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
   1295       MemOpChains.push_back(
   1296           DAG.getStore(Chain, DL, ArgValue, SpillSlot,
   1297                        MachinePointerInfo::getFixedStack(MF, FI)));
   1298       // If the original argument was split (e.g. i128), we need
   1299       // to store all parts of it here (and pass just one address).
   1300       unsigned ArgIndex = Outs[i].OrigArgIndex;
   1301       assert(Outs[i].PartOffset == 0);
   1302       while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
   1303         SDValue PartValue = OutVals[i + 1];
   1304         unsigned PartOffset = Outs[i + 1].PartOffset;
   1305         SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
   1306                                       DAG.getIntPtrConstant(PartOffset, DL));
   1307         MemOpChains.push_back(
   1308             DAG.getStore(Chain, DL, PartValue, Address,
   1309                          MachinePointerInfo::getFixedStack(MF, FI)));
   1310         ++i;
   1311       }
   1312       ArgValue = SpillSlot;
   1313       break;
   1314     }
   1315     default:
   1316       llvm_unreachable("Unknown loc info!");
   1317     }
   1318 
   1319     // Use local copy if it is a byval arg.
   1320     if (Flags.isByVal())
   1321       ArgValue = ByValArgs[j++];
   1322 
   1323     if (VA.isRegLoc()) {
   1324       // Queue up the argument copies and emit them at the end.
   1325       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
   1326     } else {
   1327       assert(VA.isMemLoc() && "Argument not register or memory");
   1328       assert(!IsTailCall && "Tail call not allowed if stack is used "
   1329                             "for passing parameters");
   1330 
   1331       // Work out the address of the stack slot.
   1332       if (!StackPtr.getNode())
   1333         StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
   1334       SDValue Address =
   1335           DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
   1336                       DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
   1337 
   1338       // Emit the store.
   1339       MemOpChains.push_back(
   1340           DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
   1341     }
   1342   }
   1343 
   1344   // Join the stores, which are independent of one another.
   1345   if (!MemOpChains.empty())
   1346     Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
   1347 
   1348   SDValue Glue;
   1349 
   1350   // Build a sequence of copy-to-reg nodes, chained and glued together.
   1351   for (auto &Reg : RegsToPass) {
   1352     Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
   1353     Glue = Chain.getValue(1);
   1354   }
   1355 
   1356   // If the callee is a GlobalAddress/ExternalSymbol node, turn it into a
   1357   // TargetGlobalAddress/TargetExternalSymbol node so that legalize won't
   1358   // split it and then direct call can be matched by PseudoCALL.
   1359   if (GlobalAddressSDNode *S = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1360     Callee = DAG.getTargetGlobalAddress(S->getGlobal(), DL, PtrVT, 0, 0);
   1361   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1362     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, 0);
   1363   }
   1364 
   1365   // The first call operand is the chain and the second is the target address.
   1366   SmallVector<SDValue, 8> Ops;
   1367   Ops.push_back(Chain);
   1368   Ops.push_back(Callee);
   1369 
   1370   // Add argument registers to the end of the list so that they are
   1371   // known live into the call.
   1372   for (auto &Reg : RegsToPass)
   1373     Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
   1374 
   1375   if (!IsTailCall) {
   1376     // Add a register mask operand representing the call-preserved registers.
   1377     const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
   1378     const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
   1379     assert(Mask && "Missing call preserved mask for calling convention");
   1380     Ops.push_back(DAG.getRegisterMask(Mask));
   1381   }
   1382 
   1383   // Glue the call to the argument copies, if any.
   1384   if (Glue.getNode())
   1385     Ops.push_back(Glue);
   1386 
   1387   // Emit the call.
   1388   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1389 
   1390   if (IsTailCall) {
   1391     MF.getFrameInfo().setHasTailCall();
   1392     return DAG.getNode(RISCVISD::TAIL, DL, NodeTys, Ops);
   1393   }
   1394 
   1395   Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
   1396   Glue = Chain.getValue(1);
   1397 
   1398   // Mark the end of the call, which is glued to the call itself.
   1399   Chain = DAG.getCALLSEQ_END(Chain,
   1400                              DAG.getConstant(NumBytes, DL, PtrVT, true),
   1401                              DAG.getConstant(0, DL, PtrVT, true),
   1402                              Glue, DL);
   1403   Glue = Chain.getValue(1);
   1404 
   1405   // Assign locations to each value returned by this call.
