1 //===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SystemZTargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SystemZISelLowering.h" 15 #include "SystemZCallingConv.h" 16 #include "SystemZConstantPoolValue.h" 17 #include "SystemZMachineFunctionInfo.h" 18 #include "SystemZTargetMachine.h" 19 #include "llvm/CodeGen/CallingConvLower.h" 20 #include "llvm/CodeGen/MachineInstrBuilder.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 23 #include "llvm/IR/Intrinsics.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/Support/CommandLine.h" 26 #include "llvm/Support/KnownBits.h" 27 #include <cctype> 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "systemz-lower" 32 33 namespace { 34 // Represents information about a comparison. 35 struct Comparison { 36 Comparison(SDValue Op0In, SDValue Op1In) 37 : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} 38 39 // The operands to the comparison. 40 SDValue Op0, Op1; 41 42 // The opcode that should be used to compare Op0 and Op1. 43 unsigned Opcode; 44 45 // A SystemZICMP value. Only used for integer comparisons. 46 unsigned ICmpType; 47 48 // The mask of CC values that Opcode can produce. 49 unsigned CCValid; 50 51 // The mask of CC values for which the original condition is true. 52 unsigned CCMask; 53 }; 54 } // end anonymous namespace 55 56 // Classify VT as either 32 or 64 bit. 57 static bool is32Bit(EVT VT) { 58 switch (VT.getSimpleVT().SimpleTy) { 59 case MVT::i32: 60 return true; 61 case MVT::i64: 62 return false; 63 default: 64 llvm_unreachable("Unsupported type"); 65 } 66 } 67 68 // Return a version of MachineOperand that can be safely used before the 69 // final use. 70 static MachineOperand earlyUseOperand(MachineOperand Op) { 71 if (Op.isReg()) 72 Op.setIsKill(false); 73 return Op; 74 } 75 76 SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, 77 const SystemZSubtarget &STI) 78 : TargetLowering(TM), Subtarget(STI) { 79 MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize(0)); 80 81 // Set up the register classes. 82 if (Subtarget.hasHighWord()) 83 addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); 84 else 85 addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); 86 addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); 87 if (Subtarget.hasVector()) { 88 addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); 89 addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); 90 } else { 91 addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); 92 addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); 93 } 94 if (Subtarget.hasVectorEnhancements1()) 95 addRegisterClass(MVT::f128, &SystemZ::VR128BitRegClass); 96 else 97 addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); 98 99 if (Subtarget.hasVector()) { 100 addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); 101 addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); 102 addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); 103 addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); 104 addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); 105 addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); 106 } 107 108 // Compute derived properties from the register classes 109 computeRegisterProperties(Subtarget.getRegisterInfo()); 110 111 // Set up special registers. 112 setStackPointerRegisterToSaveRestore(SystemZ::R15D); 113 114 // TODO: It may be better to default to latency-oriented scheduling, however 115 // LLVM's current latency-oriented scheduler can't handle physreg definitions 116 // such as SystemZ has with CC, so set this to the register-pressure 117 // scheduler, because it can. 118 setSchedulingPreference(Sched::RegPressure); 119 120 setBooleanContents(ZeroOrOneBooleanContent); 121 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 122 123 // Instructions are strings of 2-byte aligned 2-byte values. 124 setMinFunctionAlignment(2); 125 // For performance reasons we prefer 16-byte alignment. 126 setPrefFunctionAlignment(4); 127 128 // Handle operations that are handled in a similar way for all types. 129 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 130 I <= MVT::LAST_FP_VALUETYPE; 131 ++I) { 132 MVT VT = MVT::SimpleValueType(I); 133 if (isTypeLegal(VT)) { 134 // Lower SET_CC into an IPM-based sequence. 135 setOperationAction(ISD::SETCC, VT, Custom); 136 137 // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). 138 setOperationAction(ISD::SELECT, VT, Expand); 139 140 // Lower SELECT_CC and BR_CC into separate comparisons and branches. 141 setOperationAction(ISD::SELECT_CC, VT, Custom); 142 setOperationAction(ISD::BR_CC, VT, Custom); 143 } 144 } 145 146 // Expand jump table branches as address arithmetic followed by an 147 // indirect jump. 148 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 149 150 // Expand BRCOND into a BR_CC (see above). 151 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 152 153 // Handle integer types. 154 for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; 155 I <= MVT::LAST_INTEGER_VALUETYPE; 156 ++I) { 157 MVT VT = MVT::SimpleValueType(I); 158 if (isTypeLegal(VT)) { 159 // Expand individual DIV and REMs into DIVREMs. 160 setOperationAction(ISD::SDIV, VT, Expand); 161 setOperationAction(ISD::UDIV, VT, Expand); 162 setOperationAction(ISD::SREM, VT, Expand); 163 setOperationAction(ISD::UREM, VT, Expand); 164 setOperationAction(ISD::SDIVREM, VT, Custom); 165 setOperationAction(ISD::UDIVREM, VT, Custom); 166 167 // Support addition/subtraction with overflow. 168 setOperationAction(ISD::SADDO, VT, Custom); 169 setOperationAction(ISD::SSUBO, VT, Custom); 170 171 // Support addition/subtraction with carry. 172 setOperationAction(ISD::UADDO, VT, Custom); 173 setOperationAction(ISD::USUBO, VT, Custom); 174 175 // Support carry in as value rather than glue. 176 setOperationAction(ISD::ADDCARRY, VT, Custom); 177 setOperationAction(ISD::SUBCARRY, VT, Custom); 178 179 // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and 180 // stores, putting a serialization instruction after the stores. 181 setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); 182 setOperationAction(ISD::ATOMIC_STORE, VT, Custom); 183 184 // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are 185 // available, or if the operand is constant. 186 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); 187 188 // Use POPCNT on z196 and above. 189 if (Subtarget.hasPopulationCount()) 190 setOperationAction(ISD::CTPOP, VT, Custom); 191 else 192 setOperationAction(ISD::CTPOP, VT, Expand); 193 194 // No special instructions for these. 195 setOperationAction(ISD::CTTZ, VT, Expand); 196 setOperationAction(ISD::ROTR, VT, Expand); 197 198 // Use *MUL_LOHI where possible instead of MULH*. 199 setOperationAction(ISD::MULHS, VT, Expand); 200 setOperationAction(ISD::MULHU, VT, Expand); 201 setOperationAction(ISD::SMUL_LOHI, VT, Custom); 202 setOperationAction(ISD::UMUL_LOHI, VT, Custom); 203 204 // Only z196 and above have native support for conversions to unsigned. 205 // On z10, promoting to i64 doesn't generate an inexact condition for 206 // values that are outside the i32 range but in the i64 range, so use 207 // the default expansion. 208 if (!Subtarget.hasFPExtension()) 209 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 210 } 211 } 212 213 // Type legalization will convert 8- and 16-bit atomic operations into 214 // forms that operate on i32s (but still keeping the original memory VT). 215 // Lower them into full i32 operations. 216 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); 217 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); 218 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); 219 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); 220 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); 221 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); 222 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); 223 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); 224 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); 225 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); 226 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); 227 228 // Even though i128 is not a legal type, we still need to custom lower 229 // the atomic operations in order to exploit SystemZ instructions. 230 setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); 231 setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); 232 233 // We can use the CC result of compare-and-swap to implement 234 // the "success" result of ATOMIC_CMP_SWAP_WITH_SUCCESS. 235 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Custom); 236 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Custom); 237 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom); 238 239 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 240 241 // Traps are legal, as we will convert them to "j .+2". 242 setOperationAction(ISD::TRAP, MVT::Other, Legal); 243 244 // z10 has instructions for signed but not unsigned FP conversion. 245 // Handle unsigned 32-bit types as signed 64-bit types. 246 if (!Subtarget.hasFPExtension()) { 247 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); 248 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); 249 } 250 251 // We have native support for a 64-bit CTLZ, via FLOGR. 252 setOperationAction(ISD::CTLZ, MVT::i32, Promote); 253 setOperationAction(ISD::CTLZ, MVT::i64, Legal); 254 255 // Give LowerOperation the chance to replace 64-bit ORs with subregs. 256 setOperationAction(ISD::OR, MVT::i64, Custom); 257 258 // FIXME: Can we support these natively? 259 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); 260 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); 261 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); 262 263 // We have native instructions for i8, i16 and i32 extensions, but not i1. 264 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 265 for (MVT VT : MVT::integer_valuetypes()) { 266 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 267 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); 268 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); 269 } 270 271 // Handle the various types of symbolic address. 272 setOperationAction(ISD::ConstantPool, PtrVT, Custom); 273 setOperationAction(ISD::GlobalAddress, PtrVT, Custom); 274 setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); 275 setOperationAction(ISD::BlockAddress, PtrVT, Custom); 276 setOperationAction(ISD::JumpTable, PtrVT, Custom); 277 278 // We need to handle dynamic allocations specially because of the 279 // 160-byte area at the bottom of the stack. 280 setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); 281 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, PtrVT, Custom); 282 283 // Use custom expanders so that we can force the function to use 284 // a frame pointer. 285 setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); 286 setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); 287 288 // Handle prefetches with PFD or PFDRL. 289 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 290 291 for (MVT VT : MVT::vector_valuetypes()) { 292 // Assume by default that all vector operations need to be expanded. 293 for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) 294 if (getOperationAction(Opcode, VT) == Legal) 295 setOperationAction(Opcode, VT, Expand); 296 297 // Likewise all truncating stores and extending loads. 298 for (MVT InnerVT : MVT::vector_valuetypes()) { 299 setTruncStoreAction(VT, InnerVT, Expand); 300 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 301 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 302 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 303 } 304 305 if (isTypeLegal(VT)) { 306 // These operations are legal for anything that can be stored in a 307 // vector register, even if there is no native support for the format 308 // as such. In particular, we can do these for v4f32 even though there 309 // are no specific instructions for that format. 310 setOperationAction(ISD::LOAD, VT, Legal); 311 setOperationAction(ISD::STORE, VT, Legal); 312 setOperationAction(ISD::VSELECT, VT, Legal); 313 setOperationAction(ISD::BITCAST, VT, Legal); 314 setOperationAction(ISD::UNDEF, VT, Legal); 315 316 // Likewise, except that we need to replace the nodes with something 317 // more specific. 318 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 319 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 320 } 321 } 322 323 // Handle integer vector types. 324 for (MVT VT : MVT::integer_vector_valuetypes()) { 325 if (isTypeLegal(VT)) { 326 // These operations have direct equivalents. 327 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); 328 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); 329 setOperationAction(ISD::ADD, VT, Legal); 330 setOperationAction(ISD::SUB, VT, Legal); 331 if (VT != MVT::v2i64) 332 setOperationAction(ISD::MUL, VT, Legal); 333 setOperationAction(ISD::AND, VT, Legal); 334 setOperationAction(ISD::OR, VT, Legal); 335 setOperationAction(ISD::XOR, VT, Legal); 336 if (Subtarget.hasVectorEnhancements1()) 337 setOperationAction(ISD::CTPOP, VT, Legal); 338 else 339 setOperationAction(ISD::CTPOP, VT, Custom); 340 setOperationAction(ISD::CTTZ, VT, Legal); 341 setOperationAction(ISD::CTLZ, VT, Legal); 342 343 // Convert a GPR scalar to a vector by inserting it into element 0. 344 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); 345 346 // Use a series of unpacks for extensions. 347 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); 348 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); 349 350 // Detect shifts by a scalar amount and convert them into 351 // V*_BY_SCALAR. 352 setOperationAction(ISD::SHL, VT, Custom); 353 setOperationAction(ISD::SRA, VT, Custom); 354 setOperationAction(ISD::SRL, VT, Custom); 355 356 // At present ROTL isn't matched by DAGCombiner. ROTR should be 357 // converted into ROTL. 358 setOperationAction(ISD::ROTL, VT, Expand); 359 setOperationAction(ISD::ROTR, VT, Expand); 360 361 // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands 362 // and inverting the result as necessary. 363 setOperationAction(ISD::SETCC, VT, Custom); 364 } 365 } 366 367 if (Subtarget.hasVector()) { 368 // There should be no need to check for float types other than v2f64 369 // since <2 x f32> isn't a legal type. 370 setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); 371 setOperationAction(ISD::FP_TO_SINT, MVT::v2f64, Legal); 372 setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); 373 setOperationAction(ISD::FP_TO_UINT, MVT::v2f64, Legal); 374 setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); 375 setOperationAction(ISD::SINT_TO_FP, MVT::v2f64, Legal); 376 setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); 377 setOperationAction(ISD::UINT_TO_FP, MVT::v2f64, Legal); 378 } 379 380 // Handle floating-point types. 381 for (unsigned I = MVT::FIRST_FP_VALUETYPE; 382 I <= MVT::LAST_FP_VALUETYPE; 383 ++I) { 384 MVT VT = MVT::SimpleValueType(I); 385 if (isTypeLegal(VT)) { 386 // We can use FI for FRINT. 387 setOperationAction(ISD::FRINT, VT, Legal); 388 389 // We can use the extended form of FI for other rounding operations. 390 if (Subtarget.hasFPExtension()) { 391 setOperationAction(ISD::FNEARBYINT, VT, Legal); 392 setOperationAction(ISD::FFLOOR, VT, Legal); 393 setOperationAction(ISD::FCEIL, VT, Legal); 394 setOperationAction(ISD::FTRUNC, VT, Legal); 395 setOperationAction(ISD::FROUND, VT, Legal); 396 } 397 398 // No special instructions for these. 399 setOperationAction(ISD::FSIN, VT, Expand); 400 setOperationAction(ISD::FCOS, VT, Expand); 401 setOperationAction(ISD::FSINCOS, VT, Expand); 402 setOperationAction(ISD::FREM, VT, Expand); 403 setOperationAction(ISD::FPOW, VT, Expand); 404 } 405 } 406 407 // Handle floating-point vector types. 408 if (Subtarget.hasVector()) { 409 // Scalar-to-vector conversion is just a subreg. 410 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); 411 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); 412 413 // Some insertions and extractions can be done directly but others 414 // need to go via integers. 415 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); 416 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); 417 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); 418 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); 419 420 // These operations have direct equivalents. 421 setOperationAction(ISD::FADD, MVT::v2f64, Legal); 422 setOperationAction(ISD::FNEG, MVT::v2f64, Legal); 423 setOperationAction(ISD::FSUB, MVT::v2f64, Legal); 424 setOperationAction(ISD::FMUL, MVT::v2f64, Legal); 425 setOperationAction(ISD::FMA, MVT::v2f64, Legal); 426 setOperationAction(ISD::FDIV, MVT::v2f64, Legal); 427 setOperationAction(ISD::FABS, MVT::v2f64, Legal); 428 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); 429 setOperationAction(ISD::FRINT, MVT::v2f64, Legal); 430 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); 431 setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); 432 setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); 433 setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); 434 setOperationAction(ISD::FROUND, MVT::v2f64, Legal); 435 } 436 437 // The vector enhancements facility 1 has instructions for these. 438 if (Subtarget.hasVectorEnhancements1()) { 439 setOperationAction(ISD::FADD, MVT::v4f32, Legal); 440 setOperationAction(ISD::FNEG, MVT::v4f32, Legal); 441 setOperationAction(ISD::FSUB, MVT::v4f32, Legal); 442 setOperationAction(ISD::FMUL, MVT::v4f32, Legal); 443 setOperationAction(ISD::FMA, MVT::v4f32, Legal); 444 setOperationAction(ISD::FDIV, MVT::v4f32, Legal); 445 setOperationAction(ISD::FABS, MVT::v4f32, Legal); 446 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); 447 setOperationAction(ISD::FRINT, MVT::v4f32, Legal); 448 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); 449 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); 450 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); 451 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); 452 setOperationAction(ISD::FROUND, MVT::v4f32, Legal); 453 454 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 455 setOperationAction(ISD::FMAXNAN, MVT::f64, Legal); 456 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 457 setOperationAction(ISD::FMINNAN, MVT::f64, Legal); 458 459 setOperationAction(ISD::FMAXNUM, MVT::v2f64, Legal); 460 setOperationAction(ISD::FMAXNAN, MVT::v2f64, Legal); 461 setOperationAction(ISD::FMINNUM, MVT::v2f64, Legal); 462 setOperationAction(ISD::FMINNAN, MVT::v2f64, Legal); 463 464 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 465 setOperationAction(ISD::FMAXNAN, MVT::f32, Legal); 466 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 467 setOperationAction(ISD::FMINNAN, MVT::f32, Legal); 468 469 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 470 setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal); 471 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 472 setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal); 473 474 setOperationAction(ISD::FMAXNUM, MVT::f128, Legal); 475 setOperationAction(ISD::FMAXNAN, MVT::f128, Legal); 476 setOperationAction(ISD::FMINNUM, MVT::f128, Legal); 477 setOperationAction(ISD::FMINNAN, MVT::f128, Legal); 478 } 479 480 // We have fused multiply-addition for f32 and f64 but not f128. 481 setOperationAction(ISD::FMA, MVT::f32, Legal); 482 setOperationAction(ISD::FMA, MVT::f64, Legal); 483 if (Subtarget.hasVectorEnhancements1()) 484 setOperationAction(ISD::FMA, MVT::f128, Legal); 485 else 486 setOperationAction(ISD::FMA, MVT::f128, Expand); 487 488 // We don't have a copysign instruction on vector registers. 489 if (Subtarget.hasVectorEnhancements1()) 490 setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); 491 492 // Needed so that we don't try to implement f128 constant loads using 493 // a load-and-extend of a f80 constant (in cases where the constant 494 // would fit in an f80). 495 for (MVT VT : MVT::fp_valuetypes()) 496 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); 497 498 // We don't have extending load instruction on vector registers. 499 if (Subtarget.hasVectorEnhancements1()) { 500 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f32, Expand); 501 setLoadExtAction(ISD::EXTLOAD, MVT::f128, MVT::f64, Expand); 502 } 503 504 // Floating-point truncation and stores need to be done separately. 505 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 506 setTruncStoreAction(MVT::f128, MVT::f32, Expand); 507 setTruncStoreAction(MVT::f128, MVT::f64, Expand); 508 509 // We have 64-bit FPR<->GPR moves, but need special handling for 510 // 32-bit forms. 511 if (!Subtarget.hasVector()) { 512 setOperationAction(ISD::BITCAST, MVT::i32, Custom); 513 setOperationAction(ISD::BITCAST, MVT::f32, Custom); 514 } 515 516 // VASTART and VACOPY need to deal with the SystemZ-specific varargs 517 // structure, but VAEND is a no-op. 518 setOperationAction(ISD::VASTART, MVT::Other, Custom); 519 setOperationAction(ISD::VACOPY, MVT::Other, Custom); 520 setOperationAction(ISD::VAEND, MVT::Other, Expand); 521 522 // Codes for which we want to perform some z-specific combinations. 523 setTargetDAGCombine(ISD::ZERO_EXTEND); 524 setTargetDAGCombine(ISD::SIGN_EXTEND); 525 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG); 526 setTargetDAGCombine(ISD::STORE); 527 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); 528 setTargetDAGCombine(ISD::FP_ROUND); 529 setTargetDAGCombine(ISD::BSWAP); 530 531 // Handle intrinsics. 532 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); 533 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 534 535 // We want to use MVC in preference to even a single load/store pair. 536 MaxStoresPerMemcpy = 0; 537 MaxStoresPerMemcpyOptSize = 0; 538 539 // The main memset sequence is a byte store followed by an MVC. 540 // Two STC or MV..I stores win over that, but the kind of fused stores 541 // generated by target-independent code don't when the byte value is 542 // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better 543 // than "STC;MVC". Handle the choice in target-specific code instead. 544 MaxStoresPerMemset = 0; 545 MaxStoresPerMemsetOptSize = 0; 546 } 547 548 EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, 549 LLVMContext &, EVT VT) const { 550 if (!VT.isVector()) 551 return MVT::i32; 552 return VT.changeVectorElementTypeToInteger(); 553 } 554 555 bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { 556 VT = VT.getScalarType(); 557 558 if (!VT.isSimple()) 559 return false; 560 561 switch (VT.getSimpleVT().SimpleTy) { 562 case MVT::f32: 563 case MVT::f64: 564 return true; 565 case MVT::f128: 566 return Subtarget.hasVectorEnhancements1(); 567 default: 568 break; 569 } 570 571 return false; 572 } 573 574 bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 575 // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. 576 return Imm.isZero() || Imm.isNegZero(); 577 } 578 579 bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 580 // We can use CGFI or CLGFI. 581 return isInt<32>(Imm) || isUInt<32>(Imm); 582 } 583 584 bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { 585 // We can use ALGFI or SLGFI. 586 return isUInt<32>(Imm) || isUInt<32>(-Imm); 587 } 588 589 bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 590 unsigned, 591 unsigned, 592 bool *Fast) const { 593 // Unaligned accesses should never be slower than the expanded version. 594 // We check specifically for aligned accesses in the few cases where 595 // they are required. 596 if (Fast) 597 *Fast = true; 598 return true; 599 } 600 601 // Information about the addressing mode for a memory access. 602 struct AddressingMode { 603 // True if a long displacement is supported. 604 bool LongDisplacement; 605 606 // True if use of index register is supported. 607 bool IndexReg; 608 609 AddressingMode(bool LongDispl, bool IdxReg) : 610 LongDisplacement(LongDispl), IndexReg(IdxReg) {} 611 }; 612 613 // Return the desired addressing mode for a Load which has only one use (in 614 // the same block) which is a Store. 615 static AddressingMode getLoadStoreAddrMode(bool HasVector, 616 Type *Ty) { 617 // With vector support a Load->Store combination may be combined to either 618 // an MVC or vector operations and it seems to work best to allow the 619 // vector addressing mode. 620 if (HasVector) 621 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 622 623 // Otherwise only the MVC case is special. 624 bool MVC = Ty->isIntegerTy(8); 625 return AddressingMode(!MVC/*LongDispl*/, !MVC/*IdxReg*/); 626 } 627 628 // Return the addressing mode which seems most desirable given an LLVM 629 // Instruction pointer. 630 static AddressingMode 631 supportedAddressingMode(Instruction *I, bool HasVector) { 632 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 633 switch (II->getIntrinsicID()) { 634 default: break; 635 case Intrinsic::memset: 636 case Intrinsic::memmove: 637 case Intrinsic::memcpy: 638 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 639 } 640 } 641 642 if (isa<LoadInst>(I) && I->hasOneUse()) { 643 auto *SingleUser = dyn_cast<Instruction>(*I->user_begin()); 644 if (SingleUser->getParent() == I->getParent()) { 645 if (isa<ICmpInst>(SingleUser)) { 646 if (auto *C = dyn_cast<ConstantInt>(SingleUser->getOperand(1))) 647 if (C->getBitWidth() <= 64 && 648 (isInt<16>(C->getSExtValue()) || isUInt<16>(C->getZExtValue()))) 649 // Comparison of memory with 16 bit signed / unsigned immediate 650 return AddressingMode(false/*LongDispl*/, false/*IdxReg*/); 651 } else if (isa<StoreInst>(SingleUser)) 652 // Load->Store 653 return getLoadStoreAddrMode(HasVector, I->getType()); 654 } 655 } else if (auto *StoreI = dyn_cast<StoreInst>(I)) { 656 if (auto *LoadI = dyn_cast<LoadInst>(StoreI->getValueOperand())) 657 if (LoadI->hasOneUse() && LoadI->getParent() == I->getParent()) 658 // Load->Store 659 return getLoadStoreAddrMode(HasVector, LoadI->getType()); 660 } 661 662 if (HasVector && (isa<LoadInst>(I) || isa<StoreInst>(I))) { 663 664 // * Use LDE instead of LE/LEY for z13 to avoid partial register 665 // dependencies (LDE only supports small offsets). 666 // * Utilize the vector registers to hold floating point 667 // values (vector load / store instructions only support small 668 // offsets). 669 670 Type *MemAccessTy = (isa<LoadInst>(I) ? I->getType() : 671 I->getOperand(0)->getType()); 672 bool IsFPAccess = MemAccessTy->isFloatingPointTy(); 673 bool IsVectorAccess = MemAccessTy->isVectorTy(); 674 675 // A store of an extracted vector element will be combined into a VSTE type 676 // instruction. 677 if (!IsVectorAccess && isa<StoreInst>(I)) { 678 Value *DataOp = I->getOperand(0); 679 if (isa<ExtractElementInst>(DataOp)) 680 IsVectorAccess = true; 681 } 682 683 // A load which gets inserted into a vector element will be combined into a 684 // VLE type instruction. 685 if (!IsVectorAccess && isa<LoadInst>(I) && I->hasOneUse()) { 686 User *LoadUser = *I->user_begin(); 687 if (isa<InsertElementInst>(LoadUser)) 688 IsVectorAccess = true; 689 } 690 691 if (IsFPAccess || IsVectorAccess) 692 return AddressingMode(false/*LongDispl*/, true/*IdxReg*/); 693 } 694 695 return AddressingMode(true/*LongDispl*/, true/*IdxReg*/); 696 } 697 698 bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, 699 const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { 700 // Punt on globals for now, although they can be used in limited 701 // RELATIVE LONG cases. 702 if (AM.BaseGV) 703 return false; 704 705 // Require a 20-bit signed offset. 706 if (!isInt<20>(AM.BaseOffs)) 707 return false; 708 709 AddressingMode SupportedAM(true, true); 710 if (I != nullptr) 711 SupportedAM = supportedAddressingMode(I, Subtarget.hasVector()); 712 713 if (!SupportedAM.LongDisplacement && !isUInt<12>(AM.BaseOffs)) 714 return false; 715 716 if (!SupportedAM.IndexReg) 717 // No indexing allowed. 718 return AM.Scale == 0; 719 else 720 // Indexing is OK but no scale factor can be applied. 721 return AM.Scale == 0 || AM.Scale == 1; 722 } 723 724 bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { 725 if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) 726 return false; 727 unsigned FromBits = FromType->getPrimitiveSizeInBits(); 728 unsigned ToBits = ToType->getPrimitiveSizeInBits(); 729 return FromBits > ToBits; 730 } 731 732 bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { 733 if (!FromVT.isInteger() || !ToVT.isInteger()) 734 return false; 735 unsigned FromBits = FromVT.getSizeInBits(); 736 unsigned ToBits = ToVT.getSizeInBits(); 737 return FromBits > ToBits; 738 } 739 740 //===----------------------------------------------------------------------===// 741 // Inline asm support 742 //===----------------------------------------------------------------------===// 743 744 TargetLowering::ConstraintType 745 SystemZTargetLowering::getConstraintType(StringRef Constraint) const { 746 if (Constraint.size() == 1) { 747 switch (Constraint[0]) { 748 case 'a': // Address register 749 case 'd': // Data register (equivalent to 'r') 750 case 'f': // Floating-point register 751 case 'h': // High-part register 752 case 'r': // General-purpose register 753 case 'v': // Vector register 754 return C_RegisterClass; 755 756 case 'Q': // Memory with base and unsigned 12-bit displacement 757 case 'R': // Likewise, plus an index 758 case 'S': // Memory with base and signed 20-bit displacement 759 case 'T': // Likewise, plus an index 760 case 'm': // Equivalent to 'T'. 761 return C_Memory; 762 763 case 'I': // Unsigned 8-bit constant 764 case 'J': // Unsigned 12-bit constant 765 case 'K': // Signed 16-bit constant 766 case 'L': // Signed 20-bit displacement (on all targets we support) 767 case 'M': // 0x7fffffff 768 return C_Other; 769 770 default: 771 break; 772 } 773 } 774 return TargetLowering::getConstraintType(Constraint); 775 } 776 777 TargetLowering::ConstraintWeight SystemZTargetLowering:: 778 getSingleConstraintMatchWeight(AsmOperandInfo &info, 779 const char *constraint) const { 780 ConstraintWeight weight = CW_Invalid; 781 Value *CallOperandVal = info.CallOperandVal; 782 // If we don't have a value, we can't do a match, 783 // but allow it at the lowest weight. 784 if (!CallOperandVal) 785 return CW_Default; 786 Type *type = CallOperandVal->getType(); 787 // Look at the constraint type. 788 switch (*constraint) { 789 default: 790 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 791 break; 792 793 case 'a': // Address register 794 case 'd': // Data register (equivalent to 'r') 795 case 'h': // High-part register 796 case 'r': // General-purpose register 797 if (CallOperandVal->getType()->isIntegerTy()) 798 weight = CW_Register; 799 break; 800 801 case 'f': // Floating-point register 802 if (type->isFloatingPointTy()) 803 weight = CW_Register; 804 break; 805 806 case 'v': // Vector register 807 if ((type->isVectorTy() || type->isFloatingPointTy()) && 808 Subtarget.hasVector()) 809 weight = CW_Register; 810 break; 811 812 case 'I': // Unsigned 8-bit constant 813 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 814 if (isUInt<8>(C->getZExtValue())) 815 weight = CW_Constant; 816 break; 817 818 case 'J': // Unsigned 12-bit constant 819 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 820 if (isUInt<12>(C->getZExtValue())) 821 weight = CW_Constant; 822 break; 823 824 case 'K': // Signed 16-bit constant 825 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 826 if (isInt<16>(C->getSExtValue())) 827 weight = CW_Constant; 828 break; 829 830 case 'L': // Signed 20-bit displacement (on all targets we support) 831 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 832 if (isInt<20>(C->getSExtValue())) 833 weight = CW_Constant; 834 break; 835 836 case 'M': // 0x7fffffff 837 if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) 838 if (C->getZExtValue() == 0x7fffffff) 839 weight = CW_Constant; 840 break; 841 } 842 return weight; 843 } 844 845 // Parse a "{tNNN}" register constraint for which the register type "t" 846 // has already been verified. MC is the class associated with "t" and 847 // Map maps 0-based register numbers to LLVM register numbers. 848 static std::pair<unsigned, const TargetRegisterClass *> 849 parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, 850 const unsigned *Map, unsigned Size) { 851 assert(*(Constraint.end()-1) == '}' && "Missing '}'"); 852 if (isdigit(Constraint[2])) { 853 unsigned Index; 854 bool Failed = 855 Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); 856 if (!Failed && Index < Size && Map[Index]) 857 return std::make_pair(Map[Index], RC); 858 } 859 return std::make_pair(0U, nullptr); 860 } 861 862 std::pair<unsigned, const TargetRegisterClass *> 863 SystemZTargetLowering::getRegForInlineAsmConstraint( 864 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 865 if (Constraint.size() == 1) { 866 // GCC Constraint Letters 867 switch (Constraint[0]) { 868 default: break; 869 case 'd': // Data register (equivalent to 'r') 870 case 'r': // General-purpose register 871 if (VT == MVT::i64) 872 return std::make_pair(0U, &SystemZ::GR64BitRegClass); 873 else if (VT == MVT::i128) 874 return std::make_pair(0U, &SystemZ::GR128BitRegClass); 875 return std::make_pair(0U, &SystemZ::GR32BitRegClass); 876 877 case 'a': // Address register 878 if (VT == MVT::i64) 879 return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); 880 else if (VT == MVT::i128) 881 return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); 882 return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); 883 884 case 'h': // High-part register (an LLVM extension) 885 return std::make_pair(0U, &SystemZ::GRH32BitRegClass); 886 887 case 'f': // Floating-point register 888 if (VT == MVT::f64) 889 return std::make_pair(0U, &SystemZ::FP64BitRegClass); 890 else if (VT == MVT::f128) 891 return std::make_pair(0U, &SystemZ::FP128BitRegClass); 892 return std::make_pair(0U, &SystemZ::FP32BitRegClass); 893 894 case 'v': // Vector register 895 if (Subtarget.hasVector()) { 896 if (VT == MVT::f32) 897 return std::make_pair(0U, &SystemZ::VR32BitRegClass); 898 if (VT == MVT::f64) 899 return std::make_pair(0U, &SystemZ::VR64BitRegClass); 900 return std::make_pair(0U, &SystemZ::VR128BitRegClass); 901 } 902 break; 903 } 904 } 905 if (Constraint.size() > 0 && Constraint[0] == '{') { 906 // We need to override the default register parsing for GPRs and FPRs 907 // because the interpretation depends on VT. The internal names of 908 // the registers are also different from the external names 909 // (F0D and F0S instead of F0, etc.). 910 if (Constraint[1] == 'r') { 911 if (VT == MVT::i32) 912 return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, 913 SystemZMC::GR32Regs, 16); 914 if (VT == MVT::i128) 915 return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, 916 SystemZMC::GR128Regs, 16); 917 return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, 918 SystemZMC::GR64Regs, 16); 919 } 920 if (Constraint[1] == 'f') { 921 if (VT == MVT::f32) 922 return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, 923 SystemZMC::FP32Regs, 16); 924 if (VT == MVT::f128) 925 return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, 926 SystemZMC::FP128Regs, 16); 927 return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, 928 SystemZMC::FP64Regs, 16); 929 } 930 if (Constraint[1] == 'v') { 931 if (VT == MVT::f32) 932 return parseRegisterNumber(Constraint, &SystemZ::VR32BitRegClass, 933 SystemZMC::VR32Regs, 32); 934 if (VT == MVT::f64) 935 return parseRegisterNumber(Constraint, &SystemZ::VR64BitRegClass, 936 SystemZMC::VR64Regs, 32); 937 return parseRegisterNumber(Constraint, &SystemZ::VR128BitRegClass, 938 SystemZMC::VR128Regs, 32); 939 } 940 } 941 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 942 } 943 944 void SystemZTargetLowering:: 945 LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, 946 std::vector<SDValue> &Ops, 947 SelectionDAG &DAG) const { 948 // Only support length 1 constraints for now. 949 if (Constraint.length() == 1) { 950 switch (Constraint[0]) { 951 case 'I': // Unsigned 8-bit constant 952 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 953 if (isUInt<8>(C->getZExtValue())) 954 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 955 Op.getValueType())); 956 return; 957 958 case 'J': // Unsigned 12-bit constant 959 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 960 if (isUInt<12>(C->getZExtValue())) 961 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 962 Op.getValueType())); 963 return; 964 965 case 'K': // Signed 16-bit constant 966 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 967 if (isInt<16>(C->getSExtValue())) 968 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 969 Op.getValueType())); 970 return; 971 972 case 'L': // Signed 20-bit displacement (on all targets we support) 973 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 974 if (isInt<20>(C->getSExtValue())) 975 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), 976 Op.getValueType())); 977 return; 978 979 case 'M': // 0x7fffffff 980 if (auto *C = dyn_cast<ConstantSDNode>(Op)) 981 if (C->getZExtValue() == 0x7fffffff) 982 Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), 983 Op.getValueType())); 984 return; 985 } 986 } 987 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 988 } 989 990 //===----------------------------------------------------------------------===// 991 // Calling conventions 992 //===----------------------------------------------------------------------===// 993 994 #include "SystemZGenCallingConv.inc" 995 996 const MCPhysReg *SystemZTargetLowering::getScratchRegisters( 997 CallingConv::ID) const { 998 static const MCPhysReg ScratchRegs[] = { SystemZ::R0D, SystemZ::R1D, 999 SystemZ::R14D, 0 }; 1000 return ScratchRegs; 1001 } 1002 1003 bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, 1004 Type *ToType) const { 1005 return isTruncateFree(FromType, ToType); 1006 } 1007 1008 bool SystemZTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { 1009 return CI->isTailCall(); 1010 } 1011 1012 // We do not yet support 128-bit single-element vector types. If the user 1013 // attempts to use such types as function argument or return type, prefer 1014 // to error out instead of emitting code violating the ABI. 1015 static void VerifyVectorType(MVT VT, EVT ArgVT) { 1016 if (ArgVT.isVector() && !VT.isVector()) 1017 report_fatal_error("Unsupported vector argument or return type"); 1018 } 1019 1020 static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { 1021 for (unsigned i = 0; i < Ins.size(); ++i) 1022 VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); 1023 } 1024 1025 static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { 1026 for (unsigned i = 0; i < Outs.size(); ++i) 1027 VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); 1028 } 1029 1030 // Value is a value that has been passed to us in the location described by VA 1031 // (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining 1032 // any loads onto Chain. 1033 static SDValue convertLocVTToValVT(SelectionDAG &DAG, const SDLoc &DL, 1034 CCValAssign &VA, SDValue Chain, 1035 SDValue Value) { 1036 // If the argument has been promoted from a smaller type, insert an 1037 // assertion to capture this. 1038 if (VA.getLocInfo() == CCValAssign::SExt) 1039 Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, 1040 DAG.getValueType(VA.getValVT())); 1041 else if (VA.getLocInfo() == CCValAssign::ZExt) 1042 Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, 1043 DAG.getValueType(VA.getValVT())); 1044 1045 if (VA.isExtInLoc()) 1046 Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); 1047 else if (VA.getLocInfo() == CCValAssign::BCvt) { 1048 // If this is a short vector argument loaded from the stack, 1049 // extend from i64 to full vector size and then bitcast. 1050 assert(VA.getLocVT() == MVT::i64); 1051 assert(VA.getValVT().isVector()); 1052 Value = DAG.getBuildVector(MVT::v2i64, DL, {Value, DAG.getUNDEF(MVT::i64)}); 1053 Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); 1054 } else 1055 assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); 1056 return Value; 1057 } 1058 1059 // Value is a value of type VA.getValVT() that we need to copy into 1060 // the location described by VA. Return a copy of Value converted to 1061 // VA.getValVT(). The caller is responsible for handling indirect values. 1062 static SDValue convertValVTToLocVT(SelectionDAG &DAG, const SDLoc &DL, 1063 CCValAssign &VA, SDValue Value) { 1064 switch (VA.getLocInfo()) { 1065 case CCValAssign::SExt: 1066 return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); 1067 case CCValAssign::ZExt: 1068 return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); 1069 case CCValAssign::AExt: 1070 return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); 1071 case CCValAssign::BCvt: 1072 // If this is a short vector argument to be stored to the stack, 1073 // bitcast to v2i64 and then extract first element. 1074 assert(VA.getLocVT() == MVT::i64); 1075 assert(VA.getValVT().isVector()); 1076 Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); 1077 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, 1078 DAG.getConstant(0, DL, MVT::i32)); 1079 case CCValAssign::Full: 1080 return Value; 1081 default: 1082 llvm_unreachable("Unhandled getLocInfo()"); 1083 } 1084 } 1085 1086 SDValue SystemZTargetLowering::LowerFormalArguments( 1087 SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, 1088 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, 1089 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { 1090 MachineFunction &MF = DAG.getMachineFunction(); 1091 MachineFrameInfo &MFI = MF.getFrameInfo(); 1092 MachineRegisterInfo &MRI = MF.getRegInfo(); 1093 SystemZMachineFunctionInfo *FuncInfo = 1094 MF.getInfo<SystemZMachineFunctionInfo>(); 1095 auto *TFL = 1096 static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); 1097 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 1098 1099 // Detect unsupported vector argument types. 1100 if (Subtarget.hasVector()) 1101 VerifyVectorTypes(Ins); 1102 1103 // Assign locations to all of the incoming arguments. 1104 SmallVector<CCValAssign, 16> ArgLocs; 1105 SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1106 CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); 1107 1108 unsigned NumFixedGPRs = 0; 1109 unsigned NumFixedFPRs = 0; 1110 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1111 SDValue ArgValue; 1112 CCValAssign &VA = ArgLocs[I]; 1113 EVT LocVT = VA.getLocVT(); 1114 if (VA.isRegLoc()) { 1115 // Arguments passed in registers 1116 const TargetRegisterClass *RC; 1117 switch (LocVT.getSimpleVT().SimpleTy) { 1118 default: 1119 // Integers smaller than i64 should be promoted to i64. 1120 llvm_unreachable("Unexpected argument type"); 1121 case MVT::i32: 1122 NumFixedGPRs += 1; 1123 RC = &SystemZ::GR32BitRegClass; 1124 break; 1125 case MVT::i64: 1126 NumFixedGPRs += 1; 1127 RC = &SystemZ::GR64BitRegClass; 1128 break; 1129 case MVT::f32: 1130 NumFixedFPRs += 1; 1131 RC = &SystemZ::FP32BitRegClass; 1132 break; 1133 case MVT::f64: 1134 NumFixedFPRs += 1; 1135 RC = &SystemZ::FP64BitRegClass; 1136 break; 1137 case MVT::v16i8: 1138 case MVT::v8i16: 1139 case MVT::v4i32: 1140 case MVT::v2i64: 1141 case MVT::v4f32: 1142 case MVT::v2f64: 1143 RC = &SystemZ::VR128BitRegClass; 1144 break; 1145 } 1146 1147 unsigned VReg = MRI.createVirtualRegister(RC); 1148 MRI.addLiveIn(VA.getLocReg(), VReg); 1149 ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); 1150 } else { 1151 assert(VA.isMemLoc() && "Argument not register or memory"); 1152 1153 // Create the frame index object for this incoming parameter. 1154 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8, 1155 VA.getLocMemOffset(), true); 1156 1157 // Create the SelectionDAG nodes corresponding to a load 1158 // from this parameter. Unpromoted ints and floats are 1159 // passed as right-justified 8-byte values. 1160 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 1161 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1162 FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, 1163 DAG.getIntPtrConstant(4, DL)); 1164 ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, 1165 MachinePointerInfo::getFixedStack(MF, FI)); 1166 } 1167 1168 // Convert the value of the argument register into the value that's 1169 // being passed. 1170 if (VA.getLocInfo() == CCValAssign::Indirect) { 1171 InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue, 1172 MachinePointerInfo())); 1173 // If the original argument was split (e.g. i128), we need 1174 // to load all parts of it here (using the same address). 1175 unsigned ArgIndex = Ins[I].OrigArgIndex; 1176 assert (Ins[I].PartOffset == 0); 1177 while (I + 1 != E && Ins[I + 1].OrigArgIndex == ArgIndex) { 1178 CCValAssign &PartVA = ArgLocs[I + 1]; 1179 unsigned PartOffset = Ins[I + 1].PartOffset; 1180 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue, 1181 DAG.getIntPtrConstant(PartOffset, DL)); 1182 InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address, 1183 MachinePointerInfo())); 1184 ++I; 1185 } 1186 } else 1187 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); 1188 } 1189 1190 if (IsVarArg) { 1191 // Save the number of non-varargs registers for later use by va_start, etc. 1192 FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); 1193 FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); 1194 1195 // Likewise the address (in the form of a frame index) of where the 1196 // first stack vararg would be. The 1-byte size here is arbitrary. 1197 int64_t StackSize = CCInfo.getNextStackOffset(); 1198 FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, StackSize, true)); 1199 1200 // ...and a similar frame index for the caller-allocated save area 1201 // that will be used to store the incoming registers. 1202 int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); 1203 unsigned RegSaveIndex = MFI.CreateFixedObject(1, RegSaveOffset, true); 1204 FuncInfo->setRegSaveFrameIndex(RegSaveIndex); 1205 1206 // Store the FPR varargs in the reserved frame slots. (We store the 1207 // GPRs as part of the prologue.) 1208 if (NumFixedFPRs < SystemZ::NumArgFPRs) { 1209 SDValue MemOps[SystemZ::NumArgFPRs]; 1210 for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { 1211 unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); 1212 int FI = MFI.CreateFixedObject(8, RegSaveOffset + Offset, true); 1213 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 1214 unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], 1215 &SystemZ::FP64BitRegClass); 1216 SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); 1217 MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, 1218 MachinePointerInfo::getFixedStack(MF, FI)); 1219 } 1220 // Join the stores, which are independent of one another. 1221 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, 1222 makeArrayRef(&MemOps[NumFixedFPRs], 1223 SystemZ::NumArgFPRs-NumFixedFPRs)); 1224 } 1225 } 1226 1227 return Chain; 1228 } 1229 1230 static bool canUseSiblingCall(const CCState &ArgCCInfo, 1231 SmallVectorImpl<CCValAssign> &ArgLocs, 1232 SmallVectorImpl<ISD::OutputArg> &Outs) { 1233 // Punt if there are any indirect or stack arguments, or if the call 1234 // needs the callee-saved argument register R6, or if the call uses 1235 // the callee-saved register arguments SwiftSelf and SwiftError. 1236 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1237 CCValAssign &VA = ArgLocs[I]; 1238 if (VA.getLocInfo() == CCValAssign::Indirect) 1239 return false; 1240 if (!VA.isRegLoc()) 1241 return false; 1242 unsigned Reg = VA.getLocReg(); 1243 if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) 1244 return false; 1245 if (Outs[I].Flags.isSwiftSelf() || Outs[I].Flags.isSwiftError()) 1246 return false; 1247 } 1248 return true; 1249 } 1250 1251 SDValue 1252 SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, 1253 SmallVectorImpl<SDValue> &InVals) const { 1254 SelectionDAG &DAG = CLI.DAG; 1255 SDLoc &DL = CLI.DL; 1256 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1257 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1258 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1259 SDValue Chain = CLI.Chain; 1260 SDValue Callee = CLI.Callee; 1261 bool &IsTailCall = CLI.IsTailCall; 1262 CallingConv::ID CallConv = CLI.CallConv; 1263 bool IsVarArg = CLI.IsVarArg; 1264 MachineFunction &MF = DAG.getMachineFunction(); 1265 EVT PtrVT = getPointerTy(MF.getDataLayout()); 1266 1267 // Detect unsupported vector argument and return types. 1268 if (Subtarget.hasVector()) { 1269 VerifyVectorTypes(Outs); 1270 VerifyVectorTypes(Ins); 1271 } 1272 1273 // Analyze the operands of the call, assigning locations to each operand. 1274 SmallVector<CCValAssign, 16> ArgLocs; 1275 SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); 1276 ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); 1277 1278 // We don't support GuaranteedTailCallOpt, only automatically-detected 1279 // sibling calls. 1280 if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs, Outs)) 1281 IsTailCall = false; 1282 1283 // Get a count of how many bytes are to be pushed on the stack. 1284 unsigned NumBytes = ArgCCInfo.getNextStackOffset(); 1285 1286 // Mark the start of the call. 1287 if (!IsTailCall) 1288 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL); 1289 1290 // Copy argument values to their designated locations. 1291 SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; 1292 SmallVector<SDValue, 8> MemOpChains; 1293 SDValue StackPtr; 1294 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 1295 CCValAssign &VA = ArgLocs[I]; 1296 SDValue ArgValue = OutVals[I]; 1297 1298 if (VA.getLocInfo() == CCValAssign::Indirect) { 1299 // Store the argument in a stack slot and pass its address. 1300 SDValue SpillSlot = DAG.CreateStackTemporary(Outs[I].ArgVT); 1301 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); 1302 MemOpChains.push_back( 1303 DAG.getStore(Chain, DL, ArgValue, SpillSlot, 1304 MachinePointerInfo::getFixedStack(MF, FI))); 1305 // If the original argument was split (e.g. i128), we need 1306 // to store all parts of it here (and pass just one address). 1307 unsigned ArgIndex = Outs[I].OrigArgIndex; 1308 assert (Outs[I].PartOffset == 0); 1309 while (I + 1 != E && Outs[I + 1].OrigArgIndex == ArgIndex) { 1310 SDValue PartValue = OutVals[I + 1]; 1311 unsigned PartOffset = Outs[I + 1].PartOffset; 1312 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot, 1313 DAG.getIntPtrConstant(PartOffset, DL)); 1314 MemOpChains.push_back( 1315 DAG.getStore(Chain, DL, PartValue, Address, 1316 MachinePointerInfo::getFixedStack(MF, FI))); 1317 ++I; 1318 } 1319 ArgValue = SpillSlot; 1320 } else 1321 ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); 1322 1323 if (VA.isRegLoc()) 1324 // Queue up the argument copies and emit them at the end. 1325 RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); 1326 else { 1327 assert(VA.isMemLoc() && "Argument not register or memory"); 1328 1329 // Work out the address of the stack slot. Unpromoted ints and 1330 // floats are passed as right-justified 8-byte values. 1331 if (!StackPtr.getNode()) 1332 StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); 1333 unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); 1334 if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) 1335 Offset += 4; 1336 SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, 1337 DAG.getIntPtrConstant(Offset, DL)); 1338 1339 // Emit the store. 1340 MemOpChains.push_back( 1341 DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo())); 1342 } 1343 } 1344 1345 // Join the stores, which are independent of one another. 1346 if (!MemOpChains.empty()) 1347 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); 1348 1349 // Accept direct calls by converting symbolic call addresses to the 1350 // associated Target* opcodes. Force %r1 to be used for indirect 1351 // tail calls. 1352 SDValue Glue; 1353 if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1354 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); 1355 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1356 } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1357 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); 1358 Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); 1359 } else if (IsTailCall) { 1360 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); 1361 Glue = Chain.getValue(1); 1362 Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); 1363 } 1364 1365 // Build a sequence of copy-to-reg nodes, chained and glued together. 1366 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { 1367 Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, 1368 RegsToPass[I].second, Glue); 1369 Glue = Chain.getValue(1); 1370 } 1371 1372 // The first call operand is the chain and the second is the target address. 1373 SmallVector<SDValue, 8> Ops; 1374 Ops.push_back(Chain); 1375 Ops.push_back(Callee); 1376 1377 // Add argument registers to the end of the list so that they are 1378 // known live into the call. 1379 for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) 1380 Ops.push_back(DAG.getRegister(RegsToPass[I].first, 1381 RegsToPass[I].second.getValueType())); 1382 1383 // Add a register mask operand representing the call-preserved registers. 1384 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 1385 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); 1386 assert(Mask && "Missing call preserved mask for calling convention"); 1387 Ops.push_back(DAG.getRegisterMask(Mask)); 1388 1389 // Glue the call to the argument copies, if any. 1390 if (Glue.getNode()) 1391 Ops.push_back(Glue); 1392 1393 // Emit the call. 1394 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1395 if (IsTailCall) 1396 return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); 1397 Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); 1398 Glue = Chain.getValue(1); 1399 1400 // Mark the end of the call, which is glued to the call itself. 1401 Chain = DAG.getCALLSEQ_END(Chain, 1402 DAG.getConstant(NumBytes, DL, PtrVT, true), 1403 DAG.getConstant(0, DL, PtrVT, true), 1404 Glue, DL); 1405 Glue = Chain.getValue(1); 1406 1407 // Assign locations to each value returned by this call. 1408 SmallVector<CCValAssign, 16> RetLocs; 1409 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1410 RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); 1411 1412 // Copy all of the result registers out of their specified physreg. 1413 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1414 CCValAssign &VA = RetLocs[I]; 1415 1416 // Copy the value out, gluing the copy to the end of the call sequence. 1417 SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), 1418 VA.getLocVT(), Glue); 1419 Chain = RetValue.getValue(1); 1420 Glue = RetValue.getValue(2); 1421 1422 // Convert the value of the return register into the value that's 1423 // being returned. 1424 InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); 1425 } 1426 1427 return Chain; 1428 } 1429 1430 bool SystemZTargetLowering:: 1431 CanLowerReturn(CallingConv::ID CallConv, 1432 MachineFunction &MF, bool isVarArg, 1433 const SmallVectorImpl<ISD::OutputArg> &Outs, 1434 LLVMContext &Context) const { 1435 // Detect unsupported vector return types. 1436 if (Subtarget.hasVector()) 1437 VerifyVectorTypes(Outs); 1438 1439 // Special case that we cannot easily detect in RetCC_SystemZ since 1440 // i128 is not a legal type. 1441 for (auto &Out : Outs) 1442 if (Out.ArgVT == MVT::i128) 1443 return false; 1444 1445 SmallVector<CCValAssign, 16> RetLocs; 1446 CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); 1447 return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); 1448 } 1449 1450 SDValue 1451 SystemZTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, 1452 bool IsVarArg, 1453 const SmallVectorImpl<ISD::OutputArg> &Outs, 1454 const SmallVectorImpl<SDValue> &OutVals, 1455 const SDLoc &DL, SelectionDAG &DAG) const { 1456 MachineFunction &MF = DAG.getMachineFunction(); 1457 1458 // Detect unsupported vector return types. 1459 if (Subtarget.hasVector()) 1460 VerifyVectorTypes(Outs); 1461 1462 // Assign locations to each returned value. 1463 SmallVector<CCValAssign, 16> RetLocs; 1464 CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); 1465 RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); 1466 1467 // Quick exit for void returns 1468 if (RetLocs.empty()) 1469 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); 1470 1471 // Copy the result values into the output registers. 1472 SDValue Glue; 1473 SmallVector<SDValue, 4> RetOps; 1474 RetOps.push_back(Chain); 1475 for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { 1476 CCValAssign &VA = RetLocs[I]; 1477 SDValue RetValue = OutVals[I]; 1478 1479 // Make the return register live on exit. 1480 assert(VA.isRegLoc() && "Can only return in registers!"); 1481 1482 // Promote the value as required. 1483 RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); 1484 1485 // Chain and glue the copies together. 1486 unsigned Reg = VA.getLocReg(); 1487 Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); 1488 Glue = Chain.getValue(1); 1489 RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); 1490 } 1491 1492 // Update chain and glue. 1493 RetOps[0] = Chain; 1494 if (Glue.getNode()) 1495 RetOps.push_back(Glue); 1496 1497 return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); 1498 } 1499 1500 // Return true if Op is an intrinsic node with chain that returns the CC value 1501 // as its only (other) argument. Provide the associated SystemZISD opcode and 1502 // the mask of valid CC values if so. 1503 static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, 1504 unsigned &CCValid) { 1505 unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 1506 switch (Id) { 1507 case Intrinsic::s390_tbegin: 1508 Opcode = SystemZISD::TBEGIN; 1509 CCValid = SystemZ::CCMASK_TBEGIN; 1510 return true; 1511 1512 case Intrinsic::s390_tbegin_nofloat: 1513 Opcode = SystemZISD::TBEGIN_NOFLOAT; 1514 CCValid = SystemZ::CCMASK_TBEGIN; 1515 return true; 1516 1517 case Intrinsic::s390_tend: 1518 Opcode = SystemZISD::TEND; 1519 CCValid = SystemZ::CCMASK_TEND; 1520 return true; 1521 1522 default: 1523 return false; 1524 } 1525 } 1526 1527 // Return true if Op is an intrinsic node without chain that returns the 1528 // CC value as its final argument. Provide the associated SystemZISD 1529 // opcode and the mask of valid CC values if so. 1530 static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { 1531 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 1532 switch (Id) { 1533 case Intrinsic::s390_vpkshs: 1534 case Intrinsic::s390_vpksfs: 1535 case Intrinsic::s390_vpksgs: 1536 Opcode = SystemZISD::PACKS_CC; 1537 CCValid = SystemZ::CCMASK_VCMP; 1538 return true; 1539 1540 case Intrinsic::s390_vpklshs: 1541 case Intrinsic::s390_vpklsfs: 1542 case Intrinsic::s390_vpklsgs: 1543 Opcode = SystemZISD::PACKLS_CC; 1544 CCValid = SystemZ::CCMASK_VCMP; 1545 return true; 1546 1547 case Intrinsic::s390_vceqbs: 1548 case Intrinsic::s390_vceqhs: 1549 case Intrinsic::s390_vceqfs: 1550 case Intrinsic::s390_vceqgs: 1551 Opcode = SystemZISD::VICMPES; 1552 CCValid = SystemZ::CCMASK_VCMP; 1553 return true; 1554 1555 case Intrinsic::s390_vchbs: 1556 case Intrinsic::s390_vchhs: 1557 case Intrinsic::s390_vchfs: 1558 case Intrinsic::s390_vchgs: 1559 Opcode = SystemZISD::VICMPHS; 1560 CCValid = SystemZ::CCMASK_VCMP; 1561 return true; 1562 1563 case Intrinsic::s390_vchlbs: 1564 case Intrinsic::s390_vchlhs: 1565 case Intrinsic::s390_vchlfs: 1566 case Intrinsic::s390_vchlgs: 1567 Opcode = SystemZISD::VICMPHLS; 1568 CCValid = SystemZ::CCMASK_VCMP; 1569 return true; 1570 1571 case Intrinsic::s390_vtm: 1572 Opcode = SystemZISD::VTM; 1573 CCValid = SystemZ::CCMASK_VCMP; 1574 return true; 1575 1576 case Intrinsic::s390_vfaebs: 1577 case Intrinsic::s390_vfaehs: 1578 case Intrinsic::s390_vfaefs: 1579 Opcode = SystemZISD::VFAE_CC; 1580 CCValid = SystemZ::CCMASK_ANY; 1581 return true; 1582 1583 case Intrinsic::s390_vfaezbs: 1584 case Intrinsic::s390_vfaezhs: 1585 case Intrinsic::s390_vfaezfs: 1586 Opcode = SystemZISD::VFAEZ_CC; 1587 CCValid = SystemZ::CCMASK_ANY; 1588 return true; 1589 1590 case Intrinsic::s390_vfeebs: 1591 case Intrinsic::s390_vfeehs: 1592 case Intrinsic::s390_vfeefs: 1593 Opcode = SystemZISD::VFEE_CC; 1594 CCValid = SystemZ::CCMASK_ANY; 1595 return true; 1596 1597 case Intrinsic::s390_vfeezbs: 1598 case Intrinsic::s390_vfeezhs: 1599 case Intrinsic::s390_vfeezfs: 1600 Opcode = SystemZISD::VFEEZ_CC; 1601 CCValid = SystemZ::CCMASK_ANY; 1602 return true; 1603 1604 case Intrinsic::s390_vfenebs: 1605 case Intrinsic::s390_vfenehs: 1606 case Intrinsic::s390_vfenefs: 1607 Opcode = SystemZISD::VFENE_CC; 1608 CCValid = SystemZ::CCMASK_ANY; 1609 return true; 1610 1611 case Intrinsic::s390_vfenezbs: 1612 case Intrinsic::s390_vfenezhs: 1613 case Intrinsic::s390_vfenezfs: 1614 Opcode = SystemZISD::VFENEZ_CC; 1615 CCValid = SystemZ::CCMASK_ANY; 1616 return true; 1617 1618 case Intrinsic::s390_vistrbs: 1619 case Intrinsic::s390_vistrhs: 1620 case Intrinsic::s390_vistrfs: 1621 Opcode = SystemZISD::VISTR_CC; 1622 CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; 1623 return true; 1624 1625 case Intrinsic::s390_vstrcbs: 1626 case Intrinsic::s390_vstrchs: 1627 case Intrinsic::s390_vstrcfs: 1628 Opcode = SystemZISD::VSTRC_CC; 1629 CCValid = SystemZ::CCMASK_ANY; 1630 return true; 1631 1632 case Intrinsic::s390_vstrczbs: 1633 case Intrinsic::s390_vstrczhs: 1634 case Intrinsic::s390_vstrczfs: 1635 Opcode = SystemZISD::VSTRCZ_CC; 1636 CCValid = SystemZ::CCMASK_ANY; 1637 return true; 1638 1639 case Intrinsic::s390_vfcedbs: 1640 case Intrinsic::s390_vfcesbs: 1641 Opcode = SystemZISD::VFCMPES; 1642 CCValid = SystemZ::CCMASK_VCMP; 1643 return true; 1644 1645 case Intrinsic::s390_vfchdbs: 1646 case Intrinsic::s390_vfchsbs: 1647 Opcode = SystemZISD::VFCMPHS; 1648 CCValid = SystemZ::CCMASK_VCMP; 1649 return true; 1650 1651 case Intrinsic::s390_vfchedbs: 1652 case Intrinsic::s390_vfchesbs: 1653 Opcode = SystemZISD::VFCMPHES; 1654 CCValid = SystemZ::CCMASK_VCMP; 1655 return true; 1656 1657 case Intrinsic::s390_vftcidb: 1658 case Intrinsic::s390_vftcisb: 1659 Opcode = SystemZISD::VFTCI; 1660 CCValid = SystemZ::CCMASK_VCMP; 1661 return true; 1662 1663 case Intrinsic::s390_tdc: 1664 Opcode = SystemZISD::TDC; 1665 CCValid = SystemZ::CCMASK_TDC; 1666 return true; 1667 1668 default: 1669 return false; 1670 } 1671 } 1672 1673 // Emit an intrinsic with chain and an explicit CC register result. 1674 static SDNode *emitIntrinsicWithCCAndChain(SelectionDAG &DAG, SDValue Op, 1675 unsigned Opcode) { 1676 // Copy all operands except the intrinsic ID. 1677 unsigned NumOps = Op.getNumOperands(); 1678 SmallVector<SDValue, 6> Ops; 1679 Ops.reserve(NumOps - 1); 1680 Ops.push_back(Op.getOperand(0)); 1681 for (unsigned I = 2; I < NumOps; ++I) 1682 Ops.push_back(Op.getOperand(I)); 1683 1684 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 1685 SDVTList RawVTs = DAG.getVTList(MVT::i32, MVT::Other); 1686 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); 1687 SDValue OldChain = SDValue(Op.getNode(), 1); 1688 SDValue NewChain = SDValue(Intr.getNode(), 1); 1689 DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); 1690 return Intr.getNode(); 1691 } 1692 1693 // Emit an intrinsic with an explicit CC register result. 1694 static SDNode *emitIntrinsicWithCC(SelectionDAG &DAG, SDValue Op, 1695 unsigned Opcode) { 1696 // Copy all operands except the intrinsic ID. 1697 unsigned NumOps = Op.getNumOperands(); 1698 SmallVector<SDValue, 6> Ops; 1699 Ops.reserve(NumOps - 1); 1700 for (unsigned I = 1; I < NumOps; ++I) 1701 Ops.push_back(Op.getOperand(I)); 1702 1703 SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), Op->getVTList(), Ops); 1704 return Intr.getNode(); 1705 } 1706 1707 // CC is a comparison that will be implemented using an integer or 1708 // floating-point comparison. Return the condition code mask for 1709 // a branch on true. In the integer case, CCMASK_CMP_UO is set for 1710 // unsigned comparisons and clear for signed ones. In the floating-point 1711 // case, CCMASK_CMP_UO has its normal mask meaning (unordered). 1712 static unsigned CCMaskForCondCode(ISD::CondCode CC) { 1713 #define CONV(X) \ 1714 case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ 1715 case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ 1716 case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X 1717 1718 switch (CC) { 1719 default: 1720 llvm_unreachable("Invalid integer condition!"); 1721 1722 CONV(EQ); 1723 CONV(NE); 1724 CONV(GT); 1725 CONV(GE); 1726 CONV(LT); 1727 CONV(LE); 1728 1729 case ISD::SETO: return SystemZ::CCMASK_CMP_O; 1730 case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; 1731 } 1732 #undef CONV 1733 } 1734 1735 // If C can be converted to a comparison against zero, adjust the operands 1736 // as necessary. 1737 static void adjustZeroCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 1738 if (C.ICmpType == SystemZICMP::UnsignedOnly) 1739 return; 1740 1741 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); 1742 if (!ConstOp1) 1743 return; 1744 1745 int64_t Value = ConstOp1->getSExtValue(); 1746 if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || 1747 (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || 1748 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || 1749 (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { 1750 C.CCMask ^= SystemZ::CCMASK_CMP_EQ; 1751 C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); 1752 } 1753 } 1754 1755 // If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, 1756 // adjust the operands as necessary. 1757 static void adjustSubwordCmp(SelectionDAG &DAG, const SDLoc &DL, 1758 Comparison &C) { 1759 // For us to make any changes, it must a comparison between a single-use 1760 // load and a constant. 1761 if (!C.Op0.hasOneUse() || 1762 C.Op0.getOpcode() != ISD::LOAD || 1763 C.Op1.getOpcode() != ISD::Constant) 1764 return; 1765 1766 // We must have an 8- or 16-bit load. 1767 auto *Load = cast<LoadSDNode>(C.Op0); 1768 unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); 1769 if (NumBits != 8 && NumBits != 16) 1770 return; 1771 1772 // The load must be an extending one and the constant must be within the 1773 // range of the unextended value. 1774 auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); 1775 uint64_t Value = ConstOp1->getZExtValue(); 1776 uint64_t Mask = (1 << NumBits) - 1; 1777 if (Load->getExtensionType() == ISD::SEXTLOAD) { 1778 // Make sure that ConstOp1 is in range of C.Op0. 1779 int64_t SignedValue = ConstOp1->getSExtValue(); 1780 if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) 1781 return; 1782 if (C.ICmpType != SystemZICMP::SignedOnly) { 1783 // Unsigned comparison between two sign-extended values is equivalent 1784 // to unsigned comparison between two zero-extended values. 1785 Value &= Mask; 1786 } else if (NumBits == 8) { 1787 // Try to treat the comparison as unsigned, so that we can use CLI. 1788 // Adjust CCMask and Value as necessary. 1789 if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) 1790 // Test whether the high bit of the byte is set. 1791 Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; 1792 else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) 1793 // Test whether the high bit of the byte is clear. 1794 Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; 1795 else 1796 // No instruction exists for this combination. 1797 return; 1798 C.ICmpType = SystemZICMP::UnsignedOnly; 1799 } 1800 } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { 1801 if (Value > Mask) 1802 return; 1803 // If the constant is in range, we can use any comparison. 1804 C.ICmpType = SystemZICMP::Any; 1805 } else 1806 return; 1807 1808 // Make sure that the first operand is an i32 of the right extension type. 1809 ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? 1810 ISD::SEXTLOAD : 1811 ISD::ZEXTLOAD); 1812 if (C.Op0.getValueType() != MVT::i32 || 1813 Load->getExtensionType() != ExtType) { 1814 C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, Load->getChain(), 1815 Load->getBasePtr(), Load->getPointerInfo(), 1816 Load->getMemoryVT(), Load->getAlignment(), 1817 Load->getMemOperand()->getFlags()); 1818 // Update the chain uses. 1819 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), C.Op0.getValue(1)); 1820 } 1821 1822 // Make sure that the second operand is an i32 with the right value. 1823 if (C.Op1.getValueType() != MVT::i32 || 1824 Value != ConstOp1->getZExtValue()) 1825 C.Op1 = DAG.getConstant(Value, DL, MVT::i32); 1826 } 1827 1828 // Return true if Op is either an unextended load, or a load suitable 1829 // for integer register-memory comparisons of type ICmpType. 1830 static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { 1831 auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); 1832 if (Load) { 1833 // There are no instructions to compare a register with a memory byte. 1834 if (Load->getMemoryVT() == MVT::i8) 1835 return false; 1836 // Otherwise decide on extension type. 1837 switch (Load->getExtensionType()) { 1838 case ISD::NON_EXTLOAD: 1839 return true; 1840 case ISD::SEXTLOAD: 1841 return ICmpType != SystemZICMP::UnsignedOnly; 1842 case ISD::ZEXTLOAD: 1843 return ICmpType != SystemZICMP::SignedOnly; 1844 default: 1845 break; 1846 } 1847 } 1848 return false; 1849 } 1850 1851 // Return true if it is better to swap the operands of C. 1852 static bool shouldSwapCmpOperands(const Comparison &C) { 1853 // Leave f128 comparisons alone, since they have no memory forms. 1854 if (C.Op0.getValueType() == MVT::f128) 1855 return false; 1856 1857 // Always keep a floating-point constant second, since comparisons with 1858 // zero can use LOAD TEST and comparisons with other constants make a 1859 // natural memory operand. 1860 if (isa<ConstantFPSDNode>(C.Op1)) 1861 return false; 1862 1863 // Never swap comparisons with zero since there are many ways to optimize 1864 // those later. 1865 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 1866 if (ConstOp1 && ConstOp1->getZExtValue() == 0) 1867 return false; 1868 1869 // Also keep natural memory operands second if the loaded value is 1870 // only used here. Several comparisons have memory forms. 