   1406   SmallVector<CCValAssign, 16> RVLocs;
   1407   CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
   1408   analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
   1409 
   1410   // Copy all of the result registers out of their specified physreg.
   1411   for (auto &VA : RVLocs) {
   1412     // Copy the value out
   1413     SDValue RetValue =
   1414         DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), Glue);
   1415     // Glue the RetValue to the end of the call sequence
   1416     Chain = RetValue.getValue(1);
   1417     Glue = RetValue.getValue(2);
   1418     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
   1419       assert(VA.getLocReg() == ArgGPRs[0] && "Unexpected reg assignment");
   1420       SDValue RetValue2 =
   1421           DAG.getCopyFromReg(Chain, DL, ArgGPRs[1], MVT::i32, Glue);
   1422       Chain = RetValue2.getValue(1);
   1423       Glue = RetValue2.getValue(2);
   1424       RetValue = DAG.getNode(RISCVISD::BuildPairF64, DL, MVT::f64, RetValue,
   1425                              RetValue2);
   1426     }
   1427 
   1428     switch (VA.getLocInfo()) {
   1429     default:
   1430       llvm_unreachable("Unknown loc info!");
   1431     case CCValAssign::Full:
   1432       break;
   1433     case CCValAssign::BCvt:
   1434       RetValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), RetValue);
   1435       break;
   1436     }
   1437 
   1438     InVals.push_back(RetValue);
   1439   }
   1440 
   1441   return Chain;
   1442 }
   1443 
   1444 bool RISCVTargetLowering::CanLowerReturn(
   1445     CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
   1446     const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
   1447   SmallVector<CCValAssign, 16> RVLocs;
   1448   CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
   1449   for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
   1450     MVT VT = Outs[i].VT;
   1451     ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
   1452     if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
   1453                  CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
   1454       return false;
   1455   }
   1456   return true;
   1457 }
   1458 
   1459 static SDValue packIntoRegLoc(SelectionDAG &DAG, SDValue Val,
   1460                               const CCValAssign &VA, const SDLoc &DL) {
   1461   EVT LocVT = VA.getLocVT();
   1462 
   1463   switch (VA.getLocInfo()) {
   1464   default:
   1465     llvm_unreachable("Unexpected CCValAssign::LocInfo");
   1466   case CCValAssign::Full:
   1467     break;
   1468   case CCValAssign::BCvt:
   1469     Val = DAG.getNode(ISD::BITCAST, DL, LocVT, Val);
   1470     break;
   1471   }
   1472   return Val;
   1473 }
   1474 
   1475 SDValue
   1476 RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
   1477                                  bool IsVarArg,
   1478                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
   1479                                  const SmallVectorImpl<SDValue> &OutVals,
   1480                                  const SDLoc &DL, SelectionDAG &DAG) const {
   1481   // Stores the assignment of the return value to a location.
   1482   SmallVector<CCValAssign, 16> RVLocs;
   1483 
   1484   // Info about the registers and stack slot.
   1485   CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
   1486                  *DAG.getContext());
   1487 
   1488   analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
   1489                     nullptr);
   1490 
   1491   SDValue Glue;
   1492   SmallVector<SDValue, 4> RetOps(1, Chain);
   1493 
   1494   // Copy the result values into the output registers.
   1495   for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
   1496     SDValue Val = OutVals[i];
   1497     CCValAssign &VA = RVLocs[i];
   1498     assert(VA.isRegLoc() && "Can only return in registers!");
   1499 
   1500     if (VA.getLocVT() == MVT::i32 && VA.getValVT() == MVT::f64) {
   1501       // Handle returning f64 on RV32D with a soft float ABI.
   1502       assert(VA.isRegLoc() && "Expected return via registers");
   1503       SDValue SplitF64 = DAG.getNode(RISCVISD::SplitF64, DL,
   1504                                      DAG.getVTList(MVT::i32, MVT::i32), Val);
   1505       SDValue Lo = SplitF64.getValue(0);
   1506       SDValue Hi = SplitF64.getValue(1);
   1507       unsigned RegLo = VA.getLocReg();
   1508       unsigned RegHi = RegLo + 1;
   1509       Chain = DAG.getCopyToReg(Chain, DL, RegLo, Lo, Glue);
   1510       Glue = Chain.getValue(1);
   1511       RetOps.push_back(DAG.getRegister(RegLo, MVT::i32));
   1512       Chain = DAG.getCopyToReg(Chain, DL, RegHi, Hi, Glue);
   1513       Glue = Chain.getValue(1);
   1514       RetOps.push_back(DAG.getRegister(RegHi, MVT::i32));
   1515     } else {
   1516       // Handle a 'normal' return.