1871 if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) 1872 return false; 1873 1874 // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. 1875 // In that case we generally prefer the memory to be second. 1876 if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { 1877 // The only exceptions are when the second operand is a constant and 1878 // we can use things like CHHSI. 1879 if (!ConstOp1) 1880 return true; 1881 // The unsigned memory-immediate instructions can handle 16-bit 1882 // unsigned integers. 1883 if (C.ICmpType != SystemZICMP::SignedOnly && 1884 isUInt<16>(ConstOp1->getZExtValue())) 1885 return false; 1886 // The signed memory-immediate instructions can handle 16-bit 1887 // signed integers. 1888 if (C.ICmpType != SystemZICMP::UnsignedOnly && 1889 isInt<16>(ConstOp1->getSExtValue())) 1890 return false; 1891 return true; 1892 } 1893 1894 // Try to promote the use of CGFR and CLGFR. 1895 unsigned Opcode0 = C.Op0.getOpcode(); 1896 if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) 1897 return true; 1898 if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) 1899 return true; 1900 if (C.ICmpType != SystemZICMP::SignedOnly && 1901 Opcode0 == ISD::AND && 1902 C.Op0.getOperand(1).getOpcode() == ISD::Constant && 1903 cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) 1904 return true; 1905 1906 return false; 1907 } 1908 1909 // Return a version of comparison CC mask CCMask in which the LT and GT 1910 // actions are swapped. 1911 static unsigned reverseCCMask(unsigned CCMask) { 1912 return ((CCMask & SystemZ::CCMASK_CMP_EQ) | 1913 (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | 1914 (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | 1915 (CCMask & SystemZ::CCMASK_CMP_UO)); 1916 } 1917 1918 // Check whether C tests for equality between X and Y and whether X - Y 1919 // or Y - X is also computed. In that case it's better to compare the 1920 // result of the subtraction against zero. 1921 static void adjustForSubtraction(SelectionDAG &DAG, const SDLoc &DL, 1922 Comparison &C) { 1923 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 1924 C.CCMask == SystemZ::CCMASK_CMP_NE) { 1925 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1926 SDNode *N = *I; 1927 if (N->getOpcode() == ISD::SUB && 1928 ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || 1929 (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { 1930 C.Op0 = SDValue(N, 0); 1931 C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); 1932 return; 1933 } 1934 } 1935 } 1936 } 1937 1938 // Check whether C compares a floating-point value with zero and if that 1939 // floating-point value is also negated. In this case we can use the 1940 // negation to set CC, so avoiding separate LOAD AND TEST and 1941 // LOAD (NEGATIVE/COMPLEMENT) instructions. 1942 static void adjustForFNeg(Comparison &C) { 1943 auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); 1944 if (C1 && C1->isZero()) { 1945 for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { 1946 SDNode *N = *I; 1947 if (N->getOpcode() == ISD::FNEG) { 1948 C.Op0 = SDValue(N, 0); 1949 C.CCMask = reverseCCMask(C.CCMask); 1950 return; 1951 } 1952 } 1953 } 1954 } 1955 1956 // Check whether C compares (shl X, 32) with 0 and whether X is 1957 // also sign-extended. In that case it is better to test the result 1958 // of the sign extension using LTGFR. 1959 // 1960 // This case is important because InstCombine transforms a comparison 1961 // with (sext (trunc X)) into a comparison with (shl X, 32). 1962 static void adjustForLTGFR(Comparison &C) { 1963 // Check for a comparison between (shl X, 32) and 0. 1964 if (C.Op0.getOpcode() == ISD::SHL && 1965 C.Op0.getValueType() == MVT::i64 && 1966 C.Op1.getOpcode() == ISD::Constant && 1967 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1968 auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 1969 if (C1 && C1->getZExtValue() == 32) { 1970 SDValue ShlOp0 = C.Op0.getOperand(0); 1971 // See whether X has any SIGN_EXTEND_INREG uses. 1972 for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { 1973 SDNode *N = *I; 1974 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && 1975 cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { 1976 C.Op0 = SDValue(N, 0); 1977 return; 1978 } 1979 } 1980 } 1981 } 1982 } 1983 1984 // If C compares the truncation of an extending load, try to compare 1985 // the untruncated value instead. This exposes more opportunities to 1986 // reuse CC. 1987 static void adjustICmpTruncate(SelectionDAG &DAG, const SDLoc &DL, 1988 Comparison &C) { 1989 if (C.Op0.getOpcode() == ISD::TRUNCATE && 1990 C.Op0.getOperand(0).getOpcode() == ISD::LOAD && 1991 C.Op1.getOpcode() == ISD::Constant && 1992 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 1993 auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); 1994 if (L->getMemoryVT().getStoreSizeInBits() <= C.Op0.getValueSizeInBits()) { 1995 unsigned Type = L->getExtensionType(); 1996 if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || 1997 (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { 1998 C.Op0 = C.Op0.getOperand(0); 1999 C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); 2000 } 2001 } 2002 } 2003 } 2004 2005 // Return true if shift operation N has an in-range constant shift value. 2006 // Store it in ShiftVal if so. 2007 static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { 2008 auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); 2009 if (!Shift) 2010 return false; 2011 2012 uint64_t Amount = Shift->getZExtValue(); 2013 if (Amount >= N.getValueSizeInBits()) 2014 return false; 2015 2016 ShiftVal = Amount; 2017 return true; 2018 } 2019 2020 // Check whether an AND with Mask is suitable for a TEST UNDER MASK 2021 // instruction and whether the CC value is descriptive enough to handle 2022 // a comparison of type Opcode between the AND result and CmpVal. 2023 // CCMask says which comparison result is being tested and BitSize is 2024 // the number of bits in the operands. If TEST UNDER MASK can be used, 2025 // return the corresponding CC mask, otherwise return 0. 2026 static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, 2027 uint64_t Mask, uint64_t CmpVal, 2028 unsigned ICmpType) { 2029 assert(Mask != 0 && "ANDs with zero should have been removed by now"); 2030 2031 // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. 2032 if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && 2033 !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) 2034 return 0; 2035 2036 // Work out the masks for the lowest and highest bits. 2037 unsigned HighShift = 63 - countLeadingZeros(Mask); 2038 uint64_t High = uint64_t(1) << HighShift; 2039 uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); 2040 2041 // Signed ordered comparisons are effectively unsigned if the sign 2042 // bit is dropped. 2043 bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); 2044 2045 // Check for equality comparisons with 0, or the equivalent. 2046 if (CmpVal == 0) { 2047 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2048 return SystemZ::CCMASK_TM_ALL_0; 2049 if (CCMask == SystemZ::CCMASK_CMP_NE) 2050 return SystemZ::CCMASK_TM_SOME_1; 2051 } 2052 if (EffectivelyUnsigned && CmpVal > 0 && CmpVal <= Low) { 2053 if (CCMask == SystemZ::CCMASK_CMP_LT) 2054 return SystemZ::CCMASK_TM_ALL_0; 2055 if (CCMask == SystemZ::CCMASK_CMP_GE) 2056 return SystemZ::CCMASK_TM_SOME_1; 2057 } 2058 if (EffectivelyUnsigned && CmpVal < Low) { 2059 if (CCMask == SystemZ::CCMASK_CMP_LE) 2060 return SystemZ::CCMASK_TM_ALL_0; 2061 if (CCMask == SystemZ::CCMASK_CMP_GT) 2062 return SystemZ::CCMASK_TM_SOME_1; 2063 } 2064 2065 // Check for equality comparisons with the mask, or the equivalent. 2066 if (CmpVal == Mask) { 2067 if (CCMask == SystemZ::CCMASK_CMP_EQ) 2068 return SystemZ::CCMASK_TM_ALL_1; 2069 if (CCMask == SystemZ::CCMASK_CMP_NE) 2070 return SystemZ::CCMASK_TM_SOME_0; 2071 } 2072 if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { 2073 if (CCMask == SystemZ::CCMASK_CMP_GT) 2074 return SystemZ::CCMASK_TM_ALL_1; 2075 if (CCMask == SystemZ::CCMASK_CMP_LE) 2076 return SystemZ::CCMASK_TM_SOME_0; 2077 } 2078 if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { 2079 if (CCMask == SystemZ::CCMASK_CMP_GE) 2080 return SystemZ::CCMASK_TM_ALL_1; 2081 if (CCMask == SystemZ::CCMASK_CMP_LT) 2082 return SystemZ::CCMASK_TM_SOME_0; 2083 } 2084 2085 // Check for ordered comparisons with the top bit. 2086 if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { 2087 if (CCMask == SystemZ::CCMASK_CMP_LE) 2088 return SystemZ::CCMASK_TM_MSB_0; 2089 if (CCMask == SystemZ::CCMASK_CMP_GT) 2090 return SystemZ::CCMASK_TM_MSB_1; 2091 } 2092 if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { 2093 if (CCMask == SystemZ::CCMASK_CMP_LT) 2094 return SystemZ::CCMASK_TM_MSB_0; 2095 if (CCMask == SystemZ::CCMASK_CMP_GE) 2096 return SystemZ::CCMASK_TM_MSB_1; 2097 } 2098 2099 // If there are just two bits, we can do equality checks for Low and High 2100 // as well. 2101 if (Mask == Low + High) { 2102 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) 2103 return SystemZ::CCMASK_TM_MIXED_MSB_0; 2104 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) 2105 return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; 2106 if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) 2107 return SystemZ::CCMASK_TM_MIXED_MSB_1; 2108 if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) 2109 return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; 2110 } 2111 2112 // Looks like we've exhausted our options. 2113 return 0; 2114 } 2115 2116 // See whether C can be implemented as a TEST UNDER MASK instruction. 2117 // Update the arguments with the TM version if so. 2118 static void adjustForTestUnderMask(SelectionDAG &DAG, const SDLoc &DL, 2119 Comparison &C) { 2120 // Check that we have a comparison with a constant. 2121 auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); 2122 if (!ConstOp1) 2123 return; 2124 uint64_t CmpVal = ConstOp1->getZExtValue(); 2125 2126 // Check whether the nonconstant input is an AND with a constant mask. 2127 Comparison NewC(C); 2128 uint64_t MaskVal; 2129 ConstantSDNode *Mask = nullptr; 2130 if (C.Op0.getOpcode() == ISD::AND) { 2131 NewC.Op0 = C.Op0.getOperand(0); 2132 NewC.Op1 = C.Op0.getOperand(1); 2133 Mask = dyn_cast<ConstantSDNode>(NewC.Op1); 2134 if (!Mask) 2135 return; 2136 MaskVal = Mask->getZExtValue(); 2137 } else { 2138 // There is no instruction to compare with a 64-bit immediate 2139 // so use TMHH instead if possible. We need an unsigned ordered 2140 // comparison with an i64 immediate. 2141 if (NewC.Op0.getValueType() != MVT::i64 || 2142 NewC.CCMask == SystemZ::CCMASK_CMP_EQ || 2143 NewC.CCMask == SystemZ::CCMASK_CMP_NE || 2144 NewC.ICmpType == SystemZICMP::SignedOnly) 2145 return; 2146 // Convert LE and GT comparisons into LT and GE. 2147 if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || 2148 NewC.CCMask == SystemZ::CCMASK_CMP_GT) { 2149 if (CmpVal == uint64_t(-1)) 2150 return; 2151 CmpVal += 1; 2152 NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; 2153 } 2154 // If the low N bits of Op1 are zero than the low N bits of Op0 can 2155 // be masked off without changing the result. 2156 MaskVal = -(CmpVal & -CmpVal); 2157 NewC.ICmpType = SystemZICMP::UnsignedOnly; 2158 } 2159 if (!MaskVal) 2160 return; 2161 2162 // Check whether the combination of mask, comparison value and comparison 2163 // type are suitable. 2164 unsigned BitSize = NewC.Op0.getValueSizeInBits(); 2165 unsigned NewCCMask, ShiftVal; 2166 if (NewC.ICmpType != SystemZICMP::SignedOnly && 2167 NewC.Op0.getOpcode() == ISD::SHL && 2168 isSimpleShift(NewC.Op0, ShiftVal) && 2169 (MaskVal >> ShiftVal != 0) && 2170 ((CmpVal >> ShiftVal) << ShiftVal) == CmpVal && 2171 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2172 MaskVal >> ShiftVal, 2173 CmpVal >> ShiftVal, 2174 SystemZICMP::Any))) { 2175 NewC.Op0 = NewC.Op0.getOperand(0); 2176 MaskVal >>= ShiftVal; 2177 } else if (NewC.ICmpType != SystemZICMP::SignedOnly && 2178 NewC.Op0.getOpcode() == ISD::SRL && 2179 isSimpleShift(NewC.Op0, ShiftVal) && 2180 (MaskVal << ShiftVal != 0) && 2181 ((CmpVal << ShiftVal) >> ShiftVal) == CmpVal && 2182 (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, 2183 MaskVal << ShiftVal, 2184 CmpVal << ShiftVal, 2185 SystemZICMP::UnsignedOnly))) { 2186 NewC.Op0 = NewC.Op0.getOperand(0); 2187 MaskVal <<= ShiftVal; 2188 } else { 2189 NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, 2190 NewC.ICmpType); 2191 if (!NewCCMask) 2192 return; 2193 } 2194 2195 // Go ahead and make the change. 2196 C.Opcode = SystemZISD::TM; 2197 C.Op0 = NewC.Op0; 2198 if (Mask && Mask->getZExtValue() == MaskVal) 2199 C.Op1 = SDValue(Mask, 0); 2200 else 2201 C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); 2202 C.CCValid = SystemZ::CCMASK_TM; 2203 C.CCMask = NewCCMask; 2204 } 2205 2206 // See whether the comparison argument contains a redundant AND 2207 // and remove it if so. This sometimes happens due to the generic 2208 // BRCOND expansion. 2209 static void adjustForRedundantAnd(SelectionDAG &DAG, const SDLoc &DL, 2210 Comparison &C) { 2211 if (C.Op0.getOpcode() != ISD::AND) 2212 return; 2213 auto *Mask = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); 2214 if (!Mask) 2215 return; 2216 KnownBits Known; 2217 DAG.computeKnownBits(C.Op0.getOperand(0), Known); 2218 if ((~Known.Zero).getZExtValue() & ~Mask->getZExtValue()) 2219 return; 2220 2221 C.Op0 = C.Op0.getOperand(0); 2222 } 2223 2224 // Return a Comparison that tests the condition-code result of intrinsic 2225 // node Call against constant integer CC using comparison code Cond. 2226 // Opcode is the opcode of the SystemZISD operation for the intrinsic 2227 // and CCValid is the set of possible condition-code results. 2228 static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, 2229 SDValue Call, unsigned CCValid, uint64_t CC, 2230 ISD::CondCode Cond) { 2231 Comparison C(Call, SDValue()); 2232 C.Opcode = Opcode; 2233 C.CCValid = CCValid; 2234 if (Cond == ISD::SETEQ) 2235 // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. 2236 C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; 2237 else if (Cond == ISD::SETNE) 2238 // ...and the inverse of that. 2239 C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; 2240 else if (Cond == ISD::SETLT || Cond == ISD::SETULT) 2241 // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, 2242 // always true for CC>3. 2243 C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; 2244 else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) 2245 // ...and the inverse of that. 2246 C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; 2247 else if (Cond == ISD::SETLE || Cond == ISD::SETULE) 2248 // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), 2249 // always true for CC>3. 2250 C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; 2251 else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) 2252 // ...and the inverse of that. 2253 C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; 2254 else 2255 llvm_unreachable("Unexpected integer comparison type"); 2256 C.CCMask &= CCValid; 2257 return C; 2258 } 2259 2260 // Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. 2261 static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, 2262 ISD::CondCode Cond, const SDLoc &DL) { 2263 if (CmpOp1.getOpcode() == ISD::Constant) { 2264 uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); 2265 unsigned Opcode, CCValid; 2266 if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && 2267 CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && 2268 isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) 2269 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2270 if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && 2271 CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && 2272 isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) 2273 return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); 2274 } 2275 Comparison C(CmpOp0, CmpOp1); 2276 C.CCMask = CCMaskForCondCode(Cond); 2277 if (C.Op0.getValueType().isFloatingPoint()) { 2278 C.CCValid = SystemZ::CCMASK_FCMP; 2279 C.Opcode = SystemZISD::FCMP; 2280 adjustForFNeg(C); 2281 } else { 2282 C.CCValid = SystemZ::CCMASK_ICMP; 2283 C.Opcode = SystemZISD::ICMP; 2284 // Choose the type of comparison. Equality and inequality tests can 2285 // use either signed or unsigned comparisons. The choice also doesn't 2286 // matter if both sign bits are known to be clear. In those cases we 2287 // want to give the main isel code the freedom to choose whichever 2288 // form fits best. 2289 if (C.CCMask == SystemZ::CCMASK_CMP_EQ || 2290 C.CCMask == SystemZ::CCMASK_CMP_NE || 2291 (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) 2292 C.ICmpType = SystemZICMP::Any; 2293 else if (C.CCMask & SystemZ::CCMASK_CMP_UO) 2294 C.ICmpType = SystemZICMP::UnsignedOnly; 2295 else 2296 C.ICmpType = SystemZICMP::SignedOnly; 2297 C.CCMask &= ~SystemZ::CCMASK_CMP_UO; 2298 adjustForRedundantAnd(DAG, DL, C); 2299 adjustZeroCmp(DAG, DL, C); 2300 adjustSubwordCmp(DAG, DL, C); 2301 adjustForSubtraction(DAG, DL, C); 2302 adjustForLTGFR(C); 2303 adjustICmpTruncate(DAG, DL, C); 2304 } 2305 2306 if (shouldSwapCmpOperands(C)) { 2307 std::swap(C.Op0, C.Op1); 2308 C.CCMask = reverseCCMask(C.CCMask); 2309 } 2310 2311 adjustForTestUnderMask(DAG, DL, C); 2312 return C; 2313 } 2314 2315 // Emit the comparison instruction described by C. 2316 static SDValue emitCmp(SelectionDAG &DAG, const SDLoc &DL, Comparison &C) { 2317 if (!C.Op1.getNode()) { 2318 SDNode *Node; 2319 switch (C.Op0.getOpcode()) { 2320 case ISD::INTRINSIC_W_CHAIN: 2321 Node = emitIntrinsicWithCCAndChain(DAG, C.Op0, C.Opcode); 2322 return SDValue(Node, 0); 2323 case ISD::INTRINSIC_WO_CHAIN: 2324 Node = emitIntrinsicWithCC(DAG, C.Op0, C.Opcode); 2325 return SDValue(Node, Node->getNumValues() - 1); 2326 default: 2327 llvm_unreachable("Invalid comparison operands"); 2328 } 2329 } 2330 if (C.Opcode == SystemZISD::ICMP) 2331 return DAG.getNode(SystemZISD::ICMP, DL, MVT::i32, C.Op0, C.Op1, 2332 DAG.getConstant(C.ICmpType, DL, MVT::i32)); 2333 if (C.Opcode == SystemZISD::TM) { 2334 bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != 2335 bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); 2336 return DAG.getNode(SystemZISD::TM, DL, MVT::i32, C.Op0, C.Op1, 2337 DAG.getConstant(RegisterOnly, DL, MVT::i32)); 2338 } 2339 return DAG.getNode(C.Opcode, DL, MVT::i32, C.Op0, C.Op1); 2340 } 2341 2342 // Implement a 32-bit *MUL_LOHI operation by extending both operands to 2343 // 64 bits. Extend is the extension type to use. Store the high part 2344 // in Hi and the low part in Lo. 2345 static void lowerMUL_LOHI32(SelectionDAG &DAG, const SDLoc &DL, unsigned Extend, 2346 SDValue Op0, SDValue Op1, SDValue &Hi, 2347 SDValue &Lo) { 2348 Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); 2349 Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); 2350 SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); 2351 Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, 2352 DAG.getConstant(32, DL, MVT::i64)); 2353 Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); 2354 Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); 2355 } 2356 2357 // Lower a binary operation that produces two VT results, one in each 2358 // half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, 2359 // and Opcode performs the GR128 operation. Store the even register result 2360 // in Even and the odd register result in Odd. 2361 static void lowerGR128Binary(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 2362 unsigned Opcode, SDValue Op0, SDValue Op1, 2363 SDValue &Even, SDValue &Odd) { 2364 SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, Op0, Op1); 2365 bool Is32Bit = is32Bit(VT); 2366 Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); 2367 Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); 2368 } 2369 2370 // Return an i32 value that is 1 if the CC value produced by CCReg is 2371 // in the mask CCMask and 0 otherwise. CC is known to have a value 2372 // in CCValid, so other values can be ignored. 2373 static SDValue emitSETCC(SelectionDAG &DAG, const SDLoc &DL, SDValue CCReg, 2374 unsigned CCValid, unsigned CCMask) { 2375 SDValue Ops[] = { DAG.getConstant(1, DL, MVT::i32), 2376 DAG.getConstant(0, DL, MVT::i32), 2377 DAG.getConstant(CCValid, DL, MVT::i32), 2378 DAG.getConstant(CCMask, DL, MVT::i32), CCReg }; 2379 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, MVT::i32, Ops); 2380 } 2381 2382 // Return the SystemISD vector comparison operation for CC, or 0 if it cannot 2383 // be done directly. IsFP is true if CC is for a floating-point rather than 2384 // integer comparison. 2385 static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { 2386 switch (CC) { 2387 case ISD::SETOEQ: 2388 case ISD::SETEQ: 2389 return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; 2390 2391 case ISD::SETOGE: 2392 case ISD::SETGE: 2393 return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); 2394 2395 case ISD::SETOGT: 2396 case ISD::SETGT: 2397 return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; 2398 2399 case ISD::SETUGT: 2400 return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; 2401 2402 default: 2403 return 0; 2404 } 2405 } 2406 2407 // Return the SystemZISD vector comparison operation for CC or its inverse, 2408 // or 0 if neither can be done directly. Indicate in Invert whether the 2409 // result is for the inverse of CC. IsFP is true if CC is for a 2410 // floating-point rather than integer comparison. 2411 static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, 2412 bool &Invert) { 2413 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2414 Invert = false; 2415 return Opcode; 2416 } 2417 2418 CC = ISD::getSetCCInverse(CC, !IsFP); 2419 if (unsigned Opcode = getVectorComparison(CC, IsFP)) { 2420 Invert = true; 2421 return Opcode; 2422 } 2423 2424 return 0; 2425 } 2426 2427 // Return a v2f64 that contains the extended form of elements Start and Start+1 2428 // of v4f32 value Op. 2429 static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, const SDLoc &DL, 2430 SDValue Op) { 2431 int Mask[] = { Start, -1, Start + 1, -1 }; 2432 Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); 2433 return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); 2434 } 2435 2436 // Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, 2437 // producing a result of type VT. 2438 SDValue SystemZTargetLowering::getVectorCmp(SelectionDAG &DAG, unsigned Opcode, 2439 const SDLoc &DL, EVT VT, 2440 SDValue CmpOp0, 2441 SDValue CmpOp1) const { 2442 // There is no hardware support for v4f32 (unless we have the vector 2443 // enhancements facility 1), so extend the vector into two v2f64s 2444 // and compare those. 2445 if (CmpOp0.getValueType() == MVT::v4f32 && 2446 !Subtarget.hasVectorEnhancements1()) { 2447 SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); 2448 SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); 2449 SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); 2450 SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); 2451 SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); 2452 SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); 2453 return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); 2454 } 2455 return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); 2456 } 2457 2458 // Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing 2459 // an integer mask of type VT. 2460 SDValue SystemZTargetLowering::lowerVectorSETCC(SelectionDAG &DAG, 2461 const SDLoc &DL, EVT VT, 2462 ISD::CondCode CC, 2463 SDValue CmpOp0, 2464 SDValue CmpOp1) const { 2465 bool IsFP = CmpOp0.getValueType().isFloatingPoint(); 2466 bool Invert = false; 2467 SDValue Cmp; 2468 switch (CC) { 2469 // Handle tests for order using (or (ogt y x) (oge x y)). 2470 case ISD::SETUO: 2471 Invert = true; 2472 LLVM_FALLTHROUGH; 2473 case ISD::SETO: { 2474 assert(IsFP && "Unexpected integer comparison"); 2475 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2476 SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); 2477 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); 2478 break; 2479 } 2480 2481 // Handle <> tests using (or (ogt y x) (ogt x y)). 2482 case ISD::SETUEQ: 2483 Invert = true; 2484 LLVM_FALLTHROUGH; 2485 case ISD::SETONE: { 2486 assert(IsFP && "Unexpected integer comparison"); 2487 SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); 2488 SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); 2489 Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); 2490 break; 2491 } 2492 2493 // Otherwise a single comparison is enough. It doesn't really 2494 // matter whether we try the inversion or the swap first, since 2495 // there are no cases where both work. 2496 default: 2497 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2498 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); 2499 else { 2500 CC = ISD::getSetCCSwappedOperands(CC); 2501 if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) 2502 Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); 2503 else 2504 llvm_unreachable("Unhandled comparison"); 2505 } 2506 break; 2507 } 2508 if (Invert) { 2509 SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 2510 DAG.getConstant(65535, DL, MVT::i32)); 2511 Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); 2512 Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); 2513 } 2514 return Cmp; 2515 } 2516 2517 SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, 2518 SelectionDAG &DAG) const { 2519 SDValue CmpOp0 = Op.getOperand(0); 2520 SDValue CmpOp1 = Op.getOperand(1); 2521 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 2522 SDLoc DL(Op); 2523 EVT VT = Op.getValueType(); 2524 if (VT.isVector()) 2525 return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); 2526 2527 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2528 SDValue CCReg = emitCmp(DAG, DL, C); 2529 return emitSETCC(DAG, DL, CCReg, C.CCValid, C.CCMask); 2530 } 2531 2532 SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 2533 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 2534 SDValue CmpOp0 = Op.getOperand(2); 2535 SDValue CmpOp1 = Op.getOperand(3); 2536 SDValue Dest = Op.getOperand(4); 2537 SDLoc DL(Op); 2538 2539 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2540 SDValue CCReg = emitCmp(DAG, DL, C); 2541 return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), 2542 Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), 2543 DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, CCReg); 2544 } 2545 2546 // Return true if Pos is CmpOp and Neg is the negative of CmpOp, 2547 // allowing Pos and Neg to be wider than CmpOp. 2548 static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { 2549 return (Neg.getOpcode() == ISD::SUB && 2550 Neg.getOperand(0).getOpcode() == ISD::Constant && 2551 cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && 2552 Neg.getOperand(1) == Pos && 2553 (Pos == CmpOp || 2554 (Pos.getOpcode() == ISD::SIGN_EXTEND && 2555 Pos.getOperand(0) == CmpOp))); 2556 } 2557 2558 // Return the absolute or negative absolute of Op; IsNegative decides which. 2559 static SDValue getAbsolute(SelectionDAG &DAG, const SDLoc &DL, SDValue Op, 2560 bool IsNegative) { 2561 Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); 2562 if (IsNegative) 2563 Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), 2564 DAG.getConstant(0, DL, Op.getValueType()), Op); 2565 return Op; 2566 } 2567 2568 SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, 2569 SelectionDAG &DAG) const { 2570 SDValue CmpOp0 = Op.getOperand(0); 2571 SDValue CmpOp1 = Op.getOperand(1); 2572 SDValue TrueOp = Op.getOperand(2); 2573 SDValue FalseOp = Op.getOperand(3); 2574 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 2575 SDLoc DL(Op); 2576 2577 Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); 2578 2579 // Check for absolute and negative-absolute selections, including those 2580 // where the comparison value is sign-extended (for LPGFR and LNGFR). 2581 // This check supplements the one in DAGCombiner. 2582 if (C.Opcode == SystemZISD::ICMP && 2583 C.CCMask != SystemZ::CCMASK_CMP_EQ && 2584 C.CCMask != SystemZ::CCMASK_CMP_NE && 2585 C.Op1.getOpcode() == ISD::Constant && 2586 cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { 2587 if (isAbsolute(C.Op0, TrueOp, FalseOp)) 2588 return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); 2589 if (isAbsolute(C.Op0, FalseOp, TrueOp)) 2590 return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); 2591 } 2592 2593 SDValue CCReg = emitCmp(DAG, DL, C); 2594 SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), 2595 DAG.getConstant(C.CCMask, DL, MVT::i32), CCReg}; 2596 2597 return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, Op.getValueType(), Ops); 2598 } 2599 2600 SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, 2601 SelectionDAG &DAG) const { 2602 SDLoc DL(Node); 2603 const GlobalValue *GV = Node->getGlobal(); 2604 int64_t Offset = Node->getOffset(); 2605 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2606 CodeModel::Model CM = DAG.getTarget().getCodeModel(); 2607 2608 SDValue Result; 2609 if (Subtarget.isPC32DBLSymbol(GV, CM)) { 2610 // Assign anchors at 1<<12 byte boundaries. 2611 uint64_t Anchor = Offset & ~uint64_t(0xfff); 2612 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); 2613 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2614 2615 // The offset can be folded into the address if it is aligned to a halfword. 2616 Offset -= Anchor; 2617 if (Offset != 0 && (Offset & 1) == 0) { 2618 SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); 2619 Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); 2620 Offset = 0; 2621 } 2622 } else { 2623 Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); 2624 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2625 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2626 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2627 } 2628 2629 // If there was a non-zero offset that we didn't fold, create an explicit 2630 // addition for it. 2631 if (Offset != 0) 2632 Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, 2633 DAG.getConstant(Offset, DL, PtrVT)); 2634 2635 return Result; 2636 } 2637 2638 SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, 2639 SelectionDAG &DAG, 2640 unsigned Opcode, 2641 SDValue GOTOffset) const { 2642 SDLoc DL(Node); 2643 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2644 SDValue Chain = DAG.getEntryNode(); 2645 SDValue Glue; 2646 2647 // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. 2648 SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); 2649 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); 2650 Glue = Chain.getValue(1); 2651 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); 2652 Glue = Chain.getValue(1); 2653 2654 // The first call operand is the chain and the second is the TLS symbol. 2655 SmallVector<SDValue, 8> Ops; 2656 Ops.push_back(Chain); 2657 Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, 2658 Node->getValueType(0), 2659 0, 0)); 2660 2661 // Add argument registers to the end of the list so that they are 2662 // known live into the call. 2663 Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); 2664 Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); 2665 2666 // Add a register mask operand representing the call-preserved registers. 2667 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); 2668 const uint32_t *Mask = 2669 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); 2670 assert(Mask && "Missing call preserved mask for calling convention"); 2671 Ops.push_back(DAG.getRegisterMask(Mask)); 2672 2673 // Glue the call to the argument copies. 2674 Ops.push_back(Glue); 2675 2676 // Emit the call. 2677 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 2678 Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); 2679 Glue = Chain.getValue(1); 2680 2681 // Copy the return value from %r2. 2682 return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); 2683 } 2684 2685 SDValue SystemZTargetLowering::lowerThreadPointer(const SDLoc &DL, 2686 SelectionDAG &DAG) const { 2687 SDValue Chain = DAG.getEntryNode(); 2688 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2689 2690 // The high part of the thread pointer is in access register 0. 2691 SDValue TPHi = DAG.getCopyFromReg(Chain, DL, SystemZ::A0, MVT::i32); 2692 TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); 2693 2694 // The low part of the thread pointer is in access register 1. 2695 SDValue TPLo = DAG.getCopyFromReg(Chain, DL, SystemZ::A1, MVT::i32); 2696 TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); 2697 2698 // Merge them into a single 64-bit address. 2699 SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, 2700 DAG.getConstant(32, DL, PtrVT)); 2701 return DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); 2702 } 2703 2704 SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, 2705 SelectionDAG &DAG) const { 2706 if (DAG.getTarget().useEmulatedTLS()) 2707 return LowerToTLSEmulatedModel(Node, DAG); 2708 SDLoc DL(Node); 2709 const GlobalValue *GV = Node->getGlobal(); 2710 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2711 TLSModel::Model model = DAG.getTarget().getTLSModel(GV); 2712 2713 SDValue TP = lowerThreadPointer(DL, DAG); 2714 2715 // Get the offset of GA from the thread pointer, based on the TLS model. 2716 SDValue Offset; 2717 switch (model) { 2718 case TLSModel::GeneralDynamic: { 2719 // Load the GOT offset of the tls_index (module ID / per-symbol offset). 2720 SystemZConstantPoolValue *CPV = 2721 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); 2722 2723 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2724 Offset = DAG.getLoad( 2725 PtrVT, DL, DAG.getEntryNode(), Offset, 2726 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2727 2728 // Call __tls_get_offset to retrieve the offset. 2729 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); 2730 break; 2731 } 2732 2733 case TLSModel::LocalDynamic: { 2734 // Load the GOT offset of the module ID. 2735 SystemZConstantPoolValue *CPV = 2736 SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); 2737 2738 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2739 Offset = DAG.getLoad( 2740 PtrVT, DL, DAG.getEntryNode(), Offset, 2741 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2742 2743 // Call __tls_get_offset to retrieve the module base offset. 2744 Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); 2745 2746 // Note: The SystemZLDCleanupPass will remove redundant computations 2747 // of the module base offset. Count total number of local-dynamic 2748 // accesses to trigger execution of that pass. 2749 SystemZMachineFunctionInfo* MFI = 2750 DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); 2751 MFI->incNumLocalDynamicTLSAccesses(); 2752 2753 // Add the per-symbol offset. 2754 CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); 2755 2756 SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); 2757 DTPOffset = DAG.getLoad( 2758 PtrVT, DL, DAG.getEntryNode(), DTPOffset, 2759 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2760 2761 Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); 2762 break; 2763 } 2764 2765 case TLSModel::InitialExec: { 2766 // Load the offset from the GOT. 2767 Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 2768 SystemZII::MO_INDNTPOFF); 2769 Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); 2770 Offset = 2771 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, 2772 MachinePointerInfo::getGOT(DAG.getMachineFunction())); 2773 break; 2774 } 2775 2776 case TLSModel::LocalExec: { 2777 // Force the offset into the constant pool and load it from there. 2778 SystemZConstantPoolValue *CPV = 2779 SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); 2780 2781 Offset = DAG.getConstantPool(CPV, PtrVT, 8); 2782 Offset = DAG.getLoad( 2783 PtrVT, DL, DAG.getEntryNode(), Offset, 2784 MachinePointerInfo::getConstantPool(DAG.getMachineFunction())); 2785 break; 2786 } 2787 } 2788 2789 // Add the base and offset together. 2790 return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); 2791 } 2792 2793 SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, 2794 SelectionDAG &DAG) const { 2795 SDLoc DL(Node); 2796 const BlockAddress *BA = Node->getBlockAddress(); 2797 int64_t Offset = Node->getOffset(); 2798 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2799 2800 SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); 2801 Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2802 return Result; 2803 } 2804 2805 SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, 2806 SelectionDAG &DAG) const { 2807 SDLoc DL(JT); 2808 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2809 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); 2810 2811 // Use LARL to load the address of the table. 2812 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2813 } 2814 2815 SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, 2816 SelectionDAG &DAG) const { 2817 SDLoc DL(CP); 2818 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2819 2820 SDValue Result; 2821 if (CP->isMachineConstantPoolEntry()) 2822 Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2823 CP->getAlignment()); 2824 else 2825 Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2826 CP->getAlignment(), CP->getOffset()); 2827 2828 // Use LARL to load the address of the constant pool entry. 2829 return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); 2830 } 2831 2832 SDValue SystemZTargetLowering::lowerFRAMEADDR(SDValue Op, 2833 SelectionDAG &DAG) const { 2834 MachineFunction &MF = DAG.getMachineFunction(); 2835 MachineFrameInfo &MFI = MF.getFrameInfo(); 2836 MFI.setFrameAddressIsTaken(true); 2837 2838 SDLoc DL(Op); 2839 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2840 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2841 2842 // If the back chain frame index has not been allocated yet, do so. 2843 SystemZMachineFunctionInfo *FI = MF.getInfo<SystemZMachineFunctionInfo>(); 2844 int BackChainIdx = FI->getFramePointerSaveIndex(); 2845 if (!BackChainIdx) { 2846 // By definition, the frame address is the address of the back chain. 2847 BackChainIdx = MFI.CreateFixedObject(8, -SystemZMC::CallFrameSize, false); 2848 FI->setFramePointerSaveIndex(BackChainIdx); 2849 } 2850 SDValue BackChain = DAG.getFrameIndex(BackChainIdx, PtrVT); 2851 2852 // FIXME The frontend should detect this case. 2853 if (Depth > 0) { 2854 report_fatal_error("Unsupported stack frame traversal count"); 2855 } 2856 2857 return BackChain; 2858 } 2859 2860 SDValue SystemZTargetLowering::lowerRETURNADDR(SDValue Op, 2861 SelectionDAG &DAG) const { 2862 MachineFunction &MF = DAG.getMachineFunction(); 2863 MachineFrameInfo &MFI = MF.getFrameInfo(); 2864 MFI.setReturnAddressIsTaken(true); 2865 2866 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 2867 return SDValue(); 2868 2869 SDLoc DL(Op); 2870 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2871 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2872 2873 // FIXME The frontend should detect this case. 2874 if (Depth > 0) { 2875 report_fatal_error("Unsupported stack frame traversal count"); 2876 } 2877 2878 // Return R14D, which has the return address. Mark it an implicit live-in. 2879 unsigned LinkReg = MF.addLiveIn(SystemZ::R14D, &SystemZ::GR64BitRegClass); 2880 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, LinkReg, PtrVT); 2881 } 2882 2883 SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, 2884 SelectionDAG &DAG) const { 2885 SDLoc DL(Op); 2886 SDValue In = Op.getOperand(0); 2887 EVT InVT = In.getValueType(); 2888 EVT ResVT = Op.getValueType(); 2889 2890 // Convert loads directly. This is normally done by DAGCombiner, 2891 // but we need this case for bitcasts that are created during lowering 2892 // and which are then lowered themselves. 2893 if (auto *LoadN = dyn_cast<LoadSDNode>(In)) 2894 if (ISD::isNormalLoad(LoadN)) { 2895 SDValue NewLoad = DAG.getLoad(ResVT, DL, LoadN->getChain(), 2896 LoadN->getBasePtr(), LoadN->getMemOperand()); 2897 // Update the chain uses. 2898 DAG.ReplaceAllUsesOfValueWith(SDValue(LoadN, 1), NewLoad.getValue(1)); 2899 return NewLoad; 2900 } 2901 2902 if (InVT == MVT::i32 && ResVT == MVT::f32) { 2903 SDValue In64; 2904 if (Subtarget.hasHighWord()) { 2905 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, 2906 MVT::i64); 2907 In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, 2908 MVT::i64, SDValue(U64, 0), In); 2909 } else { 2910 In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); 2911 In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, 2912 DAG.getConstant(32, DL, MVT::i64)); 2913 } 2914 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); 2915 return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, 2916 DL, MVT::f32, Out64); 2917 } 2918 if (InVT == MVT::f32 && ResVT == MVT::i32) { 2919 SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); 2920 SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, 2921 MVT::f64, SDValue(U64, 0), In); 2922 SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); 2923 if (Subtarget.hasHighWord()) 2924 return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, 2925 MVT::i32, Out64); 2926 SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, 2927 DAG.getConstant(32, DL, MVT::i64)); 2928 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); 2929 } 2930 llvm_unreachable("Unexpected bitcast combination"); 2931 } 2932 2933 SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, 2934 SelectionDAG &DAG) const { 2935 MachineFunction &MF = DAG.getMachineFunction(); 2936 SystemZMachineFunctionInfo *FuncInfo = 2937 MF.getInfo<SystemZMachineFunctionInfo>(); 2938 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2939 2940 SDValue Chain = Op.getOperand(0); 2941 SDValue Addr = Op.getOperand(1); 2942 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2943 SDLoc DL(Op); 2944 2945 // The initial values of each field. 2946 const unsigned NumFields = 4; 2947 SDValue Fields[NumFields] = { 2948 DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), 2949 DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), 2950 DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), 2951 DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) 2952 }; 2953 2954 // Store each field into its respective slot. 2955 SDValue MemOps[NumFields]; 2956 unsigned Offset = 0; 2957 for (unsigned I = 0; I < NumFields; ++I) { 2958 SDValue FieldAddr = Addr; 2959 if (Offset != 0) 2960 FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, 2961 DAG.getIntPtrConstant(Offset, DL)); 2962 MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, 2963 MachinePointerInfo(SV, Offset)); 2964 Offset += 8; 2965 } 2966 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); 2967 } 2968 2969 SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, 2970 SelectionDAG &DAG) const { 2971 SDValue Chain = Op.getOperand(0); 2972 SDValue DstPtr = Op.getOperand(1); 2973 SDValue SrcPtr = Op.getOperand(2); 2974 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); 2975 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 2976 SDLoc DL(Op); 2977 2978 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), 2979 /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, 2980 /*isTailCall*/false, 2981 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); 2982 } 2983 2984 SDValue SystemZTargetLowering:: 2985 lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 2986 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 2987 MachineFunction &MF = DAG.getMachineFunction(); 2988 bool RealignOpt = !MF.getFunction().hasFnAttribute("no-realign-stack"); 2989 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 2990 2991 SDValue Chain = Op.getOperand(0); 2992 SDValue Size = Op.getOperand(1); 2993 SDValue Align = Op.getOperand(2); 2994 SDLoc DL(Op); 2995 2996 // If user has set the no alignment function attribute, ignore 2997 // alloca alignments. 2998 uint64_t AlignVal = (RealignOpt ? 2999 dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); 3000 3001 uint64_t StackAlign = TFI->getStackAlignment(); 3002 uint64_t RequiredAlign = std::max(AlignVal, StackAlign); 3003 uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; 3004 3005 unsigned SPReg = getStackPointerRegisterToSaveRestore(); 3006 SDValue NeededSpace = Size; 3007 3008 // Get a reference to the stack pointer. 3009 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); 3010 3011 // If we need a backchain, save it now. 3012 SDValue Backchain; 3013 if (StoreBackchain) 3014 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3015 3016 // Add extra space for alignment if needed. 3017 if (ExtraAlignSpace) 3018 NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, 3019 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3020 3021 // Get the new stack pointer value. 3022 SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); 3023 3024 // Copy the new stack pointer back. 3025 Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); 3026 3027 // The allocated data lives above the 160 bytes allocated for the standard 3028 // frame, plus any outgoing stack arguments. We don't know how much that 3029 // amounts to yet, so emit a special ADJDYNALLOC placeholder. 3030 SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3031 SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); 3032 3033 // Dynamically realign if needed. 3034 if (RequiredAlign > StackAlign) { 3035 Result = 3036 DAG.getNode(ISD::ADD, DL, MVT::i64, Result, 3037 DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); 3038 Result = 3039 DAG.getNode(ISD::AND, DL, MVT::i64, Result, 3040 DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); 3041 } 3042 3043 if (StoreBackchain) 3044 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3045 3046 SDValue Ops[2] = { Result, Chain }; 3047 return DAG.getMergeValues(Ops, DL); 3048 } 3049 3050 SDValue SystemZTargetLowering::lowerGET_DYNAMIC_AREA_OFFSET( 3051 SDValue Op, SelectionDAG &DAG) const { 3052 SDLoc DL(Op); 3053 3054 return DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); 3055 } 3056 3057 SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, 3058 SelectionDAG &DAG) const { 3059 EVT VT = Op.getValueType(); 3060 SDLoc DL(Op); 3061 SDValue Ops[2]; 3062 if (is32Bit(VT)) 3063 // Just do a normal 64-bit multiplication and extract the results. 3064 // We define this so that it can be used for constant division. 3065 lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), 3066 Op.getOperand(1), Ops[1], Ops[0]); 3067 else if (Subtarget.hasMiscellaneousExtensions2()) 3068 // SystemZISD::SMUL_LOHI returns the low result in the odd register and 3069 // the high result in the even register. ISD::SMUL_LOHI is defined to 3070 // return the low half first, so the results are in reverse order. 3071 lowerGR128Binary(DAG, DL, VT, SystemZISD::SMUL_LOHI, 3072 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3073 else { 3074 // Do a full 128-bit multiplication based on SystemZISD::UMUL_LOHI: 3075 // 3076 // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) 3077 // 3078 // but using the fact that the upper halves are either all zeros 3079 // or all ones: 3080 // 3081 // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) 3082 // 3083 // and grouping the right terms together since they are quicker than the 3084 // multiplication: 3085 // 3086 // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) 3087 SDValue C63 = DAG.getConstant(63, DL, MVT::i64); 3088 SDValue LL = Op.getOperand(0); 3089 SDValue RL = Op.getOperand(1); 3090 SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); 3091 SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); 3092 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3093 // the high result in the even register. ISD::SMUL_LOHI is defined to 3094 // return the low half first, so the results are in reverse order. 3095 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3096 LL, RL, Ops[1], Ops[0]); 3097 SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); 3098 SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); 3099 SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); 3100 Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); 3101 } 3102 return DAG.getMergeValues(Ops, DL); 3103 } 3104 3105 SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, 3106 SelectionDAG &DAG) const { 3107 EVT VT = Op.getValueType(); 3108 SDLoc DL(Op); 3109 SDValue Ops[2]; 3110 if (is32Bit(VT)) 3111 // Just do a normal 64-bit multiplication and extract the results. 3112 // We define this so that it can be used for constant division. 3113 lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), 3114 Op.getOperand(1), Ops[1], Ops[0]); 3115 else 3116 // SystemZISD::UMUL_LOHI returns the low result in the odd register and 3117 // the high result in the even register. ISD::UMUL_LOHI is defined to 3118 // return the low half first, so the results are in reverse order. 3119 lowerGR128Binary(DAG, DL, VT, SystemZISD::UMUL_LOHI, 3120 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3121 return DAG.getMergeValues(Ops, DL); 3122 } 3123 3124 SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, 3125 SelectionDAG &DAG) const { 3126 SDValue Op0 = Op.getOperand(0); 3127 SDValue Op1 = Op.getOperand(1); 3128 EVT VT = Op.getValueType(); 3129 SDLoc DL(Op); 3130 3131 // We use DSGF for 32-bit division. This means the first operand must 3132 // always be 64-bit, and the second operand should be 32-bit whenever 3133 // that is possible, to improve performance. 3134 if (is32Bit(VT)) 3135 Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); 3136 else if (DAG.ComputeNumSignBits(Op1) > 32) 3137 Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); 3138 3139 // DSG(F) returns the remainder in the even register and the 3140 // quotient in the odd register. 3141 SDValue Ops[2]; 3142 lowerGR128Binary(DAG, DL, VT, SystemZISD::SDIVREM, Op0, Op1, Ops[1], Ops[0]); 3143 return DAG.getMergeValues(Ops, DL); 3144 } 3145 3146 SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, 3147 SelectionDAG &DAG) const { 3148 EVT VT = Op.getValueType(); 3149 SDLoc DL(Op); 3150 3151 // DL(G) returns the remainder in the even register and the 3152 // quotient in the odd register. 3153 SDValue Ops[2]; 3154 lowerGR128Binary(DAG, DL, VT, SystemZISD::UDIVREM, 3155 Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); 3156 return DAG.getMergeValues(Ops, DL); 3157 } 3158 3159 SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { 3160 assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); 3161 3162 // Get the known-zero masks for each operand. 3163 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; 3164 KnownBits Known[2]; 3165 DAG.computeKnownBits(Ops[0], Known[0]); 3166 DAG.computeKnownBits(Ops[1], Known[1]); 3167 3168 // See if the upper 32 bits of one operand and the lower 32 bits of the 3169 // other are known zero. They are the low and high operands respectively. 3170 uint64_t Masks[] = { Known[0].Zero.getZExtValue(), 3171 Known[1].Zero.getZExtValue() }; 3172 unsigned High, Low; 3173 if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) 3174 High = 1, Low = 0; 3175 else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) 3176 High = 0, Low = 1; 3177 else 3178 return Op; 3179 3180 SDValue LowOp = Ops[Low]; 3181 SDValue HighOp = Ops[High]; 3182 3183 // If the high part is a constant, we're better off using IILH. 3184 if (HighOp.getOpcode() == ISD::Constant) 3185 return Op; 3186 3187 // If the low part is a constant that is outside the range of LHI, 3188 // then we're better off using IILF. 3189 if (LowOp.getOpcode() == ISD::Constant) { 3190 int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); 3191 if (!isInt<16>(Value)) 3192 return Op; 3193 } 3194 3195 // Check whether the high part is an AND that doesn't change the 3196 // high 32 bits and just masks out low bits. We can skip it if so. 3197 if (HighOp.getOpcode() == ISD::AND && 3198 HighOp.getOperand(1).getOpcode() == ISD::Constant) { 3199 SDValue HighOp0 = HighOp.getOperand(0); 3200 uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); 3201 if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) 3202 HighOp = HighOp0; 3203 } 3204 3205 // Take advantage of the fact that all GR32 operations only change the 3206 // low 32 bits by truncating Low to an i32 and inserting it directly 3207 // using a subreg. The interesting cases are those where the truncation 3208 // can be folded. 3209 SDLoc DL(Op); 3210 SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); 3211 return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, 3212 MVT::i64, HighOp, Low32); 3213 } 3214 3215 // Lower SADDO/SSUBO/UADDO/USUBO nodes. 3216 SDValue SystemZTargetLowering::lowerXALUO(SDValue Op, 3217 SelectionDAG &DAG) const { 3218 SDNode *N = Op.getNode(); 3219 SDValue LHS = N->getOperand(0); 3220 SDValue RHS = N->getOperand(1); 3221 SDLoc DL(N); 3222 unsigned BaseOp = 0; 3223 unsigned CCValid = 0; 3224 unsigned CCMask = 0; 3225 3226 switch (Op.getOpcode()) { 3227 default: llvm_unreachable("Unknown instruction!"); 3228 case ISD::SADDO: 3229 BaseOp = SystemZISD::SADDO; 3230 CCValid = SystemZ::CCMASK_ARITH; 3231 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3232 break; 3233 case ISD::SSUBO: 3234 BaseOp = SystemZISD::SSUBO; 3235 CCValid = SystemZ::CCMASK_ARITH; 3236 CCMask = SystemZ::CCMASK_ARITH_OVERFLOW; 3237 break; 3238 case ISD::UADDO: 3239 BaseOp = SystemZISD::UADDO; 3240 CCValid = SystemZ::CCMASK_LOGICAL; 3241 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3242 break; 3243 case ISD::USUBO: 3244 BaseOp = SystemZISD::USUBO; 3245 CCValid = SystemZ::CCMASK_LOGICAL; 3246 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3247 break; 3248 } 3249 3250 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); 3251 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS); 3252 3253 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3254 if (N->getValueType(1) == MVT::i1) 3255 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3256 3257 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3258 } 3259 3260 // Lower ADDCARRY/SUBCARRY nodes. 3261 SDValue SystemZTargetLowering::lowerADDSUBCARRY(SDValue Op, 3262 SelectionDAG &DAG) const { 3263 3264 SDNode *N = Op.getNode(); 3265 MVT VT = N->getSimpleValueType(0); 3266 3267 // Let legalize expand this if it isn't a legal type yet. 3268 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 3269 return SDValue(); 3270 3271 SDValue LHS = N->getOperand(0); 3272 SDValue RHS = N->getOperand(1); 3273 SDValue Carry = Op.getOperand(2); 3274 SDLoc DL(N); 3275 unsigned BaseOp = 0; 3276 unsigned CCValid = 0; 3277 unsigned CCMask = 0; 3278 3279 switch (Op.getOpcode()) { 3280 default: llvm_unreachable("Unknown instruction!"); 3281 case ISD::ADDCARRY: 3282 BaseOp = SystemZISD::ADDCARRY; 3283 CCValid = SystemZ::CCMASK_LOGICAL; 3284 CCMask = SystemZ::CCMASK_LOGICAL_CARRY; 3285 break; 3286 case ISD::SUBCARRY: 3287 BaseOp = SystemZISD::SUBCARRY; 3288 CCValid = SystemZ::CCMASK_LOGICAL; 3289 CCMask = SystemZ::CCMASK_LOGICAL_BORROW; 3290 break; 3291 } 3292 3293 // Set the condition code from the carry flag. 3294 Carry = DAG.getNode(SystemZISD::GET_CCMASK, DL, MVT::i32, Carry, 3295 DAG.getConstant(CCValid, DL, MVT::i32), 3296 DAG.getConstant(CCMask, DL, MVT::i32)); 3297 3298 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 3299 SDValue Result = DAG.getNode(BaseOp, DL, VTs, LHS, RHS, Carry); 3300 3301 SDValue SetCC = emitSETCC(DAG, DL, Result.getValue(1), CCValid, CCMask); 3302 if (N->getValueType(1) == MVT::i1) 3303 SetCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC); 3304 3305 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, SetCC); 3306 } 3307 3308 SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, 3309 SelectionDAG &DAG) const { 3310 EVT VT = Op.getValueType(); 3311 SDLoc DL(Op); 3312 Op = Op.getOperand(0); 3313 3314 // Handle vector types via VPOPCT. 3315 if (VT.isVector()) { 3316 Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); 3317 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); 3318 switch (VT.getScalarSizeInBits()) { 3319 case 8: 3320 break; 3321 case 16: { 3322 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 3323 SDValue Shift = DAG.getConstant(8, DL, MVT::i32); 3324 SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); 3325 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3326 Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); 3327 break; 3328 } 3329 case 32: { 3330 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3331 DAG.getConstant(0, DL, MVT::i32)); 3332 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3333 break; 3334 } 3335 case 64: { 3336 SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, 3337 DAG.getConstant(0, DL, MVT::i32)); 3338 Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); 3339 Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); 3340 break; 3341 } 3342 default: 3343 llvm_unreachable("Unexpected type"); 3344 } 3345 return Op; 3346 } 3347 3348 // Get the known-zero mask for the operand. 3349 KnownBits Known; 3350 DAG.computeKnownBits(Op, Known); 3351 unsigned NumSignificantBits = (~Known.Zero).getActiveBits(); 3352 if (NumSignificantBits == 0) 3353 return DAG.getConstant(0, DL, VT); 3354 3355 // Skip known-zero high parts of the operand. 3356 int64_t OrigBitSize = VT.getSizeInBits(); 3357 int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); 3358 BitSize = std::min(BitSize, OrigBitSize); 3359 3360 // The POPCNT instruction counts the number of bits in each byte. 3361 Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); 3362 Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); 3363 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 3364 3365 // Add up per-byte counts in a binary tree. All bits of Op at 3366 // position larger than BitSize remain zero throughout. 3367 for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { 3368 SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); 3369 if (BitSize != OrigBitSize) 3370 Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, 3371 DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); 3372 Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); 3373 } 3374 3375 // Extract overall result from high byte. 3376 if (BitSize > 8) 3377 Op = DAG.getNode(ISD::SRL, DL, VT, Op, 3378 DAG.getConstant(BitSize - 8, DL, VT)); 3379 3380 return Op; 3381 } 3382 3383 SDValue SystemZTargetLowering::lowerATOMIC_FENCE(SDValue Op, 3384 SelectionDAG &DAG) const { 3385 SDLoc DL(Op); 3386 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>( 3387 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); 3388 SyncScope::ID FenceSSID = static_cast<SyncScope::ID>( 3389 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); 3390 3391 // The only fence that needs an instruction is a sequentially-consistent 3392 // cross-thread fence. 3393 if (FenceOrdering == AtomicOrdering::SequentiallyConsistent && 3394 FenceSSID == SyncScope::System) { 3395 return SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, MVT::Other, 3396 Op.getOperand(0)), 3397 0); 3398 } 3399 3400 // MEMBARRIER is a compiler barrier; it codegens to a no-op. 3401 return DAG.getNode(SystemZISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 3402 } 3403 3404 // Op is an atomic load. Lower it into a normal volatile load. 3405 SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, 3406 SelectionDAG &DAG) const { 3407 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3408 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), 3409 Node->getChain(), Node->getBasePtr(), 3410 Node->getMemoryVT(), Node->getMemOperand()); 3411 } 3412 3413 // Op is an atomic store. Lower it into a normal volatile store. 3414 SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, 3415 SelectionDAG &DAG) const { 3416 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3417 SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), 3418 Node->getBasePtr(), Node->getMemoryVT(), 3419 Node->getMemOperand()); 3420 // We have to enforce sequential consistency by performing a 3421 // serialization operation after the store. 3422 if (Node->getOrdering() == AtomicOrdering::SequentiallyConsistent) 3423 Chain = SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), 3424 MVT::Other, Chain), 0); 3425 return Chain; 3426 } 3427 3428 // Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first 3429 // two into the fullword ATOMIC_LOADW_* operation given by Opcode. 3430 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, 3431 SelectionDAG &DAG, 3432 unsigned Opcode) const { 3433 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3434 3435 // 32-bit operations need no code outside the main loop. 3436 EVT NarrowVT = Node->getMemoryVT(); 3437 EVT WideVT = MVT::i32; 3438 if (NarrowVT == WideVT) 3439 return Op; 3440 3441 int64_t BitSize = NarrowVT.getSizeInBits(); 3442 SDValue ChainIn = Node->getChain(); 3443 SDValue Addr = Node->getBasePtr(); 3444 SDValue Src2 = Node->getVal(); 3445 MachineMemOperand *MMO = Node->getMemOperand(); 3446 SDLoc DL(Node); 3447 EVT PtrVT = Addr.getValueType(); 3448 3449 // Convert atomic subtracts of constants into additions. 3450 if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) 3451 if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { 3452 Opcode = SystemZISD::ATOMIC_LOADW_ADD; 3453 Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); 3454 } 3455 3456 // Get the address of the containing word. 3457 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3458 DAG.getConstant(-4, DL, PtrVT)); 3459 3460 // Get the number of bits that the word must be rotated left in order 3461 // to bring the field to the top bits of a GR32. 3462 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3463 DAG.getConstant(3, DL, PtrVT)); 3464 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3465 3466 // Get the complementing shift amount, for rotating a field in the top 3467 // bits back to its proper position. 3468 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3469 DAG.getConstant(0, DL, WideVT), BitShift); 3470 3471 // Extend the source operand to 32 bits and prepare it for the inner loop. 3472 // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other 3473 // operations require the source to be shifted in advance. (This shift 3474 // can be folded if the source is constant.) For AND and NAND, the lower 3475 // bits must be set, while for other opcodes they should be left clear. 3476 if (Opcode != SystemZISD::ATOMIC_SWAPW) 3477 Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, 3478 DAG.getConstant(32 - BitSize, DL, WideVT)); 3479 if (Opcode == SystemZISD::ATOMIC_LOADW_AND || 3480 Opcode == SystemZISD::ATOMIC_LOADW_NAND) 3481 Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, 3482 DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); 3483 3484 // Construct the ATOMIC_LOADW_* node. 3485 SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); 3486 SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, 3487 DAG.getConstant(BitSize, DL, WideVT) }; 3488 SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, 3489 NarrowVT, MMO); 3490 3491 // Rotate the result of the final CS so that the field is in the lower 3492 // bits of a GR32, then truncate it. 3493 SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, 3494 DAG.getConstant(BitSize, DL, WideVT)); 3495 SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); 3496 3497 SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; 3498 return DAG.getMergeValues(RetOps, DL); 3499 } 3500 3501 // Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations 3502 // into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit 3503 // operations into additions. 3504 SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, 3505 SelectionDAG &DAG) const { 3506 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3507 EVT MemVT = Node->getMemoryVT(); 3508 if (MemVT == MVT::i32 || MemVT == MVT::i64) { 3509 // A full-width operation. 3510 assert(Op.getValueType() == MemVT && "Mismatched VTs"); 3511 SDValue Src2 = Node->getVal(); 3512 SDValue NegSrc2; 3513 SDLoc DL(Src2); 3514 3515 if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { 3516 // Use an addition if the operand is constant and either LAA(G) is 3517 // available or the negative value is in the range of A(G)FHI. 3518 int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); 3519 if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) 3520 NegSrc2 = DAG.getConstant(Value, DL, MemVT); 3521 } else if (Subtarget.hasInterlockedAccess1()) 3522 // Use LAA(G) if available. 3523 NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), 3524 Src2); 3525 3526 if (NegSrc2.getNode()) 3527 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, 3528 Node->getChain(), Node->getBasePtr(), NegSrc2, 3529 Node->getMemOperand()); 3530 3531 // Use the node as-is. 3532 return Op; 3533 } 3534 3535 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); 3536 } 3537 3538 // Lower 8/16/32/64-bit ATOMIC_CMP_SWAP_WITH_SUCCESS node. 3539 SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, 3540 SelectionDAG &DAG) const { 3541 auto *Node = cast<AtomicSDNode>(Op.getNode()); 3542 SDValue ChainIn = Node->getOperand(0); 3543 SDValue Addr = Node->getOperand(1); 3544 SDValue CmpVal = Node->getOperand(2); 3545 SDValue SwapVal = Node->getOperand(3); 3546 MachineMemOperand *MMO = Node->getMemOperand(); 3547 SDLoc DL(Node); 3548 3549 // We have native support for 32-bit and 64-bit compare and swap, but we 3550 // still need to expand extracting the "success" result from the CC. 3551 EVT NarrowVT = Node->getMemoryVT(); 3552 EVT WideVT = NarrowVT == MVT::i64 ? MVT::i64 : MVT::i32; 3553 if (NarrowVT == WideVT) { 3554 SDVTList Tys = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3555 SDValue Ops[] = { ChainIn, Addr, CmpVal, SwapVal }; 3556 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP, 3557 DL, Tys, Ops, NarrowVT, MMO); 3558 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3559 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 3560 3561 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3562 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3563 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3564 return SDValue(); 3565 } 3566 3567 // Convert 8-bit and 16-bit compare and swap to a loop, implemented 3568 // via a fullword ATOMIC_CMP_SWAPW operation. 3569 int64_t BitSize = NarrowVT.getSizeInBits(); 3570 EVT PtrVT = Addr.getValueType(); 3571 3572 // Get the address of the containing word. 3573 SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, 3574 DAG.getConstant(-4, DL, PtrVT)); 3575 3576 // Get the number of bits that the word must be rotated left in order 3577 // to bring the field to the top bits of a GR32. 3578 SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, 3579 DAG.getConstant(3, DL, PtrVT)); 3580 BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); 3581 3582 // Get the complementing shift amount, for rotating a field in the top 3583 // bits back to its proper position. 3584 SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, 3585 DAG.getConstant(0, DL, WideVT), BitShift); 3586 3587 // Construct the ATOMIC_CMP_SWAPW node. 3588 SDVTList VTList = DAG.getVTList(WideVT, MVT::i32, MVT::Other); 3589 SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, 3590 NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; 3591 SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, 3592 VTList, Ops, NarrowVT, MMO); 3593 SDValue Success = emitSETCC(DAG, DL, AtomicOp.getValue(1), 3594 SystemZ::CCMASK_ICMP, SystemZ::CCMASK_CMP_EQ); 3595 3596 DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), AtomicOp.getValue(0)); 3597 DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success); 3598 DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), AtomicOp.getValue(2)); 3599 return SDValue(); 3600 } 3601 3602 SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, 3603 SelectionDAG &DAG) const { 3604 MachineFunction &MF = DAG.getMachineFunction(); 3605 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3606 return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), 3607 SystemZ::R15D, Op.getValueType()); 3608 } 3609 3610 SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, 3611 SelectionDAG &DAG) const { 3612 MachineFunction &MF = DAG.getMachineFunction(); 3613 MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); 3614 bool StoreBackchain = MF.getFunction().hasFnAttribute("backchain"); 3615 3616 SDValue Chain = Op.getOperand(0); 3617 SDValue NewSP = Op.getOperand(1); 3618 SDValue Backchain; 3619 SDLoc DL(Op); 3620 3621 if (StoreBackchain) { 3622 SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, MVT::i64); 3623 Backchain = DAG.getLoad(MVT::i64, DL, Chain, OldSP, MachinePointerInfo()); 3624 } 3625 3626 Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R15D, NewSP); 3627 3628 if (StoreBackchain) 3629 Chain = DAG.getStore(Chain, DL, Backchain, NewSP, MachinePointerInfo()); 3630 3631 return Chain; 3632 } 3633 3634 SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, 3635 SelectionDAG &DAG) const { 3636 bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 3637 if (!IsData) 3638 // Just preserve the chain. 3639 return Op.getOperand(0); 3640 3641 SDLoc DL(Op); 3642 bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); 3643 unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; 3644 auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); 3645 SDValue Ops[] = { 3646 Op.getOperand(0), 3647 DAG.getConstant(Code, DL, MVT::i32), 3648 Op.getOperand(1) 3649 }; 3650 return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, 3651 Node->getVTList(), Ops, 3652 Node->getMemoryVT(), Node->getMemOperand()); 3653 } 3654 3655 // Convert condition code in CCReg to an i32 value. 