   1517       Val = packIntoRegLoc(DAG, Val, VA, DL);
   1518       Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Glue);
   1519 
   1520       // Guarantee that all emitted copies are stuck together.
   1521       Glue = Chain.getValue(1);
   1522       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   1523     }
   1524   }
   1525 
   1526   RetOps[0] = Chain; // Update chain.
   1527 
   1528   // Add the glue node if we have it.
   1529   if (Glue.getNode()) {
   1530     RetOps.push_back(Glue);
   1531   }
   1532 
   1533   // Interrupt service routines use different return instructions.
   1534   const Function &Func = DAG.getMachineFunction().getFunction();
   1535   if (Func.hasFnAttribute("interrupt")) {
   1536     if (!Func.getReturnType()->isVoidTy())
   1537       report_fatal_error(
   1538           "Functions with the interrupt attribute must have void return type!");
   1539 
   1540     MachineFunction &MF = DAG.getMachineFunction();
   1541     StringRef Kind =
   1542       MF.getFunction().getFnAttribute("interrupt").getValueAsString();
   1543 
   1544     unsigned RetOpc;
   1545     if (Kind == "user")
   1546       RetOpc = RISCVISD::URET_FLAG;
   1547     else if (Kind == "supervisor")
   1548       RetOpc = RISCVISD::SRET_FLAG;
   1549     else
   1550       RetOpc = RISCVISD::MRET_FLAG;
   1551 
   1552     return DAG.getNode(RetOpc, DL, MVT::Other, RetOps);
   1553   }
   1554 
   1555   return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
   1556 }
   1557 
   1558 const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1559   switch ((RISCVISD::NodeType)Opcode) {
   1560   case RISCVISD::FIRST_NUMBER:
   1561     break;
   1562   case RISCVISD::RET_FLAG:
   1563     return "RISCVISD::RET_FLAG";
   1564   case RISCVISD::URET_FLAG:
   1565     return "RISCVISD::URET_FLAG";
   1566   case RISCVISD::SRET_FLAG:
   1567     return "RISCVISD::SRET_FLAG";
   1568   case RISCVISD::MRET_FLAG:
   1569     return "RISCVISD::MRET_FLAG";
   1570   case RISCVISD::CALL:
   1571     return "RISCVISD::CALL";
   1572   case RISCVISD::SELECT_CC:
   1573     return "RISCVISD::SELECT_CC";
   1574   case RISCVISD::BuildPairF64:
   1575     return "RISCVISD::BuildPairF64";
   1576   case RISCVISD::SplitF64:
   1577     return "RISCVISD::SplitF64";
   1578   case RISCVISD::TAIL:
   1579     return "RISCVISD::TAIL";
   1580   }
   1581   return nullptr;
   1582 }
   1583 
   1584 std::pair<unsigned, const TargetRegisterClass *>
   1585 RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
   1586                                                   StringRef Constraint,
   1587                                                   MVT VT) const {
   1588   // First, see if this is a constraint that directly corresponds to a
   1589   // RISCV register class.
   1590   if (Constraint.size() == 1) {
   1591     switch (Constraint[0]) {
   1592     case 'r':
   1593       return std::make_pair(0U, &RISCV::GPRRegClass);
   1594     default:
   1595       break;
   1596     }
   1597   }
   1598 
   1599   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   1600 }
   1601 
   1602 Instruction *RISCVTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   1603                                                    Instruction *Inst,
   1604                                                    AtomicOrdering Ord) const {
   1605   if (isa<LoadInst>(Inst) && Ord == AtomicOrdering::SequentiallyConsistent)
   1606     return Builder.CreateFence(Ord);
   1607   if (isa<StoreInst>(Inst) && isReleaseOrStronger(Ord))
   1608     return Builder.CreateFence(AtomicOrdering::Release);
   1609   return nullptr;
   1610 }
   1611 
   1612 Instruction *RISCVTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   1613                                                     Instruction *Inst,
   1614                                                     AtomicOrdering Ord) const {
   1615   if (isa<LoadInst>(Inst) && isAcquireOrStronger(Ord))
   1616     return Builder.CreateFence(AtomicOrdering::Acquire);
   1617   return nullptr;
   1618 }
   1619