3656 static SDValue getCCResult(SelectionDAG &DAG, SDValue CCReg) { 3657 SDLoc DL(CCReg); 3658 SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, CCReg); 3659 return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, 3660 DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); 3661 } 3662 3663 SDValue 3664 SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, 3665 SelectionDAG &DAG) const { 3666 unsigned Opcode, CCValid; 3667 if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { 3668 assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); 3669 SDNode *Node = emitIntrinsicWithCCAndChain(DAG, Op, Opcode); 3670 SDValue CC = getCCResult(DAG, SDValue(Node, 0)); 3671 DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); 3672 return SDValue(); 3673 } 3674 3675 return SDValue(); 3676 } 3677 3678 SDValue 3679 SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, 3680 SelectionDAG &DAG) const { 3681 unsigned Opcode, CCValid; 3682 if (isIntrinsicWithCC(Op, Opcode, CCValid)) { 3683 SDNode *Node = emitIntrinsicWithCC(DAG, Op, Opcode); 3684 if (Op->getNumValues() == 1) 3685 return getCCResult(DAG, SDValue(Node, 0)); 3686 assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); 3687 return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), 3688 SDValue(Node, 0), getCCResult(DAG, SDValue(Node, 1))); 3689 } 3690 3691 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 3692 switch (Id) { 3693 case Intrinsic::thread_pointer: 3694 return lowerThreadPointer(SDLoc(Op), DAG); 3695 3696 case Intrinsic::s390_vpdi: 3697 return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), 3698 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3699 3700 case Intrinsic::s390_vperm: 3701 return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), 3702 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 3703 3704 case Intrinsic::s390_vuphb: 3705 case Intrinsic::s390_vuphh: 3706 case Intrinsic::s390_vuphf: 3707 return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), 3708 Op.getOperand(1)); 3709 3710 case Intrinsic::s390_vuplhb: 3711 case Intrinsic::s390_vuplhh: 3712 case Intrinsic::s390_vuplhf: 3713 return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), 3714 Op.getOperand(1)); 3715 3716 case Intrinsic::s390_vuplb: 3717 case Intrinsic::s390_vuplhw: 3718 case Intrinsic::s390_vuplf: 3719 return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), 3720 Op.getOperand(1)); 3721 3722 case Intrinsic::s390_vupllb: 3723 case Intrinsic::s390_vupllh: 3724 case Intrinsic::s390_vupllf: 3725 return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), 3726 Op.getOperand(1)); 3727 3728 case Intrinsic::s390_vsumb: 3729 case Intrinsic::s390_vsumh: 3730 case Intrinsic::s390_vsumgh: 3731 case Intrinsic::s390_vsumgf: 3732 case Intrinsic::s390_vsumqf: 3733 case Intrinsic::s390_vsumqg: 3734 return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), 3735 Op.getOperand(1), Op.getOperand(2)); 3736 } 3737 3738 return SDValue(); 3739 } 3740 3741 namespace { 3742 // Says that SystemZISD operation Opcode can be used to perform the equivalent 3743 // of a VPERM with permute vector Bytes. If Opcode takes three operands, 3744 // Operand is the constant third operand, otherwise it is the number of 3745 // bytes in each element of the result. 3746 struct Permute { 3747 unsigned Opcode; 3748 unsigned Operand; 3749 unsigned char Bytes[SystemZ::VectorBytes]; 3750 }; 3751 } 3752 3753 static const Permute PermuteForms[] = { 3754 // VMRHG 3755 { SystemZISD::MERGE_HIGH, 8, 3756 { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3757 // VMRHF 3758 { SystemZISD::MERGE_HIGH, 4, 3759 { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, 3760 // VMRHH 3761 { SystemZISD::MERGE_HIGH, 2, 3762 { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, 3763 // VMRHB 3764 { SystemZISD::MERGE_HIGH, 1, 3765 { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, 3766 // VMRLG 3767 { SystemZISD::MERGE_LOW, 8, 3768 { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, 3769 // VMRLF 3770 { SystemZISD::MERGE_LOW, 4, 3771 { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, 3772 // VMRLH 3773 { SystemZISD::MERGE_LOW, 2, 3774 { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, 3775 // VMRLB 3776 { SystemZISD::MERGE_LOW, 1, 3777 { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, 3778 // VPKG 3779 { SystemZISD::PACK, 4, 3780 { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, 3781 // VPKF 3782 { SystemZISD::PACK, 2, 3783 { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, 3784 // VPKH 3785 { SystemZISD::PACK, 1, 3786 { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, 3787 // VPDI V1, V2, 4 (low half of V1, high half of V2) 3788 { SystemZISD::PERMUTE_DWORDS, 4, 3789 { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, 3790 // VPDI V1, V2, 1 (high half of V1, low half of V2) 3791 { SystemZISD::PERMUTE_DWORDS, 1, 3792 { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } 3793 }; 3794 3795 // Called after matching a vector shuffle against a particular pattern. 3796 // Both the original shuffle and the pattern have two vector operands. 3797 // OpNos[0] is the operand of the original shuffle that should be used for 3798 // operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. 3799 // OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and 3800 // set OpNo0 and OpNo1 to the shuffle operands that should actually be used 3801 // for operands 0 and 1 of the pattern. 3802 static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { 3803 if (OpNos[0] < 0) { 3804 if (OpNos[1] < 0) 3805 return false; 3806 OpNo0 = OpNo1 = OpNos[1]; 3807 } else if (OpNos[1] < 0) { 3808 OpNo0 = OpNo1 = OpNos[0]; 3809 } else { 3810 OpNo0 = OpNos[0]; 3811 OpNo1 = OpNos[1]; 3812 } 3813 return true; 3814 } 3815 3816 // Bytes is a VPERM-like permute vector, except that -1 is used for 3817 // undefined bytes. Return true if the VPERM can be implemented using P. 3818 // When returning true set OpNo0 to the VPERM operand that should be 3819 // used for operand 0 of P and likewise OpNo1 for operand 1 of P. 3820 // 3821 // For example, if swapping the VPERM operands allows P to match, OpNo0 3822 // will be 1 and OpNo1 will be 0. If instead Bytes only refers to one 3823 // operand, but rewriting it to use two duplicated operands allows it to 3824 // match P, then OpNo0 and OpNo1 will be the same. 3825 static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, 3826 unsigned &OpNo0, unsigned &OpNo1) { 3827 int OpNos[] = { -1, -1 }; 3828 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { 3829 int Elt = Bytes[I]; 3830 if (Elt >= 0) { 3831 // Make sure that the two permute vectors use the same suboperand 3832 // byte number. Only the operand numbers (the high bits) are 3833 // allowed to differ. 3834 if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) 3835 return false; 3836 int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; 3837 int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; 3838 // Make sure that the operand mappings are consistent with previous 3839 // elements. 3840 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3841 return false; 3842 OpNos[ModelOpNo] = RealOpNo; 3843 } 3844 } 3845 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3846 } 3847 3848 // As above, but search for a matching permute. 3849 static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, 3850 unsigned &OpNo0, unsigned &OpNo1) { 3851 for (auto &P : PermuteForms) 3852 if (matchPermute(Bytes, P, OpNo0, OpNo1)) 3853 return &P; 3854 return nullptr; 3855 } 3856 3857 // Bytes is a VPERM-like permute vector, except that -1 is used for 3858 // undefined bytes. This permute is an operand of an outer permute. 3859 // See whether redistributing the -1 bytes gives a shuffle that can be 3860 // implemented using P. If so, set Transform to a VPERM-like permute vector 3861 // that, when applied to the result of P, gives the original permute in Bytes. 3862 static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3863 const Permute &P, 3864 SmallVectorImpl<int> &Transform) { 3865 unsigned To = 0; 3866 for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { 3867 int Elt = Bytes[From]; 3868 if (Elt < 0) 3869 // Byte number From of the result is undefined. 3870 Transform[From] = -1; 3871 else { 3872 while (P.Bytes[To] != Elt) { 3873 To += 1; 3874 if (To == SystemZ::VectorBytes) 3875 return false; 3876 } 3877 Transform[From] = To; 3878 } 3879 } 3880 return true; 3881 } 3882 3883 // As above, but search for a matching permute. 3884 static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, 3885 SmallVectorImpl<int> &Transform) { 3886 for (auto &P : PermuteForms) 3887 if (matchDoublePermute(Bytes, P, Transform)) 3888 return &P; 3889 return nullptr; 3890 } 3891 3892 // Convert the mask of the given shuffle op into a byte-level mask, 3893 // as if it had type vNi8. 3894 static bool getVPermMask(SDValue ShuffleOp, 3895 SmallVectorImpl<int> &Bytes) { 3896 EVT VT = ShuffleOp.getValueType(); 3897 unsigned NumElements = VT.getVectorNumElements(); 3898 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 3899 3900 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(ShuffleOp)) { 3901 Bytes.resize(NumElements * BytesPerElement, -1); 3902 for (unsigned I = 0; I < NumElements; ++I) { 3903 int Index = VSN->getMaskElt(I); 3904 if (Index >= 0) 3905 for (unsigned J = 0; J < BytesPerElement; ++J) 3906 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3907 } 3908 return true; 3909 } 3910 if (SystemZISD::SPLAT == ShuffleOp.getOpcode() && 3911 isa<ConstantSDNode>(ShuffleOp.getOperand(1))) { 3912 unsigned Index = ShuffleOp.getConstantOperandVal(1); 3913 Bytes.resize(NumElements * BytesPerElement, -1); 3914 for (unsigned I = 0; I < NumElements; ++I) 3915 for (unsigned J = 0; J < BytesPerElement; ++J) 3916 Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; 3917 return true; 3918 } 3919 return false; 3920 } 3921 3922 // Bytes is a VPERM-like permute vector, except that -1 is used for 3923 // undefined bytes. See whether bytes [Start, Start + BytesPerElement) of 3924 // the result come from a contiguous sequence of bytes from one input. 3925 // Set Base to the selector for the first byte if so. 3926 static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, 3927 unsigned BytesPerElement, int &Base) { 3928 Base = -1; 3929 for (unsigned I = 0; I < BytesPerElement; ++I) { 3930 if (Bytes[Start + I] >= 0) { 3931 unsigned Elem = Bytes[Start + I]; 3932 if (Base < 0) { 3933 Base = Elem - I; 3934 // Make sure the bytes would come from one input operand. 3935 if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) 3936 return false; 3937 } else if (unsigned(Base) != Elem - I) 3938 return false; 3939 } 3940 } 3941 return true; 3942 } 3943 3944 // Bytes is a VPERM-like permute vector, except that -1 is used for 3945 // undefined bytes. Return true if it can be performed using VSLDI. 3946 // When returning true, set StartIndex to the shift amount and OpNo0 3947 // and OpNo1 to the VPERM operands that should be used as the first 3948 // and second shift operand respectively. 3949 static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, 3950 unsigned &StartIndex, unsigned &OpNo0, 3951 unsigned &OpNo1) { 3952 int OpNos[] = { -1, -1 }; 3953 int Shift = -1; 3954 for (unsigned I = 0; I < 16; ++I) { 3955 int Index = Bytes[I]; 3956 if (Index >= 0) { 3957 int ExpectedShift = (Index - I) % SystemZ::VectorBytes; 3958 int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; 3959 int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; 3960 if (Shift < 0) 3961 Shift = ExpectedShift; 3962 else if (Shift != ExpectedShift) 3963 return false; 3964 // Make sure that the operand mappings are consistent with previous 3965 // elements. 3966 if (OpNos[ModelOpNo] == 1 - RealOpNo) 3967 return false; 3968 OpNos[ModelOpNo] = RealOpNo; 3969 } 3970 } 3971 StartIndex = Shift; 3972 return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); 3973 } 3974 3975 // Create a node that performs P on operands Op0 and Op1, casting the 3976 // operands to the appropriate type. The type of the result is determined by P. 3977 static SDValue getPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 3978 const Permute &P, SDValue Op0, SDValue Op1) { 3979 // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input 3980 // elements of a PACK are twice as wide as the outputs. 3981 unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : 3982 P.Opcode == SystemZISD::PACK ? P.Operand * 2 : 3983 P.Operand); 3984 // Cast both operands to the appropriate type. 3985 MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), 3986 SystemZ::VectorBytes / InBytes); 3987 Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); 3988 Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); 3989 SDValue Op; 3990 if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { 3991 SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); 3992 Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); 3993 } else if (P.Opcode == SystemZISD::PACK) { 3994 MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), 3995 SystemZ::VectorBytes / P.Operand); 3996 Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); 3997 } else { 3998 Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); 3999 } 4000 return Op; 4001 } 4002 4003 // Bytes is a VPERM-like permute vector, except that -1 is used for 4004 // undefined bytes. Implement it on operands Ops[0] and Ops[1] using 4005 // VSLDI or VPERM. 4006 static SDValue getGeneralPermuteNode(SelectionDAG &DAG, const SDLoc &DL, 4007 SDValue *Ops, 4008 const SmallVectorImpl<int> &Bytes) { 4009 for (unsigned I = 0; I < 2; ++I) 4010 Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); 4011 4012 // First see whether VSLDI can be used. 4013 unsigned StartIndex, OpNo0, OpNo1; 4014 if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) 4015 return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], 4016 Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); 4017 4018 // Fall back on VPERM. Construct an SDNode for the permute vector. 4019 SDValue IndexNodes[SystemZ::VectorBytes]; 4020 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4021 if (Bytes[I] >= 0) 4022 IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); 4023 else 4024 IndexNodes[I] = DAG.getUNDEF(MVT::i32); 4025 SDValue Op2 = DAG.getBuildVector(MVT::v16i8, DL, IndexNodes); 4026 return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); 4027 } 4028 4029 namespace { 4030 // Describes a general N-operand vector shuffle. 4031 struct GeneralShuffle { 4032 GeneralShuffle(EVT vt) : VT(vt) {} 4033 void addUndef(); 4034 bool add(SDValue, unsigned); 4035 SDValue getNode(SelectionDAG &, const SDLoc &); 4036 4037 // The operands of the shuffle. 4038 SmallVector<SDValue, SystemZ::VectorBytes> Ops; 4039 4040 // Index I is -1 if byte I of the result is undefined. Otherwise the 4041 // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand 4042 // Bytes[I] / SystemZ::VectorBytes. 4043 SmallVector<int, SystemZ::VectorBytes> Bytes; 4044 4045 // The type of the shuffle result. 4046 EVT VT; 4047 }; 4048 } 4049 4050 // Add an extra undefined element to the shuffle. 4051 void GeneralShuffle::addUndef() { 4052 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4053 for (unsigned I = 0; I < BytesPerElement; ++I) 4054 Bytes.push_back(-1); 4055 } 4056 4057 // Add an extra element to the shuffle, taking it from element Elem of Op. 4058 // A null Op indicates a vector input whose value will be calculated later; 4059 // there is at most one such input per shuffle and it always has the same 4060 // type as the result. Aborts and returns false if the source vector elements 4061 // of an EXTRACT_VECTOR_ELT are smaller than the destination elements. Per 4062 // LLVM they become implicitly extended, but this is rare and not optimized. 4063 bool GeneralShuffle::add(SDValue Op, unsigned Elem) { 4064 unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); 4065 4066 // The source vector can have wider elements than the result, 4067 // either through an explicit TRUNCATE or because of type legalization. 4068 // We want the least significant part. 4069 EVT FromVT = Op.getNode() ? Op.getValueType() : VT; 4070 unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); 4071 4072 // Return false if the source elements are smaller than their destination 4073 // elements. 4074 if (FromBytesPerElement < BytesPerElement) 4075 return false; 4076 4077 unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + 4078 (FromBytesPerElement - BytesPerElement)); 4079 4080 // Look through things like shuffles and bitcasts. 4081 while (Op.getNode()) { 4082 if (Op.getOpcode() == ISD::BITCAST) 4083 Op = Op.getOperand(0); 4084 else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { 4085 // See whether the bytes we need come from a contiguous part of one 4086 // operand. 4087 SmallVector<int, SystemZ::VectorBytes> OpBytes; 4088 if (!getVPermMask(Op, OpBytes)) 4089 break; 4090 int NewByte; 4091 if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) 4092 break; 4093 if (NewByte < 0) { 4094 addUndef(); 4095 return true; 4096 } 4097 Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); 4098 Byte = unsigned(NewByte) % SystemZ::VectorBytes; 4099 } else if (Op.isUndef()) { 4100 addUndef(); 4101 return true; 4102 } else 4103 break; 4104 } 4105 4106 // Make sure that the source of the extraction is in Ops. 4107 unsigned OpNo = 0; 4108 for (; OpNo < Ops.size(); ++OpNo) 4109 if (Ops[OpNo] == Op) 4110 break; 4111 if (OpNo == Ops.size()) 4112 Ops.push_back(Op); 4113 4114 // Add the element to Bytes. 4115 unsigned Base = OpNo * SystemZ::VectorBytes + Byte; 4116 for (unsigned I = 0; I < BytesPerElement; ++I) 4117 Bytes.push_back(Base + I); 4118 4119 return true; 4120 } 4121 4122 // Return SDNodes for the completed shuffle. 4123 SDValue GeneralShuffle::getNode(SelectionDAG &DAG, const SDLoc &DL) { 4124 assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); 4125 4126 if (Ops.size() == 0) 4127 return DAG.getUNDEF(VT); 4128 4129 // Make sure that there are at least two shuffle operands. 4130 if (Ops.size() == 1) 4131 Ops.push_back(DAG.getUNDEF(MVT::v16i8)); 4132 4133 // Create a tree of shuffles, deferring root node until after the loop. 4134 // Try to redistribute the undefined elements of non-root nodes so that 4135 // the non-root shuffles match something like a pack or merge, then adjust 4136 // the parent node's permute vector to compensate for the new order. 4137 // Among other things, this copes with vectors like <2 x i16> that were 4138 // padded with undefined elements during type legalization. 4139 // 4140 // In the best case this redistribution will lead to the whole tree 4141 // using packs and merges. It should rarely be a loss in other cases. 4142 unsigned Stride = 1; 4143 for (; Stride * 2 < Ops.size(); Stride *= 2) { 4144 for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { 4145 SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; 4146 4147 // Create a mask for just these two operands. 4148 SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); 4149 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4150 unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; 4151 unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; 4152 if (OpNo == I) 4153 NewBytes[J] = Byte; 4154 else if (OpNo == I + Stride) 4155 NewBytes[J] = SystemZ::VectorBytes + Byte; 4156 else 4157 NewBytes[J] = -1; 4158 } 4159 // See if it would be better to reorganize NewMask to avoid using VPERM. 4160 SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); 4161 if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { 4162 Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); 4163 // Applying NewBytesMap to Ops[I] gets back to NewBytes. 4164 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { 4165 if (NewBytes[J] >= 0) { 4166 assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && 4167 "Invalid double permute"); 4168 Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; 4169 } else 4170 assert(NewBytesMap[J] < 0 && "Invalid double permute"); 4171 } 4172 } else { 4173 // Just use NewBytes on the operands. 4174 Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); 4175 for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) 4176 if (NewBytes[J] >= 0) 4177 Bytes[J] = I * SystemZ::VectorBytes + J; 4178 } 4179 } 4180 } 4181 4182 // Now we just have 2 inputs. Put the second operand in Ops[1]. 4183 if (Stride > 1) { 4184 Ops[1] = Ops[Stride]; 4185 for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) 4186 if (Bytes[I] >= int(SystemZ::VectorBytes)) 4187 Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; 4188 } 4189 4190 // Look for an instruction that can do the permute without resorting 4191 // to VPERM. 4192 unsigned OpNo0, OpNo1; 4193 SDValue Op; 4194 if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) 4195 Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); 4196 else 4197 Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); 4198 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4199 } 4200 4201 // Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. 4202 static bool isScalarToVector(SDValue Op) { 4203 for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) 4204 if (!Op.getOperand(I).isUndef()) 4205 return false; 4206 return true; 4207 } 4208 4209 // Return a vector of type VT that contains Value in the first element. 4210 // The other elements don't matter. 4211 static SDValue buildScalarToVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4212 SDValue Value) { 4213 // If we have a constant, replicate it to all elements and let the 4214 // BUILD_VECTOR lowering take care of it. 4215 if (Value.getOpcode() == ISD::Constant || 4216 Value.getOpcode() == ISD::ConstantFP) { 4217 SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); 4218 return DAG.getBuildVector(VT, DL, Ops); 4219 } 4220 if (Value.isUndef()) 4221 return DAG.getUNDEF(VT); 4222 return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); 4223 } 4224 4225 // Return a vector of type VT in which Op0 is in element 0 and Op1 is in 4226 // element 1. Used for cases in which replication is cheap. 4227 static SDValue buildMergeScalars(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4228 SDValue Op0, SDValue Op1) { 4229 if (Op0.isUndef()) { 4230 if (Op1.isUndef()) 4231 return DAG.getUNDEF(VT); 4232 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); 4233 } 4234 if (Op1.isUndef()) 4235 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); 4236 return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, 4237 buildScalarToVector(DAG, DL, VT, Op0), 4238 buildScalarToVector(DAG, DL, VT, Op1)); 4239 } 4240 4241 // Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 4242 // vector for them. 4243 static SDValue joinDwords(SelectionDAG &DAG, const SDLoc &DL, SDValue Op0, 4244 SDValue Op1) { 4245 if (Op0.isUndef() && Op1.isUndef()) 4246 return DAG.getUNDEF(MVT::v2i64); 4247 // If one of the two inputs is undefined then replicate the other one, 4248 // in order to avoid using another register unnecessarily. 4249 if (Op0.isUndef()) 4250 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4251 else if (Op1.isUndef()) 4252 Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4253 else { 4254 Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); 4255 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); 4256 } 4257 return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); 4258 } 4259 4260 // Try to represent constant BUILD_VECTOR node BVN using a 4261 // SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask 4262 // on success. 4263 static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { 4264 EVT ElemVT = BVN->getValueType(0).getVectorElementType(); 4265 unsigned BytesPerElement = ElemVT.getStoreSize(); 4266 for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { 4267 SDValue Op = BVN->getOperand(I); 4268 if (!Op.isUndef()) { 4269 uint64_t Value; 4270 if (Op.getOpcode() == ISD::Constant) 4271 Value = cast<ConstantSDNode>(Op)->getZExtValue(); 4272 else if (Op.getOpcode() == ISD::ConstantFP) 4273 Value = (cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() 4274 .getZExtValue()); 4275 else 4276 return false; 4277 for (unsigned J = 0; J < BytesPerElement; ++J) { 4278 uint64_t Byte = (Value >> (J * 8)) & 0xff; 4279 if (Byte == 0xff) 4280 Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); 4281 else if (Byte != 0) 4282 return false; 4283 } 4284 } 4285 } 4286 return true; 4287 } 4288 4289 // Try to load a vector constant in which BitsPerElement-bit value Value 4290 // is replicated to fill the vector. VT is the type of the resulting 4291 // constant, which may have elements of a different size from BitsPerElement. 4292 // Return the SDValue of the constant on success, otherwise return 4293 // an empty value. 4294 static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, 4295 const SystemZInstrInfo *TII, 4296 const SDLoc &DL, EVT VT, uint64_t Value, 4297 unsigned BitsPerElement) { 4298 // Signed 16-bit values can be replicated using VREPI. 4299 // Mark the constants as opaque or DAGCombiner will convert back to 4300 // BUILD_VECTOR. 4301 int64_t SignedValue = SignExtend64(Value, BitsPerElement); 4302 if (isInt<16>(SignedValue)) { 4303 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4304 SystemZ::VectorBits / BitsPerElement); 4305 SDValue Op = DAG.getNode( 4306 SystemZISD::REPLICATE, DL, VecVT, 4307 DAG.getConstant(SignedValue, DL, MVT::i32, false, true /*isOpaque*/)); 4308 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4309 } 4310 // See whether rotating the constant left some N places gives a value that 4311 // is one less than a power of 2 (i.e. all zeros followed by all ones). 4312 // If so we can use VGM. 4313 unsigned Start, End; 4314 if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { 4315 // isRxSBGMask returns the bit numbers for a full 64-bit value, 4316 // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to 4317 // bit numbers for an BitsPerElement value, so that 0 denotes 4318 // 1 << (BitsPerElement-1). 4319 Start -= 64 - BitsPerElement; 4320 End -= 64 - BitsPerElement; 4321 MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), 4322 SystemZ::VectorBits / BitsPerElement); 4323 SDValue Op = DAG.getNode( 4324 SystemZISD::ROTATE_MASK, DL, VecVT, 4325 DAG.getConstant(Start, DL, MVT::i32, false, true /*isOpaque*/), 4326 DAG.getConstant(End, DL, MVT::i32, false, true /*isOpaque*/)); 4327 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4328 } 4329 return SDValue(); 4330 } 4331 4332 // If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually 4333 // better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for 4334 // the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR 4335 // would benefit from this representation and return it if so. 4336 static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, 4337 BuildVectorSDNode *BVN) { 4338 EVT VT = BVN->getValueType(0); 4339 unsigned NumElements = VT.getVectorNumElements(); 4340 4341 // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation 4342 // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still 4343 // need a BUILD_VECTOR, add an additional placeholder operand for that 4344 // BUILD_VECTOR and store its operands in ResidueOps. 4345 GeneralShuffle GS(VT); 4346 SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; 4347 bool FoundOne = false; 4348 for (unsigned I = 0; I < NumElements; ++I) { 4349 SDValue Op = BVN->getOperand(I); 4350 if (Op.getOpcode() == ISD::TRUNCATE) 4351 Op = Op.getOperand(0); 4352 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 4353 Op.getOperand(1).getOpcode() == ISD::Constant) { 4354 unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 4355 if (!GS.add(Op.getOperand(0), Elem)) 4356 return SDValue(); 4357 FoundOne = true; 4358 } else if (Op.isUndef()) { 4359 GS.addUndef(); 4360 } else { 4361 if (!GS.add(SDValue(), ResidueOps.size())) 4362 return SDValue(); 4363 ResidueOps.push_back(BVN->getOperand(I)); 4364 } 4365 } 4366 4367 // Nothing to do if there are no EXTRACT_VECTOR_ELTs. 4368 if (!FoundOne) 4369 return SDValue(); 4370 4371 // Create the BUILD_VECTOR for the remaining elements, if any. 4372 if (!ResidueOps.empty()) { 4373 while (ResidueOps.size() < NumElements) 4374 ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); 4375 for (auto &Op : GS.Ops) { 4376 if (!Op.getNode()) { 4377 Op = DAG.getBuildVector(VT, SDLoc(BVN), ResidueOps); 4378 break; 4379 } 4380 } 4381 } 4382 return GS.getNode(DAG, SDLoc(BVN)); 4383 } 4384 4385 // Combine GPR scalar values Elems into a vector of type VT. 4386 static SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT, 4387 SmallVectorImpl<SDValue> &Elems) { 4388 // See whether there is a single replicated value. 4389 SDValue Single; 4390 unsigned int NumElements = Elems.size(); 4391 unsigned int Count = 0; 4392 for (auto Elem : Elems) { 4393 if (!Elem.isUndef()) { 4394 if (!Single.getNode()) 4395 Single = Elem; 4396 else if (Elem != Single) { 4397 Single = SDValue(); 4398 break; 4399 } 4400 Count += 1; 4401 } 4402 } 4403 // There are three cases here: 4404 // 4405 // - if the only defined element is a loaded one, the best sequence 4406 // is a replicating load. 4407 // 4408 // - otherwise, if the only defined element is an i64 value, we will 4409 // end up with the same VLVGP sequence regardless of whether we short-cut 4410 // for replication or fall through to the later code. 4411 // 4412 // - otherwise, if the only defined element is an i32 or smaller value, 4413 // we would need 2 instructions to replicate it: VLVGP followed by VREPx. 4414 // This is only a win if the single defined element is used more than once. 4415 // In other cases we're better off using a single VLVGx. 4416 if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) 4417 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); 4418 4419 // If all elements are loads, use VLREP/VLEs (below). 4420 bool AllLoads = true; 4421 for (auto Elem : Elems) 4422 if (Elem.getOpcode() != ISD::LOAD || cast<LoadSDNode>(Elem)->isIndexed()) { 4423 AllLoads = false; 4424 break; 4425 } 4426 4427 // The best way of building a v2i64 from two i64s is to use VLVGP. 4428 if (VT == MVT::v2i64 && !AllLoads) 4429 return joinDwords(DAG, DL, Elems[0], Elems[1]); 4430 4431 // Use a 64-bit merge high to combine two doubles. 4432 if (VT == MVT::v2f64 && !AllLoads) 4433 return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4434 4435 // Build v4f32 values directly from the FPRs: 4436 // 4437 // <Axxx> <Bxxx> <Cxxxx> <Dxxx> 4438 // V V VMRHF 4439 // <ABxx> <CDxx> 4440 // V VMRHG 4441 // <ABCD> 4442 if (VT == MVT::v4f32 && !AllLoads) { 4443 SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); 4444 SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); 4445 // Avoid unnecessary undefs by reusing the other operand. 4446 if (Op01.isUndef()) 4447 Op01 = Op23; 4448 else if (Op23.isUndef()) 4449 Op23 = Op01; 4450 // Merging identical replications is a no-op. 4451 if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) 4452 return Op01; 4453 Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); 4454 Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); 4455 SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, 4456 DL, MVT::v2i64, Op01, Op23); 4457 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4458 } 4459 4460 // Collect the constant terms. 4461 SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); 4462 SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); 4463 4464 unsigned NumConstants = 0; 4465 for (unsigned I = 0; I < NumElements; ++I) { 4466 SDValue Elem = Elems[I]; 4467 if (Elem.getOpcode() == ISD::Constant || 4468 Elem.getOpcode() == ISD::ConstantFP) { 4469 NumConstants += 1; 4470 Constants[I] = Elem; 4471 Done[I] = true; 4472 } 4473 } 4474 // If there was at least one constant, fill in the other elements of 4475 // Constants with undefs to get a full vector constant and use that 4476 // as the starting point. 4477 SDValue Result; 4478 if (NumConstants > 0) { 4479 for (unsigned I = 0; I < NumElements; ++I) 4480 if (!Constants[I].getNode()) 4481 Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); 4482 Result = DAG.getBuildVector(VT, DL, Constants); 4483 } else { 4484 // Otherwise try to use VLREP or VLVGP to start the sequence in order to 4485 // avoid a false dependency on any previous contents of the vector 4486 // register. 4487 4488 // Use a VLREP if at least one element is a load. 4489 unsigned LoadElIdx = UINT_MAX; 4490 for (unsigned I = 0; I < NumElements; ++I) 4491 if (Elems[I].getOpcode() == ISD::LOAD && 4492 cast<LoadSDNode>(Elems[I])->isUnindexed()) { 4493 LoadElIdx = I; 4494 break; 4495 } 4496 if (LoadElIdx != UINT_MAX) { 4497 Result = DAG.getNode(SystemZISD::REPLICATE, DL, VT, Elems[LoadElIdx]); 4498 Done[LoadElIdx] = true; 4499 } else { 4500 // Try to use VLVGP. 4501 unsigned I1 = NumElements / 2 - 1; 4502 unsigned I2 = NumElements - 1; 4503 bool Def1 = !Elems[I1].isUndef(); 4504 bool Def2 = !Elems[I2].isUndef(); 4505 if (Def1 || Def2) { 4506 SDValue Elem1 = Elems[Def1 ? I1 : I2]; 4507 SDValue Elem2 = Elems[Def2 ? I2 : I1]; 4508 Result = DAG.getNode(ISD::BITCAST, DL, VT, 4509 joinDwords(DAG, DL, Elem1, Elem2)); 4510 Done[I1] = true; 4511 Done[I2] = true; 4512 } else 4513 Result = DAG.getUNDEF(VT); 4514 } 4515 } 4516 4517 // Use VLVGx to insert the other elements. 4518 for (unsigned I = 0; I < NumElements; ++I) 4519 if (!Done[I] && !Elems[I].isUndef()) 4520 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], 4521 DAG.getConstant(I, DL, MVT::i32)); 4522 return Result; 4523 } 4524 4525 SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, 4526 SelectionDAG &DAG) const { 4527 const SystemZInstrInfo *TII = 4528 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 4529 auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); 4530 SDLoc DL(Op); 4531 EVT VT = Op.getValueType(); 4532 4533 if (BVN->isConstant()) { 4534 // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- 4535 // preferred way of creating all-zero and all-one vectors so give it 4536 // priority over other methods below. 4537 uint64_t Mask = 0; 4538 if (tryBuildVectorByteMask(BVN, Mask)) { 4539 SDValue Op = DAG.getNode( 4540 SystemZISD::BYTE_MASK, DL, MVT::v16i8, 4541 DAG.getConstant(Mask, DL, MVT::i32, false, true /*isOpaque*/)); 4542 return DAG.getNode(ISD::BITCAST, DL, VT, Op); 4543 } 4544 4545 // Try using some form of replication. 4546 APInt SplatBits, SplatUndef; 4547 unsigned SplatBitSize; 4548 bool HasAnyUndefs; 4549 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4550 8, true) && 4551 SplatBitSize <= 64) { 4552 // First try assuming that any undefined bits above the highest set bit 4553 // and below the lowest set bit are 1s. This increases the likelihood of 4554 // being able to use a sign-extended element value in VECTOR REPLICATE 4555 // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. 4556 uint64_t SplatBitsZ = SplatBits.getZExtValue(); 4557 uint64_t SplatUndefZ = SplatUndef.getZExtValue(); 4558 uint64_t Lower = (SplatUndefZ 4559 & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); 4560 uint64_t Upper = (SplatUndefZ 4561 & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); 4562 uint64_t Value = SplatBitsZ | Upper | Lower; 4563 SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, 4564 SplatBitSize); 4565 if (Op.getNode()) 4566 return Op; 4567 4568 // Now try assuming that any undefined bits between the first and 4569 // last defined set bits are set. This increases the chances of 4570 // using a non-wraparound mask. 4571 uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; 4572 Value = SplatBitsZ | Middle; 4573 Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); 4574 if (Op.getNode()) 4575 return Op; 4576 } 4577 4578 // Fall back to loading it from memory. 4579 return SDValue(); 4580 } 4581 4582 // See if we should use shuffles to construct the vector from other vectors. 4583 if (SDValue Res = tryBuildVectorShuffle(DAG, BVN)) 4584 return Res; 4585 4586 // Detect SCALAR_TO_VECTOR conversions. 4587 if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) 4588 return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); 4589 4590 // Otherwise use buildVector to build the vector up from GPRs. 4591 unsigned NumElements = Op.getNumOperands(); 4592 SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); 4593 for (unsigned I = 0; I < NumElements; ++I) 4594 Ops[I] = Op.getOperand(I); 4595 return buildVector(DAG, DL, VT, Ops); 4596 } 4597 4598 SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, 4599 SelectionDAG &DAG) const { 4600 auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); 4601 SDLoc DL(Op); 4602 EVT VT = Op.getValueType(); 4603 unsigned NumElements = VT.getVectorNumElements(); 4604 4605 if (VSN->isSplat()) { 4606 SDValue Op0 = Op.getOperand(0); 4607 unsigned Index = VSN->getSplatIndex(); 4608 assert(Index < VT.getVectorNumElements() && 4609 "Splat index should be defined and in first operand"); 4610 // See whether the value we're splatting is directly available as a scalar. 4611 if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4612 Op0.getOpcode() == ISD::BUILD_VECTOR) 4613 return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); 4614 // Otherwise keep it as a vector-to-vector operation. 4615 return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), 4616 DAG.getConstant(Index, DL, MVT::i32)); 4617 } 4618 4619 GeneralShuffle GS(VT); 4620 for (unsigned I = 0; I < NumElements; ++I) { 4621 int Elt = VSN->getMaskElt(I); 4622 if (Elt < 0) 4623 GS.addUndef(); 4624 else if (!GS.add(Op.getOperand(unsigned(Elt) / NumElements), 4625 unsigned(Elt) % NumElements)) 4626 return SDValue(); 4627 } 4628 return GS.getNode(DAG, SDLoc(VSN)); 4629 } 4630 4631 SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, 4632 SelectionDAG &DAG) const { 4633 SDLoc DL(Op); 4634 // Just insert the scalar into element 0 of an undefined vector. 4635 return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, 4636 Op.getValueType(), DAG.getUNDEF(Op.getValueType()), 4637 Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); 4638 } 4639 4640 SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, 4641 SelectionDAG &DAG) const { 4642 // Handle insertions of floating-point values. 4643 SDLoc DL(Op); 4644 SDValue Op0 = Op.getOperand(0); 4645 SDValue Op1 = Op.getOperand(1); 4646 SDValue Op2 = Op.getOperand(2); 4647 EVT VT = Op.getValueType(); 4648 4649 // Insertions into constant indices of a v2f64 can be done using VPDI. 4650 // However, if the inserted value is a bitcast or a constant then it's 4651 // better to use GPRs, as below. 4652 if (VT == MVT::v2f64 && 4653 Op1.getOpcode() != ISD::BITCAST && 4654 Op1.getOpcode() != ISD::ConstantFP && 4655 Op2.getOpcode() == ISD::Constant) { 4656 uint64_t Index = cast<ConstantSDNode>(Op2)->getZExtValue(); 4657 unsigned Mask = VT.getVectorNumElements() - 1; 4658 if (Index <= Mask) 4659 return Op; 4660 } 4661 4662 // Otherwise bitcast to the equivalent integer form and insert via a GPR. 4663 MVT IntVT = MVT::getIntegerVT(VT.getScalarSizeInBits()); 4664 MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); 4665 SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, 4666 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), 4667 DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); 4668 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4669 } 4670 4671 SDValue 4672 SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, 4673 SelectionDAG &DAG) const { 4674 // Handle extractions of floating-point values. 4675 SDLoc DL(Op); 4676 SDValue Op0 = Op.getOperand(0); 4677 SDValue Op1 = Op.getOperand(1); 4678 EVT VT = Op.getValueType(); 4679 EVT VecVT = Op0.getValueType(); 4680 4681 // Extractions of constant indices can be done directly. 4682 if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { 4683 uint64_t Index = CIndexN->getZExtValue(); 4684 unsigned Mask = VecVT.getVectorNumElements() - 1; 4685 if (Index <= Mask) 4686 return Op; 4687 } 4688 4689 // Otherwise bitcast to the equivalent integer form and extract via a GPR. 4690 MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); 4691 MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); 4692 SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, 4693 DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); 4694 return DAG.getNode(ISD::BITCAST, DL, VT, Res); 4695 } 4696 4697 SDValue 4698 SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, 4699 unsigned UnpackHigh) const { 4700 SDValue PackedOp = Op.getOperand(0); 4701 EVT OutVT = Op.getValueType(); 4702 EVT InVT = PackedOp.getValueType(); 4703 unsigned ToBits = OutVT.getScalarSizeInBits(); 4704 unsigned FromBits = InVT.getScalarSizeInBits(); 4705 do { 4706 FromBits *= 2; 4707 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), 4708 SystemZ::VectorBits / FromBits); 4709 PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); 4710 } while (FromBits != ToBits); 4711 return PackedOp; 4712 } 4713 4714 SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, 4715 unsigned ByScalar) const { 4716 // Look for cases where a vector shift can use the *_BY_SCALAR form. 4717 SDValue Op0 = Op.getOperand(0); 4718 SDValue Op1 = Op.getOperand(1); 4719 SDLoc DL(Op); 4720 EVT VT = Op.getValueType(); 4721 unsigned ElemBitSize = VT.getScalarSizeInBits(); 4722 4723 // See whether the shift vector is a splat represented as BUILD_VECTOR. 4724 if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { 4725 APInt SplatBits, SplatUndef; 4726 unsigned SplatBitSize; 4727 bool HasAnyUndefs; 4728 // Check for constant splats. Use ElemBitSize as the minimum element 4729 // width and reject splats that need wider elements. 4730 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, 4731 ElemBitSize, true) && 4732 SplatBitSize == ElemBitSize) { 4733 SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, 4734 DL, MVT::i32); 4735 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4736 } 4737 // Check for variable splats. 4738 BitVector UndefElements; 4739 SDValue Splat = BVN->getSplatValue(&UndefElements); 4740 if (Splat) { 4741 // Since i32 is the smallest legal type, we either need a no-op 4742 // or a truncation. 4743 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); 4744 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4745 } 4746 } 4747 4748 // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, 4749 // and the shift amount is directly available in a GPR. 4750 if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { 4751 if (VSN->isSplat()) { 4752 SDValue VSNOp0 = VSN->getOperand(0); 4753 unsigned Index = VSN->getSplatIndex(); 4754 assert(Index < VT.getVectorNumElements() && 4755 "Splat index should be defined and in first operand"); 4756 if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || 4757 VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { 4758 // Since i32 is the smallest legal type, we either need a no-op 4759 // or a truncation. 4760 SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, 4761 VSNOp0.getOperand(Index)); 4762 return DAG.getNode(ByScalar, DL, VT, Op0, Shift); 4763 } 4764 } 4765 } 4766 4767 // Otherwise just treat the current form as legal. 4768 return Op; 4769 } 4770 4771 SDValue SystemZTargetLowering::LowerOperation(SDValue Op, 4772 SelectionDAG &DAG) const { 4773 switch (Op.getOpcode()) { 4774 case ISD::FRAMEADDR: 4775 return lowerFRAMEADDR(Op, DAG); 4776 case ISD::RETURNADDR: 4777 return lowerRETURNADDR(Op, DAG); 4778 case ISD::BR_CC: 4779 return lowerBR_CC(Op, DAG); 4780 case ISD::SELECT_CC: 4781 return lowerSELECT_CC(Op, DAG); 4782 case ISD::SETCC: 4783 return lowerSETCC(Op, DAG); 4784 case ISD::GlobalAddress: 4785 return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); 4786 case ISD::GlobalTLSAddress: 4787 return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); 4788 case ISD::BlockAddress: 4789 return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); 4790 case ISD::JumpTable: 4791 return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); 4792 case ISD::ConstantPool: 4793 return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); 4794 case ISD::BITCAST: 4795 return lowerBITCAST(Op, DAG); 4796 case ISD::VASTART: 4797 return lowerVASTART(Op, DAG); 4798 case ISD::VACOPY: 4799 return lowerVACOPY(Op, DAG); 4800 case ISD::DYNAMIC_STACKALLOC: 4801 return lowerDYNAMIC_STACKALLOC(Op, DAG); 4802 case ISD::GET_DYNAMIC_AREA_OFFSET: 4803 return lowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); 4804 case ISD::SMUL_LOHI: 4805 return lowerSMUL_LOHI(Op, DAG); 4806 case ISD::UMUL_LOHI: 4807 return lowerUMUL_LOHI(Op, DAG); 4808 case ISD::SDIVREM: 4809 return lowerSDIVREM(Op, DAG); 4810 case ISD::UDIVREM: 4811 return lowerUDIVREM(Op, DAG); 4812 case ISD::SADDO: 4813 case ISD::SSUBO: 4814 case ISD::UADDO: 4815 case ISD::USUBO: 4816 return lowerXALUO(Op, DAG); 4817 case ISD::ADDCARRY: 4818 case ISD::SUBCARRY: 4819 return lowerADDSUBCARRY(Op, DAG); 4820 case ISD::OR: 4821 return lowerOR(Op, DAG); 4822 case ISD::CTPOP: 4823 return lowerCTPOP(Op, DAG); 4824 case ISD::ATOMIC_FENCE: 4825 return lowerATOMIC_FENCE(Op, DAG); 4826 case ISD::ATOMIC_SWAP: 4827 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); 4828 case ISD::ATOMIC_STORE: 4829 return lowerATOMIC_STORE(Op, DAG); 4830 case ISD::ATOMIC_LOAD: 4831 return lowerATOMIC_LOAD(Op, DAG); 4832 case ISD::ATOMIC_LOAD_ADD: 4833 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); 4834 case ISD::ATOMIC_LOAD_SUB: 4835 return lowerATOMIC_LOAD_SUB(Op, DAG); 4836 case ISD::ATOMIC_LOAD_AND: 4837 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); 4838 case ISD::ATOMIC_LOAD_OR: 4839 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); 4840 case ISD::ATOMIC_LOAD_XOR: 4841 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); 4842 case ISD::ATOMIC_LOAD_NAND: 4843 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); 4844 case ISD::ATOMIC_LOAD_MIN: 4845 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); 4846 case ISD::ATOMIC_LOAD_MAX: 4847 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); 4848 case ISD::ATOMIC_LOAD_UMIN: 4849 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); 4850 case ISD::ATOMIC_LOAD_UMAX: 4851 return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); 4852 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: 4853 return lowerATOMIC_CMP_SWAP(Op, DAG); 4854 case ISD::STACKSAVE: 4855 return lowerSTACKSAVE(Op, DAG); 4856 case ISD::STACKRESTORE: 4857 return lowerSTACKRESTORE(Op, DAG); 4858 case ISD::PREFETCH: 4859 return lowerPREFETCH(Op, DAG); 4860 case ISD::INTRINSIC_W_CHAIN: 4861 return lowerINTRINSIC_W_CHAIN(Op, DAG); 4862 case ISD::INTRINSIC_WO_CHAIN: 4863 return lowerINTRINSIC_WO_CHAIN(Op, DAG); 4864 case ISD::BUILD_VECTOR: 4865 return lowerBUILD_VECTOR(Op, DAG); 4866 case ISD::VECTOR_SHUFFLE: 4867 return lowerVECTOR_SHUFFLE(Op, DAG); 4868 case ISD::SCALAR_TO_VECTOR: 4869 return lowerSCALAR_TO_VECTOR(Op, DAG); 4870 case ISD::INSERT_VECTOR_ELT: 4871 return lowerINSERT_VECTOR_ELT(Op, DAG); 4872 case ISD::EXTRACT_VECTOR_ELT: 4873 return lowerEXTRACT_VECTOR_ELT(Op, DAG); 4874 case ISD::SIGN_EXTEND_VECTOR_INREG: 4875 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); 4876 case ISD::ZERO_EXTEND_VECTOR_INREG: 4877 return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); 4878 case ISD::SHL: 4879 return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); 4880 case ISD::SRL: 4881 return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); 4882 case ISD::SRA: 4883 return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); 4884 default: 4885 llvm_unreachable("Unexpected node to lower"); 4886 } 4887 } 4888 4889 // Lower operations with invalid operand or result types (currently used 4890 // only for 128-bit integer types). 4891 4892 static SDValue lowerI128ToGR128(SelectionDAG &DAG, SDValue In) { 4893 SDLoc DL(In); 4894 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4895 DAG.getIntPtrConstant(0, DL)); 4896 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, In, 4897 DAG.getIntPtrConstant(1, DL)); 4898 SDNode *Pair = DAG.getMachineNode(SystemZ::PAIR128, DL, 4899 MVT::Untyped, Hi, Lo); 4900 return SDValue(Pair, 0); 4901 } 4902 4903 static SDValue lowerGR128ToI128(SelectionDAG &DAG, SDValue In) { 4904 SDLoc DL(In); 4905 SDValue Hi = DAG.getTargetExtractSubreg(SystemZ::subreg_h64, 4906 DL, MVT::i64, In); 4907 SDValue Lo = DAG.getTargetExtractSubreg(SystemZ::subreg_l64, 4908 DL, MVT::i64, In); 4909 return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, Lo, Hi); 4910 } 4911 4912 void 4913 SystemZTargetLowering::LowerOperationWrapper(SDNode *N, 4914 SmallVectorImpl<SDValue> &Results, 4915 SelectionDAG &DAG) const { 4916 switch (N->getOpcode()) { 4917 case ISD::ATOMIC_LOAD: { 4918 SDLoc DL(N); 4919 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::Other); 4920 SDValue Ops[] = { N->getOperand(0), N->getOperand(1) }; 4921 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4922 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_LOAD_128, 4923 DL, Tys, Ops, MVT::i128, MMO); 4924 Results.push_back(lowerGR128ToI128(DAG, Res)); 4925 Results.push_back(Res.getValue(1)); 4926 break; 4927 } 4928 case ISD::ATOMIC_STORE: { 4929 SDLoc DL(N); 4930 SDVTList Tys = DAG.getVTList(MVT::Other); 4931 SDValue Ops[] = { N->getOperand(0), 4932 lowerI128ToGR128(DAG, N->getOperand(2)), 4933 N->getOperand(1) }; 4934 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4935 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_STORE_128, 4936 DL, Tys, Ops, MVT::i128, MMO); 4937 // We have to enforce sequential consistency by performing a 4938 // serialization operation after the store. 4939 if (cast<AtomicSDNode>(N)->getOrdering() == 4940 AtomicOrdering::SequentiallyConsistent) 4941 Res = SDValue(DAG.getMachineNode(SystemZ::Serialize, DL, 4942 MVT::Other, Res), 0); 4943 Results.push_back(Res); 4944 break; 4945 } 4946 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 4947 SDLoc DL(N); 4948 SDVTList Tys = DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other); 4949 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), 4950 lowerI128ToGR128(DAG, N->getOperand(2)), 4951 lowerI128ToGR128(DAG, N->getOperand(3)) }; 4952 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand(); 4953 SDValue Res = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAP_128, 4954 DL, Tys, Ops, MVT::i128, MMO); 4955 SDValue Success = emitSETCC(DAG, DL, Res.getValue(1), 4956 SystemZ::CCMASK_CS, SystemZ::CCMASK_CS_EQ); 4957 Success = DAG.getZExtOrTrunc(Success, DL, N->getValueType(1)); 4958 Results.push_back(lowerGR128ToI128(DAG, Res)); 4959 Results.push_back(Success); 4960 Results.push_back(Res.getValue(2)); 4961 break; 4962 } 4963 default: 4964 llvm_unreachable("Unexpected node to lower"); 4965 } 4966 } 4967 4968 void 4969 SystemZTargetLowering::ReplaceNodeResults(SDNode *N, 4970 SmallVectorImpl<SDValue> &Results, 4971 SelectionDAG &DAG) const { 4972 return LowerOperationWrapper(N, Results, DAG); 4973 } 4974 4975 const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { 4976 #define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME 4977 switch ((SystemZISD::NodeType)Opcode) { 4978 case SystemZISD::FIRST_NUMBER: break; 4979 OPCODE(RET_FLAG); 4980 OPCODE(CALL); 4981 OPCODE(SIBCALL); 4982 OPCODE(TLS_GDCALL); 4983 OPCODE(TLS_LDCALL); 4984 OPCODE(PCREL_WRAPPER); 4985 OPCODE(PCREL_OFFSET); 4986 OPCODE(IABS); 4987 OPCODE(ICMP); 4988 OPCODE(FCMP); 4989 OPCODE(TM); 4990 OPCODE(BR_CCMASK); 4991 OPCODE(SELECT_CCMASK); 4992 OPCODE(ADJDYNALLOC); 4993 OPCODE(POPCNT); 4994 OPCODE(SMUL_LOHI); 4995 OPCODE(UMUL_LOHI); 4996 OPCODE(SDIVREM); 4997 OPCODE(UDIVREM); 4998 OPCODE(SADDO); 4999 OPCODE(SSUBO); 5000 OPCODE(UADDO); 5001 OPCODE(USUBO); 5002 OPCODE(ADDCARRY); 5003 OPCODE(SUBCARRY); 5004 OPCODE(GET_CCMASK); 5005 OPCODE(MVC); 5006 OPCODE(MVC_LOOP); 5007 OPCODE(NC); 5008 OPCODE(NC_LOOP); 5009 OPCODE(OC); 5010 OPCODE(OC_LOOP); 5011 OPCODE(XC); 5012 OPCODE(XC_LOOP); 5013 OPCODE(CLC); 5014 OPCODE(CLC_LOOP); 5015 OPCODE(STPCPY); 5016 OPCODE(STRCMP); 5017 OPCODE(SEARCH_STRING); 5018 OPCODE(IPM); 5019 OPCODE(MEMBARRIER); 5020 OPCODE(TBEGIN); 5021 OPCODE(TBEGIN_NOFLOAT); 5022 OPCODE(TEND); 5023 OPCODE(BYTE_MASK); 5024 OPCODE(ROTATE_MASK); 5025 OPCODE(REPLICATE); 5026 OPCODE(JOIN_DWORDS); 5027 OPCODE(SPLAT); 5028 OPCODE(MERGE_HIGH); 5029 OPCODE(MERGE_LOW); 5030 OPCODE(SHL_DOUBLE); 5031 OPCODE(PERMUTE_DWORDS); 5032 OPCODE(PERMUTE); 5033 OPCODE(PACK); 5034 OPCODE(PACKS_CC); 5035 OPCODE(PACKLS_CC); 5036 OPCODE(UNPACK_HIGH); 5037 OPCODE(UNPACKL_HIGH); 5038 OPCODE(UNPACK_LOW); 5039 OPCODE(UNPACKL_LOW); 5040 OPCODE(VSHL_BY_SCALAR); 5041 OPCODE(VSRL_BY_SCALAR); 5042 OPCODE(VSRA_BY_SCALAR); 5043 OPCODE(VSUM); 5044 OPCODE(VICMPE); 5045 OPCODE(VICMPH); 5046 OPCODE(VICMPHL); 5047 OPCODE(VICMPES); 5048 OPCODE(VICMPHS); 5049 OPCODE(VICMPHLS); 5050 OPCODE(VFCMPE); 5051 OPCODE(VFCMPH); 5052 OPCODE(VFCMPHE); 5053 OPCODE(VFCMPES); 5054 OPCODE(VFCMPHS); 5055 OPCODE(VFCMPHES); 5056 OPCODE(VFTCI); 5057 OPCODE(VEXTEND); 5058 OPCODE(VROUND); 5059 OPCODE(VTM); 5060 OPCODE(VFAE_CC); 5061 OPCODE(VFAEZ_CC); 5062 OPCODE(VFEE_CC); 5063 OPCODE(VFEEZ_CC); 5064 OPCODE(VFENE_CC); 5065 OPCODE(VFENEZ_CC); 5066 OPCODE(VISTR_CC); 5067 OPCODE(VSTRC_CC); 5068 OPCODE(VSTRCZ_CC); 5069 OPCODE(TDC); 5070 OPCODE(ATOMIC_SWAPW); 5071 OPCODE(ATOMIC_LOADW_ADD); 5072 OPCODE(ATOMIC_LOADW_SUB); 5073 OPCODE(ATOMIC_LOADW_AND); 5074 OPCODE(ATOMIC_LOADW_OR); 5075 OPCODE(ATOMIC_LOADW_XOR); 5076 OPCODE(ATOMIC_LOADW_NAND); 5077 OPCODE(ATOMIC_LOADW_MIN); 5078 OPCODE(ATOMIC_LOADW_MAX); 5079 OPCODE(ATOMIC_LOADW_UMIN); 5080 OPCODE(ATOMIC_LOADW_UMAX); 5081 OPCODE(ATOMIC_CMP_SWAPW); 5082 OPCODE(ATOMIC_CMP_SWAP); 5083 OPCODE(ATOMIC_LOAD_128); 5084 OPCODE(ATOMIC_STORE_128); 5085 OPCODE(ATOMIC_CMP_SWAP_128); 5086 OPCODE(LRV); 5087 OPCODE(STRV); 5088 OPCODE(PREFETCH); 5089 } 5090 return nullptr; 5091 #undef OPCODE 5092 } 5093 5094 // Return true if VT is a vector whose elements are a whole number of bytes 5095 // in width. Also check for presence of vector support. 5096 bool SystemZTargetLowering::canTreatAsByteVector(EVT VT) const { 5097 if (!Subtarget.hasVector()) 5098 return false; 5099 5100 return VT.isVector() && VT.getScalarSizeInBits() % 8 == 0 && VT.isSimple(); 5101 } 5102 5103 // Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT 5104 // producing a result of type ResVT. Op is a possibly bitcast version 5105 // of the input vector and Index is the index (based on type VecVT) that 5106 // should be extracted. Return the new extraction if a simplification 5107 // was possible or if Force is true. 5108 SDValue SystemZTargetLowering::combineExtract(const SDLoc &DL, EVT ResVT, 5109 EVT VecVT, SDValue Op, 5110 unsigned Index, 5111 DAGCombinerInfo &DCI, 5112 bool Force) const { 5113 SelectionDAG &DAG = DCI.DAG; 5114 5115 // The number of bytes being extracted. 5116 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5117 5118 for (;;) { 5119 unsigned Opcode = Op.getOpcode(); 5120 if (Opcode == ISD::BITCAST) 5121 // Look through bitcasts. 5122 Op = Op.getOperand(0); 5123 else if ((Opcode == ISD::VECTOR_SHUFFLE || Opcode == SystemZISD::SPLAT) && 5124 canTreatAsByteVector(Op.getValueType())) { 5125 // Get a VPERM-like permute mask and see whether the bytes covered 5126 // by the extracted element are a contiguous sequence from one 5127 // source operand. 5128 SmallVector<int, SystemZ::VectorBytes> Bytes; 5129 if (!getVPermMask(Op, Bytes)) 5130 break; 5131 int First; 5132 if (!getShuffleInput(Bytes, Index * BytesPerElement, 5133 BytesPerElement, First)) 5134 break; 5135 if (First < 0) 5136 return DAG.getUNDEF(ResVT); 5137 // Make sure the contiguous sequence starts at a multiple of the 5138 // original element size. 5139 unsigned Byte = unsigned(First) % Bytes.size(); 5140 if (Byte % BytesPerElement != 0) 5141 break; 5142 // We can get the extracted value directly from an input. 5143 Index = Byte / BytesPerElement; 5144 Op = Op.getOperand(unsigned(First) / Bytes.size()); 5145 Force = true; 5146 } else if (Opcode == ISD::BUILD_VECTOR && 5147 canTreatAsByteVector(Op.getValueType())) { 5148 // We can only optimize this case if the BUILD_VECTOR elements are 5149 // at least as wide as the extracted value. 5150 EVT OpVT = Op.getValueType(); 5151 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5152 if (OpBytesPerElement < BytesPerElement) 5153 break; 5154 // Make sure that the least-significant bit of the extracted value 5155 // is the least significant bit of an input. 5156 unsigned End = (Index + 1) * BytesPerElement; 5157 if (End % OpBytesPerElement != 0) 5158 break; 5159 // We're extracting the low part of one operand of the BUILD_VECTOR. 5160 Op = Op.getOperand(End / OpBytesPerElement - 1); 5161 if (!Op.getValueType().isInteger()) { 5162 EVT VT = MVT::getIntegerVT(Op.getValueSizeInBits()); 5163 Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); 5164 DCI.AddToWorklist(Op.getNode()); 5165 } 5166 EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); 5167 Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); 5168 if (VT != ResVT) { 5169 DCI.AddToWorklist(Op.getNode()); 5170 Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); 5171 } 5172 return Op; 5173 } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || 5174 Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || 5175 Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && 5176 canTreatAsByteVector(Op.getValueType()) && 5177 canTreatAsByteVector(Op.getOperand(0).getValueType())) { 5178 // Make sure that only the unextended bits are significant. 5179 EVT ExtVT = Op.getValueType(); 5180 EVT OpVT = Op.getOperand(0).getValueType(); 5181 unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); 5182 unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); 5183 unsigned Byte = Index * BytesPerElement; 5184 unsigned SubByte = Byte % ExtBytesPerElement; 5185 unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; 5186 if (SubByte < MinSubByte || 5187 SubByte + BytesPerElement > ExtBytesPerElement) 5188 break; 5189 // Get the byte offset of the unextended element 5190 Byte = Byte / ExtBytesPerElement * OpBytesPerElement; 5191 // ...then add the byte offset relative to that element. 5192 Byte += SubByte - MinSubByte; 5193 if (Byte % BytesPerElement != 0) 5194 break; 5195 Op = Op.getOperand(0); 5196 Index = Byte / BytesPerElement; 5197 Force = true; 5198 } else 5199 break; 5200 } 5201 if (Force) { 5202 if (Op.getValueType() != VecVT) { 5203 Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); 5204 DCI.AddToWorklist(Op.getNode()); 5205 } 5206 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, 5207 DAG.getConstant(Index, DL, MVT::i32)); 5208 } 5209 return SDValue(); 5210 } 5211 5212 // Optimize vector operations in scalar value Op on the basis that Op 5213 // is truncated to TruncVT. 5214 SDValue SystemZTargetLowering::combineTruncateExtract( 5215 const SDLoc &DL, EVT TruncVT, SDValue Op, DAGCombinerInfo &DCI) const { 5216 // If we have (trunc (extract_vector_elt X, Y)), try to turn it into 5217 // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements 5218 // of type TruncVT. 5219 if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5220 TruncVT.getSizeInBits() % 8 == 0) { 5221 SDValue Vec = Op.getOperand(0); 5222 EVT VecVT = Vec.getValueType(); 5223 if (canTreatAsByteVector(VecVT)) { 5224 if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5225 unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); 5226 unsigned TruncBytes = TruncVT.getStoreSize(); 5227 if (BytesPerElement % TruncBytes == 0) { 5228 // Calculate the value of Y' in the above description. We are 5229 // splitting the original elements into Scale equal-sized pieces 5230 // and for truncation purposes want the last (least-significant) 5231 // of these pieces for IndexN. This is easiest to do by calculating 5232 // the start index of the following element and then subtracting 1. 5233 unsigned Scale = BytesPerElement / TruncBytes; 5234 unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; 5235 5236 // Defer the creation of the bitcast from X to combineExtract, 5237 // which might be able to optimize the extraction. 5238 VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), 5239 VecVT.getStoreSize() / TruncBytes); 5240 EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); 5241 return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); 5242 } 5243 } 5244 } 5245 } 5246 return SDValue(); 5247 } 5248 5249 SDValue SystemZTargetLowering::combineZERO_EXTEND( 5250 SDNode *N, DAGCombinerInfo &DCI) const { 5251 // Convert (zext (select_ccmask C1, C2)) into (select_ccmask C1', C2') 5252 SelectionDAG &DAG = DCI.DAG; 5253 SDValue N0 = N->getOperand(0); 5254 EVT VT = N->getValueType(0); 5255 if (N0.getOpcode() == SystemZISD::SELECT_CCMASK) { 5256 auto *TrueOp = dyn_cast<ConstantSDNode>(N0.getOperand(0)); 5257 auto *FalseOp = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5258 if (TrueOp && FalseOp) { 5259 SDLoc DL(N0); 5260 SDValue Ops[] = { DAG.getConstant(TrueOp->getZExtValue(), DL, VT), 5261 DAG.getConstant(FalseOp->getZExtValue(), DL, VT), 5262 N0.getOperand(2), N0.getOperand(3), N0.getOperand(4) }; 5263 SDValue NewSelect = DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VT, Ops); 5264 // If N0 has multiple uses, change other uses as well. 5265 if (!N0.hasOneUse()) { 5266 SDValue TruncSelect = 5267 DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), NewSelect); 5268 DCI.CombineTo(N0.getNode(), TruncSelect); 5269 } 5270 return NewSelect; 5271 } 5272 } 5273 return SDValue(); 5274 } 5275 5276 SDValue SystemZTargetLowering::combineSIGN_EXTEND_INREG( 5277 SDNode *N, DAGCombinerInfo &DCI) const { 5278 // Convert (sext_in_reg (setcc LHS, RHS, COND), i1) 5279 // and (sext_in_reg (any_extend (setcc LHS, RHS, COND)), i1) 5280 // into (select_cc LHS, RHS, -1, 0, COND) 5281 SelectionDAG &DAG = DCI.DAG; 5282 SDValue N0 = N->getOperand(0); 5283 EVT VT = N->getValueType(0); 5284 EVT EVT = cast<VTSDNode>(N->getOperand(1))->getVT(); 5285 if (N0.hasOneUse() && N0.getOpcode() == ISD::ANY_EXTEND) 5286 N0 = N0.getOperand(0); 5287 if (EVT == MVT::i1 && N0.hasOneUse() && N0.getOpcode() == ISD::SETCC) { 5288 SDLoc DL(N0); 5289 SDValue Ops[] = { N0.getOperand(0), N0.getOperand(1), 5290 DAG.getConstant(-1, DL, VT), DAG.getConstant(0, DL, VT), 5291 N0.getOperand(2) }; 5292 return DAG.getNode(ISD::SELECT_CC, DL, VT, Ops); 5293 } 5294 return SDValue(); 5295 } 5296 5297 SDValue SystemZTargetLowering::combineSIGN_EXTEND( 5298 SDNode *N, DAGCombinerInfo &DCI) const { 5299 // Convert (sext (ashr (shl X, C1), C2)) to 5300 // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as 5301 // cheap as narrower ones. 5302 SelectionDAG &DAG = DCI.DAG; 5303 SDValue N0 = N->getOperand(0); 5304 EVT VT = N->getValueType(0); 5305 if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { 5306 auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); 5307 SDValue Inner = N0.getOperand(0); 5308 if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { 5309 if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { 5310 unsigned Extra = (VT.getSizeInBits() - N0.getValueSizeInBits()); 5311 unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; 5312 unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; 5313 EVT ShiftVT = N0.getOperand(1).getValueType(); 5314 SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, 5315 Inner.getOperand(0)); 5316 SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, 5317 DAG.getConstant(NewShlAmt, SDLoc(Inner), 5318 ShiftVT)); 5319 return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, 5320 DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); 5321 } 5322 } 5323 } 5324 return SDValue(); 5325 } 5326 5327 SDValue SystemZTargetLowering::combineMERGE( 5328 SDNode *N, DAGCombinerInfo &DCI) const { 5329 SelectionDAG &DAG = DCI.DAG; 5330 unsigned Opcode = N->getOpcode(); 5331 SDValue Op0 = N->getOperand(0); 5332 SDValue Op1 = N->getOperand(1); 5333 if (Op0.getOpcode() == ISD::BITCAST) 5334 Op0 = Op0.getOperand(0); 5335 if (Op0.getOpcode() == SystemZISD::BYTE_MASK && 5336 cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { 5337 // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF 5338 // for v4f32. 5339 if (Op1 == N->getOperand(0)) 5340 return Op1; 5341 // (z_merge_? 0, X) -> (z_unpackl_? 0, X). 5342 EVT VT = Op1.getValueType(); 5343 unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); 5344 if (ElemBytes <= 4) { 5345 Opcode = (Opcode == SystemZISD::MERGE_HIGH ? 5346 SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); 5347 EVT InVT = VT.changeVectorElementTypeToInteger(); 5348 EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), 5349 SystemZ::VectorBytes / ElemBytes / 2); 5350 if (VT != InVT) { 5351 Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); 5352 DCI.AddToWorklist(Op1.getNode()); 5353 } 5354 SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); 5355 DCI.AddToWorklist(Op.getNode()); 5356 return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 5357 } 5358 } 5359 return SDValue(); 5360 } 5361 5362 SDValue SystemZTargetLowering::combineSTORE( 5363 SDNode *N, DAGCombinerInfo &DCI) const { 5364 SelectionDAG &DAG = DCI.DAG; 5365 auto *SN = cast<StoreSDNode>(N); 5366 auto &Op1 = N->getOperand(1); 5367 EVT MemVT = SN->getMemoryVT(); 5368 // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better 5369 // for the extraction to be done on a vMiN value, so that we can use VSTE. 5370 // If X has wider elements then convert it to: 5371 // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). 5372 if (MemVT.isInteger() && SN->isTruncatingStore()) { 5373 if (SDValue Value = 5374 combineTruncateExtract(SDLoc(N), MemVT, SN->getValue(), DCI)) { 5375 DCI.AddToWorklist(Value.getNode()); 5376 5377 // Rewrite the store with the new form of stored value. 5378 return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, 5379 SN->getBasePtr(), SN->getMemoryVT(), 5380 SN->getMemOperand()); 5381 } 5382 } 5383 // Combine STORE (BSWAP) into STRVH/STRV/STRVG 5384 if (!SN->isTruncatingStore() && 5385 Op1.getOpcode() == ISD::BSWAP && 5386 Op1.getNode()->hasOneUse() && 5387 (Op1.getValueType() == MVT::i16 || 5388 Op1.getValueType() == MVT::i32 || 5389 Op1.getValueType() == MVT::i64)) { 5390 5391 SDValue BSwapOp = Op1.getOperand(0); 5392 5393 if (BSwapOp.getValueType() == MVT::i16) 5394 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N), MVT::i32, BSwapOp); 5395 5396 SDValue Ops[] = { 5397 N->getOperand(0), BSwapOp, N->getOperand(2), 5398 DAG.getValueType(Op1.getValueType()) 5399 }; 5400 5401 return 5402 DAG.getMemIntrinsicNode(SystemZISD::STRV, SDLoc(N), DAG.getVTList(MVT::Other), 5403 Ops, MemVT, SN->getMemOperand()); 5404 } 5405 return SDValue(); 5406 } 5407 5408 SDValue SystemZTargetLowering::combineEXTRACT_VECTOR_ELT( 5409 SDNode *N, DAGCombinerInfo &DCI) const { 5410 5411 if (!Subtarget.hasVector()) 5412 return SDValue(); 5413 5414 // Try to simplify a vector extraction. 5415 if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { 5416 SDValue Op0 = N->getOperand(0); 5417 EVT VecVT = Op0.getValueType(); 5418 return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, 5419 IndexN->getZExtValue(), DCI, false); 5420 } 5421 return SDValue(); 5422 } 5423 5424 SDValue SystemZTargetLowering::combineJOIN_DWORDS( 5425 SDNode *N, DAGCombinerInfo &DCI) const { 5426 SelectionDAG &DAG = DCI.DAG; 5427 // (join_dwords X, X) == (replicate X) 5428 if (N->getOperand(0) == N->getOperand(1)) 5429 return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), 5430 N->getOperand(0)); 5431 return SDValue(); 5432 } 5433 5434 SDValue SystemZTargetLowering::combineFP_ROUND( 5435 SDNode *N, DAGCombinerInfo &DCI) const { 5436 // (fpround (extract_vector_elt X 0)) 5437 // (fpround (extract_vector_elt X 1)) -> 5438 // (extract_vector_elt (VROUND X) 0) 5439 // (extract_vector_elt (VROUND X) 1) 5440 // 5441 // This is a special case since the target doesn't really support v2f32s. 5442 SelectionDAG &DAG = DCI.DAG; 5443 SDValue Op0 = N->getOperand(0); 5444 if (N->getValueType(0) == MVT::f32 && 5445 Op0.hasOneUse() && 5446 Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5447 Op0.getOperand(0).getValueType() == MVT::v2f64 && 5448 Op0.getOperand(1).getOpcode() == ISD::Constant && 5449 cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { 5450 SDValue Vec = Op0.getOperand(0); 5451 for (auto *U : Vec->uses()) { 5452 if (U != Op0.getNode() && 5453 U->hasOneUse() && 5454 U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5455 U->getOperand(0) == Vec && 5456 U->getOperand(1).getOpcode() == ISD::Constant && 5457 cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { 5458 SDValue OtherRound = SDValue(*U->use_begin(), 0); 5459 if (OtherRound.getOpcode() == ISD::FP_ROUND && 5460 OtherRound.getOperand(0) == SDValue(U, 0) && 5461 OtherRound.getValueType() == MVT::f32) { 5462 SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), 5463 MVT::v4f32, Vec); 5464 DCI.AddToWorklist(VRound.getNode()); 5465 SDValue Extract1 = 5466 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, 5467 VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); 5468 DCI.AddToWorklist(Extract1.getNode()); 5469 DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); 5470 SDValue Extract0 = 5471 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, 5472 VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); 5473 return Extract0; 5474 } 5475 } 5476 } 5477 } 5478 return SDValue(); 5479 } 5480 5481 SDValue SystemZTargetLowering::combineBSWAP( 5482 SDNode *N, DAGCombinerInfo &DCI) const { 5483 SelectionDAG &DAG = DCI.DAG; 5484 // Combine BSWAP (LOAD) into LRVH/LRV/LRVG 5485 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) && 5486 N->getOperand(0).hasOneUse() && 5487 (N->getValueType(0) == MVT::i16 || N->getValueType(0) == MVT::i32 || 5488 N->getValueType(0) == MVT::i64)) { 5489 SDValue Load = N->getOperand(0); 5490 LoadSDNode *LD = cast<LoadSDNode>(Load); 5491 5492 // Create the byte-swapping load. 5493 SDValue Ops[] = { 5494 LD->getChain(), // Chain 5495 LD->getBasePtr(), // Ptr 5496 DAG.getValueType(N->getValueType(0)) // VT 5497 }; 5498 SDValue BSLoad = 5499 DAG.getMemIntrinsicNode(SystemZISD::LRV, SDLoc(N), 5500 DAG.getVTList(N->getValueType(0) == MVT::i64 ? 5501 MVT::i64 : MVT::i32, MVT::Other), 5502 Ops, LD->getMemoryVT(), LD->getMemOperand()); 5503 5504 // If this is an i16 load, insert the truncate. 5505 SDValue ResVal = BSLoad; 5506 if (N->getValueType(0) == MVT::i16) 5507 ResVal = DAG.getNode(ISD::TRUNCATE, SDLoc(N), MVT::i16, BSLoad); 5508 5509 // First, combine the bswap away. This makes the value produced by the 5510 // load dead. 5511 DCI.CombineTo(N, ResVal); 5512 5513 // Next, combine the load away, we give it a bogus result value but a real 5514 // chain result. The result value is dead because the bswap is dead. 5515 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); 5516 5517 // Return N so it doesn't get rechecked! 5518 return SDValue(N, 0); 5519 } 5520 return SDValue(); 5521 } 5522 5523 static bool combineCCMask(SDValue &CCReg, int &CCValid, int &CCMask) { 5524 // We have a SELECT_CCMASK or BR_CCMASK comparing the condition code 5525 // set by the CCReg instruction using the CCValid / CCMask masks, 5526 // If the CCReg instruction is itself a (ICMP (SELECT_CCMASK)) testing 5527 // the condition code set by some other instruction, see whether we 5528 // can directly use that condition code. 5529 bool Invert = false; 5530 5531 // Verify that we have an appropriate mask for a EQ or NE comparison. 5532 if (CCValid != SystemZ::CCMASK_ICMP) 5533 return false; 5534 if (CCMask == SystemZ::CCMASK_CMP_NE) 5535 Invert = !Invert; 5536 else if (CCMask != SystemZ::CCMASK_CMP_EQ) 5537 return false; 5538 5539 // Verify that we have an ICMP that is the user of a SELECT_CCMASK. 5540 SDNode *ICmp = CCReg.getNode(); 5541 if (ICmp->getOpcode() != SystemZISD::ICMP) 5542 return false; 5543 SDNode *Select = ICmp->getOperand(0).getNode(); 5544 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5545 return false; 5546 5547 // Verify that the ICMP compares against one of select values. 5548 auto *CompareVal = dyn_cast<ConstantSDNode>(ICmp->getOperand(1)); 5549 if (!CompareVal) 5550 return false; 5551 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5552 if (!TrueVal) 5553 return false; 5554 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5555 if (!FalseVal) 5556 return false; 5557 if (CompareVal->getZExtValue() == FalseVal->getZExtValue()) 5558 Invert = !Invert; 5559 else if (CompareVal->getZExtValue() != TrueVal->getZExtValue()) 5560 return false; 5561 5562 // Compute the effective CC mask for the new branch or select. 5563 auto *NewCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5564 auto *NewCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5565 if (!NewCCValid || !NewCCMask) 5566 return false; 5567 CCValid = NewCCValid->getZExtValue(); 5568 CCMask = NewCCMask->getZExtValue(); 5569 if (Invert) 5570 CCMask ^= CCValid; 5571 5572 // Return the updated CCReg link. 5573 CCReg = Select->getOperand(4); 5574 return true; 5575 } 5576 5577 SDValue SystemZTargetLowering::combineBR_CCMASK( 5578 SDNode *N, DAGCombinerInfo &DCI) const { 5579 SelectionDAG &DAG = DCI.DAG; 5580 5581 // Combine BR_CCMASK (ICMP (SELECT_CCMASK)) into a single BR_CCMASK. 5582 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5583 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5584 if (!CCValid || !CCMask) 5585 return SDValue(); 5586 5587 int CCValidVal = CCValid->getZExtValue(); 5588 int CCMaskVal = CCMask->getZExtValue(); 5589 SDValue Chain = N->getOperand(0); 5590 SDValue CCReg = N->getOperand(4); 5591 5592 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5593 return DAG.getNode(SystemZISD::BR_CCMASK, SDLoc(N), N->getValueType(0), 5594 Chain, 5595 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5596 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5597 N->getOperand(3), CCReg); 5598 return SDValue(); 5599 } 5600 5601 SDValue SystemZTargetLowering::combineSELECT_CCMASK( 5602 SDNode *N, DAGCombinerInfo &DCI) const { 5603 SelectionDAG &DAG = DCI.DAG; 5604 5605 // Combine SELECT_CCMASK (ICMP (SELECT_CCMASK)) into a single SELECT_CCMASK. 5606 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5607 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(3)); 5608 if (!CCValid || !CCMask) 5609 return SDValue(); 5610 5611 int CCValidVal = CCValid->getZExtValue(); 5612 int CCMaskVal = CCMask->getZExtValue(); 5613 SDValue CCReg = N->getOperand(4); 5614 5615 if (combineCCMask(CCReg, CCValidVal, CCMaskVal)) 5616 return DAG.getNode(SystemZISD::SELECT_CCMASK, SDLoc(N), N->getValueType(0), 5617 N->getOperand(0), 5618 N->getOperand(1), 5619 DAG.getConstant(CCValidVal, SDLoc(N), MVT::i32), 5620 DAG.getConstant(CCMaskVal, SDLoc(N), MVT::i32), 5621 CCReg); 5622 return SDValue(); 5623 } 5624 5625 5626 SDValue SystemZTargetLowering::combineGET_CCMASK( 5627 SDNode *N, DAGCombinerInfo &DCI) const { 5628 5629 // Optimize away GET_CCMASK (SELECT_CCMASK) if the CC masks are compatible 5630 auto *CCValid = dyn_cast<ConstantSDNode>(N->getOperand(1)); 5631 auto *CCMask = dyn_cast<ConstantSDNode>(N->getOperand(2)); 5632 if (!CCValid || !CCMask) 5633 return SDValue(); 5634 int CCValidVal = CCValid->getZExtValue(); 5635 int CCMaskVal = CCMask->getZExtValue(); 5636 5637 SDValue Select = N->getOperand(0); 5638 if (Select->getOpcode() != SystemZISD::SELECT_CCMASK) 5639 return SDValue(); 5640 5641 auto *SelectCCValid = dyn_cast<ConstantSDNode>(Select->getOperand(2)); 5642 auto *SelectCCMask = dyn_cast<ConstantSDNode>(Select->getOperand(3)); 5643 if (!SelectCCValid || !SelectCCMask) 5644 return SDValue(); 5645 int SelectCCValidVal = SelectCCValid->getZExtValue(); 5646 int SelectCCMaskVal = SelectCCMask->getZExtValue(); 5647 5648 auto *TrueVal = dyn_cast<ConstantSDNode>(Select->getOperand(0)); 5649 auto *FalseVal = dyn_cast<ConstantSDNode>(Select->getOperand(1)); 5650 if (!TrueVal || !FalseVal) 5651 return SDValue(); 5652 if (TrueVal->getZExtValue() != 0 && FalseVal->getZExtValue() == 0) 5653 ; 5654 else if (TrueVal->getZExtValue() == 0 && FalseVal->getZExtValue() != 0) 5655 SelectCCMaskVal ^= SelectCCValidVal; 5656 else 5657 return SDValue(); 5658 5659 if (SelectCCValidVal & ~CCValidVal) 5660 return SDValue(); 5661 if (SelectCCMaskVal != (CCMaskVal & SelectCCValidVal)) 5662 return SDValue(); 5663 5664 return Select->getOperand(4); 5665 } 5666 5667 SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, 5668 DAGCombinerInfo &DCI) const { 5669 switch(N->getOpcode()) { 5670 default: break; 5671 case ISD::ZERO_EXTEND: return combineZERO_EXTEND(N, DCI); 5672 case ISD::SIGN_EXTEND: return combineSIGN_EXTEND(N, DCI); 5673 case ISD::SIGN_EXTEND_INREG: return combineSIGN_EXTEND_INREG(N, DCI); 5674 case SystemZISD::MERGE_HIGH: 5675 case SystemZISD::MERGE_LOW: return combineMERGE(N, DCI); 5676 case ISD::STORE: return combineSTORE(N, DCI); 5677 case ISD::EXTRACT_VECTOR_ELT: return combineEXTRACT_VECTOR_ELT(N, DCI); 5678 case SystemZISD::JOIN_DWORDS: return combineJOIN_DWORDS(N, DCI); 5679 case ISD::FP_ROUND: return combineFP_ROUND(N, DCI); 5680 case ISD::BSWAP: return combineBSWAP(N, DCI); 5681 case SystemZISD::BR_CCMASK: return combineBR_CCMASK(N, DCI); 5682 case SystemZISD::SELECT_CCMASK: return combineSELECT_CCMASK(N, DCI); 5683 case SystemZISD::GET_CCMASK: return combineGET_CCMASK(N, DCI); 5684 } 5685 5686 return SDValue(); 5687 } 5688 5689 // Return the demanded elements for the OpNo source operand of Op. DemandedElts 5690 // are for Op. 5691 static APInt getDemandedSrcElements(SDValue Op, const APInt &DemandedElts, 5692 unsigned OpNo) { 5693 EVT VT = Op.getValueType(); 5694 unsigned NumElts = (VT.isVector() ? VT.getVectorNumElements() : 1); 5695 APInt SrcDemE; 5696 unsigned Opcode = Op.getOpcode(); 5697 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5698 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5699 switch (Id) { 5700 case Intrinsic::s390_vpksh: // PACKS 5701 case Intrinsic::s390_vpksf: 5702 case Intrinsic::s390_vpksg: 5703 case Intrinsic::s390_vpkshs: // PACKS_CC 5704 case Intrinsic::s390_vpksfs: 5705 case Intrinsic::s390_vpksgs: 5706 case Intrinsic::s390_vpklsh: // PACKLS 5707 case Intrinsic::s390_vpklsf: 5708 case Intrinsic::s390_vpklsg: 5709 case Intrinsic::s390_vpklshs: // PACKLS_CC 5710 case Intrinsic::s390_vpklsfs: 5711 case Intrinsic::s390_vpklsgs: 5712 // VECTOR PACK truncates the elements of two source vectors into one. 5713 SrcDemE = DemandedElts; 5714 if (OpNo == 2) 5715 SrcDemE.lshrInPlace(NumElts / 2); 5716 SrcDemE = SrcDemE.trunc(NumElts / 2); 5717 break; 5718 // VECTOR UNPACK extends half the elements of the source vector. 5719 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5720 case Intrinsic::s390_vuphh: 5721 case Intrinsic::s390_vuphf: 5722 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5723 case Intrinsic::s390_vuplhh: 5724 case Intrinsic::s390_vuplhf: 5725 SrcDemE = APInt(NumElts * 2, 0); 5726 SrcDemE.insertBits(DemandedElts, 0); 5727 break; 5728 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5729 case Intrinsic::s390_vuplhw: 5730 case Intrinsic::s390_vuplf: 5731 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5732 case Intrinsic::s390_vupllh: 5733 case Intrinsic::s390_vupllf: 5734 SrcDemE = APInt(NumElts * 2, 0); 5735 SrcDemE.insertBits(DemandedElts, NumElts); 5736 break; 5737 case Intrinsic::s390_vpdi: { 5738 // VECTOR PERMUTE DWORD IMMEDIATE selects one element from each source. 5739 SrcDemE = APInt(NumElts, 0); 5740 if (!DemandedElts[OpNo - 1]) 5741 break; 5742 unsigned Mask = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5743 unsigned MaskBit = ((OpNo - 1) ? 1 : 4); 5744 // Demand input element 0 or 1, given by the mask bit value. 5745 SrcDemE.setBit((Mask & MaskBit)? 1 : 0); 5746 break; 5747 } 5748 case Intrinsic::s390_vsldb: { 5749 // VECTOR SHIFT LEFT DOUBLE BY BYTE 5750 assert(VT == MVT::v16i8 && "Unexpected type."); 5751 unsigned FirstIdx = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); 5752 assert (FirstIdx > 0 && FirstIdx < 16 && "Unused operand."); 5753 unsigned NumSrc0Els = 16 - FirstIdx; 5754 SrcDemE = APInt(NumElts, 0); 5755 if (OpNo == 1) { 5756 APInt DemEls = DemandedElts.trunc(NumSrc0Els); 5757 SrcDemE.insertBits(DemEls, FirstIdx); 5758 } else { 5759 APInt DemEls = DemandedElts.lshr(NumSrc0Els); 5760 SrcDemE.insertBits(DemEls, 0); 5761 } 5762 break; 5763 } 5764 case Intrinsic::s390_vperm: 5765 SrcDemE = APInt(NumElts, 1); 5766 break; 5767 default: 5768 llvm_unreachable("Unhandled intrinsic."); 5769 break; 5770 } 5771 } else { 5772 switch (Opcode) { 5773 case SystemZISD::JOIN_DWORDS: 5774 // Scalar operand. 5775 SrcDemE = APInt(1, 1); 5776 break; 5777 case SystemZISD::SELECT_CCMASK: 5778 SrcDemE = DemandedElts; 5779 break; 5780 default: 5781 llvm_unreachable("Unhandled opcode."); 5782 break; 5783 } 5784 } 5785 return SrcDemE; 5786 } 5787 5788 static void computeKnownBitsBinOp(const SDValue Op, KnownBits &Known, 5789 const APInt &DemandedElts, 5790 const SelectionDAG &DAG, unsigned Depth, 5791 unsigned OpNo) { 5792 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5793 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5794 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 5795 KnownBits LHSKnown(SrcBitWidth), RHSKnown(SrcBitWidth); 5796 DAG.computeKnownBits(Op.getOperand(OpNo), LHSKnown, Src0DemE, Depth + 1); 5797 DAG.computeKnownBits(Op.getOperand(OpNo + 1), RHSKnown, Src1DemE, Depth + 1); 5798 Known.Zero = LHSKnown.Zero & RHSKnown.Zero; 5799 Known.One = LHSKnown.One & RHSKnown.One; 5800 } 5801 5802 void 5803 SystemZTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 5804 KnownBits &Known, 5805 const APInt &DemandedElts, 5806 const SelectionDAG &DAG, 5807 unsigned Depth) const { 5808 Known.resetAll(); 5809 5810 // Intrinsic CC result is returned in the two low bits. 5811 unsigned tmp0, tmp1; // not used 5812 if (Op.getResNo() == 1 && isIntrinsicWithCC(Op, tmp0, tmp1)) { 5813 Known.Zero.setBitsFrom(2); 5814 return; 5815 } 5816 EVT VT = Op.getValueType(); 5817 if (Op.getResNo() != 0 || VT == MVT::Untyped) 5818 return; 5819 assert (Known.getBitWidth() == VT.getScalarSizeInBits() && 5820 "KnownBits does not match VT in bitwidth"); 5821 assert ((!VT.isVector() || 5822 (DemandedElts.getBitWidth() == VT.getVectorNumElements())) && 5823 "DemandedElts does not match VT number of elements"); 5824 unsigned BitWidth = Known.getBitWidth(); 5825 unsigned Opcode = Op.getOpcode(); 5826 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5827 bool IsLogical = false; 5828 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5829 switch (Id) { 5830 case Intrinsic::s390_vpksh: // PACKS 5831 case Intrinsic::s390_vpksf: 5832 case Intrinsic::s390_vpksg: 5833 case Intrinsic::s390_vpkshs: // PACKS_CC 5834 case Intrinsic::s390_vpksfs: 5835 case Intrinsic::s390_vpksgs: 5836 case Intrinsic::s390_vpklsh: // PACKLS 5837 case Intrinsic::s390_vpklsf: 5838 case Intrinsic::s390_vpklsg: 5839 case Intrinsic::s390_vpklshs: // PACKLS_CC 5840 case Intrinsic::s390_vpklsfs: 5841 case Intrinsic::s390_vpklsgs: 5842 case Intrinsic::s390_vpdi: 5843 case Intrinsic::s390_vsldb: 5844 case Intrinsic::s390_vperm: 5845 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 1); 5846 break; 5847 case Intrinsic::s390_vuplhb: // VECTOR UNPACK LOGICAL HIGH 5848 case Intrinsic::s390_vuplhh: 5849 case Intrinsic::s390_vuplhf: 5850 case Intrinsic::s390_vupllb: // VECTOR UNPACK LOGICAL LOW 5851 case Intrinsic::s390_vupllh: 5852 case Intrinsic::s390_vupllf: 5853 IsLogical = true; 5854 LLVM_FALLTHROUGH; 5855 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5856 case Intrinsic::s390_vuphh: 5857 case Intrinsic::s390_vuphf: 5858 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5859 case Intrinsic::s390_vuplhw: 5860 case Intrinsic::s390_vuplf: { 5861 SDValue SrcOp = Op.getOperand(1); 5862 unsigned SrcBitWidth = SrcOp.getScalarValueSizeInBits(); 5863 Known = KnownBits(SrcBitWidth); 5864 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 0); 5865 DAG.computeKnownBits(SrcOp, Known, SrcDemE, Depth + 1); 5866 if (IsLogical) { 5867 Known = Known.zext(BitWidth); 5868 Known.Zero.setBitsFrom(SrcBitWidth); 5869 } else 5870 Known = Known.sext(BitWidth); 5871 break; 5872 } 5873 default: 5874 break; 5875 } 5876 } else { 5877 switch (Opcode) { 5878 case SystemZISD::JOIN_DWORDS: 5879 case SystemZISD::SELECT_CCMASK: 5880 computeKnownBitsBinOp(Op, Known, DemandedElts, DAG, Depth, 0); 5881 break; 5882 case SystemZISD::REPLICATE: { 5883 SDValue SrcOp = Op.getOperand(0); 5884 DAG.computeKnownBits(SrcOp, Known, Depth + 1); 5885 if (Known.getBitWidth() < BitWidth && isa<ConstantSDNode>(SrcOp)) 5886 Known = Known.sext(BitWidth); // VREPI sign extends the immedate. 5887 break; 5888 } 5889 default: 5890 break; 5891 } 5892 } 5893 5894 // Known has the width of the source operand(s). Adjust if needed to match 5895 // the passed bitwidth. 5896 if (Known.getBitWidth() != BitWidth) 5897 Known = Known.zextOrTrunc(BitWidth); 5898 } 5899 5900 static unsigned computeNumSignBitsBinOp(SDValue Op, const APInt &DemandedElts, 5901 const SelectionDAG &DAG, unsigned Depth, 5902 unsigned OpNo) { 5903 APInt Src0DemE = getDemandedSrcElements(Op, DemandedElts, OpNo); 5904 unsigned LHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo), Src0DemE, Depth + 1); 5905 if (LHS == 1) return 1; // Early out. 5906 APInt Src1DemE = getDemandedSrcElements(Op, DemandedElts, OpNo + 1); 5907 unsigned RHS = DAG.ComputeNumSignBits(Op.getOperand(OpNo + 1), Src1DemE, Depth + 1); 5908 if (RHS == 1) return 1; // Early out. 5909 unsigned Common = std::min(LHS, RHS); 5910 unsigned SrcBitWidth = Op.getOperand(OpNo).getScalarValueSizeInBits(); 5911 EVT VT = Op.getValueType(); 5912 unsigned VTBits = VT.getScalarSizeInBits(); 5913 if (SrcBitWidth > VTBits) { // PACK 5914 unsigned SrcExtraBits = SrcBitWidth - VTBits; 5915 if (Common > SrcExtraBits) 5916 return (Common - SrcExtraBits); 5917 return 1; 5918 } 5919 assert (SrcBitWidth == VTBits && "Expected operands of same bitwidth."); 5920 return Common; 5921 } 5922 5923 unsigned 5924 SystemZTargetLowering::ComputeNumSignBitsForTargetNode( 5925 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 5926 unsigned Depth) const { 5927 if (Op.getResNo() != 0) 5928 return 1; 5929 unsigned Opcode = Op.getOpcode(); 5930 if (Opcode == ISD::INTRINSIC_WO_CHAIN) { 5931 unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 5932 switch (Id) { 5933 case Intrinsic::s390_vpksh: // PACKS 5934 case Intrinsic::s390_vpksf: 5935 case Intrinsic::s390_vpksg: 5936 case Intrinsic::s390_vpkshs: // PACKS_CC 5937 case Intrinsic::s390_vpksfs: 5938 case Intrinsic::s390_vpksgs: 5939 case Intrinsic::s390_vpklsh: // PACKLS 5940 case Intrinsic::s390_vpklsf: 5941 case Intrinsic::s390_vpklsg: 5942 case Intrinsic::s390_vpklshs: // PACKLS_CC 5943 case Intrinsic::s390_vpklsfs: 5944 case Intrinsic::s390_vpklsgs: 5945 case Intrinsic::s390_vpdi: 5946 case Intrinsic::s390_vsldb: 5947 case Intrinsic::s390_vperm: 5948 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 1); 5949 case Intrinsic::s390_vuphb: // VECTOR UNPACK HIGH 5950 case Intrinsic::s390_vuphh: 5951 case Intrinsic::s390_vuphf: 5952 case Intrinsic::s390_vuplb: // VECTOR UNPACK LOW 5953 case Intrinsic::s390_vuplhw: 5954 case Intrinsic::s390_vuplf: { 5955 SDValue PackedOp = Op.getOperand(1); 5956 APInt SrcDemE = getDemandedSrcElements(Op, DemandedElts, 1); 5957 unsigned Tmp = DAG.ComputeNumSignBits(PackedOp, SrcDemE, Depth + 1); 5958 EVT VT = Op.getValueType(); 5959 unsigned VTBits = VT.getScalarSizeInBits(); 5960 Tmp += VTBits - PackedOp.getScalarValueSizeInBits(); 5961 return Tmp; 5962 } 5963 default: 5964 break; 5965 } 5966 } else { 5967 switch (Opcode) { 5968 case SystemZISD::SELECT_CCMASK: 5969 return computeNumSignBitsBinOp(Op, DemandedElts, DAG, Depth, 0); 5970 default: 5971 break; 5972 } 5973 } 5974 5975 return 1; 5976 } 5977 5978 //===----------------------------------------------------------------------===// 5979 // Custom insertion 5980 //===----------------------------------------------------------------------===// 5981 5982 // Create a new basic block after MBB. 5983 static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { 5984 MachineFunction &MF = *MBB->getParent(); 5985 MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); 5986 MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); 5987 return NewMBB; 5988 } 5989 5990 // Split MBB after MI and return the new block (the one that contains 5991 // instructions after MI). 5992 static MachineBasicBlock *splitBlockAfter(MachineBasicBlock::iterator MI, 5993 MachineBasicBlock *MBB) { 5994 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 5995 NewMBB->splice(NewMBB->begin(), MBB, 5996 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 5997 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 5998 return NewMBB; 5999 } 6000 6001 // Split MBB before MI and return the new block (the one that contains MI). 6002 static MachineBasicBlock *splitBlockBefore(MachineBasicBlock::iterator MI, 6003 MachineBasicBlock *MBB) { 6004 MachineBasicBlock *NewMBB = emitBlockAfter(MBB); 6005 NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); 6006 NewMBB->transferSuccessorsAndUpdatePHIs(MBB); 6007 return NewMBB; 6008 } 6009 6010 // Force base value Base into a register before MI. Return the register. 6011 static unsigned forceReg(MachineInstr &MI, MachineOperand &Base, 6012 const SystemZInstrInfo *TII) { 6013 if (Base.isReg()) 6014 return Base.getReg(); 6015 6016 MachineBasicBlock *MBB = MI.getParent(); 6017 MachineFunction &MF = *MBB->getParent(); 6018 MachineRegisterInfo &MRI = MF.getRegInfo(); 6019 6020 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6021 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LA), Reg) 6022 .add(Base) 6023 .addImm(0) 6024 .addReg(0); 6025 return Reg; 6026 } 6027 6028 // The CC operand of MI might be missing a kill marker because there 6029 // were multiple uses of CC, and ISel didn't know which to mark. 6030 // Figure out whether MI should have had a kill marker. 6031 static bool checkCCKill(MachineInstr &MI, MachineBasicBlock *MBB) { 6032 // Scan forward through BB for a use/def of CC. 6033 MachineBasicBlock::iterator miI(std::next(MachineBasicBlock::iterator(MI))); 6034 for (MachineBasicBlock::iterator miE = MBB->end(); miI != miE; ++miI) { 6035 const MachineInstr& mi = *miI; 6036 if (mi.readsRegister(SystemZ::CC)) 6037 return false; 6038 if (mi.definesRegister(SystemZ::CC)) 6039 break; // Should have kill-flag - update below. 6040 } 6041 6042 // If we hit the end of the block, check whether CC is live into a 6043 // successor. 6044 if (miI == MBB->end()) { 6045 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) 6046 if ((*SI)->isLiveIn(SystemZ::CC)) 6047 return false; 6048 } 6049 6050 return true; 6051 } 6052 6053 // Return true if it is OK for this Select pseudo-opcode to be cascaded 6054 // together with other Select pseudo-opcodes into a single basic-block with 6055 // a conditional jump around it. 6056 static bool isSelectPseudo(MachineInstr &MI) { 6057 switch (MI.getOpcode()) { 6058 case SystemZ::Select32: 6059 case SystemZ::Select64: 6060 case SystemZ::SelectF32: 6061 case SystemZ::SelectF64: 6062 case SystemZ::SelectF128: 6063 case SystemZ::SelectVR32: 6064 case SystemZ::SelectVR64: 6065 case SystemZ::SelectVR128: 6066 return true; 6067 6068 default: 6069 return false; 6070 } 6071 } 6072 6073 // Helper function, which inserts PHI functions into SinkMBB: 6074 // %Result(i) = phi [ %FalseValue(i), FalseMBB ], [ %TrueValue(i), TrueMBB ], 6075 // where %FalseValue(i) and %TrueValue(i) are taken from the consequent Selects 6076 // in [MIItBegin, MIItEnd) range. 6077 static void createPHIsForSelects(MachineBasicBlock::iterator MIItBegin, 6078 MachineBasicBlock::iterator MIItEnd, 6079 MachineBasicBlock *TrueMBB, 6080 MachineBasicBlock *FalseMBB, 6081 MachineBasicBlock *SinkMBB) { 6082 MachineFunction *MF = TrueMBB->getParent(); 6083 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); 6084 6085 unsigned CCValid = MIItBegin->getOperand(3).getImm(); 6086 unsigned CCMask = MIItBegin->getOperand(4).getImm(); 6087 DebugLoc DL = MIItBegin->getDebugLoc(); 6088 6089 MachineBasicBlock::iterator SinkInsertionPoint = SinkMBB->begin(); 6090 6091 // As we are creating the PHIs, we have to be careful if there is more than 6092 // one. Later Selects may reference the results of earlier Selects, but later 6093 // PHIs have to reference the individual true/false inputs from earlier PHIs. 6094 // That also means that PHI construction must work forward from earlier to 6095 // later, and that the code must maintain a mapping from earlier PHI's 6096 // destination registers, and the registers that went into the PHI. 6097 DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable; 6098 6099 for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) { 6100 unsigned DestReg = MIIt->getOperand(0).getReg(); 6101 unsigned TrueReg = MIIt->getOperand(1).getReg(); 6102 unsigned FalseReg = MIIt->getOperand(2).getReg(); 6103 6104 // If this Select we are generating is the opposite condition from 6105 // the jump we generated, then we have to swap the operands for the 6106 // PHI that is going to be generated. 6107 if (MIIt->getOperand(4).getImm() == (CCValid ^ CCMask)) 6108 std::swap(TrueReg, FalseReg); 6109 6110 if (RegRewriteTable.find(TrueReg) != RegRewriteTable.end()) 6111 TrueReg = RegRewriteTable[TrueReg].first; 6112 6113 if (RegRewriteTable.find(FalseReg) != RegRewriteTable.end()) 6114 FalseReg = RegRewriteTable[FalseReg].second; 6115 6116 BuildMI(*SinkMBB, SinkInsertionPoint, DL, TII->get(SystemZ::PHI), DestReg) 6117 .addReg(TrueReg).addMBB(TrueMBB) 6118 .addReg(FalseReg).addMBB(FalseMBB); 6119 6120 // Add this PHI to the rewrite table. 6121 RegRewriteTable[DestReg] = std::make_pair(TrueReg, FalseReg); 6122 } 6123 } 6124 6125 // Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. 6126 MachineBasicBlock * 6127 SystemZTargetLowering::emitSelect(MachineInstr &MI, 6128 MachineBasicBlock *MBB) const { 6129 const SystemZInstrInfo *TII = 6130 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6131 6132 unsigned CCValid = MI.getOperand(3).getImm(); 6133 unsigned CCMask = MI.getOperand(4).getImm(); 6134 DebugLoc DL = MI.getDebugLoc(); 6135 6136 // If we have a sequence of Select* pseudo instructions using the 6137 // same condition code value, we want to expand all of them into 6138 // a single pair of basic blocks using the same condition. 6139 MachineInstr *LastMI = &MI; 6140 MachineBasicBlock::iterator NextMIIt = 6141 std::next(MachineBasicBlock::iterator(MI)); 6142 6143 if (isSelectPseudo(MI)) 6144 while (NextMIIt != MBB->end() && isSelectPseudo(*NextMIIt) && 6145 NextMIIt->getOperand(3).getImm() == CCValid && 6146 (NextMIIt->getOperand(4).getImm() == CCMask || 6147 NextMIIt->getOperand(4).getImm() == (CCValid ^ CCMask))) { 6148 LastMI = &*NextMIIt; 6149 ++NextMIIt; 6150 } 6151 6152 MachineBasicBlock *StartMBB = MBB; 6153 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6154 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6155 6156 // Unless CC was killed in the last Select instruction, mark it as 6157 // live-in to both FalseMBB and JoinMBB. 6158 if (!LastMI->killsRegister(SystemZ::CC) && !checkCCKill(*LastMI, JoinMBB)) { 6159 FalseMBB->addLiveIn(SystemZ::CC); 6160 JoinMBB->addLiveIn(SystemZ::CC); 6161 } 6162 6163 // StartMBB: 6164 // BRC CCMask, JoinMBB 6165 // # fallthrough to FalseMBB 6166 MBB = StartMBB; 6167 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6168 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6169 MBB->addSuccessor(JoinMBB); 6170 MBB->addSuccessor(FalseMBB); 6171 6172 // FalseMBB: 6173 // # fallthrough to JoinMBB 6174 MBB = FalseMBB; 6175 MBB->addSuccessor(JoinMBB); 6176 6177 // JoinMBB: 6178 // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] 6179 // ... 6180 MBB = JoinMBB; 6181 MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI); 6182 MachineBasicBlock::iterator MIItEnd = 6183 std::next(MachineBasicBlock::iterator(LastMI)); 6184 createPHIsForSelects(MIItBegin, MIItEnd, StartMBB, FalseMBB, MBB); 6185 6186 StartMBB->erase(MIItBegin, MIItEnd); 6187 return JoinMBB; 6188 } 6189 6190 // Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. 6191 // StoreOpcode is the store to use and Invert says whether the store should 6192 // happen when the condition is false rather than true. If a STORE ON 6193 // CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. 6194 MachineBasicBlock *SystemZTargetLowering::emitCondStore(MachineInstr &MI, 6195 MachineBasicBlock *MBB, 6196 unsigned StoreOpcode, 6197 unsigned STOCOpcode, 6198 bool Invert) const { 6199 const SystemZInstrInfo *TII = 6200 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6201 6202 unsigned SrcReg = MI.getOperand(0).getReg(); 6203 MachineOperand Base = MI.getOperand(1); 6204 int64_t Disp = MI.getOperand(2).getImm(); 6205 unsigned IndexReg = MI.getOperand(3).getReg(); 6206 unsigned CCValid = MI.getOperand(4).getImm(); 6207 unsigned CCMask = MI.getOperand(5).getImm(); 6208 DebugLoc DL = MI.getDebugLoc(); 6209 6210 StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); 6211 6212 // Use STOCOpcode if possible. We could use different store patterns in 6213 // order to avoid matching the index register, but the performance trade-offs 6214 // might be more complicated in that case. 6215 if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { 6216 if (Invert) 6217 CCMask ^= CCValid; 6218 6219 // ISel pattern matching also adds a load memory operand of the same 6220 // address, so take special care to find the storing memory operand. 6221 MachineMemOperand *MMO = nullptr; 6222 for (auto *I : MI.memoperands()) 6223 if (I->isStore()) { 6224 MMO = I; 6225 break; 6226 } 6227 6228 BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) 6229 .addReg(SrcReg) 6230 .add(Base) 6231 .addImm(Disp) 6232 .addImm(CCValid) 6233 .addImm(CCMask) 6234 .addMemOperand(MMO); 6235 6236 MI.eraseFromParent(); 6237 return MBB; 6238 } 6239 6240 // Get the condition needed to branch around the store. 6241 if (!Invert) 6242 CCMask ^= CCValid; 6243 6244 MachineBasicBlock *StartMBB = MBB; 6245 MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); 6246 MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); 6247 6248 // Unless CC was killed in the CondStore instruction, mark it as 6249 // live-in to both FalseMBB and JoinMBB. 6250 if (!MI.killsRegister(SystemZ::CC) && !checkCCKill(MI, JoinMBB)) { 6251 FalseMBB->addLiveIn(SystemZ::CC); 6252 JoinMBB->addLiveIn(SystemZ::CC); 6253 } 6254 6255 // StartMBB: 6256 // BRC CCMask, JoinMBB 6257 // # fallthrough to FalseMBB 6258 MBB = StartMBB; 6259 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6260 .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); 6261 MBB->addSuccessor(JoinMBB); 6262 MBB->addSuccessor(FalseMBB); 6263 6264 // FalseMBB: 6265 // store %SrcReg, %Disp(%Index,%Base) 6266 // # fallthrough to JoinMBB 6267 MBB = FalseMBB; 6268 BuildMI(MBB, DL, TII->get(StoreOpcode)) 6269 .addReg(SrcReg) 6270 .add(Base) 6271 .addImm(Disp) 6272 .addReg(IndexReg); 6273 MBB->addSuccessor(JoinMBB); 6274 6275 MI.eraseFromParent(); 6276 return JoinMBB; 6277 } 6278 6279 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* 6280 // or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that 6281 // performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. 6282 // BitSize is the width of the field in bits, or 0 if this is a partword 6283 // ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize 6284 // is one of the operands. Invert says whether the field should be 6285 // inverted after performing BinOpcode (e.g. for NAND). 6286 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadBinary( 6287 MachineInstr &MI, MachineBasicBlock *MBB, unsigned BinOpcode, 6288 unsigned BitSize, bool Invert) const { 6289 MachineFunction &MF = *MBB->getParent(); 6290 const SystemZInstrInfo *TII = 6291 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6292 MachineRegisterInfo &MRI = MF.getRegInfo(); 6293 bool IsSubWord = (BitSize < 32); 6294 6295 // Extract the operands. Base can be a register or a frame index. 6296 // Src2 can be a register or immediate. 6297 unsigned Dest = MI.getOperand(0).getReg(); 6298 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6299 int64_t Disp = MI.getOperand(2).getImm(); 6300 MachineOperand Src2 = earlyUseOperand(MI.getOperand(3)); 6301 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6302 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6303 DebugLoc DL = MI.getDebugLoc(); 6304 if (IsSubWord) 6305 BitSize = MI.getOperand(6).getImm(); 6306 6307 // Subword operations use 32-bit registers. 6308 const TargetRegisterClass *RC = (BitSize <= 32 ? 6309 &SystemZ::GR32BitRegClass : 6310 &SystemZ::GR64BitRegClass); 6311 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6312 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6313 6314 // Get the right opcodes for the displacement. 6315 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6316 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6317 assert(LOpcode && CSOpcode && "Displacement out of range"); 6318 6319 // Create virtual registers for temporary results. 6320 unsigned OrigVal = MRI.createVirtualRegister(RC); 6321 unsigned OldVal = MRI.createVirtualRegister(RC); 6322 unsigned NewVal = (BinOpcode || IsSubWord ? 6323 MRI.createVirtualRegister(RC) : Src2.getReg()); 6324 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6325 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6326 6327 // Insert a basic block for the main loop. 6328 MachineBasicBlock *StartMBB = MBB; 6329 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6330 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6331 6332 // StartMBB: 6333 // ... 6334 // %OrigVal = L Disp(%Base) 6335 // # fall through to LoopMMB 6336 MBB = StartMBB; 6337 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6338 MBB->addSuccessor(LoopMBB); 6339 6340 // LoopMBB: 6341 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] 6342 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6343 // %RotatedNewVal = OP %RotatedOldVal, %Src2 6344 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6345 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6346 // JNE LoopMBB 6347 // # fall through to DoneMMB 6348 MBB = LoopMBB; 6349 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6350 .addReg(OrigVal).addMBB(StartMBB) 6351 .addReg(Dest).addMBB(LoopMBB); 6352 if (IsSubWord) 6353 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6354 .addReg(OldVal).addReg(BitShift).addImm(0); 6355 if (Invert) { 6356 // Perform the operation normally and then invert every bit of the field. 6357 unsigned Tmp = MRI.createVirtualRegister(RC); 6358 BuildMI(MBB, DL, TII->get(BinOpcode), Tmp).addReg(RotatedOldVal).add(Src2); 6359 if (BitSize <= 32) 6360 // XILF with the upper BitSize bits set. 6361 BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) 6362 .addReg(Tmp).addImm(-1U << (32 - BitSize)); 6363 else { 6364 // Use LCGR and add -1 to the result, which is more compact than 6365 // an XILF, XILH pair. 6366 unsigned Tmp2 = MRI.createVirtualRegister(RC); 6367 BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); 6368 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) 6369 .addReg(Tmp2).addImm(-1); 6370 } 6371 } else if (BinOpcode) 6372 // A simply binary operation. 6373 BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) 6374 .addReg(RotatedOldVal) 6375 .add(Src2); 6376 else if (IsSubWord) 6377 // Use RISBG to rotate Src2 into position and use it to replace the 6378 // field in RotatedOldVal. 6379 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) 6380 .addReg(RotatedOldVal).addReg(Src2.getReg()) 6381 .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); 6382 if (IsSubWord) 6383 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6384 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6385 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6386 .addReg(OldVal) 6387 .addReg(NewVal) 6388 .add(Base) 6389 .addImm(Disp); 6390 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6391 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6392 MBB->addSuccessor(LoopMBB); 6393 MBB->addSuccessor(DoneMBB); 6394 6395 MI.eraseFromParent(); 6396 return DoneMBB; 6397 } 6398 6399 // Implement EmitInstrWithCustomInserter for pseudo 6400 // ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the 6401 // instruction that should be used to compare the current field with the 6402 // minimum or maximum value. KeepOldMask is the BRC condition-code mask 6403 // for when the current field should be kept. BitSize is the width of 6404 // the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. 6405 MachineBasicBlock *SystemZTargetLowering::emitAtomicLoadMinMax( 6406 MachineInstr &MI, MachineBasicBlock *MBB, unsigned CompareOpcode, 6407 unsigned KeepOldMask, unsigned BitSize) const { 6408 MachineFunction &MF = *MBB->getParent(); 6409 const SystemZInstrInfo *TII = 6410 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6411 MachineRegisterInfo &MRI = MF.getRegInfo(); 6412 bool IsSubWord = (BitSize < 32); 6413 6414 // Extract the operands. Base can be a register or a frame index. 6415 unsigned Dest = MI.getOperand(0).getReg(); 6416 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6417 int64_t Disp = MI.getOperand(2).getImm(); 6418 unsigned Src2 = MI.getOperand(3).getReg(); 6419 unsigned BitShift = (IsSubWord ? MI.getOperand(4).getReg() : 0); 6420 unsigned NegBitShift = (IsSubWord ? MI.getOperand(5).getReg() : 0); 6421 DebugLoc DL = MI.getDebugLoc(); 6422 if (IsSubWord) 6423 BitSize = MI.getOperand(6).getImm(); 6424 6425 // Subword operations use 32-bit registers. 6426 const TargetRegisterClass *RC = (BitSize <= 32 ? 6427 &SystemZ::GR32BitRegClass : 6428 &SystemZ::GR64BitRegClass); 6429 unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; 6430 unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; 6431 6432 // Get the right opcodes for the displacement. 6433 LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); 6434 CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); 6435 assert(LOpcode && CSOpcode && "Displacement out of range"); 6436 6437 // Create virtual registers for temporary results. 6438 unsigned OrigVal = MRI.createVirtualRegister(RC); 6439 unsigned OldVal = MRI.createVirtualRegister(RC); 6440 unsigned NewVal = MRI.createVirtualRegister(RC); 6441 unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); 6442 unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); 6443 unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); 6444 6445 // Insert 3 basic blocks for the loop. 6446 MachineBasicBlock *StartMBB = MBB; 6447 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6448 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6449 MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); 6450 MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); 6451 6452 // StartMBB: 6453 // ... 6454 // %OrigVal = L Disp(%Base) 6455 // # fall through to LoopMMB 6456 MBB = StartMBB; 6457 BuildMI(MBB, DL, TII->get(LOpcode), OrigVal).add(Base).addImm(Disp).addReg(0); 6458 MBB->addSuccessor(LoopMBB); 6459 6460 // LoopMBB: 6461 // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] 6462 // %RotatedOldVal = RLL %OldVal, 0(%BitShift) 6463 // CompareOpcode %RotatedOldVal, %Src2 6464 // BRC KeepOldMask, UpdateMBB 6465 MBB = LoopMBB; 6466 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6467 .addReg(OrigVal).addMBB(StartMBB) 6468 .addReg(Dest).addMBB(UpdateMBB); 6469 if (IsSubWord) 6470 BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) 6471 .addReg(OldVal).addReg(BitShift).addImm(0); 6472 BuildMI(MBB, DL, TII->get(CompareOpcode)) 6473 .addReg(RotatedOldVal).addReg(Src2); 6474 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6475 .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); 6476 MBB->addSuccessor(UpdateMBB); 6477 MBB->addSuccessor(UseAltMBB); 6478 6479 // UseAltMBB: 6480 // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 6481 // # fall through to UpdateMMB 6482 MBB = UseAltMBB; 6483 if (IsSubWord) 6484 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) 6485 .addReg(RotatedOldVal).addReg(Src2) 6486 .addImm(32).addImm(31 + BitSize).addImm(0); 6487 MBB->addSuccessor(UpdateMBB); 6488 6489 // UpdateMBB: 6490 // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], 6491 // [ %RotatedAltVal, UseAltMBB ] 6492 // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) 6493 // %Dest = CS %OldVal, %NewVal, Disp(%Base) 6494 // JNE LoopMBB 6495 // # fall through to DoneMMB 6496 MBB = UpdateMBB; 6497 BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) 6498 .addReg(RotatedOldVal).addMBB(LoopMBB) 6499 .addReg(RotatedAltVal).addMBB(UseAltMBB); 6500 if (IsSubWord) 6501 BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) 6502 .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); 6503 BuildMI(MBB, DL, TII->get(CSOpcode), Dest) 6504 .addReg(OldVal) 6505 .addReg(NewVal) 6506 .add(Base) 6507 .addImm(Disp); 6508 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6509 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6510 MBB->addSuccessor(LoopMBB); 6511 MBB->addSuccessor(DoneMBB); 6512 6513 MI.eraseFromParent(); 6514 return DoneMBB; 6515 } 6516 6517 // Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW 6518 // instruction MI. 6519 MachineBasicBlock * 6520 SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr &MI, 6521 MachineBasicBlock *MBB) const { 6522 6523 MachineFunction &MF = *MBB->getParent(); 6524 const SystemZInstrInfo *TII = 6525 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6526 MachineRegisterInfo &MRI = MF.getRegInfo(); 6527 6528 // Extract the operands. Base can be a register or a frame index. 6529 unsigned Dest = MI.getOperand(0).getReg(); 6530 MachineOperand Base = earlyUseOperand(MI.getOperand(1)); 6531 int64_t Disp = MI.getOperand(2).getImm(); 6532 unsigned OrigCmpVal = MI.getOperand(3).getReg(); 6533 unsigned OrigSwapVal = MI.getOperand(4).getReg(); 6534 unsigned BitShift = MI.getOperand(5).getReg(); 6535 unsigned NegBitShift = MI.getOperand(6).getReg(); 6536 int64_t BitSize = MI.getOperand(7).getImm(); 6537 DebugLoc DL = MI.getDebugLoc(); 6538 6539 const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; 6540 6541 // Get the right opcodes for the displacement. 6542 unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); 6543 unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); 6544 assert(LOpcode && CSOpcode && "Displacement out of range"); 6545 6546 // Create virtual registers for temporary results. 6547 unsigned OrigOldVal = MRI.createVirtualRegister(RC); 6548 unsigned OldVal = MRI.createVirtualRegister(RC); 6549 unsigned CmpVal = MRI.createVirtualRegister(RC); 6550 unsigned SwapVal = MRI.createVirtualRegister(RC); 6551 unsigned StoreVal = MRI.createVirtualRegister(RC); 6552 unsigned RetryOldVal = MRI.createVirtualRegister(RC); 6553 unsigned RetryCmpVal = MRI.createVirtualRegister(RC); 6554 unsigned RetrySwapVal = MRI.createVirtualRegister(RC); 6555 6556 // Insert 2 basic blocks for the loop. 6557 MachineBasicBlock *StartMBB = MBB; 6558 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6559 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6560 MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); 6561 6562 // StartMBB: 6563 // ... 6564 // %OrigOldVal = L Disp(%Base) 6565 // # fall through to LoopMMB 6566 MBB = StartMBB; 6567 BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) 6568 .add(Base) 6569 .addImm(Disp) 6570 .addReg(0); 6571 MBB->addSuccessor(LoopMBB); 6572 6573 // LoopMBB: 6574 // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] 6575 // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] 6576 // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] 6577 // %Dest = RLL %OldVal, BitSize(%BitShift) 6578 // ^^ The low BitSize bits contain the field 6579 // of interest. 6580 // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 6581 // ^^ Replace the upper 32-BitSize bits of the 6582 // comparison value with those that we loaded, 6583 // so that we can use a full word comparison. 6584 // CR %Dest, %RetryCmpVal 6585 // JNE DoneMBB 6586 // # Fall through to SetMBB 6587 MBB = LoopMBB; 6588 BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) 6589 .addReg(OrigOldVal).addMBB(StartMBB) 6590 .addReg(RetryOldVal).addMBB(SetMBB); 6591 BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) 6592 .addReg(OrigCmpVal).addMBB(StartMBB) 6593 .addReg(RetryCmpVal).addMBB(SetMBB); 6594 BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) 6595 .addReg(OrigSwapVal).addMBB(StartMBB) 6596 .addReg(RetrySwapVal).addMBB(SetMBB); 6597 BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) 6598 .addReg(OldVal).addReg(BitShift).addImm(BitSize); 6599 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) 6600 .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6601 BuildMI(MBB, DL, TII->get(SystemZ::CR)) 6602 .addReg(Dest).addReg(RetryCmpVal); 6603 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6604 .addImm(SystemZ::CCMASK_ICMP) 6605 .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); 6606 MBB->addSuccessor(DoneMBB); 6607 MBB->addSuccessor(SetMBB); 6608 6609 // SetMBB: 6610 // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 6611 // ^^ Replace the upper 32-BitSize bits of the new 6612 // value with those that we loaded. 6613 // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) 6614 // ^^ Rotate the new field to its proper position. 6615 // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) 6616 // JNE LoopMBB 6617 // # fall through to ExitMMB 6618 MBB = SetMBB; 6619 BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) 6620 .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); 6621 BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) 6622 .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); 6623 BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) 6624 .addReg(OldVal) 6625 .addReg(StoreVal) 6626 .add(Base) 6627 .addImm(Disp); 6628 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6629 .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); 6630 MBB->addSuccessor(LoopMBB); 6631 MBB->addSuccessor(DoneMBB); 6632 6633 // If the CC def wasn't dead in the ATOMIC_CMP_SWAPW, mark CC as live-in 6634 // to the block after the loop. At this point, CC may have been defined 6635 // either by the CR in LoopMBB or by the CS in SetMBB. 6636 if (!MI.registerDefIsDead(SystemZ::CC)) 6637 DoneMBB->addLiveIn(SystemZ::CC); 6638 6639 MI.eraseFromParent(); 6640 return DoneMBB; 6641 } 6642 6643 // Emit a move from two GR64s to a GR128. 6644 MachineBasicBlock * 6645 SystemZTargetLowering::emitPair128(MachineInstr &MI, 6646 MachineBasicBlock *MBB) const { 6647 MachineFunction &MF = *MBB->getParent(); 6648 const SystemZInstrInfo *TII = 6649 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6650 MachineRegisterInfo &MRI = MF.getRegInfo(); 6651 DebugLoc DL = MI.getDebugLoc(); 6652 6653 unsigned Dest = MI.getOperand(0).getReg(); 6654 unsigned Hi = MI.getOperand(1).getReg(); 6655 unsigned Lo = MI.getOperand(2).getReg(); 6656 unsigned Tmp1 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6657 unsigned Tmp2 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6658 6659 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), Tmp1); 6660 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Tmp2) 6661 .addReg(Tmp1).addReg(Hi).addImm(SystemZ::subreg_h64); 6662 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6663 .addReg(Tmp2).addReg(Lo).addImm(SystemZ::subreg_l64); 6664 6665 MI.eraseFromParent(); 6666 return MBB; 6667 } 6668 6669 // Emit an extension from a GR64 to a GR128. ClearEven is true 6670 // if the high register of the GR128 value must be cleared or false if 6671 // it's "don't care". 6672 MachineBasicBlock *SystemZTargetLowering::emitExt128(MachineInstr &MI, 6673 MachineBasicBlock *MBB, 6674 bool ClearEven) const { 6675 MachineFunction &MF = *MBB->getParent(); 6676 const SystemZInstrInfo *TII = 6677 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6678 MachineRegisterInfo &MRI = MF.getRegInfo(); 6679 DebugLoc DL = MI.getDebugLoc(); 6680 6681 unsigned Dest = MI.getOperand(0).getReg(); 6682 unsigned Src = MI.getOperand(1).getReg(); 6683 unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6684 6685 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); 6686 if (ClearEven) { 6687 unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); 6688 unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); 6689 6690 BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) 6691 .addImm(0); 6692 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) 6693 .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); 6694 In128 = NewIn128; 6695 } 6696 BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) 6697 .addReg(In128).addReg(Src).addImm(SystemZ::subreg_l64); 6698 6699 MI.eraseFromParent(); 6700 return MBB; 6701 } 6702 6703 MachineBasicBlock *SystemZTargetLowering::emitMemMemWrapper( 6704 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6705 MachineFunction &MF = *MBB->getParent(); 6706 const SystemZInstrInfo *TII = 6707 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6708 MachineRegisterInfo &MRI = MF.getRegInfo(); 6709 DebugLoc DL = MI.getDebugLoc(); 6710 6711 MachineOperand DestBase = earlyUseOperand(MI.getOperand(0)); 6712 uint64_t DestDisp = MI.getOperand(1).getImm(); 6713 MachineOperand SrcBase = earlyUseOperand(MI.getOperand(2)); 6714 uint64_t SrcDisp = MI.getOperand(3).getImm(); 6715 uint64_t Length = MI.getOperand(4).getImm(); 6716 6717 // When generating more than one CLC, all but the last will need to 6718 // branch to the end when a difference is found. 6719 MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? 6720 splitBlockAfter(MI, MBB) : nullptr); 6721 6722 // Check for the loop form, in which operand 5 is the trip count. 6723 if (MI.getNumExplicitOperands() > 5) { 6724 bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); 6725 6726 uint64_t StartCountReg = MI.getOperand(5).getReg(); 6727 uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); 6728 uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : 6729 forceReg(MI, DestBase, TII)); 6730 6731 const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; 6732 uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); 6733 uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : 6734 MRI.createVirtualRegister(RC)); 6735 uint64_t NextSrcReg = MRI.createVirtualRegister(RC); 6736 uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : 6737 MRI.createVirtualRegister(RC)); 6738 6739 RC = &SystemZ::GR64BitRegClass; 6740 uint64_t ThisCountReg = MRI.createVirtualRegister(RC); 6741 uint64_t NextCountReg = MRI.createVirtualRegister(RC); 6742 6743 MachineBasicBlock *StartMBB = MBB; 6744 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6745 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6746 MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); 6747 6748 // StartMBB: 6749 // # fall through to LoopMMB 6750 MBB->addSuccessor(LoopMBB); 6751 6752 // LoopMBB: 6753 // %ThisDestReg = phi [ %StartDestReg, StartMBB ], 6754 // [ %NextDestReg, NextMBB ] 6755 // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], 6756 // [ %NextSrcReg, NextMBB ] 6757 // %ThisCountReg = phi [ %StartCountReg, StartMBB ], 6758 // [ %NextCountReg, NextMBB ] 6759 // ( PFD 2, 768+DestDisp(%ThisDestReg) ) 6760 // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) 6761 // ( JLH EndMBB ) 6762 // 6763 // The prefetch is used only for MVC. The JLH is used only for CLC. 6764 MBB = LoopMBB; 6765 6766 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) 6767 .addReg(StartDestReg).addMBB(StartMBB) 6768 .addReg(NextDestReg).addMBB(NextMBB); 6769 if (!HaveSingleBase) 6770 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) 6771 .addReg(StartSrcReg).addMBB(StartMBB) 6772 .addReg(NextSrcReg).addMBB(NextMBB); 6773 BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) 6774 .addReg(StartCountReg).addMBB(StartMBB) 6775 .addReg(NextCountReg).addMBB(NextMBB); 6776 if (Opcode == SystemZ::MVC) 6777 BuildMI(MBB, DL, TII->get(SystemZ::PFD)) 6778 .addImm(SystemZ::PFD_WRITE) 6779 .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); 6780 BuildMI(MBB, DL, TII->get(Opcode)) 6781 .addReg(ThisDestReg).addImm(DestDisp).addImm(256) 6782 .addReg(ThisSrcReg).addImm(SrcDisp); 6783 if (EndMBB) { 6784 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6785 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6786 .addMBB(EndMBB); 6787 MBB->addSuccessor(EndMBB); 6788 MBB->addSuccessor(NextMBB); 6789 } 6790 6791 // NextMBB: 6792 // %NextDestReg = LA 256(%ThisDestReg) 6793 // %NextSrcReg = LA 256(%ThisSrcReg) 6794 // %NextCountReg = AGHI %ThisCountReg, -1 6795 // CGHI %NextCountReg, 0 6796 // JLH LoopMBB 6797 // # fall through to DoneMMB 6798 // 6799 // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. 6800 MBB = NextMBB; 6801 6802 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) 6803 .addReg(ThisDestReg).addImm(256).addReg(0); 6804 if (!HaveSingleBase) 6805 BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) 6806 .addReg(ThisSrcReg).addImm(256).addReg(0); 6807 BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) 6808 .addReg(ThisCountReg).addImm(-1); 6809 BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) 6810 .addReg(NextCountReg).addImm(0); 6811 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6812 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6813 .addMBB(LoopMBB); 6814 MBB->addSuccessor(LoopMBB); 6815 MBB->addSuccessor(DoneMBB); 6816 6817 DestBase = MachineOperand::CreateReg(NextDestReg, false); 6818 SrcBase = MachineOperand::CreateReg(NextSrcReg, false); 6819 Length &= 255; 6820 if (EndMBB && !Length) 6821 // If the loop handled the whole CLC range, DoneMBB will be empty with 6822 // CC live-through into EndMBB, so add it as live-in. 6823 DoneMBB->addLiveIn(SystemZ::CC); 6824 MBB = DoneMBB; 6825 } 6826 // Handle any remaining bytes with straight-line code. 6827 while (Length > 0) { 6828 uint64_t ThisLength = std::min(Length, uint64_t(256)); 6829 // The previous iteration might have created out-of-range displacements. 6830 // Apply them using LAY if so. 6831 if (!isUInt<12>(DestDisp)) { 6832 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6833 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6834 .add(DestBase) 6835 .addImm(DestDisp) 6836 .addReg(0); 6837 DestBase = MachineOperand::CreateReg(Reg, false); 6838 DestDisp = 0; 6839 } 6840 if (!isUInt<12>(SrcDisp)) { 6841 unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); 6842 BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(SystemZ::LAY), Reg) 6843 .add(SrcBase) 6844 .addImm(SrcDisp) 6845 .addReg(0); 6846 SrcBase = MachineOperand::CreateReg(Reg, false); 6847 SrcDisp = 0; 6848 } 6849 BuildMI(*MBB, MI, DL, TII->get(Opcode)) 6850 .add(DestBase) 6851 .addImm(DestDisp) 6852 .addImm(ThisLength) 6853 .add(SrcBase) 6854 .addImm(SrcDisp) 6855 ->setMemRefs(MI.memoperands_begin(), MI.memoperands_end()); 6856 DestDisp += ThisLength; 6857 SrcDisp += ThisLength; 6858 Length -= ThisLength; 6859 // If there's another CLC to go, branch to the end if a difference 6860 // was found. 6861 if (EndMBB && Length > 0) { 6862 MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); 6863 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6864 .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) 6865 .addMBB(EndMBB); 6866 MBB->addSuccessor(EndMBB); 6867 MBB->addSuccessor(NextMBB); 6868 MBB = NextMBB; 6869 } 6870 } 6871 if (EndMBB) { 6872 MBB->addSuccessor(EndMBB); 6873 MBB = EndMBB; 6874 MBB->addLiveIn(SystemZ::CC); 6875 } 6876 6877 MI.eraseFromParent(); 6878 return MBB; 6879 } 6880 6881 // Decompose string pseudo-instruction MI into a loop that continually performs 6882 // Opcode until CC != 3. 6883 MachineBasicBlock *SystemZTargetLowering::emitStringWrapper( 6884 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6885 MachineFunction &MF = *MBB->getParent(); 6886 const SystemZInstrInfo *TII = 6887 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6888 MachineRegisterInfo &MRI = MF.getRegInfo(); 6889 DebugLoc DL = MI.getDebugLoc(); 6890 6891 uint64_t End1Reg = MI.getOperand(0).getReg(); 6892 uint64_t Start1Reg = MI.getOperand(1).getReg(); 6893 uint64_t Start2Reg = MI.getOperand(2).getReg(); 6894 uint64_t CharReg = MI.getOperand(3).getReg(); 6895 6896 const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; 6897 uint64_t This1Reg = MRI.createVirtualRegister(RC); 6898 uint64_t This2Reg = MRI.createVirtualRegister(RC); 6899 uint64_t End2Reg = MRI.createVirtualRegister(RC); 6900 6901 MachineBasicBlock *StartMBB = MBB; 6902 MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); 6903 MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); 6904 6905 // StartMBB: 6906 // # fall through to LoopMMB 6907 MBB->addSuccessor(LoopMBB); 6908 6909 // LoopMBB: 6910 // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] 6911 // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] 6912 // R0L = %CharReg 6913 // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L 6914 // JO LoopMBB 6915 // # fall through to DoneMMB 6916 // 6917 // The load of R0L can be hoisted by post-RA LICM. 6918 MBB = LoopMBB; 6919 6920 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) 6921 .addReg(Start1Reg).addMBB(StartMBB) 6922 .addReg(End1Reg).addMBB(LoopMBB); 6923 BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) 6924 .addReg(Start2Reg).addMBB(StartMBB) 6925 .addReg(End2Reg).addMBB(LoopMBB); 6926 BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); 6927 BuildMI(MBB, DL, TII->get(Opcode)) 6928 .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) 6929 .addReg(This1Reg).addReg(This2Reg); 6930 BuildMI(MBB, DL, TII->get(SystemZ::BRC)) 6931 .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); 6932 MBB->addSuccessor(LoopMBB); 6933 MBB->addSuccessor(DoneMBB); 6934 6935 DoneMBB->addLiveIn(SystemZ::CC); 6936 6937 MI.eraseFromParent(); 6938 return DoneMBB; 6939 } 6940 6941 // Update TBEGIN instruction with final opcode and register clobbers. 6942 MachineBasicBlock *SystemZTargetLowering::emitTransactionBegin( 6943 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode, 6944 bool NoFloat) const { 6945 MachineFunction &MF = *MBB->getParent(); 6946 const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); 6947 const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); 6948 6949 // Update opcode. 6950 MI.setDesc(TII->get(Opcode)); 6951 6952 // We cannot handle a TBEGIN that clobbers the stack or frame pointer. 6953 // Make sure to add the corresponding GRSM bits if they are missing. 6954 uint64_t Control = MI.getOperand(2).getImm(); 6955 static const unsigned GPRControlBit[16] = { 6956 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, 6957 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 6958 }; 6959 Control |= GPRControlBit[15]; 6960 if (TFI->hasFP(MF)) 6961 Control |= GPRControlBit[11]; 6962 MI.getOperand(2).setImm(Control); 6963 6964 // Add GPR clobbers. 6965 for (int I = 0; I < 16; I++) { 6966 if ((Control & GPRControlBit[I]) == 0) { 6967 unsigned Reg = SystemZMC::GR64Regs[I]; 6968 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6969 } 6970 } 6971 6972 // Add FPR/VR clobbers. 6973 if (!NoFloat && (Control & 4) != 0) { 6974 if (Subtarget.hasVector()) { 6975 for (int I = 0; I < 32; I++) { 6976 unsigned Reg = SystemZMC::VR128Regs[I]; 6977 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6978 } 6979 } else { 6980 for (int I = 0; I < 16; I++) { 6981 unsigned Reg = SystemZMC::FP64Regs[I]; 6982 MI.addOperand(MachineOperand::CreateReg(Reg, true, true)); 6983 } 6984 } 6985 } 6986 6987 return MBB; 6988 } 6989 6990 MachineBasicBlock *SystemZTargetLowering::emitLoadAndTestCmp0( 6991 MachineInstr &MI, MachineBasicBlock *MBB, unsigned Opcode) const { 6992 MachineFunction &MF = *MBB->getParent(); 6993 MachineRegisterInfo *MRI = &MF.getRegInfo(); 6994 const SystemZInstrInfo *TII = 6995 static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); 6996 DebugLoc DL = MI.getDebugLoc(); 6997 6998 unsigned SrcReg = MI.getOperand(0).getReg(); 6999 7000 // Create new virtual register of the same class as source. 7001 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 7002 unsigned DstReg = MRI->createVirtualRegister(RC); 7003 7004 // Replace pseudo with a normal load-and-test that models the def as 7005 // well. 7006 BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) 7007 .addReg(SrcReg); 7008 MI.eraseFromParent(); 7009 7010 return MBB; 7011 } 7012 7013 MachineBasicBlock *SystemZTargetLowering::EmitInstrWithCustomInserter( 7014 MachineInstr &MI, MachineBasicBlock *MBB) const { 7015 switch (MI.getOpcode()) { 7016 case SystemZ::Select32: 7017 case SystemZ::Select64: 7018 case SystemZ::SelectF32: 7019 case SystemZ::SelectF64: 7020 case SystemZ::SelectF128: 7021 case SystemZ::SelectVR32: 7022 case SystemZ::SelectVR64: 7023 case SystemZ::SelectVR128: 7024 return emitSelect(MI, MBB); 7025 7026 case SystemZ::CondStore8Mux: 7027 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); 7028 case SystemZ::CondStore8MuxInv: 7029 return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); 7030 case SystemZ::CondStore16Mux: 7031 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); 7032 case SystemZ::CondStore16MuxInv: 7033 return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); 7034 case SystemZ::CondStore32Mux: 7035 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, false); 7036 case SystemZ::CondStore32MuxInv: 7037 return emitCondStore(MI, MBB, SystemZ::STMux, SystemZ::STOCMux, true); 7038 case SystemZ::CondStore8: 7039 return emitCondStore(MI, MBB, SystemZ::STC, 0, false); 7040 case SystemZ::CondStore8Inv: 7041 return emitCondStore(MI, MBB, SystemZ::STC, 0, true); 7042 case SystemZ::CondStore16: 7043 return emitCondStore(MI, MBB, SystemZ::STH, 0, false); 7044 case SystemZ::CondStore16Inv: 7045 return emitCondStore(MI, MBB, SystemZ::STH, 0, true); 7046 case SystemZ::CondStore32: 7047 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); 7048 case SystemZ::CondStore32Inv: 7049 return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); 7050 case SystemZ::CondStore64: 7051 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); 7052 case SystemZ::CondStore64Inv: 7053 return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); 7054 case SystemZ::CondStoreF32: 7055 return emitCondStore(MI, MBB, SystemZ::STE, 0, false); 7056 case SystemZ::CondStoreF32Inv: 7057 return emitCondStore(MI, MBB, SystemZ::STE, 0, true); 7058 case SystemZ::CondStoreF64: 7059 return emitCondStore(MI, MBB, SystemZ::STD, 0, false); 7060 case SystemZ::CondStoreF64Inv: 7061 return emitCondStore(MI, MBB, SystemZ::STD, 0, true); 7062 7063 case SystemZ::PAIR128: 7064 return emitPair128(MI, MBB); 7065 case SystemZ::AEXT128: 7066 return emitExt128(MI, MBB, false); 7067 case SystemZ::ZEXT128: 7068 return emitExt128(MI, MBB, true); 7069 7070 case SystemZ::ATOMIC_SWAPW: 7071 return emitAtomicLoadBinary(MI, MBB, 0, 0); 7072 case SystemZ::ATOMIC_SWAP_32: 7073 return emitAtomicLoadBinary(MI, MBB, 0, 32); 7074 case SystemZ::ATOMIC_SWAP_64: 7075 return emitAtomicLoadBinary(MI, MBB, 0, 64); 7076 7077 case SystemZ::ATOMIC_LOADW_AR: 7078 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); 7079 case SystemZ::ATOMIC_LOADW_AFI: 7080 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); 7081 case SystemZ::ATOMIC_LOAD_AR: 7082 return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); 7083 case SystemZ::ATOMIC_LOAD_AHI: 7084 return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); 7085 case SystemZ::ATOMIC_LOAD_AFI: 7086 return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); 7087 case SystemZ::ATOMIC_LOAD_AGR: 7088 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); 7089 case SystemZ::ATOMIC_LOAD_AGHI: 7090 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); 7091 case SystemZ::ATOMIC_LOAD_AGFI: 7092 return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); 7093 7094 case SystemZ::ATOMIC_LOADW_SR: 7095 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); 7096 case SystemZ::ATOMIC_LOAD_SR: 7097 return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); 7098 case SystemZ::ATOMIC_LOAD_SGR: 7099 return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); 7100 7101 case SystemZ::ATOMIC_LOADW_NR: 7102 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); 7103 case SystemZ::ATOMIC_LOADW_NILH: 7104 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); 7105 case SystemZ::ATOMIC_LOAD_NR: 7106 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); 7107 case SystemZ::ATOMIC_LOAD_NILL: 7108 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); 7109 case SystemZ::ATOMIC_LOAD_NILH: 7110 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); 7111 case SystemZ::ATOMIC_LOAD_NILF: 7112 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); 7113 case SystemZ::ATOMIC_LOAD_NGR: 7114 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); 7115 case SystemZ::ATOMIC_LOAD_NILL64: 7116 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); 7117 case SystemZ::ATOMIC_LOAD_NILH64: 7118 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); 7119 case SystemZ::ATOMIC_LOAD_NIHL64: 7120 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); 7121 case SystemZ::ATOMIC_LOAD_NIHH64: 7122 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); 7123 case SystemZ::ATOMIC_LOAD_NILF64: 7124 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); 7125 case SystemZ::ATOMIC_LOAD_NIHF64: 7126 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); 7127 7128 case SystemZ::ATOMIC_LOADW_OR: 7129 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); 7130 case SystemZ::ATOMIC_LOADW_OILH: 7131 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); 7132 case SystemZ::ATOMIC_LOAD_OR: 7133 return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); 7134 case SystemZ::ATOMIC_LOAD_OILL: 7135 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); 7136 case SystemZ::ATOMIC_LOAD_OILH: 7137 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); 7138 case SystemZ::ATOMIC_LOAD_OILF: 7139 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); 7140 case SystemZ::ATOMIC_LOAD_OGR: 7141 return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); 7142 case SystemZ::ATOMIC_LOAD_OILL64: 7143 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); 7144 case SystemZ::ATOMIC_LOAD_OILH64: 7145 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); 7146 case SystemZ::ATOMIC_LOAD_OIHL64: 7147 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); 7148 case SystemZ::ATOMIC_LOAD_OIHH64: 7149 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); 7150 case SystemZ::ATOMIC_LOAD_OILF64: 7151 return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); 7152 case SystemZ::ATOMIC_LOAD_OIHF64: 7153 return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); 7154 7155 case SystemZ::ATOMIC_LOADW_XR: 7156 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); 7157 case SystemZ::ATOMIC_LOADW_XILF: 7158 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); 7159 case SystemZ::ATOMIC_LOAD_XR: 7160 return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); 7161 case SystemZ::ATOMIC_LOAD_XILF: 7162 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); 7163 case SystemZ::ATOMIC_LOAD_XGR: 7164 return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); 7165 case SystemZ::ATOMIC_LOAD_XILF64: 7166 return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); 7167 case SystemZ::ATOMIC_LOAD_XIHF64: 7168 return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); 7169 7170 case SystemZ::ATOMIC_LOADW_NRi: 7171 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); 7172 case SystemZ::ATOMIC_LOADW_NILHi: 7173 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); 7174 case SystemZ::ATOMIC_LOAD_NRi: 7175 return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); 7176 case SystemZ::ATOMIC_LOAD_NILLi: 7177 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); 7178 case SystemZ::ATOMIC_LOAD_NILHi: 7179 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); 7180 case SystemZ::ATOMIC_LOAD_NILFi: 7181 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); 7182 case SystemZ::ATOMIC_LOAD_NGRi: 7183 return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); 7184 case SystemZ::ATOMIC_LOAD_NILL64i: 7185 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); 7186 case SystemZ::ATOMIC_LOAD_NILH64i: 7187 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); 7188 case SystemZ::ATOMIC_LOAD_NIHL64i: 7189 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); 7190 case SystemZ::ATOMIC_LOAD_NIHH64i: 7191 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); 7192 case SystemZ::ATOMIC_LOAD_NILF64i: 7193 return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); 7194 case SystemZ::ATOMIC_LOAD_NIHF64i: 7195 return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); 7196 7197 case SystemZ::ATOMIC_LOADW_MIN: 7198 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7199 SystemZ::CCMASK_CMP_LE, 0); 7200 case SystemZ::ATOMIC_LOAD_MIN_32: 7201 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7202 SystemZ::CCMASK_CMP_LE, 32); 7203 case SystemZ::ATOMIC_LOAD_MIN_64: 7204 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7205 SystemZ::CCMASK_CMP_LE, 64); 7206 7207 case SystemZ::ATOMIC_LOADW_MAX: 7208 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7209 SystemZ::CCMASK_CMP_GE, 0); 7210 case SystemZ::ATOMIC_LOAD_MAX_32: 7211 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, 7212 SystemZ::CCMASK_CMP_GE, 32); 7213 case SystemZ::ATOMIC_LOAD_MAX_64: 7214 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, 7215 SystemZ::CCMASK_CMP_GE, 64); 7216 7217 case SystemZ::ATOMIC_LOADW_UMIN: 7218 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7219 SystemZ::CCMASK_CMP_LE, 0); 7220 case SystemZ::ATOMIC_LOAD_UMIN_32: 7221 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7222 SystemZ::CCMASK_CMP_LE, 32); 7223 case SystemZ::ATOMIC_LOAD_UMIN_64: 7224 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7225 SystemZ::CCMASK_CMP_LE, 64); 7226 7227 case SystemZ::ATOMIC_LOADW_UMAX: 7228 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7229 SystemZ::CCMASK_CMP_GE, 0); 7230 case SystemZ::ATOMIC_LOAD_UMAX_32: 7231 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, 7232 SystemZ::CCMASK_CMP_GE, 32); 7233 case SystemZ::ATOMIC_LOAD_UMAX_64: 7234 return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, 7235 SystemZ::CCMASK_CMP_GE, 64); 7236 7237 case SystemZ::ATOMIC_CMP_SWAPW: 7238 return emitAtomicCmpSwapW(MI, MBB); 7239 case SystemZ::MVCSequence: 7240 case SystemZ::MVCLoop: 7241 return emitMemMemWrapper(MI, MBB, SystemZ::MVC); 7242 case SystemZ::NCSequence: 7243 case SystemZ::NCLoop: 7244 return emitMemMemWrapper(MI, MBB, SystemZ::NC); 7245 case SystemZ::OCSequence: 7246 case SystemZ::OCLoop: 7247 return emitMemMemWrapper(MI, MBB, SystemZ::OC); 7248 case SystemZ::XCSequence: 7249 case SystemZ::XCLoop: 7250 return emitMemMemWrapper(MI, MBB, SystemZ::XC); 7251 case SystemZ::CLCSequence: 7252 case SystemZ::CLCLoop: 7253 return emitMemMemWrapper(MI, MBB, SystemZ::CLC); 7254 case SystemZ::CLSTLoop: 7255 return emitStringWrapper(MI, MBB, SystemZ::CLST); 7256 case SystemZ::MVSTLoop: 7257 return emitStringWrapper(MI, MBB, SystemZ::MVST); 7258 case SystemZ::SRSTLoop: 7259 return emitStringWrapper(MI, MBB, SystemZ::SRST); 7260 case SystemZ::TBEGIN: 7261 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); 7262 case SystemZ::TBEGIN_nofloat: 7263 return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); 7264 case SystemZ::TBEGINC: 7265 return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); 7266 case SystemZ::LTEBRCompare_VecPseudo: 7267 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); 7268 case SystemZ::LTDBRCompare_VecPseudo: 7269 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); 7270 case SystemZ::LTXBRCompare_VecPseudo: 7271 return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); 7272 7273 case TargetOpcode::STACKMAP: 7274 case TargetOpcode::PATCHPOINT: 7275 return emitPatchPoint(MI, MBB); 7276 7277 default: 7278 llvm_unreachable("Unexpected instr type to insert"); 7279 } 7280 } 7281 7282 // This is only used by the isel schedulers, and is needed only to prevent 7283 // compiler from crashing when list-ilp is used. 7284 const TargetRegisterClass * 7285 SystemZTargetLowering::getRepRegClassFor(MVT VT) const { 7286 if (VT == MVT::Untyped) 7287 return &SystemZ::ADDR128BitRegClass; 7288 return TargetLowering::getRepRegClassFor(VT); 7289 } 7290